e9ba6bc8c56a299af1f26f99547a6340189a0e22
[Flyspeck/.git] / prove_lp.hl
1 needs "../formal_lp/more_arith/lin_f.hl";;
2 needs "../formal_lp/more_arith/arith_int.hl";;
3
4
5 module Prove_lp = struct
6
7 open Linear_function;;
8 open Arith_misc;;
9 open Arith_nat;;
10 open Arith_int;;
11 open Misc_vars;;
12
13
14
15 (* Special versions of the above theorems (for using with INST) *)
16
17
18 let NUM_ZERO = prove(mk_eq(mk_comb(amp_op_real, mk_comb(Arith_hash.num_const, zero_const)), `&0`),
19                      REWRITE_TAC[Arith_hash.NUM_THM; NUMERAL]);;
20
21 let LIN_F_SUM_HD',
22   LIN_F_SUM_HD_ZERO',
23   LIN_F_SUM_EMPTY1', LIN_F_SUM_EMPTY2',
24   LIN_F_SUM_MOVE1', LIN_F_SUM_MOVE2',
25   LIN_F_ADD_SINGLE' =
26      UNDISCH_ALL (SPEC_ALL LIN_F_SUM_HD),
27      UNDISCH_ALL (SPEC_ALL (ONCE_REWRITE_RULE[GSYM NUM_ZERO] LIN_F_SUM_HD_ZERO)),
28      SPEC_ALL LIN_F_SUM_EMPTY1, SPEC_ALL LIN_F_SUM_EMPTY2,
29      SPEC_ALL LIN_F_SUM_MOVE1, SPEC_ALL LIN_F_SUM_MOVE2,
30      SPEC_ALL LIN_F_ADD_SINGLE;;
31
32 let LIN_F_MUL_HD', LIN_F_MUL_EMPTY' =
33   UNDISCH_ALL (SPEC_ALL LIN_F_MUL_HD), SPEC_ALL LIN_F_MUL_EMPTY;;
34
35 let LIN_F_ADD_SING_RCANCEL', LIN_F_ADD_SING_LCANCEL' =
36   SPEC_ALL LIN_F_ADD_SING_RCANCEL, SPEC_ALL LIN_F_ADD_SING_LCANCEL;;
37
38
39
40 (***********************************************)
41
42
43 (* Constants *)
44
45 let a1_var_real = `a1:real` and
46     a2_var_real = `a2:real` and
47     b1_var_real = `b1:real` and
48     b2_var_real = `b2:real` and
49     c1_var_real = `c1:real` and
50     c2_var_real = `c2:real` and
51     h_var = `h:real#real` and
52     r_var = `r:(real#real)list` and
53     x_var = `x:(real#real)list` and
54     y_var = `y:(real#real)list` and
55     t_var = `t:(real#real)list` and
56     x_var_real = `x:real` and
57     c1_var = `c1:real` and
58     c2_var = `c2:real` and
59     c_var = `c:real` and
60     v_var = `v:real` and
61     t1_var = `t1:(real#real)list` and
62     t2_var = `t2:(real#real)list` and
63     empty_const = `[]:(real)list`;;
64
65 let ge_op_real = `(>=):real->real->bool`;;
66
67 let cons_const = `CONS:(real#real)->(real#real)list->(real#real)list` and
68     empty_const = `[]:(real)list`;;
69
70
71 (* HACK: for some reason Big_int.big_int_of_int64 is not defined *)
72 let num_of_int64 n =
73   let big = Big_int.big_int_of_string (Int64.to_string n) in
74     Num.num_of_big_int big;;
75
76 (* Term constructors *)
77 let cons h t = mk_comb (mk_comb (cons_const, h), t);;
78 let negate tm = mk_comb (neg_op_real, tm);;
79 let mk_real_int n = mk_comb(amp_op_real, mk_numeral_array n);;
80 let mk_real_int64 n = mk_comb(amp_op_real, mk_numeral_array (num_of_int64 n));;
81 let mk_linear cs vars =
82   let mk_term (c, var) = mk_binop mul_op_real c (mk_var (var, real_ty)) in
83     list_mk_binop add_op_real (map mk_term (zip cs vars));;
84
85 let mk_le_ineq lhs rhs = mk_binop le_op_real lhs rhs;;
86 let mk_eq_ineq lhs rhs = mk_eq (lhs, rhs);;
87 let mk_ge_ineq lhs rhs = mk_binop ge_op_real lhs rhs;;
88
89
90
91 (************************************************)
92
93 (* Computes (lin_f x + lin_f y) with REAL_BITS_ADD_CONV *)
