(* =========================================================== *) (* Special list conversions *) (* Author: Alexey Solovyev *) (* Date: 2012-10-27 *) (* =========================================================== *) needs "arith/more_float.hl";; needs "list/list_conversions.hl";; needs "misc/vars.hl";; module type List_float_sig = sig val list_sum : thm val list_sum2 : thm val error_mul_f2 : thm val error_mul_f1 : thm val list_sum_conv : (term -> thm) -> term -> thm val list_sum2_le_conv : int -> (int -> term -> term -> thm) -> term -> thm val error_mul_f2_le_conv : int -> term -> term -> thm val error_mul_f2_le_conv2 : int -> term -> term -> thm val error_mul_f1_le_conv : term -> int -> term -> term -> thm end;; module List_float : List_float_sig = struct open Arith_misc;; open Arith_nat;; open Arith_float;; open More_float;; open Float_theory;; open List_conversions;; open Misc_vars;; let MY_RULE_FLOAT = UNDISCH_ALL o NUMERALS_TO_NUM o PURE_REWRITE_RULE[FLOAT_OF_NUM; min_exp_def; GSYM IMP_IMP] o SPEC_ALL;; (****************************) (* new definitions *) let list_sum = new_definition `list_sum list f = ITLIST (\t1 t2. f t1 + t2) list (&0)`;; let list_sum2 = new_definition `list_sum2 f l1 l2 = ITLIST2 (\a b c. f a b + c) l1 l2 (&0)`;; let error_mul_f2 = new_definition `error_mul_f2 a int = a * iabs int`;; let error_mul_f1 = new_definition `error_mul_f1 w x list = x * list_sum2 error_mul_f2 w list`;; (*************************************) (* list_sum conversions *) let LIST_SUM_A_EMPTY = prove(`list_sum [] (f:A->real) = &0`, REWRITE_TAC[list_sum; ITLIST]) and LIST_SUM_A_H = prove(`list_sum [h:A] f = f h`, REWRITE_TAC[list_sum; ITLIST; REAL_ADD_RID]) and LIST_SUM_A_CONS = prove(`list_sum (CONS (h:A) t) f = f h + list_sum t f`, REWRITE_TAC[list_sum; ITLIST]);; let list_sum_conv f_conv tm = let ltm, f_tm = dest_comb tm in let list_tm = rand ltm in let list_ty = type_of list_tm in let f_ty = type_of f_tm in let ty = (hd o snd o dest_type) list_ty in let f_var = mk_var("f", f_ty) and h_var = mk_var("h", ty) and t_var = mk_var("t", list_ty) in let inst_t = INST[f_tm, f_var] o INST_TYPE[ty, aty] in let list_sum_h = inst_t LIST_SUM_A_H and list_sum_cons = inst_t LIST_SUM_A_CONS in let rec list_sum_conv_raw = fun h_tm t_tm -> if (is_comb t_tm) then let h_tm', t_tm' = dest_comb t_tm in let th0 = INST[h_tm, h_var; t_tm, t_var] list_sum_cons in let ltm, rtm = dest_comb(rand(concl th0)) in let plus_op, fh_tm = dest_comb ltm in let f_th = f_conv fh_tm in let th1 = list_sum_conv_raw (rand h_tm') t_tm' in let th2 = MK_COMB(AP_TERM plus_op f_th, th1) in TRANS th0 th2 else let th0 = INST[h_tm, h_var] list_sum_h in let f_th = f_conv (rand(concl th0)) in TRANS th0 f_th in if (is_comb list_tm) then let h_tm, t_tm = dest_comb list_tm in list_sum_conv_raw (rand h_tm) t_tm else inst_t LIST_SUM_A_EMPTY;; (*************************************) (* list_sum2 evaluation *) let LIST_SUM2_0_LE' = (MY_RULE_FLOAT o prove)(`list_sum2 (f:A->B->real) [] [] <= &0`, REWRITE_TAC[list_sum2; ITLIST2; REAL_LE_REFL]);; let LIST_SUM2_1_LE' = (MY_RULE_FLOAT o prove)(`f h1 h2 <= x ==> list_sum2 (f:A->B->real) [h1] [h2] <= x`, REWRITE_TAC[list_sum2; ITLIST2; REAL_ADD_RID]);; let LIST_SUM2_LE' = (MY_RULE_FLOAT o prove)(`f h1 h2 <= x /\ list_sum2 f t1 t2 <= y /\ x + y <= z ==> list_sum2 (f:A->B->real) (CONS h1 t1) (CONS h2 t2) <= z`, REWRITE_TAC[list_sum2; ITLIST2] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `x + y:real` THEN ASM_SIMP_TAC[REAL_LE_ADD2]);; let list_sum2_le_conv pp f_le_conv tm = let