needs "Multivariate/vectors.ml";; needs "Examples/solovay.ml";; g `orthogonal (A - B) (C - B) ==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`;; e SOLOVAY_VECTOR_TAC;; e(CONV_TAC REAL_RING);; g`!x y:real^N. x dot y <= norm x * norm y`;; e SOLOVAY_VECTOR_TAC;; (**** Needs external SDP solver needs "Examples/sos.ml";; e(CONV_TAC REAL_SOS);; let EXAMPLE_0 = prove (`!a x y:real^N. (y - x) dot (a - y) >= &0 ==> norm(y - a) <= norm(x - a)`, SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);; ****) (*** Needs Rqe loaded needs "Rqe/make.ml";; let EXAMPLE_10 = prove (`!x:real^N y. x dot y > &0 ==> ?u. &0 < u /\ !v. &0 < v /\ v <= u ==> norm(v % y - x) < norm x`, SOLOVAY_VECTOR_TAC THEN W(fun (asl,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN CONV_TAC REAL_QELIM_CONV);; ****) let FORALL_3 = prove (`(!i. 1 <= i /\ i <= 3 ==> P i) <=> P 1 /\ P 2 /\ P 3`, MESON_TAC[ARITH_RULE `1 <= i /\ i <= 3 <=> (i = 1) \/ (i = 2) \/ (i = 3)`]);; let SUM_3 = prove (`!t. sum(1..3) t = t(1) + t(2) + t(3)`, REWRITE_TAC[num_CONV `3`; num_CONV `2`; SUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[SUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);; let VECTOR_3 = prove (`(vector [x;y;z] :real^3)$1 = x /\ (vector [x;y;z] :real^3)$2 = y /\ (vector [x;y;z] :real^3)$3 = z`, SIMP_TAC[vector; LAMBDA_BETA; DIMINDEX_3; LENGTH; ARITH] THEN REWRITE_TAC[num_CONV `2`; num_CONV `1`; EL; HD; TL]);; let DOT_VECTOR = prove (`(vector [x1;y1;z1] :real^3) dot (vector [x2;y2;z2]) = x1 * x2 + y1 * y2 + z1 * z2`, REWRITE_TAC[dot; DIMINDEX_3; SUM_3; VECTOR_3]);; let VECTOR_ZERO = prove (`(vector [x;y;z] :real^3 = vec 0) <=> x = &0 /\ y = &0 /\ z = &0`, SIMP_TAC[CART_EQ; DIMINDEX_3; FORALL_3; VEC_COMPONENT; VECTOR_3; ARITH]);; let ORTHOGONAL_VECTOR = prove (`orthogonal (vector [x1;y1;z1] :real^3) (vector [x2;y2;z2]) = (x1 * x2 + y1 * y2 + z1 * z2 = &0)`, REWRITE_TAC[orthogonal; DOT_VECTOR]);; parse_as_infix("cross",(20,"right"));; let cross = new_definition `(a:real^3) cross (b:real^3) = vector [a$2 * b$3 - a$3 * b$2; a$3 * b$1 - a$1 * b$3; a$1 * b$2 - a$2 * b$1] :real^3`;; let VEC3_TAC = SIMP_TAC[CART_EQ; LAMBDA_BETA; FORALL_3; SUM_3; DIMINDEX_3; VECTOR_3; vector_add; vec; dot; cross; orthogonal; basis; ARITH] THEN CONV_TAC REAL_RING;; let VEC3_RULE tm = prove(tm,VEC3_TAC);; let ORTHOGONAL_CROSS = VEC3_RULE `!x y. orthogonal (x cross y) x /\ orthogonal (x cross y) y /\ orthogonal x (x cross y) /\ orthogonal y (x cross y)`;; let LEMMA_0 = VEC3_RULE `~(basis 1 :real^3 = vec 0) /\ ~(basis 2 :real^3 = vec 0) /\ ~(basis 3 :real^3 = vec 0)`;; let LEMMA_1 = VEC3_RULE `!u v. u dot (u cross v) = &0`;; let LEMMA_2 = VEC3_RULE `!u v. v dot (u cross v) = &0`;; let LEMMA_3 = VEC3_RULE `!u:real^3. vec 0 dot u = &0`;; let LEMMA_4 = VEC3_RULE `!u:real^3. u dot vec 0 = &0`;; let LEMMA_5 = VEC3_RULE `!x. x cross x = vec 0`;; let LEMMA_6 = VEC3_RULE `!u. ~(u = vec 0) ==> ~(u cross basis 1 = vec 0) \/ ~(u cross basis 2 = vec 0) \/ ~(u cross basis 3 = vec 0)`;; let LEMMA_7 = VEC3_RULE `!u v w. (u cross v = vec 0) ==> (u dot (v cross w) = &0)`;; let NORMAL_EXISTS = prove (`!u v:real^3. ?w. ~(w = vec 0) /\ orthogonal u w /\ orthogonal v w`, REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`u:real^3 = vec 0`; `v:real^3 = vec 0`; `u cross v = vec 0`] THEN ASM_REWRITE_TAC[orthogonal] THEN ASM_MESON_TAC[LEMMA_0; LEMMA_1; LEMMA_2; LEMMA_3; LEMMA_4; LEMMA_5; LEMMA_6; LEMMA_7]);;