94 let lin_f_add_conv tm =
95   let rec lin_f_add_conv2 x y =
96     if (is_comb y) then
97       if (is_comb x) then
98         let hx = rand (rator x) in
99         let hy = rand (rator y) in
100         let c1, v1 = dest_pair hx in
101         let c2, v2 = dest_pair hy in
102
103           if v1 = v2 then
104             let tx, ty = rand x, rand y in
105             let c_thm = my_real_int_add_conv (mk_binop add_op_real c1 c2) in
106             let c = rand (concl c_thm) in
107               if (rand(rand c) = zero_const) then
108                 let th0 = INST [v1, v_var; c1, c1_var; tx, t1_var; c2, c2_var; ty, t2_var]
109                   LIN_F_SUM_HD_ZERO' in
110                   TRANS (MY_PROVE_HYP c_thm th0) (lin_f_add_conv2 tx ty)
111               else
112                 let th0 = INST[v1, v_var; c1, c1_var; tx, t1_var; c2, c2_var; ty, t2_var; c, c_var]
113                   LIN_F_SUM_HD' in
114                 let ltm = rator (rand(concl th0)) in
115                 let th1 = lin_f_add_conv2 tx ty in
116                 let th2 = TRANS (MY_PROVE_HYP c_thm th0) (AP_TERM ltm th1) in
117                 let th3 = INST[mk_pair (c, v1), h_var; rand(rand(concl th1)), t_var] LIN_F_ADD_SINGLE' in
118                   TRANS th2 th3
119           else
120             if (v1 < v2) then
121               let tx = rand x in
122               let th0 = INST[hx, h_var; tx, t_var; y, x_var] LIN_F_SUM_MOVE1' in
123               let ltm = rator (rand(concl th0)) in
124               let th1 = lin_f_add_conv2 tx y in
125               let th2 = TRANS th0 (AP_TERM ltm th1) in
126               let th3 = INST[hx, h_var; rand(rand(concl th1)), t_var] LIN_F_ADD_SINGLE' in
127                 TRANS th2 th3
128             else
129               let ty = rand y in
130               let th0 = INST[hy, h_var; ty, t_var; x, x_var] LIN_F_SUM_MOVE2' in
131               let ltm = rator (rand(concl th0)) in
132               let th1 = lin_f_add_conv2 x ty in
133               let th2 = TRANS th0 (AP_TERM ltm th1) in
134               let th3 = INST[hy, h_var; rand(rand(concl th1)), t_var] LIN_F_ADD_SINGLE' in
135                 TRANS th2 th3
136       else
137         (* x = [] *)
138         INST[y, x_var] LIN_F_SUM_EMPTY1'
139     else
140       (* y = [] *)
141       INST[x, x_var] LIN_F_SUM_EMPTY2' in
142
143   let larg, rarg = dest_comb tm in
144   let larg = rand larg in
145     lin_f_add_conv2 (rand larg) (rand rarg);;
146
147
148
149 (*********************)
150 (* lin_f conversions *)
151 (*********************)
152
153
154 (* Transforms a sum in the form `a * x + b * y + c * z` into `lin_f [(c,z); (b,y); (a,x)]` *)
155 let LIN_F_RAW_CONV = ONCE_REWRITE_CONV[TO_LIN_F0] THENC REWRITE_CONV[TO_LIN_F];;
156
157 let LIN_F_ADD_CONV = lin_f_add_conv;;
158
159 (* Transforms a sum into `lin_f` and sorts the terms *)
160 let LIN_F_CONV = (REWRITE_CONV[TO_LIN_F1] THENC (DEPTH_CONV LIN_F_ADD_CONV));;
161
162
163 (* Computes `v * lin_f y` *)
164
165 let rec LIN_F_MUL_CONV tm =
166   let x, f = dest_binop mul_op_real tm in
167   let list = rand f in
168     if (is_comb list) then
169       let cons_h, t = dest_comb list in
