1 let TXIWYHI=prove( `!(x:real^3)(k1:real)(k2:real).
2 (&0< k1 /\ &0< k2 ) ==> ?(C:real). !r. ( k2 <= r) ==>
3 &(CARD (integer_point (ball(x,r+ k1) DIFF ball(x,r- k2))))<= C* r pow 2`,
5 SIMP_TAC[eq_def_intball] THEN
7 DISJ_CASES_TAC(REAL_ARITH `(r:real)< k2+ sqrt(&3) \/ (k2+ sqrt(&3)<= r)`)
10 THENL [ASM_MESON_TAC[bdt7_finiteness];ASM_MESON_TAC[bdt5_finiteness]]);;