Conjecturing over large corpora

Thibault Gauthier Cezary Kaliszyk Josef Urban

April 6, 2016

Goal

Automatically discover conjectures in formalized libraries.

Which formalized libraries?

		theorems	constants	types	theories
	Mizar	51086	6462	2710	1230
•	Coq	23320	3981	860	390
	HOL4	16476	2188	59	126
	HOL Light	16191	790	30	68
	Isabelle/HOL	14814	1046	30	77
	Matita	1712	339	290	101

Why formalized libraries?

- Easier to learn from.
- Sufficiently large number of theorems ?

What for ?

 Improve proof automation, by discovering important intermediate lemmas.

Challenges

How do we conjecture interesting lemmas?

- Generation: large numbers of possible conjectures
- Learning: large amount of data
- Pruning: how to remove false conjectures fast, and select interesting ones

How to integrate these mechanism in a goal-oriented proof?

Our approach

Conjecturing:

	Current solution	Limitation	Available improvement
Generation Learning	analogies pattern-matching	small space	probabilistic grammar genetic algorithm
Pruning	proof	too slow	model-based guidance

Proof strategy including intermediate conjectured lemmas.

- Copy human reasoning.
- Make high-level inference steps: premise selection + ATPs.

Finding analogies

Theorems (first-order, higher-order or type theory):

$$\forall x : num. \ x + 0 = x \qquad \forall x : real. \ x = x \times s(0)$$

Normalization + Conceptualization + Abstraction \rightarrow Properties:

$$\lambda num, +, 0. \ \forall x : num \ x = x + 0$$
 $\lambda real, \times, 1. \ \forall x : real. \ x = x \times 1$

Derived constant pairs:

$$num \leftrightarrow real, + \leftrightarrow \times, 0 \leftrightarrow 1$$

Scoring analogies

- Number of common properties.
- TF-IDF to advantage rarer properties.
- Dynamical process (similarity of 0 1 \rightarrow similarity of + *).
- Not greedy. Concepts can have multiple analogues.

3881 analogies in HOL4. 5842 if we include subterms.

An	alogy	Score
BIT2	BIT1	0.97
real	int	0.96
int_of _num	real_of _num	0.95
real	extreal	0.94
semi_ring	ring	0.94
<u></u> <	<	0.93

Creating conjectures from analogies

$$x*(y-z) = x*y - x*z$$

$$x*(y+z) = x*y + x*z$$

$$x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$$

$$x+0 = x$$

$$x-0 = x$$

exp(a+b) = exp(a) * exp(b)

Properties

$$Dist(*,-,i)$$
 $Dist(*,+,i)$ {
 $Dist(\cup,\cap,s)$ {
 $Neut(+,0,i)$

$$Neut(-,0,i)$$

$$P(exp, +, *, i, r)$$

Concept pairs

$$\begin{array}{ll} \textit{Dist}(*,-,i) & \{-\leftrightarrow+\} \\ \\ \textit{Dist}(*,+,i) & \{*\leftrightarrow\cup,+\leftrightarrow\cap,i\leftrightarrow s\} \\ \\ \textit{Dist}(\cup,\cap,s) & \{*\leftrightarrow\cup,-\leftrightarrow\cap,i\leftrightarrow s\} \\ \\ \textit{Neut}(+,0,i) & \{-\leftrightarrow+\} \end{array}$$

Original theorem:

•
$$exp(a + b) = exp(a) * exp(b)$$

Analogies:

$$\bullet$$
 $+ \rightarrow -$

•
$$+ \rightarrow \cap$$
, $* \rightarrow \cup$

Conjectures:

$$\bullet \ exp(a-b) = exp(a) * exp(b)$$

•
$$exp(a \cap b) = exp(a) \cup exp(b)$$

Untargeted conjecture generation

Procedure:

- Generation of "best" 73535 conjectures from the Mizar library.
- Premise selection + Vampire prove 10% in 10 s.
- 4464 are not tautologies or consequences of single lemmas.

Examples:

convex - circled

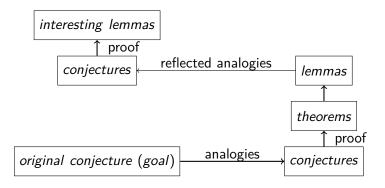
Problem:

- Unlikely to find something useful for a specific goal.
- How to adapt this method in a goal-oriented setting?