ltm, list2_tm = dest_comb tm in let ltm2, list1_tm = dest_comb ltm in let f_tm = rand ltm2 in let list1_ty = type_of list1_tm and list2_ty = type_of list2_tm and f_ty = type_of f_tm in let ty1 = (hd o snd o dest_type) list1_ty and ty2 = (hd o snd o dest_type) list2_ty in let f_var = mk_var ("f", f_ty) and h1_var, t1_var = mk_var ("h1", ty1), mk_var ("t1", list1_ty) and h2_var, t2_var = mk_var ("h2", ty2), mk_var ("t2", list2_ty) in let inst_t = INST[f_tm, f_var] o INST_TYPE[ty1, aty; ty2, bty] in let list2_0, list2_1, list2_le = inst_t LIST_SUM2_0_LE', inst_t LIST_SUM2_1_LE', inst_t LIST_SUM2_LE' in let rec rec_conv = fun list1_tm list2_tm -> if (is_comb list1_tm) then let h1_tm, t1_tm = dest_cons list1_tm and h2_tm, t2_tm = dest_cons list2_tm in let f_le_th = f_le_conv pp h1_tm h2_tm in let x_tm = (rand o concl) f_le_th in let inst0 = INST[h1_tm, h1_var; h2_tm, h2_var; x_tm, x_var_real] in if is_comb t1_tm then let sum2_t_th = rec_conv t1_tm t2_tm in let y_tm = (rand o concl) sum2_t_th in let xy_th = float_add_hi pp x_tm y_tm in let z_tm = (rand o concl) xy_th in (MY_PROVE_HYP xy_th o MY_PROVE_HYP sum2_t_th o MY_PROVE_HYP f_le_th o INST[y_tm, y_var_real; z_tm, z_var_real; t1_tm, t1_var; t2_tm, t2_var] o inst0) list2_le else if is_comb t2_tm then failwith ("sum2_le_conv: t1 = []; t2 = "^string_of_term t2_tm) else (MY_PROVE_HYP f_le_th o inst0) list2_1 else if is_comb list2_tm then failwith ("sum2_le_conv: list1 = []; list2 = "^string_of_term list2_tm) else list2_0 in rec_conv list1_tm list2_tm;; (**************************) (* \a b c. a * iabs b + c *) let ERROR_MUL_F2' = (SYM o MY_RULE_FLOAT) error_mul_f2;; (* |- x = a, |- P x y -> P a y *) let rewrite_lhs eq_th th = let ltm, rhs = dest_comb (concl th) in let th0 = AP_THM (AP_TERM (rator ltm) eq_th) rhs in EQ_MP th0 th;; let error_mul_f2_le_conv pp tm1 tm2 = let eq_th = INST[tm1, a_var_real; tm2, int_var] ERROR_MUL_F2' in let iabs_th = float_iabs tm2 in let iabs_tm = (rand o concl) iabs_th in let mul_th = float_mul_hi pp tm1 iabs_tm in let th0 = AP_TERM (mk_comb (mul_op_real, tm1)) iabs_th in let th1 = AP_THM (AP_TERM le_op_real th0) (rand (concl mul_th)) in let le_th = EQ_MP (SYM th1) mul_th in rewrite_lhs eq_th le_th;; let ERROR_MUL_F2_LEMMA' = (MY_RULE_FLOAT o prove)(`iabs int = x /\ a * x <= y ==> error_mul_f2 a int <= y`, REWRITE_TAC[error_mul_f2] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);; let error_mul_f2_le_conv2 pp tm1 tm2 = let iabs_th = float_iabs tm2 in let x_tm = (rand o concl) iabs_th in let mul_th = float_mul_hi pp tm1 x_tm in let y_tm = (rand o concl) mul_th in (MY_PROVE_HYP iabs_th o MY_PROVE_HYP mul_th o INST[tm2, int_var; tm1, a_var_real; x_tm, x_var_real; y_tm, y_var_real]) ERROR_MUL_F2_LEMMA';; (**************************) (* \a b c. a * iabs b + c *) let ERROR_MUL_F1_LEMMA' = (MY_RULE_FLOAT o prove)(`x * list_sum2 error_mul_f2 w list <= z ==> error_mul_f1 w x list <= z`, REWRITE_TAC[error_mul_f1]);; let list_sum2_error2_const = `list_sum2 error_mul_f2` and w_var_list = `w:(real)list` and list_var = `list:(real#real)list`;; let error_mul_f1_le_conv w_tm pp x_tm list_tm = (* TODO: if x = 0 then do not need to compute the sum *) let sum2_tm = mk_binop list_sum2_error2_const w_tm list_tm in let sum2_le_th = list_sum2_le_conv pp error_mul_f2_le_conv2 sum2_tm in let ineq_th = mul_ineq_pos_const_hi pp x_tm sum2_le_th in let z_tm = (rand o concl) ineq_th in (MY_PROVE_HYP ineq_th o INST[x_tm, x_var_real; z_tm, z_var_real; w_tm, w_var_list; list_tm, list_var]) ERROR_MUL_F1_LEMMA';; end;;