(* ========================================================================== *) (* FLYSPECK - BOOK FORMALIZATION *) (* *) (* Chapter: Tame Hypermap *) (* Author: Alexey Solovyev *) (* Date: 2010-07-07 *) (* (V,ESTD V) is a fan (4-point case) *) (* ========================================================================== *) module Gmlwkpk = struct open Fan;; let AFF_GE_1_2_0 = prove (`!v w. ~(v = vec 0) /\ ~(w = vec 0) ==> aff_ge {vec 0} {v,w} = {a % v + b % w | &0 <= a /\ &0 <= b}`, SIMP_TAC[Fan.AFF_GE_1_2; SET_RULE `DISJOINT {a} {b,c} <=> ~(b = a) /\ ~(c = a)`] THEN REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN ONCE_REWRITE_TAC[MESON[] `(?a b c. P b c /\ Q b c /\ R a b c /\ S b c) <=> (?b c. P b c /\ Q b c /\ S b c /\ ?a. R a b c)`] THEN REWRITE_TAC[REAL_ARITH `t + s:real = &1 <=> t = &1 - s`; EXISTS_REFL] THEN SET_TAC[]);; let AFF_GE_1_1_0 = prove (`!v. ~(v = vec 0) ==> aff_ge {vec 0} {v} = {a % v | &0 <= a}`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SET_RULE `{a} = {a,a}`] THEN ASM_SIMP_TAC[AFF_GE_1_2_0; GSYM VECTOR_ADD_RDISTRIB] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MESON_TAC[REAL_LE_ADD; REAL_ARITH `&0 <= a ==> &0 <= a / &2 /\ a / &2 + a / &2 = a`]);; let GMLWKPK = prove (`!x:real^N V E. graph E ==> (fan7(x,V,E) <=> !e1 e2. e1 IN E UNION {{v} | v IN V} /\ e2 IN E UNION {{v} | v IN V} ==> (e1 INTER e2 = {} ==> aff_ge {x} e1 INTER aff_ge {x} e2 = {x}) /\ (!v. e1 INTER e2 = {v} ==> aff_ge {x} e1 INTER aff_ge {x} e2 = aff_ge {x} {v}))`, REPEAT STRIP_TAC THEN REWRITE_TAC[Fan.fan7] THEN EQ_TAC THENL [SIMP_TAC[AFF_GE_EQ_AFFINE_HULL; AFFINE_HULL_SING]; ALL_TAC] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e1:real^N->bool` THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e2:real^N->bool` THEN MATCH_MP_TAC(TAUT `(p ==> q ==> r) ==> (q ==> p) ==> q ==> r`) THEN STRIP_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `e1 = e2 \/ e1 INTER e2 = {} \/ (?v:real^N. e1 INTER e2 = {v})` MP_TAC THENL [ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[INTER_IDEMPOT] THEN ASM_MESON_TAC[AFF_GE_EQ_AFFINE_HULL; AFFINE_HULL_SING]] THEN SUBGOAL_THEN `?a b:real^N c d:real^N. e1 = {a,b} /\ e2 = {c,d}` MP_TAC THENL [ALL_TAC; DISCH_THEN(REPEAT_TCL CHOOSE_THEN (CONJUNCTS_THEN SUBST_ALL_TAC)) THEN SET_TAC[]] THEN FIRST_ASSUM(CONJUNCTS_THEN MP_TAC) THEN REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN SUBGOAL_THEN `!e:real^N->bool. e IN E ==> ?v w. ~(v = w) /\ e = {v,w}` (LABEL_TAC "*") THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [graph]) THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[IN] THEN CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN REWRITE_TAC[]; ASM_MESON_TAC[SET_RULE `{v,v} = {v}`]]);; let GMLWKPK_ALT = prove (`!x:real^N V E. graph E /\ (!e. e IN E ==> ~(x IN e)) ==> (fan7(x,V,E) <=> (!e1 e2. e1 IN E UNION {{v} | v IN V} /\ e2 IN E UNION {{v} | v IN V} /\ e1 INTER e2 = {} ==> aff_ge {x} e1 INTER aff_ge {x} e2 = {x}) /\ (!e1 e2 v. e1 IN E /\ e2 IN E /\ e1 INTER e2 = {v} ==> aff_ge {x} e1 INTER aff_ge {x} e2 = aff_ge {x} {v}))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GMLWKPK] THEN EQ_TAC THEN