Targeted conjecture generation: evaluation settings

	First experiment	Second experiments
Library	Mizar	HOL4
Evaluated theorems	hardest (22069)	all
Accessible library	past theorems	past theorems
Concepts	ground subterms	only constants
Pair creation	pre-computed	fair
Type checking	no	yes
Analogies per theorem	20	20
Premise selection	k-NN 128	-kNN 128
ATP	Vampire 8s	E-prover 8s
Basic strategy	no conjectures	no conjectures
Premise selection	k-NN 128	k-NN 128
ATP	Vampire 3600s	E-prover 16s

First experiment: proof strategy



First experiment: results

	Number	Non-trivial and proven
Hard goals	22069	
Analogous conjectures	441242	3414
Back-translated conjectures	26770	2170
Affected hard goals	500	7
New proven hard goals		1

- Non-trivial theorem: consequences of at least two theorems.
- Affected goal: From the goal, the procedure proves at least one back-translated conjecture.
- Time: 14 hours on a 64-CPU server (proofs)

First experiment: example

Proven using:

- Analogy between + and in additive structures.
- A conjectured lemma which happens to be MATHMORP:26.

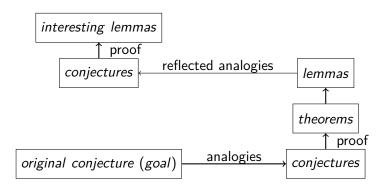
First experiment: limits

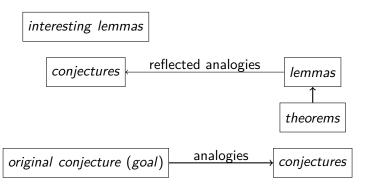
Issues:

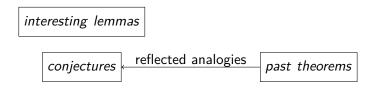
- Huge number of proofs.
- Few affected theorems (500).
- Few conjectured lemmas (in average 4 per affected theorems).
- Do not help in proving the goal.

Reasons:

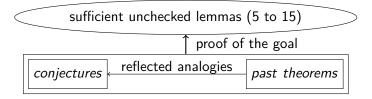
- Design of the strategy.
- Problem set is hard.
- Proof selection is too restrictive.
- Analogies may be too strict.
- No type checking (set theory).
- No understanding of the type hierarchy.



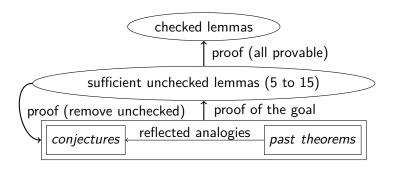




original conjecture (goal) analogies



original conjecture (goal) analogies



original conjecture (goal) analogies

Second experiment: results

Goals Proven conjectures Proven goals Proven goals using one conjectu				10163				
					8246			
					2700			
				re	724			
New prove	en goa	ls				7		
Number of tries	0	1	2	3	4	5	6	7
Proven goals	444	100	58	45	35	21	13	8

Time: 10 hours on a 40-CPU server (analogies + premise selection + translation + proof)

Reason to be hopeful: 2787 goals were "half-proven".

Second experiment: examples

Theorem

extreal.sub_rdistrib pred_set.inter_countable real.pow_rat_2 (7 tries) numpair.tri_le ratRing.tLRLRRRRRR words.word_L2_MULT_e3 real.REAL_EQ_LMUL

From analogues of

extreal.sub_ldistrib pred_set.FINITE_DIFF real.POW_2_LT (21 lemmas) arithmetic.LESS_EQ_SUC_REFL integerRing.tLRLRRRRRR words.WORD_NEG_L intExtension.INT_NO_ZERODIV integer.INT_EQ_LMUL2

Conclusion

We designed two conjecture-based proving methods.

- Support many ITP libraries.
- Generate conjectures using analogies.
- Learn analogies by pattern-matching and dynamical scoring.
- Integrated in a proof strategy:
 Combine analogies and standard hammering techniques (premise selections and translations to ATPs).

We evaluated them.

- 10% of conjectures from best analogies are provable.
- +1 hard Mizar problem.
- +7 hard HOL4 problem.

Coming sooner or later

- Conjecture generation:
 - more complex concepts
 - probabilistic grammar
 - generalization/specification, weakening/strengthening
- Learning:
 - faster pattern-matching,
 - genetic algorithm + model evaluation.
 - ▶ from proofs?
- Pruning or/and guidance:
 - better scoring mechanism for substitutions,
 - model-based guidance.
 - ► Truth intuition using machine learning (?).
- Improving proof strategies:
 - Recursion
 - ► Tree search (Monte-Carlo)

Let's have fun III