(* ========================================================================= *) (* Formalization of Electromagnetic Optics *) (* *) (* (c) Copyright, Sanaz Khan Afshar & Vincent Aravantinos 2011-14 *) (* Hardware Verification Group, *) (* Concordia University *) (* *) (* Contact: *) (* *) (* *) (* This file deals with the non-trivial theorems called "primitive rules". *) (* ========================================================================= *) let WAVE_ORTHOGONALITY = prove (`!emf. is_plane_wave emf ==> corthogonal (h_of_wave emf) (e_of_wave emf)`, REWRITE_TAC[IS_PLANE_WAVE;is_valid_emf;plane_wave;emf_at_point_mul;e_of_emf; h_of_emf;LET_DEF;LET_END_DEF] THEN REPEAT STRIP_TAC THEN REPLICATE_TAC 2 (POP_ASSUM (K ALL_TAC)) THEN POP_ASSUM (fun x -> RULE_ASSUM_TAC (ONCE_REWRITE_RULE[x])) THEN RULE_ASSUM_TAC (REWRITE_RULE[BETA_THM;LET_DEF;LET_END_DEF]) THEN REPEAT (POP_ASSUM MP_TAC) THEN SIMP_TAC[corthogonal;CDOT3;CVECTOR_MUL_COMPONENT;CNJ_MUL; SIMPLE_COMPLEX_ARITH `(x*y)*cnj z*t=(x*cnj z)*(y*t):complex`; GSYM COMPLEX_ADD_LDISTRIB;COMPLEX_ENTIRE;CEXP_NZ;CNJ_EQ_0]);; let NON_NULL_LEMMA = prove (`!emf v. ~(v = vec 0) /\ non_null_wave emf ==> let v_ccross = (ccross) (vector_to_cvector v) in ~(v_ccross (e_of_wave emf) = cvector_zero) \/ ~(v_ccross (h_of_wave emf) = cvector_zero)`, REPEAT GEN_TAC THEN CONV_TAC (DEPTH_CONV let_CONV) THEN ASM_CASES_TAC `vector_to_cvector v ccross e_of_wave emf = cvector_zero` THEN ASM_REWRITE_TAC[non_null_wave] THEN RULE_ASSUM_TAC (REWRITE_RULE[CCROSS_COLLINEAR_CVECTORS]) THEN ASSUME_CONSEQUENCES (REWRITE_RULE[IMP_CONJ] CORTHOGONAL_COLLINEAR_CVECTORS) THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `~(vector_to_cvector (v:real^3) = cvector_zero)` ASSUME_TAC THENL ON_FIRST_GOAL (REWRITE_TAC[CART_EQ3;CVECTOR_ZERO_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT; CX_INJ] THEN RULE_ASSUM_TAC (REWRITE_RULE[CART_EQ;VEC_COMPONENT;DIMINDEX_3;FORALL_3]) THEN ASM_REWRITE_TAC[]) THEN SUBGOAL_THEN `?a . ~(a=Cx(&0)) /\ vector_to_cvector v = a % e_of_wave emf` STRIP_ASSUME_TAC THENL ON_FIRST_GOAL (ASM_MESON_TAC[NON_NULL_COLLINEARS;COLLINEAR_CVECTORS_SYM]) THEN ASSUME_CONSEQUENCES WAVE_ORTHOGONALITY THEN POP_ASSUM MP_TAC THEN POP_ASSUM (fun x -> RULE_ASSUM_TAC (REWRITE_RULE[x;CCROSS_LMUL;CVECTOR_MUL_EQ_0])) THEN POP_ASSUM (fun x -> RULE_ASSUM_TAC (REWRITE_RULE[x;CCROSS_COLLINEAR_CVECTORS])) THEN ASM_MESON_TAC[CORTHOGONAL_COLLINEAR_CVECTORS;CORTHOGONAL_SYM]);; let NON_NULL_LEMMA_PASTECART = prove (`!emf v. ~(v = vec 0) /\ non_null_wave emf ==> let v_ccross = (ccross) (vector_to_cvector v) in ~(pastecart (v_ccross (e_of_wave emf)) (v_ccross (h_of_wave emf)) = cvector_zero)`, REWRITE_TAC[PASTECART_EQ_CVECTOR_ZERO;DE_MORGAN_THM;NON_NULL_LEMMA]);; let BOUNDARY_CONDITIONS_FOR_PLANE_WAVES = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t ==> let p = plane_of_interface i in !n. is_normal_to_plane n p ==> let n_ccross = (ccross) (vector_to_cvector n) in !pt. pt IN p ==> !t. let plane_component = \f_of_wave emf. cexp (--ii * Cx((k_of_wave emf) dot pt - w_of_wave emf*t)) % n_ccross (f_of_wave emf) in plane_component e_of_wave emf_i + plane_component e_of_wave emf_r = plane_component e_of_wave emf_t /\ plane_component h_of_wave emf_i + plane_component h_of_wave emf_r = plane_component h_of_wave emf_t`, REWRITE_TAC[FORALL_INTERFACE_THM;plane_of_interface;LET_DEF;LET_END_DEF; is_plane_wave_at_interface;non_null_wave;IS_PLANE_WAVE;plane_wave; emf_at_point_mul;e_of_emf;h_of_emf;LET_DEF;LET_END_DEF;map_triple;o_DEF] THEN REPEAT STRIP_TAC THEN POP_ASSUM (fun x -> FIRST_X_ASSUM (fun y -> MP_TAC (MATCH_MP y x))) THEN ASM (GEN_REWRITE_TAC (RATOR_CONV o DEPTH_CONV)) [] THEN REWRITE_TAC[boundary_conditions;emf_add;e_of_emf;h_of_emf;LET_DEF; LET_END_DEF;CCROSS_RADD;CCROSS_RMUL] THEN DISCH_THEN (C ASM_CSQ_THEN STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[]);; (* We combine the E and H field as one complex^6 vector. * Convenient for some proofs. *) let PASTECART_BOUNDARY_CONDITIONS_FOR_PLANE_WAVES = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t ==> let p = plane_of_interface i in !n. is_normal_to_plane n p ==> let n_ccross = (ccross) (vector_to_cvector n) in !pt. pt IN p ==> !t. let plane_component = \emf. cexp (--ii * Cx((k_of_wave emf) dot pt - w_of_wave emf*t)) % pastecart (n_ccross (e_of_wave emf)) (n_ccross (h_of_wave emf)) in plane_component emf_i + plane_component emf_r = plane_component emf_t`, REWRITE_TAC[LET_DEF;LET_END_DEF] THEN REPEAT STRIP_TAC THEN ASM_CSQ_THEN (REWRITE_RULE[LET_DEF;LET_END_DEF] BOUNDARY_CONDITIONS_FOR_PLANE_WAVES) (C ASM_CSQ_THEN (C ASM_CSQ_THEN (MP_TAC o SPEC_ALL))) THEN PASTECART_TAC[GSYM PASTECART_CVECTOR_MUL;PASTECART_CVECTOR_ADD]);; let EXISTS_NORMAL_OF_PLANE_INTERFACE = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t ==> ?n. is_normal_to_plane n (plane_of_interface i)`, REWRITE_TAC[FORALL_INTERFACE_THM;LET_DEF;LET_END_DEF; is_plane_wave_at_interface;is_valid_interface;plane_of_interface] THEN MESON_TAC[EXISTS_NORMAL_OF_PLANE]);; let FREQUENCY_CONSERVATION = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t ==> (non_null_wave emf_r ==> w_of_wave emf_r = w_of_wave emf_i) /\ (non_null_wave emf_t ==> w_of_wave emf_t = w_of_wave emf_i)`, REWRITE_TAC[FORALL_INTERFACE_THM] THEN REPEAT STRIP_TAC THEN ASM_CSQ_THEN EXISTS_NORMAL_OF_PLANE_INTERFACE STRIP_ASSUME_TAC THEN SUBGOAL_THEN `~(n' = vec 0:real^3) /\ plane (p:plane)` STRIP_ASSUME_TAC THEN TRY (RULE_ASSUM_TAC (REWRITE_RULE[is_plane_wave_at_interface;LET_DEF; LET_END_DEF;is_valid_interface;is_normal_to_plane]) THEN ASM_REWRITE_TAC[] THEN NO_TAC) THEN ASM_CSQ_THEN PLANE_NON_EMPTY (STRIP_ASSUME_TAC o REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN ASM_CSQ_THEN (REWRITE_RULE[LET_DEF;LET_END_DEF] PASTECART_BOUNDARY_CONDITIONS_FOR_PLANE_WAVES) (C ASM_CSQ_THEN ASSUME_TAC) THEN RULE_ASSUM_TAC (REWRITE_RULE[plane_of_interface;LET_DEF;LET_END_DEF]) THEN POP_ASSUM (C ASM_CSQ_THEN MP_TAC) THEN REWRITE_TAC[CX_SUB;CX_MUL;SIMPLE_COMPLEX_ARITH `--ii*(x-y*z) = (ii*y)*z+ --ii*x`;CEXP_ADD;GSYM CVECTOR_MUL_ASSOC] THEN ONCE_REWRITE_TAC[MESON[COMPLEX_EQ_MUL_LCANCEL;II_NZ;CX_INJ] `x=y <=> ii * Cx x = ii * Cx y`] THENL (let APPLY_FREQ_EQ_TAC x = DISCH_THEN (MP_TAC o MATCH_MP (REWRITE_RULE[MESON[] `(A /\ B /\ C ==> D) <=> (C ==> A ==> B ==> D)`] x)) in map APPLY_FREQ_EQ_TAC [ VEC_WAVE_SUM_EQ_WEAK2; VEC_WAVE_SUM_EQ_WEAK1]) THEN ANTS_TAC THEN let APPLY_NON_NULL_LEMMA = REWRITE_TAC[CVECTOR_MUL_EQ_0;CEXP_NZ] THEN MATCH_MP_TAC (CONV_RULE (DEPTH_CONV let_CONV) NON_NULL_LEMMA_PASTECART) in REPEAT (ANTS_TAC ORELSE APPLY_NON_NULL_LEMMA) THEN ASM_MESON_TAC[is_plane_wave_at_interface]);; let IS_PLANE_WAVE_AT_INTERFACE_THMS = [is_plane_wave_at_interface;LET_DEF;LET_END_DEF;map_triple;o_DEF; is_valid_interface];; let K_PLANE_PROJECTION_CONSERVATION = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t ==> let n = unit (normal_of_interface i) in (non_null_wave emf_r ==> projection_on_hyperplane (k_of_wave emf_r) n = projection_on_hyperplane (k_of_wave emf_i) n) /\ (non_null_wave emf_t ==> projection_on_hyperplane (k_of_wave emf_t) n = projection_on_hyperplane (k_of_wave emf_i) n)`, REWRITE_TAC[FORALL_INTERFACE_THM] THEN REPEAT GEN_TAC THEN DISCH_THEN (DISTRIB [MP_TAC; LABEL_TAC "*" o MATCH_MP PASTECART_BOUNDARY_CONDITIONS_FOR_PLANE_WAVES]) THEN REWRITE_TAC([normal_of_interface] @ IS_PLANE_WAVE_AT_INTERFACE_THMS) THEN REPEAT STRIP_TAC THEN REMOVE_THEN "*" (C ASM_CSQ_THEN ASSUME_TAC o REWRITE_RULE[LET_DEF;LET_END_DEF;plane_of_interface]) THEN ASM_CSQ_THEN FORALL_PLANE_THM_2 STRIP_ASSUME_TAC THEN POP_ASSUM (RULE_ASSUM_TAC o SINGLE REWRITE_RULE) THEN FIRST_ASSUM (STRIP_ASSUME_TAC o CONV_RULE (REWR_CONV is_normal_to_plane)) THEN ASM_SIMP_TAC[UNIT_THM;PROJECTION_ON_HYPERPLANE_THM] THEN ASM_CSQ_THEN PLANE_DECOMP_DOT (C ASM_CSQ_THEN (C ASM_CSQ_THEN ASSUME_TAC)) THEN MAP_EVERY (fun x -> REWRITE_TAC[VECTOR_ARITH x] THEN ASSUM_LIST (GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV))) [`a-b=c-d <=> a=c+b-d:real^N`;`a=c+b-d <=> c=a-b+d:real^N`] THEN REWRITE_TAC[VECTOR_ARITH `a+b+c=(d+e+f)-f+c <=> a+b=d+e:real^N`] THEN ASM_CSQ_THEN BASIS_NON_NULL (fun x -> FIRST_ASSUM (STRIP_ASSUME_TAC o REWRITE_RULE[IN_INSERT;IN_SING; MESON[] `(!x. x=a \/ x=b ==> p x) <=> p a /\ p b`;UNIT_EQ_ZERO] o MATCH_MP x o CONJUNCT1 o CONV_RULE (REWR_CONV is_orthogonal_plane_basis))) THEN ASM_SIMP_TAC[UNIT_UNIT] THEN MK_COMB_TAC THENL [AP_TERM_TAC;ALL_TAC;AP_TERM_TAC;ALL_TAC] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[MESON[COMPLEX_EQ_MUL_LCANCEL;II_NZ;CX_INJ; COMPLEX_NEG_EQ_0] `x=y <=> --ii * Cx x = --ii * Cx y`] THEN RULE_ASSUM_TAC (REWRITE_RULE[ VECTOR_ARITH `x dot (y+a%z+b%t) = x dot y+(x dot z)*a+(x dot t)*b`; SIMPLE_COMPLEX_ARITH `--ii * Cx ((a+b*b'+c*c')-d) = (--ii * Cx b) * Cx b' + (--ii * Cx c) * Cx c' + --ii * Cx a + ii * Cx d`; CEXP_ADD]) THENL (map (fun f -> FIRST_X_ASSUM (ASSUME_TAC o f)) [ funpow 2 (SPEC `&0` o ONCE_REWRITE_RULE[SWAP_FORALL_THM]); SPEC `&0` o ONCE_REWRITE_RULE[SWAP_FORALL_THM] o SPEC `&0`; funpow 2 (SPEC `&0` o ONCE_REWRITE_RULE[SWAP_FORALL_THM]); SPEC `&0` o ONCE_REWRITE_RULE[SWAP_FORALL_THM] o SPEC `&0`; ]) THEN RULE_ASSUM_TAC (REWRITE_RULE[COMPLEX_MUL_RZERO;CEXP_0;COMPLEX_MUL_RID; REAL_MUL_RZERO;GSYM CVECTOR_MUL_ASSOC;CVECTOR_MUL_ID]) THENL (let lemma = MESON[] `(!x y z t u v. p x y z t v u ==> q x y z /\ r t v u) ==> (!x y z t u v. p x y z t v u ==> q x y z)` in let APPLY_FREQ_EQ_TAC x = POP_ASSUM (DISTRIB [ASSUME_TAC;MP_TAC o MATCH_MP (REWRITE_RULE[MESON[] `(A /\ B /\ C ==> D) <=> (C ==> A ==> B ==> D)`](MATCH_MP lemma x))]) in map APPLY_FREQ_EQ_TAC [VEC_WAVE_SUM_EQ_WEAK2;VEC_WAVE_SUM_EQ_WEAK2; VEC_WAVE_SUM_EQ_WEAK1;VEC_WAVE_SUM_EQ_WEAK1]) THEN ANTS_TAC THEN let APPLY_NON_NULL_LEMMA = REWRITE_TAC[CVECTOR_MUL_EQ_0;CEXP_NZ] THEN MATCH_MP_TAC (CONV_RULE (DEPTH_CONV let_CONV) NON_NULL_LEMMA_PASTECART) in REPEAT (ANTS_TAC ORELSE APPLY_NON_NULL_LEMMA) THEN ASM_REWRITE_TAC[]);; let LAW_OF_REFLECTION = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t ==> let n = unit (normal_of_interface i) in non_null_wave emf_r ==> symetric_vectors_wrt (--(k_of_wave emf_r)) (k_of_wave emf_i) n`, REWRITE_TAC[FORALL_INTERFACE_THM;LET_DEFs] THEN REPEAT STRIP_TAC THEN ASM_CSQ_THEN (REWRITE_RULE[LET_DEFs] K_PLANE_PROJECTION_CONSERVATION) (C ASM_CSQ_THEN MP_TAC o CONJUNCT1) THEN ASM_CSQ_THEN (MESON[is_plane_wave_at_interface] `is_plane_wave_at_interface i emf_i emf_r emf_t ==> is_valid_interface i`) (DISTRIB [ASSUME_TAC; STRIP_ASSUME_TAC o REWRITE_RULE[LET_DEFs;is_valid_interface]]) THEN ASM_SIMP_TAC[normal_of_interface;LET_DEFs; PROJECTION_ON_HYPERPLANE_THM;symetric_vectors_wrt; NORMAL_OF_INTERFACE_NON_NULL;UNIT_THM;UNIT_EQ_ZERO] THEN DISCH_TAC THEN SUBGOAL_THEN `!x:real^3. orthogonal (x - (x dot unit n) % unit n) ((x dot unit n) % unit n)` ASSUME_TAC THENL ON_FIRST_GOAL (ASM_MESON_TAC [ORTHOGONAL_RUNIT;ORTHOGONAL_CLAUSES; SUB_UNIT_NORMAL_IS_ORTHOGONAL_TO_NORMAL]) THEN FIRST_ASSUM (REPEAT_TCL STRIP_THM_THEN (fun x -> if contains_sub_term_name "k_of_wave" (concl x) then ASSUME_TAC x else ALL_TAC) o REWRITE_RULE[LET_DEFs;map_triple;o_DEF] o CONV_RULE (REWR_CONV is_plane_wave_at_interface)) THEN REPLICATE_TAC 3 (POP_ASSUM (K ALL_TAC)) THEN POP_ASSUM (fun _ -> POP_ASSUM (fun x -> POP_ASSUM (fun y -> MP_TAC (REWRITE_RULE[NORM_EQ] (TRANS x (GSYM y)))))) THEN FIRST_ASSUM (ASSUME_TAC o SPEC `k_of_wave emf`) THEN ASM_CSQ_THEN ORTHOGONAL_SQR_NORM (SINGLE REWRITE_TAC) THEN ASM_REWRITE_TAC[REAL_EQ_ADD_LCANCEL;DOT_LMUL;DOT_RMUL;DOT_SQUARE_NORM] THEN SUBGOAL_TAC "" `~(n = vec 0 :real^3)` [ASM_MESON_TAC[is_normal_to_plane]] THEN ASM_SIMP_TAC[UNIT_THM;REAL_POW_2;REAL_MUL_RID] THEN REWRITE_TAC[GSYM REAL_POW_2;GSYM REAL_EQ_SQUARE_ABS;real_abs] THEN REPEAT COND_CASES_TAC THEN RULE_ASSUM_TAC (REWRITE_RULE [real_ge;REWRITE_RULE[real_lt;MESON[] `(~p <=> ~q) <=> (p <=> q)`] DOT_RUNIT_LT0]) THENL [ FIRST_X_ASSUM (fun x -> FIRST_X_ASSUM (ASSUME_TAC o ONCE_REWRITE_RULE[GSYM DOT_RUNIT_EQ0] o GSYM o CONV_RULE (REWR_CONV REAL_LE_ANTISYM) o CONJ x)) THEN ASM_REWRITE_TAC[DOT_LNEG;REAL_NEG_0;REAL_MUL_RZERO;VECTOR_MUL_LZERO; VECTOR_ARITH `--x+y=vec 0 <=> x=y`] THEN DISCH_THEN (RULE_ASSUM_TAC o SINGLE REWRITE_RULE o GSYM) THEN POP_ASSUM (RULE_ASSUM_TAC o SINGLE REWRITE_RULE) THEN RULE_ASSUM_TAC (REWRITE_RULE[VECTOR_MUL_LZERO;VECTOR_SUB_RZERO]) THEN ASM_REWRITE_TAC[]; ASM_MESON_TAC[REAL_ARITH `x > &0 ==> &0 <= x`]; DISCH_THEN (ASSUME_TAC o GSYM) THEN FIRST_X_ASSUM (fun x -> ignore (term_match [] `x-y=z-t` (concl x)); MP_TAC x) THEN POP_ASSUM (fun x -> REWRITE_TAC(x::[VECTOR_MUL_LNEG;DOT_LNEG; REAL_MUL_RNEG;VECTOR_ARITH `x-y=z- --y <=> --x+z = --(&2%y)`; VECTOR_MUL_ASSOC])); ASM_MESON_TAC[REAL_ARITH `x > &0 ==> &0 <= x`]; ]);; let PLANE_OF_INCIDENCE_LAW = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t /\ non_null_wave emf_r /\ non_null_wave emf_t ==> coplanar {vec 0, k_of_wave emf_i, k_of_wave emf_r, k_of_wave emf_t, normal_of_interface i}`, REWRITE_TAC[FORALL_INTERFACE_THM;LET_DEFs;normal_of_interface] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[coplanar] THEN REPEAT STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`vec 0:real^3`;`k_of_wave emf_i`;`unit n:real^3`] THEN ASM_CSQ_THEN (MESON[is_plane_wave_at_interface] `is_plane_wave_at_interface i emf_i emf_r emf_t ==> is_valid_interface i`) (DISTRIB [ASSUME_TAC; STRIP_ASSUME_TAC o REWRITE_RULE[LET_DEFs;is_valid_interface]]) THEN ASM_CSQ_THEN (REWRITE_RULE[LET_DEFs] K_PLANE_PROJECTION_CONSERVATION) (DISTRIB (map ((o) (C ASM_CSQ_THEN ASSUME_TAC)) [CONJUNCT1;CONJUNCT2])) THEN REWRITE_TAC[INSERT_SUBSET;SING_SUBSET] THEN REPEAT CONJ_TAC THENL let IN_SET_TAC = MATCH_MP_TAC HULL_INC THEN SET_TAC[] in let COMBINATION_TAC = POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN ASM_SIMP_TAC[AFFINE_HULL_3_ZERO;IN_ELIM_THM;UNIV;normal_of_interface; LET_DEFs;PROJECTION_ON_HYPERPLANE_THM;symetric_vectors_wrt; NORMAL_OF_INTERFACE_NON_NULL;UNIT_THM;UNIT_EQ_ZERO; VECTOR_ARITH `x-a%y=z-b%y <=> x= &1%z+(a-b)%y`] THEN MESON_TAC[] in [ IN_SET_TAC; IN_SET_TAC; COMBINATION_TAC; COMBINATION_TAC; REWRITE_TAC[AFFINE_HULL_3_ZERO;IN_ELIM_THM;UNIV] THEN MAP_EVERY EXISTS_TAC [`&0`;`norm (n:real^3)`] THEN REWRITE_TAC[VECTOR_MUL_LZERO;VECTOR_ADD_LID] THEN MATCH_MP_TAC UNIT_INTRO THEN ASM_MESON_TAC[is_normal_to_plane]]);; let SNELL_LAW = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t /\ non_null_wave emf_t ==> let theta = \emf. vector_angle (k_of_wave emf) (normal_of_interface i) in n1_of_interface i * sin (theta emf_i) = n2_of_interface i * sin (theta emf_t)`, REWRITE_TAC[FORALL_INTERFACE_THM;LET_DEFs;n1_of_interface;n2_of_interface; normal_of_interface] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM (STRIP_ASSUME_TAC o REWRITE_RULE[LET_DEFs;map_triple;o_DEF; is_valid_interface;IS_PLANE_WAVE;non_null_wave] o CONV_RULE (REWR_CONV is_plane_wave_at_interface)) THEN SUBGOAL_TAC "" `~(k_of_wave emf_i = vec 0) /\ ~(k_of_wave emf_t = vec 0)` [ASM_REWRITE_TAC[]] THEN SUBGOAL_TAC "" `~(n = vec 0:real^3)` [ASM_MESON_TAC[is_normal_to_plane]] THEN ASSUM_LIST (SIMP_TAC o (@) [REWRITE_RULE[DE_MORGAN_THM; MESON[] `(p\/q==>r) <=> (p==>r) /\ (q==>r)`] (CONV_RULE (DEPTH_CONV COND_ELIM_CONV) vector_angle)] o filter (fun x -> not (contains_sub_term_name "norm" (concl x)))) THEN SUBGOAL_THEN `(k_of_wave emf_i dot unit n) / (k0*n1) = (k_of_wave emf_i dot n) / (norm (k_of_wave emf_i) * norm n) /\ (k_of_wave emf_t dot unit n) / (k0*n2) = (k_of_wave emf_t dot n) / (norm (k_of_wave emf_t) * norm n)` ASSUME_TAC THENL ON_FIRST_GOAL (ASM_REWRITE_TAC[unit;DOT_RMUL;real_div; REAL_ARITH `(x*y)*z=y*(z*x):real`;REAL_INV_MUL]) THEN SIMP_TAC[REWRITE_RULE[REAL_ABS_BOUNDS] NORM_CAUCHY_SCHWARZ_DIV;SIN_ACS; GSYM REAL_EQ_SQUARE_ABS] THEN ASM_CSQ_THEN (REWRITE_RULE[LET_DEFs] K_PLANE_PROJECTION_CONSERVATION) (C ASM_CSQ_THEN MP_TAC o CONJUNCT2) THEN ASM_SIMP_TAC[normal_of_interface;LET_DEFs;PROJECTION_ON_HYPERPLANE_THM; NORMAL_OF_INTERFACE_NON_NULL;UNIT_THM;UNIT_EQ_ZERO] THEN DISCH_THEN (MP_TAC o MATCH_MP (MESON[] `x=y ==> x dot x = y dot y`)) THEN SUBGOAL_THEN `!x:real^3. orthogonal (x - (x dot unit n) % unit n) ((x dot unit n) % unit n)` ASSUME_TAC THENL ON_FIRST_GOAL (ASM_MESON_TAC[ORTHOGONAL_RUNIT;ORTHOGONAL_CLAUSES; SUB_UNIT_NORMAL_IS_ORTHOGONAL_TO_NORMAL]) THEN ASM_SIMP_TAC[REWRITE_RULE[REAL_ARITH `x=y+z <=> y=x-z:real`] ORTHOGONAL_SQR_NORM;DOT_SQUARE_NORM;NORM_MUL;UNIT_THM;REAL_MUL_RID; REAL_POW2_ABS] THEN SUBGOAL_TAC "" `~(k0*n2 = &0) /\ ~(k0*n1 = &0)` [ASM_MESON_TAC[NORM_EQ_0]] THEN SUBGOAL_THEN `&0 < inv(k0*n1)` ASSUME_TAC THENL ON_FIRST_GOAL (ASM_REWRITE_TAC[REAL_LT_INV_EQ;REAL_LT_LE] THEN ASM_MESON_TAC[NORM_POS_LE]) THEN SUBGOAL_THEN `~((k0*n2) pow 2 = &0) /\ ~(inv ((k0 * n2) pow 2) = &0)` STRIP_ASSUME_TAC THENL ON_FIRST_GOAL (REWRITE_TAC[REAL_POW_EQ_0;REAL_INV_EQ_0] THEN ASM_ARITH_TAC) THEN POP_ASSUM (fun x -> DISCH_THEN (MP_TAC o ONCE_REWRITE_RULE [REWRITE_RULE[x] (GENL [`x:real`;`y:real`] (SPECL [`x:real`;`y:real`;`inv ((k0 * n2:real) pow 2)`] (GSYM REAL_EQ_MUL_RCANCEL)))])) THEN ASM_SIMP_TAC[REAL_SUB_RDISTRIB;REAL_MUL_RINV;GSYM real_div; GSYM REAL_POW_DIV;REAL_DIV_REFL;REAL_POW_ONE] THEN DISCH_THEN (K ALL_TAC) THEN MATCH_MP_TAC (MESON[SQRT_MUL;POW_2_SQRT;REAL_LE_POW_2] `!x y. &0 <= x /\ &0 <= y /\ &0 <= z /\ &0 <= t /\ sqrt(x pow 2 * y) = sqrt(z pow 2*t) ==> x * sqrt y = z * sqrt t`) THEN REPEAT CONJ_TAC THENL [ ASM_REAL_ARITH_TAC; REWRITE_TAC[REAL_SUB_LE;ABS_SQUARE_LE_1] THEN ASM_MESON_TAC[NORM_CAUCHY_SCHWARZ_DIV]; ASM_REAL_ARITH_TAC; REWRITE_TAC[REAL_POW_DIV;REAL_ARITH `x/y-z/y=(x-z)/y:real`] THEN MATCH_MP_TAC REAL_LE_DIV THEN CONJ_TAC THENL [ REWRITE_TAC[REAL_SUB_LE] THEN MATCH_MP_TAC REAL_POW_LE2 THEN CONJ_TAC THENL [ REWRITE_TAC[unit;DOT_RMUL] THEN MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_LE_INV_EQ;NORM_POS_LE] THEN ASM_ARITH_TAC; FIRST_ASSUM (SINGLE ONCE_REWRITE_TAC o REWRITE_RULE[GSYM real_div] o MATCH_MP (GSYM REAL_LE_RMUL_EQ)) THEN ASM_SIMP_TAC[REAL_DIV_REFL] THEN ASM_MESON_TAC[REWRITE_RULE[REAL_ABS_BOUNDS] NORM_CAUCHY_SCHWARZ_DIV] ]; MATCH_ACCEPT_TAC REAL_LE_POW_2; ]; AP_TERM_TAC THEN SUBGOAL_TAC "" `~(k0 = &0) /\ ~(n1 = &0) /\ ~(n2 = &0)` [ASM_MESON_TAC[REAL_MUL_LZERO;REAL_MUL_RZERO]] THEN ASM_SIMP_TAC[real_div;REAL_INV_MUL; REAL_ARITH `(x*y)*inv x*inv z=(x*inv x)*y*inv z:real`;REAL_MUL_RINV; REAL_MUL_LID;REAL_SUB_LDISTRIB;REAL_MUL_RID] THEN ASM_SIMP_TAC[GSYM REAL_POW_MUL; REAL_ARITH `x*y*inv x=(x*inv