170       let h = rand cons_h in
171       let c, v = dest_pair h in
172
173       let product = my_real_int_mul_conv (mk_binop mul_op_real x c) in
174       let c1 = rand(concl product) in
175       let th = INST[x, x_var_real; c, c_var; v, v_var; t, t_var; c1, c1_var] LIN_F_MUL_HD' in
176       let th1 = MY_PROVE_HYP product th in
177       let lplus, tm = dest_comb(rand(concl th1)) in
178       let th2 = LIN_F_MUL_CONV tm in
179       let h = mk_pair (c1, v) in
180       let t = rand(rand(concl th2)) in
181       let th3 = TRANS th1 (AP_TERM lplus th2) in
182       let th4 = INST[h, h_var; t, t_var] LIN_F_ADD_SINGLE' in
183         TRANS th3 th4
184     else
185       INST[x, x_var_real] LIN_F_MUL_EMPTY';;
186
187
188 (* Conversion without numerical multiplication *)
189 let LIN_F_MUL_RAW_CONV = ONCE_REWRITE_CONV[LIN_F_MUL] THENC REWRITE_CONV[MAP];;
190
191
192
193 (************************************************)
194
195
196 (* Creates an inequality in the correct form *)
197 let REAL_POS' = SPEC_ALL REAL_POS;;
198 let REAL_LE_LMUL' = UNDISCH_ALL (REWRITE_RULE[GSYM IMP_IMP] (SPEC_ALL REAL_LE_LMUL));;
199 let TO_LIN_F1' = SPEC_ALL TO_LIN_F1;;
200
201 let rec lin_f_conv tm =
202   if is_binary "real_add" tm then
203     let ltm, rtm = dest_binary "real_add" tm in
204     let a_tm, x_tm = dest_binary "real_mul" ltm in
205     let th1 = INST[a_tm, a_var_real; x_tm, x_var_real] TO_LIN_F1' in
206     let th2 = lin_f_conv rtm in
207     let eq_th = MK_COMB (AP_TERM add_op_real th1, th2) in
208     let eq_th2 = lin_f_add_conv (rand (concl eq_th)) in
209       TRANS eq_th eq_th2
210   else
211     let a_tm, x_tm = dest_binary "real_mul" tm in
212       INST[a_tm, a_var_real; x_tm, x_var_real] TO_LIN_F1';;
213
214
215 let transform_le_ineq (ineq, m) =
216   let lhs, rhs = dest_binop le_op_real (concl ineq) in
217   let lhs_f_th = lin_f_conv lhs in
218   let original_th = EQ_MP (AP_THM (AP_TERM le_op_real lhs_f_th) rhs) ineq in
219   let lhs = rand(concl lhs_f_th) in
220   let pos_th = INST[rand m, n_var_num] REAL_POS' in
221   let th0 = INST[m, x_var_real; lhs, y_var_real; rhs, z_var_real] REAL_LE_LMUL' in
222   let th1 = MY_PROVE_HYP pos_th th0 in
223   let th2 = MY_PROVE_HYP original_th th1 in
224   let lhs, rhs = dest_binop le_op_real (concl th2) in
225   let lhs_th = LIN_F_MUL_CONV lhs in
226   let rhs_th = my_real_int_mul_conv rhs in
227   let th3 = MK_COMB(AP_TERM le_op_real lhs_th, rhs_th) in
228     EQ_MP th3 th2;;
229
230         
231 let transform_le_ineq_tm (ineq, m) =
232   let lhs, rhs = dest_binop le_op_real ineq in
233   let lhs_f_th = lin_f_conv lhs in
234   let original_th = EQ_MP (AP_THM (AP_TERM le_op_real lhs_f_th) rhs) (ASSUME ineq) in
235   let lhs = rand(concl lhs_f_th) in
236   let pos_th = INST[rand m, n_var_num] REAL_POS' in
237   let th0 = INST[m, x_var_real; lhs, y_var_real; rhs, z_var_real] REAL_LE_LMUL' in
238   let th1 = MY_PROVE_HYP pos_th th0 in
239   let th2 = MY_PROVE_HYP original_th th1 in
240   let lhs, rhs = dest_binop le_op_real (concl th2) in
241   let lhs_th = LIN_F_MUL_CONV lhs in
242   let rhs_th = my_real_int_mul_conv rhs in
