(* ========================================================================== *) (* FLYSPECK - BOOK FORMALIZATION *) (* *) (* Chapter: Local Fan *) (* Author: Nguyen Quang Truong *) (* Date: 2010-05-09 *) (* ========================================================================== *) (* needs "/home/user1/flyspeck/working/flyspeck_needs.hl";; *) (* =========== snapshot 1631 ===================== *) flyspeck_needs "fan/planarity.hl";; flyspeck_needs "local/WRGCVDR_CIZMRRH.hl";; module type Lvducxu_type = sig end;; module Lvducxu = struct parse_as_infix("has_orders",(12,"right"));; open Sphere;; open Trigonometry1;; open Trigonometry2;; open Hypermap;; open Fan;; open Planarity;; open Prove_by_refinement;; open Wrgcvdr_cizmrrh;; let PROPERTIES_OF_IVS_AZIM_CYCLE2 = IVS_AZIM_PROPERTIES;; let IN_FF_IMP_FST_SND_IN_V = prove_by_refinement (` UNIONS E SUBSET (V:A -> bool) /\ FF SUBSET darts_of_hyp E V /\ x IN FF ==> FST x IN V /\ SND x IN V `, [REWRITE_TAC[darts_of_hyp; SUBSET]; STRIP_TAC; DOWN; FIRST_ASSUM NHANH; REWRITE_TAC[ord_pairs; IN_UNION; self_pairs; IN_ELIM_THM]; STRIP_TAC; ASM_REWRITE_TAC[]; SUBGOAL_THEN` (a:A) IN UNIONS E /\ b IN UNIONS E ` ASSUME_TAC; REWRITE_TAC[IN_UNIONS]; ASM_MESON_TAC[SET_RULE` a IN {a,b} /\ b IN {a,b} `]; ASM_MESON_TAC[]; ASM_SIMP_TAC[]]);; let W_EQ_ITS_ORBIT_IMP_EQ_ITS_IMAGE = prove_by_refinement( `(!(x:A). x IN W ==> W = orbit_map f x) ==> W = IMAGE f W `, [STRIP_TAC; REWRITE_TAC[FUN_EQ_THM]; GEN_TAC THEN EQ_TAC; PAT_ONCE_REWRITE_TAC `\x. x ==> x ` [GSYM IN]; DOWN THEN PHA; NHANH CYCLIC_MAP_IMP_CIRCLE_ITSELF; REWRITE_TAC[IMAGE; IN_ELIM_THM]; SIMP_TAC[]; REWRITE_TAC[IMAGE; IN_ELIM_THM]; FIRST_ASSUM NHANH; ASSUME_TAC in_orbit_map1; DOWN THEN REWRITE_TAC[IN]; MESON_TAC[]]);; let FINITE_AND_LOOP_IMP_BIJ_S_IM_S = prove_by_refinement( `! S:A -> bool. FINITE S /\ (! x. x IN S ==> S = orbit_map f x ) ==> BIJ f S (IMAGE f S ) `, [NHANH W_EQ_ITS_ORBIT_IMP_EQ_ITS_IMAGE; REWRITE_TAC[BIJ; INJ; SURJ]; REPEAT GEN_TAC THEN STRIP_TAC; REWRITE_TAC[FUN_IN_IMAGE; IN_IMAGE]; SIMP_TAC[CONJ_SYM; EQ_SYM_EQ]; ASM_MESON_TAC[IMAGE_IMP_INJECTIVE_GEN]]);; let CYCLIC_SET_IMP_SELF_LOPP2 = prove_by_refinement (`FAN (x,V,E) /\ {v, u} IN E ==> (!a. a IN EE v E ==> EE v E = orbit_map (azim_cycle (EE v E) x v) a)`, [NHANH CYCLIC_SET_IMP_STABLE_SET2; STRIP_TAC; FIRST_X_ASSUM NHANH; REPEAT STRIP_TAC; ABBREV_TAC ` f = azim_cycle (EE v