x)*y:real`; REAL_ARITH `x*y*(inv z*inv x)*t=(x*inv x)*y*inv z*t:real`; REAL_ARITH `x*y*inv z*inv x=(x*inv x)*y*inv z:real`; REAL_MUL_RINV;REAL_MUL_LID;REAL_INV_MUL] THEN REWRITE_TAC[REAL_ARITH `x*inv y*inv z=(inv z*x)*inv y:real`; GSYM DOT_RMUL;unit] ]);; let phase_shift_at_plane = new_definition `phase_shift_at_plane p n emf = k_of_wave emf dot (@a. a % unit n IN p) % unit n`;; let PLANE_WAVE_WITH_PHASE_SHIFT_AT_PLANE = prove (`!emf. is_plane_wave emf ==> !p. plane p ==> !n. is_normal_to_plane n p ==> !r. r IN p ==> !t. emf r t = cexp (--ii * Cx(projection_on_hyperplane (k_of_wave emf) (unit n) dot r - w_of_wave emf * t + phase_shift_at_plane p n emf)) % eh_of_wave emf`, let tmp = DISCH_ALL (GSYM (UNDISCH (ISPECL [`k_of_wave emf`;`unit n:real^3`] PROJECTION_ON_HYPERPLANE_DECOMPOS))) in let tmp' = UNDISCH_ALL (IMP_TRANS (SPEC `n:real^3` (UNDISCH (SPEC `p:plane` NORMAL_OF_PLANE_NON_NULL))) (IMP_TRANS (ISPEC `n:real^3` UNIT_THM) tmp)) in REWRITE_TAC[LET_DEF;LET_END_DEF;IS_PLANE_WAVE;plane_wave] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM (let thm = MESON[] `f=g ==> g x y=z ==> f x y=z` in fun x -> MATCH_MP_TAC (MATCH_MP thm x)) THEN REWRITE_TAC[emf_at_point_mul;PAIR_EQ;FUN_EQ_THM;eh_of_wave;e_of_emf; h_of_emf;LET_DEF;LET_END_DEF] THEN REPEAT (FIRST[CONJ_TAC;AP_THM_TAC;AP_TERM_TAC;GEN_TAC]) THEN REWRITE_TAC[REAL_ARITH `x-y=(z-y)+t <=> x=t+z:real`] THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [ONCE_REWRITE_RULE[VECTOR_ADD_SYM] tmp'] THEN REWRITE_TAC[DOT_LADD;REAL_EQ_ADD_RCANCEL;phase_shift_at_plane] THEN ABBREV_TAC `a = @a. a % unit n IN (p:plane)` THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [VECTOR_ARITH `v dot r = v dot (r - a % unit n + a % unit n:real^3)`] THEN REWRITE_TAC[DOT_RADD;DOT_RMUL;DOT_LMUL;REAL_ADD_LDISTRIB] THEN ASM_REWRITE_TAC[MATCH_MP (UNIT_DOT_UNIT_SELF) (STRIP_RULE NORMAL_OF_PLANE_NON_NULL);REAL_ARITH `x+y*z* &1=z*y <=> x= &0`] THEN REWRITE_TAC[REAL_ENTIRE;GSYM orthogonal;ORTHOGONAL_LUNIT] THEN DISJ2_TAC THEN ONCE_REWRITE_TAC[ORTHOGONAL_SYM] THEN MATCH_MP_TAC (GENL [`pt1:point`;`pt2:point`] (REWRITE_RULE[GSYM IMP_CONJ] (DISCH_ALL (STRIP_RULE NORMAL_OF_PLANE_IS_ORTHOGONAL_TO_SEGMENT)))) THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "a" THEN SELECT_ELIM_TAC THEN ASM_SIMP_TAC[EXISTS_MULTIPLE_OF_NORMAL_IN_PLANE]);; let PLANE_WAVE_WITH_PHASE_SHIFT_AT_INTERFACE = prove (`!emf. is_plane_wave emf ==> !i. is_valid_interface i ==> !r. r IN plane_of_interface i ==> !t. let n = normal_of_interface i in emf r t = cexp (--ii * Cx(projection_on_hyperplane (k_of_wave emf) (unit n) dot r - w_of_wave emf * t + phase_shift_at_plane (plane_of_interface i) n emf)) % eh_of_wave emf`, REWRITE_TAC[LET_DEFs] THEN REPEAT STRIP_TAC THEN ASM_CSQ_THEN IS_VALID_INTERFACE_IS_NORMAL_TO_PLANE ASSUME_TAC THEN ASM_CSQ_THEN IS_VALID_INTERFACE_PLANE ASSUME_TAC THEN ASM_CSQS_THEN PLANE_WAVE_WITH_PHASE_SHIFT_AT_PLANE ASSUME_TAC THEN ASM_REWRITE_TAC[]);; let magnitude_shifted_at_plane = new_definition `magnitude_shifted_at_plane p n emf = cexp (--ii * Cx(phase_shift_at_plane p n emf)) % eh_of_wave emf`;; let E_PRESERVED_IN_TE_MODE = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t /\ non_null_wave emf_r /\ non_null_wave emf_t /\ TE_mode i emf_i emf_r emf_t ==> let magnitude = \emf. FST (magnitude_shifted_at_plane (plane_of_interface i) (normal_of_interface i) emf) cdot (vector_to_cvector (TE_mode_axis i emf_i emf_r emf_t)) in magnitude emf_r + magnitude emf_i = magnitude emf_t`, REWRITE_TAC[FORALL_INTERFACE_THM;LET_DEFs;plane_of_interface; normal_of_interface] THEN REPEAT STRIP_TAC THEN ASM_CSQ_THEN (GEQ_IMP is_plane_wave_at_interface) (STRIP_ASSUME_TAC o REWRITE_RULE[LET_DEFs]) THEN FIRST_ASSUM (let tmp = MESON[non_null_wave] `!emf. non_null_wave emf ==> is_plane_wave emf` in ASSUME_TAC o MATCH_MP tmp) THEN ASM_CSQ_THEN (GEN_ALL (MATCH_MP EQ_IMP (SPEC_ALL is_valid_interface))) (STRIP_ASSUME_TAC o REWRITE_RULE[LET_DEFs]) THEN ASM_CSQ_THEN PLANE_NON_EMPTY (STRIP_ASSUME_TAC o REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN FIRST_ASSUM (fun x -> FIRST_X_ASSUM (C ASM_CSQ_THEN (MP_TAC o REWRITE_RULE[LET_DEFs] o GEN_REWRITE_RULE (RATOR_CONV o ONCE_DEPTH_CONV) [e_of_emf] o CONJUNCT1 o SPEC `&0`) o REWRITE_RULE[boundary_conditions; emf_add;LET_DEFs] o C MATCH_MP x)) THEN ASSUM_LIST (MAP_EVERY (C ASM_CSQS_THEN (SINGLE REWRITE_TAC o CONJUNCT1 o SPEC `&0` o REWRITE_RULE[emf_at_point_mul;eh_of_wave;FST;SND;EMF_EQ])) o mapfilter (REWRITE_RULE[FORALL_INTERFACE_THM;LET_DEFs;plane_of_interface; normal_of_interface;] o MATCH_MP PLANE_WAVE_WITH_PHASE_SHIFT_AT_INTERFACE)) THEN