243   let th3 = MK_COMB(AP_TERM le_op_real lhs_th, rhs_th) in
244     EQ_MP th3 th2;;
245
246
247
248 (* Computes the sum of two inequalities *)
249 let REAL_LE_ADD2' = UNDISCH_ALL (REWRITE_RULE[GSYM IMP_IMP] (SPEC_ALL REAL_LE_ADD2));;
250
251 (* Computes the sum of two inequalities (with LIN_F_ADD_CONV and REAL_BITS_ADD_CONV) *)
252 let add_step' ineq1 ineq2 =
253   let lhs1, rhs1 = dest_binop le_op_real (concl ineq1) in
254   let lhs2, rhs2 = dest_binop le_op_real (concl ineq2) in
255   let th0 = INST [lhs1, w_var_real; rhs1, x_var_real; lhs2, y_var_real; rhs2, z_var_real]
256     REAL_LE_ADD2' in
257   let th1 = MY_PROVE_HYP ineq2 (MY_PROVE_HYP ineq1 th0) in
258   let lhs, rhs = dest_binop le_op_real (concl th1) in
259   let lhs_th = LIN_F_ADD_CONV lhs in
260   let rhs_th = my_real_int_add_conv rhs in
261     EQ_MP (MK_COMB(AP_TERM le_op_real lhs_th, rhs_th)) th1;;
262
263
264 (* Computes the sum of lin_f[--c, x;...] and c * x *)
265 let add_cancel_step ineq var_ineq =
266   let lhs1, rhs1 = dest_binop le_op_real (concl var_ineq) in
267   let lhs2, rhs2 = dest_binop le_op_real (concl ineq) in
268   let th0 = INST[lhs1, w_var_real; rhs1, x_var_real; lhs2, y_var_real; rhs2, z_var_real]
269     REAL_LE_ADD2' in
270   let th1 = MY_PROVE_HYP ineq (MY_PROVE_HYP var_ineq th0) in
271   let ctm, vtm = dest_binop mul_op_real lhs1 in
272   let ttm = rand(rand lhs2) in
273     if (rator ctm = neg_op_real) then
274       let lhs_th = INST[rand ctm, c_var; vtm, v_var; ttm, t_var] LIN_F_ADD_SING_LCANCEL' in
275       let rhs_th = my_real_int_add_conv (rand(concl th1)) in
276         EQ_MP (MK_COMB(AP_TERM le_op_real lhs_th, rhs_th)) th1
277     else
278       let lhs_th = INST[ctm, c_var; vtm, v_var; ttm, t_var] LIN_F_ADD_SING_RCANCEL' in
279       let rhs_th = my_real_int_add_conv (rand(concl th1)) in
280         EQ_MP (MK_COMB(AP_TERM le_op_real lhs_th, rhs_th)) th1;;
281
282
283
284 let zero_const_real = `&0`;;
285
286 (* Multiplies a linear inequality by a rational positive constant *)
287 let mul_rat_step ineq c =
288   let pos_thm = REAL_ARITH (mk_le_ineq zero_const_real c) in
289   let hyp = CONJ pos_thm ineq in
290   let th0 = MATCH_MP REAL_LE_LMUL hyp in
291   let lhs, rhs = dest_binop le_op_real (concl th0) in
292   let lhs_th = (LIN_F_MUL_RAW_CONV THENC DEPTH_CONV REAL_RAT_MUL_CONV) lhs in
293   let rhs_th = REAL_RAT_MUL_CONV rhs in
294     EQ_MP (MK_COMB (AP_TERM le_op_real lhs_th, rhs_th)) th0;;
295
296
297
298 (* Multiplies a linear inequality in the form lin_f x <= y by
299    a positive integer c *)
300 let mul_step ineq c =
301   let lhs, rhs = dest_binop le_op_real (concl ineq) in
302   let pos_th = INST[rand c, n_var_num] REAL_POS' in
303   let th0 = INST[c, x_var_real; lhs, y_var_real; rhs, z_var_real] REAL_LE_LMUL' in
304   let th1 = MY_PROVE_HYP pos_th th0 in
305   let th2 = MY_PROVE_HYP ineq th1 in
306   let lhs, rhs = dest_binop le_op_real (concl th2) in
307   let lhs_th = LIN_F_MUL_CONV lhs in
308   let rhs_th = my_real_int_mul_conv rhs in
309   let th3 = MK_COMB(AP_TERM le_op_real lhs_th, rhs_th) in
310     EQ_MP th3 th2;;
311
312
313
