(* split off from misc_defs_and_lemmas.ml *) (* ------------------------------------------------------------------ *) (* COMPUTING PI *) (* ------------------------------------------------------------------ *) Parse_ext_override_interface.unambiguous_interface();; Parse_ext_override_interface.prioritize_real();; (* ------------------------------------------------------------------ *) (* general series approximations *) (* ------------------------------------------------------------------ *) let SER_APPROX1 = prove_by_refinement( `!s f g. (f sums s) /\ (summable g) ==> (!k. ((!n. (||. (f (n+k)) <=. (g (n+k)))) ==> ( (s - (sum(0,k) f)) <=. (suminf (\n. (g (n +| k)))))))`, (* {{{ proof *) [ REPEAT GEN_TAC; DISCH_ALL_TAC; GEN_TAC; DISCH_TAC; IMP_RES_THEN ASSUME_TAC SUM_SUMMABLE; IMP_RES_THEN (fun th -> (ASSUME_TAC (SPEC `k:num` th))) SER_OFFSET; IMP_RES_THEN ASSUME_TAC SUM_UNIQ; SUBGOAL_THEN `(\n. (f (n+ k))) sums (s - (sum(0,k) f))` ASSUME_TAC; ASM_MESON_TAC[]; SUBGOAL_THEN `summable (\n. (f (n+k))) /\ (suminf (\n. (f (n+k))) <=. (suminf (\n. (g (n+k)))))` ASSUME_TAC; MATCH_MP_TAC SER_LE2; BETA_TAC; ASM_REWRITE_TAC[]; IMP_RES_THEN ASSUME_TAC SER_OFFSET; FIRST_X_ASSUM (fun th -> ACCEPT_TAC (MATCH_MP SUM_SUMMABLE (((SPEC `k:num`) th)))); ASM_MESON_TAC[SUM_UNIQ] ]);; (* }}} *) let SER_APPROX = prove_by_refinement( `!s f g. (f sums s) /\ (!n. (||. (f n) <=. (g n))) /\ (summable g) ==> (!k. (abs (s - (sum(0,k) f)) <=. (suminf (\n. (g (n +| k))))))`, (* {{{ proof *) [ REPEAT GEN_TAC; DISCH_ALL_TAC; GEN_TAC; REWRITE_TAC[REAL_ABS_BOUNDS]; CONJ_TAC; SUBGOAL_THEN `(!k. ((!n. (||. ((\p. (--. (f p))) (n+k))) <=. (g (n+k)))) ==> ((--.s) - (sum(0,k) (\p. (--. (f p)))) <=. (suminf (\n. (g (n +k))))))` ASSUME_TAC; MATCH_MP_TAC SER_APPROX1; ASM_REWRITE_TAC[]; MATCH_MP_TAC SER_NEG ; ASM_REWRITE_TAC[]; MATCH_MP_TAC (REAL_ARITH (`(--. s -. (--. u) <=. x) ==> (--. x <=. (s -. u))`)); ONCE_REWRITE_TAC[GSYM SUM_NEG]; FIRST_X_ASSUM (fun th -> (MATCH_MP_TAC th)); BETA_TAC; ASM_REWRITE_TAC[REAL_ABS_NEG]; H_VAL2 CONJ (HYP "0") (HYP "2"); IMP_RES_THEN MATCH_MP_TAC SER_APPROX1 ; GEN_TAC; ASM_MESON_TAC[]; ]);; (* }}} *) (* ------------------------------------------------------------------ *) (* now for pi calculation stuff *) (* ------------------------------------------------------------------ *) let local_def = local_definition "trig";; let PI_EST = prove_by_refinement( `!n. (1 <=| n) ==> (abs(&4 / &(8 * n + 1) - &2 / &(8 * n + 4) - &1 / &(8 * n + 5) - &1 / &(8 * n + 6)) <= &.622/(&.819))`, (* {{{ proof *) [ GEN_TAC THEN DISCH_ALL_TAC; REWRITE_TAC[real_div]; MATCH_MP_TAC (REWRITE_RULE[real_div] (REWRITE_RULE[REAL_RAT_REDUCE_CONV `(&.4/(&.9) +(&.2/(&.12)) + (&.1/(&.13))+ (&.1/(&.14)))`] (REAL_ARITH `(abs((&.4)*.u)<=. (&.4)/(&.9)) /\ (abs((&.2)*.v)<=. (&.2)/(&.12)) /\ (abs((&.1)*w) <=. (&.1)/(&.13)) /\ (abs((&.1)*x) <=. (&.1)/(&.14)) ==> (abs((&.4)*u -(&.2)*v - (&.1)*w - (&.1)*x) <= (&.4/(&.9) +(&.2/(&.12)) + (&.1/(&.13))+ (&.1/(&.14))))`))); IMP_RES_THEN ASSUME_TAC (ARITH_RULE `1 <=| n ==> (0 < n)`); FIRST_X_ASSUM (fun th -> ASSUME_TAC (REWRITE_RULE[GSYM REAL_OF_NUM_LT] th)); ASSUME_TAC (prove(`(a<=.b) ==> (&.n*a <=. (&.n)*b)`,MESON_TAC[REAL_PROP_LE_LMUL;REAL_POS])); REWRITE_TAC[REAL_ABS_MUL;REAL_ABS_INV;prove(`||.(&.n) = (&.n)`,MESON_TAC[REAL_POS;REAL_ABS_REFL])]; REPEAT CONJ_TAC THEN (POP_ASSUM (fun th -> MATCH_MP_TAC th)) THEN (MATCH_MP_TAC (prove(`((&.0 <. (&.n)) /\ (&.n <=. a)) ==> (inv(a)<=. (inv(&.n)))`,MESON_TAC[REAL_ABS_REFL;REAL_ABS_INV;REAL_LE_INV2]))) THEN REWRITE_TAC[REAL_LT;REAL_LE] THEN (H_UNDISCH_TAC (HYP"0")) THEN ARITH_TAC]);; (* }}} *) let pi_fun = local_def `pi_fun n = inv (&.16 **. n) *. (&.4 / &.(8 *| n +| 1) -. &.2 / &.(8 *| n +| 4) -. &.1 / &.(8 *| n +| 5) -. &.1 / &.(8 *| n +| 6))`;; let pi_bound_fun = local_def `pi_bound_fun n = if (n=0) then (&.8) else (((&.15)/(&.16))*(inv(&.16 **. n))) `;; let PI_EST2 = prove_by_refinement( `!k. abs(pi_fun k) <=. (pi_bound_fun k)`, (* {{{ proof *) [ GEN_TAC; REWRITE_TAC[pi_fun;pi_bound_fun]; COND_CASES_TAC; ASM_REWRITE_TAC[]; CONV_TAC (NUM_REDUCE_CONV); (CONV_TAC (REAL_RAT_REDUCE_CONV)); CONV_TAC (RAND_CONV (REWR_CONV (REAL_ARITH `a*b = b*.a`))); REWRITE_TAC[REAL_ABS_MUL;REAL_ABS_INV;REAL_ABS_POW;prove(`||.(&.n) = (&.n)`,MESON_TAC[REAL_POS;REAL_ABS_REFL])]; MATCH_MP_TAC (prove(`!x y z. (&.0 <. z /\ (y <=. x) ==> (z*y <=. (z*x)))`,MESON_TAC[REAL_LE_LMUL_EQ])); ASSUME_TAC (REWRITE_RULE[] (REAL_RAT_REDUCE_CONV `(&.622)/(&.819) <=. (&.15)/(&.16)`)); IMP_RES_THEN ASSUME_TAC (ARITH_RULE `~(k=0) ==> (1<=| k)`); IMP_RES_THEN ASSUME_TAC (PI_EST); CONJ_TAC; SIMP_TAC[REAL_POW_LT;REAL_LT_INV;ARITH_RULE `&.0 < (&.16)`]; ASM_MESON_TAC[REAL_LE_TRANS]; ]);; (* }}} *) let GP16 = prove_by_refinement( `!k. (\n. inv (&16 pow k) * inv (&16 pow n)) sums inv (&16 pow k) * &16 / &15`, (* {{{ proof *) [ GEN_TAC; ASSUME_TAC (REWRITE_RULE[] (REAL_RAT_REDUCE_CONV `abs (&.1 / (&. 16)) <. (&.1)`)); IMP_RES_THEN (fun th -> ASSUME_TAC (CONV_RULE REAL_RAT_REDUCE_CONV th)) GP; MATCH_MP_TAC SER_CMUL; ASM_REWRITE_TAC[GSYM REAL_POW_INV;REAL_INV_1OVER]; ]);; (* }}} *) let GP16a = prove_by_refinement( `!k. (0<|k) ==> (\n. (pi_bound_fun (n+k))) sums (inv(&.16 **. k))`, (* {{{ proof *) [ GEN_TAC; DISCH_TAC; SUBGOAL_THEN `(\n. pi_bound_fun (n+k)) = (\n. ((&.15/(&.16))* (inv(&.16)**. k) *. inv(&.16 **. n)))` (fun th-> REWRITE_TAC[th]); MATCH_MP_TAC EQ_EXT; X_GEN_TAC `n:num` THEN BETA_TAC; REWRITE_TAC[pi_bound_fun]; COND_CASES_TAC; ASM_MESON_TAC[ARITH_RULE `0<| k ==> (~(n+k = 0))`]; REWRITE_TAC[GSYM REAL_MUL_ASSOC]; AP_TERM_TAC; REWRITE_TAC[REAL_INV_MUL;REAL_POW_ADD;REAL_POW_INV;REAL_MUL_AC]; SUBGOAL_THEN `(\n. (&.15/(&.16)) *. ((inv(&.16)**. k)*. inv(&.16 **. n))) sums ((&.15/(&.16)) *.