ASM_CSQ_THEN (REWRITE_RULE[LET_DEFs] K_PLANE_PROJECTION_CONSERVATION) (CONJUNCTS_THEN (C ASM_CSQ_THEN (SINGLE REWRITE_TAC o SIMP_RULE[normal_of_interface;LET_DEFs]))) THEN REWRITE_TAC[REAL_ARITH `x - y * &0 = x`;CX_ADD;COMPLEX_ADD_LDISTRIB; CEXP_ADD;GSYM CVECTOR_MUL_ASSOC;GSYM CVECTOR_ADD_LDISTRIB; CCROSS_RMUL;CVECTOR_MUL_LCANCEL;CEXP_NZ;magnitude_shifted_at_plane; eh_of_wave;emf_at_point_mul;GSYM CDOT_LADD] THEN ASM_CSQS_THEN (REWRITE_RULE[IMP_CONJ;LET_DEFs] TE_MODE_PLANEWAVE_PROJ) (GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) o CONJUNCTS) THEN REWRITE_TAC[CCROSS_RADD;CCROSS_RMUL;CVECTOR_MUL_ASSOC; GSYM CVECTOR_ADD_RDISTRIB;CVECTOR_MUL_RCANCEL;CCROSS_COLLINEAR_CVECTORS; GSYM CDOT_LMUL;GSYM CDOT_LADD;COLLINEAR_CVECTORS_VECTOR_TO_CVECTOR] THEN FIRST_X_ASSUM (STRIP_ASSUME_TAC o REWRITE_RULE[is_mode_axis; normal_of_interface;LET_DEFs] o MATCH_MP (GEQ_IMP TE_MODE_THM)) THEN FIRST_ASSUM (ASSUME_TAC o REWRITE_RULE[NORM_EQ_0] o MATCH_MP (REAL_ARITH `!x. x= &1 ==> ~(x= &0)`)) THEN FIRST_X_ASSUM (STRIP_ASSUME_TAC o MATCH_MP (GEQ_IMP is_normal_to_plane)) THEN ASM_CSQS_THEN (ONCE_REWRITE_RULE[ORTHOGONAL_SYM] (REWRITE_RULE[IMP_CONJ] ORTHOGONAL_NON_COLLINEAR)) (SINGLE REWRITE_TAC) THEN REWRITE_TAC[CVECTOR_ADD_SYM]);; let H_CROSS_Z_WRT_E_IN_TE_MODE = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t /\ TE_mode i emf_i emf_r emf_t ==> let p = plane_of_interface i in let n = normal_of_interface i in let h_cross_z_wrt_e = \emf. (h_of_wave emf) ccross (vector_to_cvector n) = Cx ((n dot k_of_wave emf) / (eta0 * k0)) % e_of_wave emf in h_cross_z_wrt_e emf_i /\ h_cross_z_wrt_e emf_r /\ h_cross_z_wrt_e emf_t`, SIMP_TAC[FORALL_INTERFACE_THM;LET_DEFs;is_plane_wave_at_interface; plane_of_interface;non_null_wave;normal_of_interface] THEN REPEAT STRIP_TAC THEN ASM_CSQS_THEN (REWRITE_RULE[LET_DEFs;IMP_CONJ] TE_MODE_PLANEWAVE_PROJ) (SINGLE ONCE_REWRITE_TAC) THEN REWRITE_TAC[CCROSS_LMUL;CCROSS_LREAL;CDOT_RREAL;CVECTOR_ADD_RDISTRIB; GSYM CVECTOR_MUL_ASSOC;GSYM VECTOR_TO_CVECTOR_MUL; CVECTOR_IM_VECTOR_TO_CVECTOR_RE_IM;CVECTOR_RE_VECTOR_TO_CVECTOR_RE_IM; CCROSS_LADD;CVECTOR_ADD_LDISTRIB] THEN REWRITE_TAC[REWRITE_RULE[VECTOR_ARITH `--x = y <=> x = --y :real^N`] (ONCE_REWRITE_RULE[CROSS_SKEW] CROSS_LAGRANGE); CVECTOR_RE_VECTOR_TO_CVECTOR; CVECTOR_IM_VECTOR_TO_CVECTOR;DOT_LZERO;VECTOR_MUL_LZERO;VECTOR_SUB_RZERO; VECTOR_NEG_0;VECTOR_TO_CVECTOR_ZERO;CVECTOR_MUL_RZERO;CVECTOR_ADD_ID; DOT_RMUL] THEN ASM_CSQ_THEN TE_MODE_AXIS_ORTHOGONAL_N (SINGLE REWRITE_TAC o REWRITE_RULE[orthogonal;normal_of_interface;LET_DEFs] o ONCE_REWRITE_RULE[ORTHOGONAL_SYM]) THEN REWRITE_TAC[REAL_MUL_RZERO;VECTOR_MUL_LZERO;VECTOR_ARITH `--(vec 0 - x) = x`;VECTOR_NEG_0;VECTOR_TO_CVECTOR_ZERO;CVECTOR_MUL_RZERO; CVECTOR_ADD_ID] THEN REWRITE_TAC[MESON[CVECTOR_MUL_ASSOC;COMPLEX_MUL_SYM] `a % ii % v = ii % a % v:complex^N`;GSYM VECTOR_TO_CVECTOR_MUL;CVECTOR_EQ; CVECTOR_RE_VECTOR_TO_CVECTOR_RE_IM;CVECTOR_IM_VECTOR_TO_CVECTOR_RE_IM; VECTOR_MUL_ASSOC] THEN CONJ_TAC THEN REPEAT (AP_THM_TAC ORELSE AP_TERM_TAC) THEN REAL_ARITH_TAC);; let NON_PROJECTED_E_RELATION_IN_TE_MODE = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t /\ non_null_wave emf_r /\ non_null_wave emf_t /\ TE_mode i emf_i emf_r emf_t ==> let magnitude = \emf. FST (magnitude_shifted_at_plane (plane_of_interface i) (normal_of_interface i) emf) cdot (vector_to_cvector (TE_mode_axis i emf_i emf_r emf_t)) in let n = unit (normal_of_interface i) in Cx (n dot k_of_wave emf_i) * (magnitude emf_i - magnitude emf_r) = Cx (n dot k_of_wave emf_t) * magnitude emf_t`, REWRITE_TAC[FORALL_INTERFACE_THM;LET_DEFs;normal_of_interface; plane_of_interface] THEN REPEAT STRIP_TAC THEN ASM_CSQ_THEN (GEQ_IMP is_plane_wave_at_interface) (STRIP_ASSUME_TAC o REWRITE_RULE[LET_DEFs]) THEN FIRST_ASSUM (let tmp = MESON[non_null_wave] `!emf. non_null_wave emf ==> is_plane_wave emf` in ASSUME_TAC o MATCH_MP tmp) THEN ASM_CSQ_THEN (GEN_ALL (MATCH_MP EQ_IMP (SPEC_ALL is_valid_interface))) (STRIP_ASSUME_TAC o REWRITE_RULE[LET_DEFs]) THEN ASM_CSQ_THEN PLANE_NON_EMPTY (STRIP_ASSUME_TAC o REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN FIRST_ASSUM (fun x -> FIRST_X_ASSUM (C ASM_CSQ_THEN (MP_TAC o REWRITE_RULE[LET_DEFs] o GEN_REWRITE_RULE (RATOR_CONV o ONCE_DEPTH_CONV) [h_of_emf] o CONJUNCT2 o SPEC `&0`) o REWRITE_RULE[boundary_conditions;emf_add;LET_DEFs] o C MATCH_MP x)) THEN ASSUM_LIST (MAP_EVERY (C ASM_CSQS_THEN (SINGLE REWRITE_TAC o CONJUNCT2 o SPEC `&0` o REWRITE_RULE[emf_at_point_mul;eh_of_wave;FST;SND;EMF_EQ])) o mapfilter (REWRITE_RULE[FORALL_INTERFACE_THM;LET_DEFs;plane_of_interface; normal_of_interface;] o