314 (* Transformations for variables *)
315
316 let VAR_MUL_THM = prove(`!x c1 c2 a b v. &0 <= x /\ x * c1 = a /\ x * c2 = b /\ c1 * v <= c2
317     ==> a * v <= b`,
318    REPEAT STRIP_TAC THEN
319      UNDISCH_TAC `x * c1 = a:real` THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN
320      UNDISCH_TAC `x * c2 = b:real` THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN
321      REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
322      MATCH_MP_TAC REAL_LE_LMUL THEN
323      ASM_REWRITE_TAC[]);;
324
325
326 let VAR_MUL_THM' = (UNDISCH_ALL o SPEC_ALL o (REWRITE_RULE[GSYM IMP_IMP])) VAR_MUL_THM;;
327
328 let VAR_ADD_THM = prove(`!x a1 b1 a2 b2 c1 c2. a1 * x <= b1 /\ a2 * x <= b2 /\
329                           a1 + a2 = c1 /\ b1 + b2 = c2 ==> c1 * x <= c2`,
330                         REPEAT STRIP_TAC THEN
331                           EXPAND_TAC "c1" THEN EXPAND_TAC "c2" THEN
332                           REWRITE_TAC[REAL_ADD_RDISTRIB] THEN
333                           MATCH_MP_TAC REAL_LE_ADD2 THEN
334                           ASM_REWRITE_TAC[]);;
335
336 let VAR_ADD_THM' = (UNDISCH_ALL o SPEC_ALL o (REWRITE_RULE[GSYM IMP_IMP])) VAR_ADD_THM;;
337
338
339 (* Multiplies c1 * x <= c2 by m *)
340 let var1_le_transform (var_ineq, m) =
341   let lhs, c2tm = dest_binop le_op_real (var_ineq) in
342   let pos_th = INST[rand m, n_var_num] REAL_POS' in
343   let c1tm, xtm = dest_binop mul_op_real lhs in
344   let c1_th = my_real_int_mul_conv (mk_binop mul_op_real m c1tm) in
345   let c2_th = my_real_int_mul_conv (mk_binop mul_op_real m c2tm) in
346   let th = INST[m, x_var_real; c1tm, c1_var; c2tm, c2_var; xtm, v_var;
347               rand(concl c1_th), a_var_real; rand(concl c2_th), b_var_real]
348     VAR_MUL_THM' in
349     MY_PROVE_HYP pos_th (MY_PROVE_HYP (ASSUME var_ineq) (MY_PROVE_HYP c1_th (MY_PROVE_HYP c2_th th)));;
350
351
352 (* Sums two inequalities *)
353 let add_le_ineqs ineq1 ineq2 = 
354   let lhs1, b1tm = dest_binop le_op_real (concl ineq1) in
355   let lhs2, b2tm = dest_binop le_op_real (concl ineq2) in
356   let a1tm, xtm = dest_binop mul_op_real lhs1 in
357   let a2tm = rand(rator lhs2) in
358   let b_th = my_real_int_add_conv (mk_binop add_op_real b1tm b2tm) in
359   let a_th = my_real_int_add_conv (mk_binop add_op_real a1tm a2tm) in
360   let th0 = INST[a1tm, a1_var_real; a2tm, a2_var_real;
361                  b1tm, b1_var_real; b2tm, b2_var_real;
362                  rand(concl a_th), c1_var_real; rand(concl b_th), c2_var_real;
363                  xtm, x_var_real] VAR_ADD_THM' in
364     MY_PROVE_HYP ineq2 (MY_PROVE_HYP ineq1 (MY_PROVE_HYP b_th (MY_PROVE_HYP a_th th0)));;
365
366
367
368 (* Multiplies the corresponding inequalities and finds the sum of results *)
369 let var2_le_transform (var_ineq1,m1) (var_ineq2,m2) =
370   let ineq1 = var1_le_transform (var_ineq1, m1) and
371       ineq2 = var1_le_transform (var_ineq2, m2) in
372   let lhs1, b1tm = dest_binop le_op_real (concl ineq1) in
373   let lhs2, b2tm = dest_binop le_op_real (concl ineq2) in
374   let a1tm, xtm = dest_binop mul_op_real lhs1 in
375   let a2tm = rand(rator lhs2) in