SIMP_TAC[IN_UNION] THEN STRIP_TAC THEN MATCH_MP_TAC(MESON[] `(!x y. R x y ==> R y x) /\ (!x y. P x /\ P y ==> R x y) /\ (!x y. Q x /\ Q y ==> R x y) /\ (!x y. P x /\ Q y ==> R x y) ==> !x y. (P x \/ Q x) /\ (P y \/ Q y) ==> R x y`) THEN CONJ_TAC THENL [REWRITE_TAC[INTER_ACI]; ASM_SIMP_TAC[]] THEN CONJ_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THENL [SIMP_TAC[SET_RULE `{a} INTER {b} = {c} <=> a = c /\ b = c`] THEN SET_TAC[]; X_GEN_TAC `e1:real^N->bool` THEN DISCH_TAC THEN X_GEN_TAC `v:real^N`] THEN SUBGOAL_THEN `(e1:real^N->bool) HAS_SIZE 2` MP_TAC THENL [ASM_MESON_TAC[graph; IN]; CONV_TAC(LAND_CONV HAS_SIZE_CONV)] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:real^N`; `w:real^N`] THEN STRIP_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[SET_RULE `{a,b} INTER {c} = {d} <=> d = c /\ (a = c \/ b = c)`] THEN REWRITE_TAC[SET_RULE `s INTER t = t <=> t SUBSET s`] THEN GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC AFF_GE_MONO_RIGHT THEN ASM SET_TAC[]);; let GMLWKPK_SIMPLE = prove (`!E V x:real^N. UNIONS E SUBSET V /\ graph E /\ fan6(x,V,E) /\ (!e. e IN E ==> ~(x IN e)) ==> (fan7 (x,V,E) <=> !e1 e2. e1 IN E UNION {{v} | v IN V} /\ e2 IN E UNION {{v} | v IN V} /\ e1 INTER e2 = {} ==> aff_ge {x} e1 INTER aff_ge {x} e2 = {x})`, let lemma = prove (`!x u v w:real^N. ~collinear{x,u,v} /\ ~collinear{x,v,w} ==> (~(aff_ge {x} {u,v} INTER aff_ge {x} {v,w} = aff_ge {x} {v}) <=> u IN aff_ge {x} {v,w} \/ w IN aff_ge {x} {u,v})`, REPEAT GEN_TAC THEN GEOM_ORIGIN_TAC `x:real^N` THEN REPEAT GEN_TAC THEN MAP_EVERY (fun t -> ASM_CASES_TAC t THENL [ASM_REWRITE_TAC[COLLINEAR_2; INSERT_AC]; ALL_TAC]) [`u:real^N = v`; `w:real^N = v`; `u:real^N = vec 0`; `v:real^N = vec 0`; `w:real^N = vec 0`] THEN STRIP_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `~(s INTER s' = t) ==> t SUBSET s /\ t SUBSET s' ==> t PSUBSET s INTER s'`)) THEN ANTS_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC AFF_GE_MONO_RIGHT THEN ASM SET_TAC[]; REWRITE_TAC[PSUBSET_ALT]] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[AFF_GE_1_2_0; AFF_GE_1_1_0; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[IN_INTER; IMP_CONJ; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN DISCH_TAC THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`c:real`; `d:real`] THEN STRIP_TAC THEN ASM_CASES_TAC `a = &0` THENL [ASM_MESON_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_LID]; ALL_TAC] THEN ASM_CASES_TAC `d = &0` THENL [ASM_MESON_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_RID]; ALL_TAC] THEN DISCH_THEN(K ALL_TAC) THEN DISJ_CASES_TAC (REAL_ARITH `b <= c \/ c <= b`) THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP (VECTOR_ARITH `a % u + b % v:real^N = c % v + d % w ==> a % u = (c - b) % v + d % w`)) THEN DISCH_THEN(MP_TAC o AP_TERM `(%) (inv a):real^N->real^N`) THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID] THEN DISCH_THEN(K ALL_TAC) THEN DISJ1_TAC THEN REWRITE_TAC[VECTOR_ADD_LDISTRIB; VECTOR_MUL_ASSOC] THEN MAP_EVERY EXISTS_TAC [`inv a * (c - b):real`; `inv a * d:real`] THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_LE_INV_EQ; REAL_SUB_LE]; FIRST_X_ASSUM(MP_TAC