MATCH_MP PLANE_WAVE_WITH_PHASE_SHIFT_AT_INTERFACE)) THEN ASM_CSQ_THEN (REWRITE_RULE[LET_DEFs] K_PLANE_PROJECTION_CONSERVATION) (CONJUNCTS_THEN (C ASM_CSQ_THEN (SINGLE REWRITE_TAC o SIMP_RULE[normal_of_interface;LET_DEFs]))) THEN REWRITE_TAC[REAL_ARITH `x - y * &0 = x`;CX_ADD;COMPLEX_ADD_LDISTRIB; CEXP_ADD;GSYM CVECTOR_MUL_ASSOC;GSYM CVECTOR_ADD_LDISTRIB; CCROSS_RMUL;CVECTOR_MUL_LCANCEL;CEXP_NZ;magnitude_shifted_at_plane; eh_of_wave;emf_at_point_mul;GSYM CDOT_LADD;CCROSS_RADD] THEN ASM_CSQS_THEN (REWRITE_RULE[IMP_CONJ;CVECTOR_ARITH `--x=a%y <=> x = (--a)%y:complex^N`] (ONCE_REWRITE_RULE[CCROSS_SKEW] (REWRITE_RULE[LET_DEFs] H_CROSS_Z_WRT_E_IN_TE_MODE))) (SINGLE REWRITE_TAC o REWRITE_RULE[LET_DEFs;plane_of_interface;normal_of_interface]) THEN REWRITE_TAC[GSYM CX_NEG;real_div;REAL_NEG_LMUL;GSYM DOT_RNEG] THEN FIRST_ASSUM (ASSUME_TAC o ONCE_REWRITE_RULE[DOT_SYM] o REWRITE_RULE[DOT_RUNIT_EQ] o MATCH_MP SYMETRIC_VECTORS_PROJECTION_ON_AXIS o MATCH_MP UNIT_THM o CONJUNCT1 o MATCH_MP (GEQ_IMP is_normal_to_plane)) THEN ASM_CSQS_THEN (SIMP_RULE[LET_DEFs] LAW_OF_REFLECTION) (fun x -> POP_ASSUM (SINGLE REWRITE_TAC o C MATCH_MP (REWRITE_RULE [normal_of_interface;LET_DEFs] x))) THEN REWRITE_TAC[CX_MUL;DOT_RNEG;CX_NEG;COMPLEX_MUL_LNEG;CVECTOR_ARITH `a%(--(u*v))%x+c%(u*v)%y = d%(--(u'*v))%z <=> v%u%(a%x-c%y) = v%u'%d%z:complex^N`] THEN REWRITE_TAC[CVECTOR_MUL_LCANCEL;CX_INJ;REAL_INV_EQ_0;REAL_ENTIRE; MATCH_MP REAL_LT_IMP_NZ eta0;MATCH_MP REAL_LT_IMP_NZ k0] THEN REWRITE_TAC[unit;DOT_LMUL;CX_MUL;GSYM COMPLEX_MUL_ASSOC; COMPLEX_EQ_MUL_LCANCEL;CX_INJ;REAL_ENTIRE;REAL_INV_EQ_0;NORM_EQ_0] THEN ASM_CSQS_THEN NORMAL_OF_PLANE_NON_NULL (SINGLE REWRITE_TAC) THEN ASM_CSQS_THEN (REWRITE_RULE[IMP_CONJ;LET_DEFs] TE_MODE_PLANEWAVE_PROJ) (GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) o CONJUNCTS) THEN REWRITE_TAC[CVECTOR_MUL_ASSOC;GSYM CVECTOR_SUB_RDISTRIB; CVECTOR_MUL_RCANCEL;VECTOR_TO_CVECTOR_ZERO_EQ;GSYM NORM_EQ_0] THEN FIRST_ASSUM (SINGLE REWRITE_TAC o MATCH_MP (REWRITE_RULE[is_mode_axis] (GEQ_IMP TE_MODE_THM))) THEN SIMP_TAC[REAL_ARITH `~(&1 = &0)`;CDOT_LMUL;COMPLEX_MUL_ASSOC]);; let COMPLEX_MUL_LINV2 = prove (`!x y. ~(x=Cx(&0)) ==> inv x * (x * y) = y`, SIMP_TAC[COMPLEX_MUL_ASSOC;COMPLEX_MUL_LINV;COMPLEX_MUL_LID]);; let COMPLEX_BALANCE_MUL_DIV = prove (`!x y z. ~(x=Cx(&0)) ==> (x*y=z <=> y=z/x)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ DISCH_THEN (fun x -> ASM_SIMP_TAC[GSYM x;complex_div;SIMPLE_COMPLEX_ARITH `(x*y)*inv x=(x*inv x)*y:complex`;COMPLEX_MUL_RINV;COMPLEX_MUL_LID]); DISCH_THEN (fun x -> ASM_SIMP_TAC[x;COMPLEX_DIV_LMUL]); ]);; let FRESNEL_REFLECTION_TE_MODE = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t /\ non_null_wave emf_r /\ non_null_wave emf_t /\ TE_mode i emf_i emf_r emf_t ==> let magnitude = \emf. FST (magnitude_shifted_at_plane (plane_of_interface i) (normal_of_interface i) emf) cdot (vector_to_cvector (TE_mode_axis i emf_i emf_r emf_t)) in let theta = \emf. Cx(vector_angle (k_of_wave emf) (normal_of_interface i)) in let n1 = Cx(n1_of_interface i) in let n2 = Cx(n2_of_interface i) in magnitude emf_r = (n1 * ccos (theta emf_i) - n2 * ccos (theta emf_t)) / (n1 * ccos (theta emf_i) + n2 * ccos (theta emf_t)) * magnitude emf_i`, REPEAT STRIP_TAC THEN ASM_CSQS_THEN (REWRITE_RULE[IMP_CONJ] NON_PROJECTED_E_RELATION_IN_TE_MODE) MP_TAC THEN ASM_CSQS_THEN (REWRITE_RULE[IMP_CONJ] E_PRESERVED_IN_TE_MODE) (MP_TAC o GSYM) THEN LET_TAC THEN REWRITE_TAC[LET_DEFs] THEN DISCH_THEN (fun x -> REWRITE_TAC[x;SIMPLE_COMPLEX_ARITH `x*(y-z)=t*(z+y) <=> (x+t)*z=(x-t)*y:complex`]) THEN DISCH_THEN (MP_TAC o MATCH_MP (MATCH_MP (MESON[] `(!x y z. p x ==> (q x y z <=> r x y z)) ==> !x y z. q x y z ==> p x ==> r x y z`) COMPLEX_BALANCE_MUL_DIV)) THEN ANTS_TAC THENL [ REWRITE_TAC[GSYM CX_ADD;CX_INJ] THEN MATCH_MP_TAC REAL_POS_NZ THEN MATCH_MP_TAC REAL_LTE_ADD THEN REWRITE_TAC[DOT_LUNIT_POS;DOT_LUNIT_GE0] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN REPEAT (POP_ASSUM MP_TAC) THEN SPEC_TAC (`i:interface`,`i:interface`) THEN SIMP_TAC[FORALL_INTERFACE_THM;is_plane_wave_at_interface; normal_of_interface;map_triple;LET_DEFs;real_ge;real_gt]; SIMP_TAC[SIMPLE_COMPLEX_ARITH `(x*y)/z = (x/z)*y`] THEN DISCH_THEN (K ALL_TAC) THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM CX_ADD;GSYM CX_SUB;GSYM CX_COS;GSYM CX_MUL; GSYM CX_DIV;CX_INJ] THEN REPEAT (POP_ASSUM MP_TAC) THEN SPEC_TAC (`i:interface`,`i:interface`) THEN REWRITE_TAC[FORALL_INTERFACE_THM;normal_of_interface; plane_of_interface;LET_DEFs;n1_of_interface;n2_of_interface] THEN REPEAT STRIP_TAC THEN ASM_CSQ_THEN (GEQ_IMP is_plane_wave_at_interface) (STRIP_ASSUME_TAC o REWRITE_RULE[is_valid_interface;is_normal_to_plane;LET_DEFs; map_triple]) THEN ASM_REWRITE_TAC[GSYM NORM_EQ_0] THEN ASM_SIMP_TAC [GEN_ALL (DISCH_ALL (GSYM (MATCH_MP REAL_LT_IMP_NE (UNDISCH_ALL (SPEC_ALL (MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_LT_MUL) k0))))))] THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [VECTOR_ANGLE] THEN ASM_SIMP_TAC[UNIT_THM;REAL_MUL_LID] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC;GSYM REAL_ADD_LDISTRIB; GSYM REAL_SUB_LDISTRIB;real_div;REAL_INV_MUL] THEN REWRITE_TAC[REAL_ARITH `x*y*inv x*z=(x*inv x)*y*z:real`; MATCH_MP REAL_MUL_RINV (GSYM (MATCH_MP REAL_LT_IMP_NE k0));REAL_MUL_LID] THEN ASM_SIMP_TAC[unit;VECTOR_ANGLE_LMUL;REAL_INV_EQ_0;NORM_EQ_0; REAL_LE_INV_EQ;NORM_POS_LE;VECTOR_ANGLE_SYM]]);; let FRESNEL_TRANSMISSION_TE_MODE = prove (`!i emf_i emf_r emf_t. is_plane_wave_at_interface i emf_i emf_r emf_t /\ non_null_wave emf_r /\ non_null_wave emf_t /\ TE_mode i emf_i emf_r emf_t ==> let magnitude = \emf. FST (magnitude_shifted_at_plane (plane_of_interface i) (normal_of_interface i) emf) cdot (vector_to_cvector (TE_mode_axis i emf_i emf_r emf_t)) in let theta = \emf. Cx(vector_angle (k_of_wave emf) (normal_of_interface i)) in let n1 = Cx(n1_of_interface i) in let n2 = Cx(n2_of_interface i) in magnitude emf_t = Cx(&2) * n1 * ccos (theta emf_i) / (n1 * ccos (theta emf_i) + n2 * ccos (theta emf_t)) * magnitude emf_i`, REPEAT STRIP_TAC THEN ASM_CSQS_THEN (REWRITE_RULE[IMP_CONJ] E_PRESERVED_IN_TE_MODE) (MP_TAC o GSYM) THEN ASM_CSQS_THEN (REWRITE_RULE[IMP_CONJ] NON_PROJECTED_E_RELATION_IN_TE_MODE) MP_TAC THEN LET_TAC THEN REWRITE_TAC[LET_DEFs] THEN REWRITE_TAC[SIMPLE_COMPLEX_ARITH `x*(y-z)=t*u <=> x*z=x*y-t*u:complex`] THEN DISCH_THEN (MP_TAC o MATCH_MP (MATCH_MP (MESON[] `(!x y z. p x ==> (q x y z <=> r x y z)) ==> !x y z. q x y z ==> p x ==> r x y z`) COMPLEX_BALANCE_MUL_DIV)) THEN MATCH_MP_TAC (MESON[] `p/\(p==>q==>r==>s) ==> ((p==>q)==>r==>s)`) THEN CONJ_TAC THENL [ REWRITE_TAC[CX_INJ] THEN MATCH_MP_TAC REAL_POS_NZ THEN REWRITE_TAC[DOT_LUNIT_POS;DOT_LUNIT_GE0] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN REPEAT (POP_ASSUM MP_TAC) THEN SPEC_TAC (`i:interface`,`i:interface`) THEN SIMP_TAC[FORALL_INTERFACE_THM;is_plane_wave_at_interface; normal_of_interface;map_triple;LET_DEFs;real_gt]; DISCH_TAC THEN DISCH_THEN (fun x -> ASM_SIMP_TAC[x;SIMPLE_COMPLEX_ARITH `t = (x*i-y*t)/x+i <=> (y/x+Cx(&1))*t = (x/x+Cx(&1))*i:complex`; COMPLEX_DIV_REFL;SIMPLE_COMPLEX_ARITH `Cx(&1)+Cx(&1)=Cx(&2)`]) THEN ASM_CSQ_THEN COMPLEX_DIV_REFL (SINGLE REWRITE_TAC o GSYM) THEN REWRITE_TAC[GSYM CX_ADD;GSYM CX_DIV;real_div;GSYM REAL_ADD_RDISTRIB] THEN DISCH_THEN (MP_TAC o MATCH_MP (MATCH_MP (MESON[] `(!x y z. p x ==> (q x y z <=> r x y z)) ==> (!x y z. q x y z ==> p x ==> r x y z)`) COMPLEX_BALANCE_MUL_DIV)) THEN ANTS_TAC THENL [ ASM_REWRITE_TAC[CX_MUL;CX_INV;COMPLEX_ENTIRE;COMPLEX_INV_EQ_0] THEN REWRITE_TAC[CX_INJ] THEN MATCH_MP_TAC REAL_POS_NZ THEN MATCH_MP_TAC REAL_LET_ADD THEN REWRITE_TAC[DOT_LUNIT_POS;DOT_LUNIT_GE0] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN REPEAT (POP_ASSUM MP_TAC) THEN SPEC_TAC (`i:interface`,`i:interface`) THEN SIMP_TAC[FORALL_INTERFACE_THM;is_plane_wave_at_interface; normal_of_interface;map_triple;LET_DEFs;real_ge;real_gt]; SIMP_TAC[SIMPLE_COMPLEX_ARITH `(x*y)/z = x/z*y:complex`;GSYM CX_DIV; real_div;REAL_INV_MUL;REAL_INV_INV] THEN DISCH_THEN (K ALL_TAC) THEN REWRITE_TAC[GSYM CX_MUL;GSYM CX_COS;GSYM CX_ADD;GSYM CX_DIV; COMPLEX_MUL_ASSOC;CX_INJ] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[CX_INJ;REAL_ARITH `&2*x = (&2*y)*z <=> x=y*z`] THEN REPEAT (POP_ASSUM MP_TAC) THEN SPEC_TAC (`i:interface`,`i:interface`) THEN REWRITE_TAC[FORALL_INTERFACE_THM;normal_of_interface; plane_of_interface;LET_DEFs;n1_of_interface;n2_of_interface] THEN REPEAT STRIP_TAC THEN ASM_CSQ_THEN (GEQ_IMP is_plane_wave_at_interface) (STRIP_ASSUME_TAC o REWRITE_RULE[is_valid_interface;is_normal_to_plane;LET_DEFs;map_triple]) THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [VECTOR_ANGLE] THEN ASM_SIMP_TAC[UNIT_THM;REAL_MUL_LID] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC;GSYM REAL_ADD_LDISTRIB; GSYM REAL_SUB_LDISTRIB;real_div;REAL_INV_MUL] THEN REWRITE_TAC[REAL_ARITH `inv x*y*x*z=(x*inv x)*y*z:real`; MATCH_MP REAL_MUL_RINV (GSYM (MATCH_MP REAL_LT_IMP_NE k0)); REAL_MUL_LID] THEN ASM_SIMP_TAC[unit;VECTOR_ANGLE_LMUL;REAL_INV_EQ_0;NORM_EQ_0; REAL_LE_INV_EQ;NORM_POS_LE] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [VECTOR_ANGLE_SYM] THEN REAL_ARITH_TAC]]);;