376   let b_th = my_real_int_add_conv (mk_binop add_op_real b1tm b2tm) in
377   let a_th = my_real_int_add_conv (mk_binop add_op_real a1tm a2tm) in
378   let th0 = INST[a1tm, a1_var_real; a2tm, a2_var_real;
379                  b1tm, b1_var_real; b2tm, b2_var_real;
380                  rand(concl a_th), c1_var_real; rand(concl b_th), c2_var_real;
381                  xtm, x_var_real] VAR_ADD_THM' in
382     MY_PROVE_HYP ineq2 (MY_PROVE_HYP ineq1 (MY_PROVE_HYP b_th (MY_PROVE_HYP a_th th0)));;
383
384
385
386
387
388 (* The main function *)
389 (* Example: prove_lp ineqs var_ineqs target_vars `&12` (Int 100000) *)
390 (* ineq - inequalities obtained from constraints with multipliers *)
391 (* var_ineqs - bounds for variables as inequalities in the correct form *)
392 (* target_vars - bounds and multipliers for variables in the objective function *)
393 (* bound - a bound for the objective function which is proved *)
394 (* m - a precision constant *)
395
396
397 let LIN_F_EMPTY_LE_0 = prove(`lin_f [] <= &0`, REWRITE_TAC[LIN_F_EMPTY; REAL_LE_REFL]);;
398 let dummy = REWRITE_RULE[GSYM NUM_ZERO] LIN_F_EMPTY_LE_0;;
399
400
401 let prove_lp_tm ineqs var_ineqs target_vars target_bound precision_constant =
402   (* Compute the sum of all constraints *)
403   let r1 = map transform_le_ineq_tm ineqs in
404   let r2' = List.fold_left add_step' dummy r1 in
405   let r2 = mul_step r2' (mk_real_int precision_constant) in
406
407   (* Use bounds of variables *)
408   let r3 = List.fold_left add_cancel_step r2 var_ineqs in
409   let r4 = List.fold_left add_step' dummy (map transform_le_ineq_tm target_vars) in
410   let r5 = add_step' r3 r4 in
411
412   (* Convert the result into a usual form *)
413   let r6 = CONV_RULE (DEPTH_CONV NUM_TO_NUMERAL_CONV) r5 in
414   let m = term_of_rat (precision_constant */ precision_constant */ precision_constant) in
415   let r7 = mul_rat_step r6 (mk_comb (`(/) (&1)`, m)) in
416   let r8 = REWRITE_RULE[lin_f; ITLIST; REAL_ADD_RID] r7 in
417   let r9 = EQT_ELIM (REAL_RAT_LE_CONV (mk_binop le_op_real ((rand o concl) r8) target_bound)) in
418     MATCH_MP REAL_LE_TRANS (CONJ r8 r9);;
419
420
421 let prove_lp ineqs var_ineqs target_vars target_bound precision_constant =
422   (* Compute the sum of all constraints *)
423   let r1 = map transform_le_ineq ineqs in
424   let r2' = List.fold_left add_step' dummy r1 in
425   let r2 = mul_step r2' (mk_real_int precision_constant) in
426
427   (* Use bounds of variables *)
428   let r3 = List.fold_left add_cancel_step r2 var_ineqs in
429   let r4 = List.fold_left add_step' dummy (map transform_le_ineq target_vars) in
430   let r5 = add_step' r3 r4 in
431
432   (* Convert the result into a usual form *)
433   let r6 = CONV_RULE (DEPTH_CONV NUM_TO_NUMERAL_CONV) r5 in
434   let m = term_of_rat (precision_constant */ precision_constant */ precision_constant) in
435   let r7 = mul_rat_step r6 (mk_comb (`(/) (&1)`, m)) in
436   let r8 = REWRITE_RULE[lin_f; ITLIST; REAL_ADD_RID] r7 in
437   let r9 = EQT_ELIM (REAL_RAT_LE_CONV (mk_binop le_op_real ((rand o concl) r8) target_bound)) in
438     MATCH_MP REAL_LE_TRANS (CONJ r8 r9);;
439
440 end;;