o MATCH_MP (VECTOR_ARITH `a % u + b % v:real^N = c % v + d % w ==> d % w = (b - c) % v + a % u`)) THEN DISCH_THEN(MP_TAC o AP_TERM `(%) (inv d):real^N->real^N`) THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID] THEN DISCH_THEN(K ALL_TAC) THEN DISJ2_TAC THEN REWRITE_TAC[VECTOR_ADD_LDISTRIB; VECTOR_MUL_ASSOC] THEN MAP_EVERY EXISTS_TAC [`inv d * a:real`; `inv d * (b - c):real`] THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_LE_INV_EQ; REAL_SUB_LE] THEN REWRITE_TAC[VECTOR_ADD_SYM]]; STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `(?x. x IN s /\ x IN t /\ ~(x IN u)) ==> ~(s INTER t = u)`) THENL [EXISTS_TAC `u:real^N` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[AFF_GE_1_2_0; AFF_GE_1_1_0; IN_ELIM_THM] THEN CONJ_TAC THENL [MAP_EVERY EXISTS_TAC [`&1`; `&0`] THEN REWRITE_TAC[REAL_POS] THEN VECTOR_ARITH_TAC; DISCH_THEN(X_CHOOSE_THEN `a:real` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN UNDISCH_TAC `~collinear{vec 0:real^N,a % v,v}` THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {a,c,b}`] THEN REWRITE_TAC[COLLINEAR_LEMMA] THEN MESON_TAC[]]; EXISTS_TAC `w:real^N` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[AFF_GE_1_2_0; AFF_GE_1_1_0; IN_ELIM_THM] THEN CONJ_TAC THENL [MAP_EVERY EXISTS_TAC [`&0`; `&1`] THEN REWRITE_TAC[REAL_POS] THEN VECTOR_ARITH_TAC; DISCH_THEN(X_CHOOSE_THEN `a:real` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN UNDISCH_TAC `~collinear{vec 0:real^N,v,a % v}` THEN REWRITE_TAC[COLLINEAR_LEMMA] THEN MESON_TAC[]]]]) in REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GMLWKPK] THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN REWRITE_TAC[IN_UNION] THEN MATCH_MP_TAC(MESON[] `(!x y. R x y ==> R y x) /\ (!x. Q x ==> !y. Q y ==> R x y) /\ (!x. P x ==> (!y. Q y ==> R x y) /\ (!y. P y ==> R x y)) ==> (!x y. (P x \/ Q x) /\ (P y \/ Q y) ==> R x y)`) THEN CONJ_TAC THENL [SIMP_TAC[INTER_ACI]; ALL_TAC] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN CONJ_TAC THENL [SIMP_TAC[SET_RULE `{a} INTER {b} = {c} <=> c = a /\ b = a`] THEN REWRITE_TAC[INTER_IDEMPOT]; ALL_TAC] THEN X_GEN_TAC `ee1:real^N->bool` THEN DISCH_TAC THEN CONJ_TAC THENL [X_GEN_TAC `v:real^N` THEN DISCH_TAC THEN REWRITE_TAC[SET_RULE `s INTER {a} = {b} <=> b = a /\ a IN s`] THEN SIMP_TAC[IMP_CONJ; FORALL_UNWIND_THM2] THEN DISCH_TAC THEN REWRITE_TAC[SET_RULE `s INTER t = t <=> t SUBSET s`] THEN MATCH_MP_TAC AFF_GE_MONO_RIGHT THEN ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `ee2:real^N->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `(ee1:real^N->bool) HAS_SIZE 2` MP_TAC THENL [ASM_MESON_TAC[graph; IN]; CONV_TAC(LAND_CONV HAS_SIZE_CONV)] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`v1:real^N`; `w1:real^N`] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN SUBGOAL_THEN `(ee2:real^N->bool) HAS_SIZE 2` MP_TAC THENL [ASM_MESON_TAC[graph; IN]; CONV_TAC(LAND_CONV HAS_SIZE_CONV)] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`v2:real^N`; `w2:real^N`] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN ONCE_REWRITE_TAC[SET_RULE `{a,b} INTER {c,d} = {v} <=> v = a /\ {a,b} INTER {c,d} = {v} \/ v = b /\ {a,b} INTER {c,d} = {v}`] THEN REWRITE_TAC[TAUT `p /\ q \/ r /\ q ==> t <=> (p ==> q ==> t) /\ (r ==> q ==> t)`] THEN REWRITE_TAC[FORALL_AND_THM; FORALL_UNWIND_THM2] THEN MAP_EVERY UNDISCH_TAC [`{v1:real^N,w1} IN E`; `~(v1:real^N = w1)`] THEN MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`w1:real^N`; `v1:real^N`] THEN REWRITE_TAC[IMP_IMP] THEN MATCH_MP_TAC(MESON[] `(!v w. P v w ==> P w v) /\ (!v w. R v w ==> Q w v) /\ (!v w. P v w ==> R v w) ==> (!v w. P v w ==> Q v w /\ R v w)`) THEN REPEAT(CONJ_TAC THENL [SIMP_TAC[INSERT_AC]; ALL_TAC]) THEN MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[SET_RULE `{a,b} INTER {c,d} = {v} <=> v = c /\ {a,b} INTER {c,d} = {v} \/ v = d /\ {a,b} INTER {c,d} = {v}`] THEN REWRITE_TAC[TAUT `p /\ q \/ r /\ q ==> t <=> (p ==> q ==> t) /\ (r ==> q ==> t)`] THEN MAP_EVERY UNDISCH_TAC [`{v2:real^N,w2} IN E`; `~(v2:real^N = w2)`] THEN MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`w2:real^N`; `v2:real^N`] THEN REWRITE_TAC[IMP_IMP] THEN MATCH_MP_TAC(MESON[] `(!v w. P v w ==> P w v) /\ (!v w. Q v w ==> R w v) /\ (!v w. P v w ==> Q v w) ==> (!v w. P v w ==> Q v w /\ R v w)`) THEN REPEAT(CONJ_TAC THENL [SIMP_TAC[INSERT_AC]; ALL_TAC]) THEN MAP_EVERY X_GEN_TAC [`v':real^N`; `w:real^N`] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM_CASES_TAC `u:real^N = w` THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_TAC THEN W(MP_TAC o PART_MATCH (rand o lhand o rand) lemma o goal_concl) THEN ANTS_TAC THENL [REWRITE_TAC[SET_RULE `{x,v,w} = {x} UNION {v,w}`] THEN ASM_MESON_TAC[fan6; INSERT_AC]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `~q ==> (~p <=> q) ==> p`) THEN REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THEN MATCH_MP_TAC(SET_RULE `aff_ge {x} {v} INTER aff_ge {x} s = {x} /\ v IN aff_ge {x} {v} /\ ~(v = x) ==> ~(v IN aff_ge {x} s)`) THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_UNION] THEN CONJ_TAC THENL [DISJ2_TAC; ASM SET_TAC[]] THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `u:real^N` THEN REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_UNIONS] THEN EXISTS_TAC `{u:real^N,v}` THEN ASM SET_TAC[]; SUBGOAL_THEN `DISJOINT {x:real^N} {u:real^N}` ASSUME_TAC THENL [REWRITE_TAC[SET_RULE `DISJOINT {a} {b} <=> ~(a = b)`] THEN ASM_MESON_TAC[IN_INSERT]; ASM_SIMP_TAC[Fan.AFF_GE_1_1; IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`&0`; `&1`] THEN REPEAT(CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC]) THEN VECTOR_ARITH_TAC]; ASM_MESON_TAC[IN_INSERT]; FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_UNION] THEN CONJ_TAC THENL [DISJ2_TAC; ASM SET_TAC[]] THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `w:real^N` THEN REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_UNIONS] THEN EXISTS_TAC `{v:real^N,w}` THEN ASM SET_TAC[]; SUBGOAL_THEN `DISJOINT {x:real^N} {w:real^N}` ASSUME_TAC THENL [REWRITE_TAC[SET_RULE `DISJOINT {a} {b} <=> ~(a = b)`] THEN ASM_MESON_TAC[IN_INSERT]; ASM_SIMP_TAC[Fan.AFF_GE_1_1; IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`&0`; `&1`] THEN REPEAT(CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC]) THEN VECTOR_ARITH_TAC]; ASM_MESON_TAC[IN_INSERT]]);; end;;