(inv(&.16**. k)*. ((&.16)/(&.15))))` ASSUME_TAC; MATCH_MP_TAC SER_CMUL; REWRITE_TAC[REAL_POW_INV]; ACCEPT_TAC (SPEC `k:num` GP16); FIRST_X_ASSUM MP_TAC; REWRITE_TAC[REAL_MUL_ASSOC]; MATCH_MP_TAC (prove (`(x=y) ==> ((a sums x) ==> (a sums y))`,MESON_TAC[])); MATCH_MP_TAC (REAL_ARITH `(b*(a*c) = (b*(&.1))) ==> ((a*b)*c = b)`); AP_TERM_TAC; CONV_TAC (REAL_RAT_REDUCE_CONV); ]);; (* }}} *) let PI_SER = prove_by_refinement( `!k. (0<|k) ==> (abs(pi - (sum(0,k) pi_fun)) <=. (inv(&.16 **. (k))))`, (* {{{ proof *) [ GEN_TAC THEN DISCH_TAC; ASSUME_TAC (ONCE_REWRITE_RULE[ETA_AX] (REWRITE_RULE[GSYM pi_fun] POLYLOG_THM)); ASSUME_TAC PI_EST2; IMP_RES_THEN (ASSUME_TAC) GP16a; IMP_RES_THEN (ASSUME_TAC) SUM_SUMMABLE; IMP_RES_THEN (ASSUME_TAC) SER_OFFSET_REV; IMP_RES_THEN (ASSUME_TAC) SUM_SUMMABLE; MP_TAC (SPECL [`pi`;`pi_fun`;`pi_bound_fun` ] SER_APPROX); ASM_REWRITE_TAC[]; DISCH_THEN (fun th -> MP_TAC (SPEC `k:num` th)); SUBGOAL_THEN `suminf (\n. pi_bound_fun (n + k)) = inv (&.16 **. k)` (fun th -> (MESON_TAC[th])); ASM_MESON_TAC[SUM_UNIQ]; ]);; (* }}} *) (* replace 3 by SUC (SUC (SUC 0)) *) let SUC_EXPAND_CONV tm = let count = dest_numeral tm in let rec add_suc i r = if (i <=/ (Int 0)) then r else add_suc (i -/ (Int 1)) (mk_comb (`SUC`,r)) in let tm' = add_suc count `0` in REWRITE_RULE[] (ARITH_REWRITE_CONV[] (mk_eq (tm,tm')));; let inv_twopow = prove( `!n. inv (&.16 **. n) = (twopow (--: (&:(4*n)))) `, REWRITE_TAC[TWOPOW_NEG;GSYM (NUM_RED_CONV `2 EXP 4`); REAL_OF_NUM_POW;EXP_MULT]);; let PI_SERn n = let SUM_EXPAND_CONV = (ARITH_REWRITE_CONV[]) THENC (TOP_DEPTH_CONV SUC_EXPAND_CONV) THENC (REWRITE_CONV[sum]) THENC (ARITH_REWRITE_CONV[REAL_ADD_LID;GSYM REAL_ADD_ASSOC]) in let sum_thm = SUM_EXPAND_CONV (vsubst [n,`i:num`] `sum(0,i) f`) in let gt_thm = ARITH_RULE (vsubst [n,`i:num`] `0 <| i`) in ((* CONV_RULE REAL_RAT_REDUCE_CONV *)(CONV_RULE (ARITH_REWRITE_CONV[]) (BETA_RULE (REWRITE_RULE[sum_thm;pi_fun;inv_twopow] (MATCH_MP PI_SER gt_thm)))));; (* abs(pi - u ) < e *) let recompute_pi bprec = let n = (bprec /4) in let pi_ser = PI_SERn (mk_numeral (Int n)) in let _ = remove_real_constant `pi` in (add_real_constant pi_ser; INTERVAL_OF_TERM bprec `pi`);; (* ------------------------------------------------------------------ *) (* restore defaults *) (* ------------------------------------------------------------------ *) reduce_local_interface("trig");;