E) x v `; ASM_REWRITE_TAC[orbit_map; FUN_EQ_THM; IN_ELIM_THM; POWER_TO_ITER]; REWRITE_TAC[ARITH_RULE` x >= 0 `]]);; let FIN_LOOP_IMP_BIJ_ITSELF = prove_by_refinement( `! S: A -> bool. FINITE S /\ (! x. x IN S ==> S = orbit_map f x ) ==> BIJ f S S `, [NHANH FINITE_AND_LOOP_IMP_BIJ_S_IM_S; NHANH W_EQ_ITS_ORBIT_IMP_EQ_ITS_IMAGE; MESON_TAC[]]);; (* +++++++++++++++++++++++++++ let CYCLIC_SET_IMP_BIJ_AZIM_CYCLE = prove_by_refinement(` cyclic_set W v w ==> BIJ (azim_cycle W v w) W W `, [NHANH CYCLIC_SET_IMP_SELF_LOPP; REWRITE_TAC[cyclic_set]; STRIP_TAC; DOWN; UNDISCH_TAC `FINITE (W:real^3 -> bool) `; PHA; NHANH FIN_LOOP_IMP_BIJ_ITSELF; SIMP_TAC[]]);; +++++++++++++++++++++++++++++++ *) (* a very important lemma for proving second lemma in local fan chapter *) (* ================================== *) let IN_DARTS_FF_IMP_DARTS_E_PRIME_V_PRIME = prove_by_refinement (` (x:A#A) IN darts_of_hyp E V /\ x IN FF ==> x IN darts_of_hyp (e_prime E FF) (v_prime V FF) `, [REWRITE_TAC[IN_ELIM_THM; darts_of_hyp; IN_UNION; ord_pairs; self_pairs]; REWRITE_TAC[e_prime; v_prime; IN_ELIM_THM]; STRIP_TAC; DISJ1_TAC; ASM_MESON_TAC[]; DISJ2_TAC; EXISTS_TAC `v:A`; ASM_REWRITE_TAC[]; CONJ_TAC; ASM_MESON_TAC[]; DOWN_TAC THEN REWRITE_TAC[EE]; SET_TAC[]]);; let PROPERTIES_OF_IVS_AZIM_CYCLE2 = prove_by_refinement(` FAN (x,V,E) /\ w IN EE v E ==> ivs_azim_cycle (EE v E) x v w IN EE v E /\ azim_cycle (EE v E ) x v ( ivs_azim_cycle (EE v E) x v w ) = w `, [IMP_TAC; NHANH FAN_IMP_EE_EQ_SET_OF_EDGE; STRIP_TAC; UNDISCH_TAC` FAN ((x:real^3),V,E) `; PHA; ASM_REWRITE_TAC[]; NHANH IVS_AZIM_PROPERTIES; SIMP_TAC[]; STRIP_TAC; UNDISCH_TAC `ivs_azim_cycle (set_of_edge v V E) x v w IN set_of_edge v V E `; UNDISCH_TAC ` FAN (x:real^3,V,E) `; PHA; NHANH AZIM_CYCLE_EQ_SIGMA_FAN; ASM_SIMP_TAC[]]);; let IN_EE_IFF_IN_E = prove(` x IN EE v E <=> {v,x} IN E `, REWRITE_TAC[EE; IN_ELIM_THM]);; let CYCLIC_SET_IMP_SELF_LOPP3 = prove(`FAN (x,V,E) ==> (!a. a IN EE v E ==> EE v E = orbit_map (azim_cycle (EE v E) x v) a)`, MESON_TAC[CYCLIC_SET_IMP_SELF_LOPP2;IN_EE_IFF_IN_E]);; let BIJ_AZIM_CYCLE_EE = prove( ` FAN (x,V,E) ==> BIJ (azim_cycle (EE v E) x v) (EE v E) (EE v E) `, NHANH CYCLIC_SET_IMP_SELF_LOPP3 THEN NHANH FAN_IMP_FINITE_EE THEN MESON_TAC[FIN_LOOP_IMP_BIJ_ITSELF]);; (* ++++++++++++++++++ *) let IN_FF_FACE_MAP_IDE = prove_by_refinement (` FAN (v,V,E) /\ (?x. x IN dart (hypermap (HYP (v,V,E))) /\ FF = face (hypermap (HYP (v,V,E))) x) ==> (! x. x IN FF ==> face_map (hypermap (HYP (v,V,E))) x = face_map (hypermap (HYP (v,v_prime V FF,e_prime E FF))) x ) `, [NHANH IMP_FAN_V_PRIME_E_PRIME; NHANH ELMS_OF_HYPERMAP_HYP; STRIP_TAC; STRIP_TAC THEN STRIP_TAC; UNDISCH_TAC`FF = face (hypermap (HYP (v,V,E))) x`; DISCH_THEN (ASSUME_TAC o SYM); ASM_REWRITE_TAC[ff_of_hyp]; PAT_ONCE_REWRITE_TAC `\x. P x = Q x ` [GSYM PAIR]; SUBGOAL_THEN `x IN dart (hypermap (HYP ((v:real^3),V,E))) ` MP_TAC; ASM_REWRITE_TAC[]; NHANH lemma_face_subset; ASM_REWRITE_TAC[]; STRIP_TAC; SUBGOAL_THEN` (x':real^3 # real^3) IN darts_of_hyp E V ` MP_TAC; DOWN THEN DOWN THEN DOWN THEN SET_TAC[]; SUBGOAL_THEN ` x':real^3 # real^3 IN darts_of_hyp (e_prime E FF) (v_prime V FF) ` MP_TAC; SUBGOAL_THEN` (x':real^3 # real^3) IN darts_of_hyp E V ` MP_TAC; DOWN THEN DOWN THEN DOWN THEN SET_TAC[]; ASM_SIMP_TAC[IN_DARTS_FF_IMP_DARTS_E_PRIME_V_PRIME]; PHA; SIMP_TAC[ff_of_hyp2]; REMOVE_TAC THEN DOWN THEN REMOVE_TAC; REWRITE_TAC[ff_of_hyp]; UNDISCH_TAC `(x': real^3 #real^3 ) IN FF `; EXPAND_TAC "FF"; REWRITE_TAC[face]; NHANH IN_ORBIT_MAP_IMP_F_Y; REWRITE_TAC[GSYM face]; ASM_REWRITE_TAC[]; IMP_TAC THEN DISCH_TAC; SUBGOAL_THEN `x IN dart (hypermap (HYP ((v:real^3),V,E))) ` MP_TAC; ASM_REWRITE_TAC[]; NHANH lemma_face_subset; ASM_REWRITE_TAC[]; STRIP_TAC; SUBGOAL_THEN` (x':real^3 # real^3) IN darts_of_hyp E V ` MP_TAC; DOWN THEN DOWN THEN SET_TAC[]; SIMP_TAC[ff_of_hyp2]; REMOVE_TAC; DOWN THEN REMOVE_TAC; DOWN THEN PHA; IMP_TAC THEN DISCH_TAC; PAT_ONCE_REWRITE_TAC `\x. P h x IN FF ==> y ` [ISPEC `x': real^3 # real^3 ` (GSYM PAIR)]; ABBREV_TAC ` fx = FST (x':real^3 # real^3 ) `; ABBREV_TAC `snx = SND (x':real^3 # real^3 ) `; MP_TAC (ISPEC `x': real^3 # real^3 ` (GSYM PAIR)); DISCH_TAC; UNDISCH_TAC `x IN dart (hypermap (HYP (v,V,E))) `; NHANH lemma_face_subset; STRIP_TAC; UNDISCH_TAC` (x':real^3#real^3) IN FF `; DOWN; PHA; ASM_REWRITE_TAC[]; NHANH (SET_RULE` a SUBSET b /\ x IN a /\ l ==> x IN b `); STRIP_TAC; DOWN; REWRITE_TAC[darts_of_hyp; IN_UNION]; ONCE_REWRITE_TAC[DISJ_SYM]; STRIP_TAC; (* 2 goals araise here *) (* sub 1 *) DOWN; REWRITE_TAC[self_pairs]; UNDISCH_TAC `(x':real^3 # real^3) = FST x',SND x'`; DISCH_TAC; FIRST_X_ASSUM (fun x -> ONCE_REWRITE_TAC[x]); PURE_REWRITE_TAC[IN_ELIM_THM; BETA_THM; PAIR_EQ]; ASM_REWRITE_TAC[]; STRIP_TAC; ASM_REWRITE_TAC[]; ASSUME_TAC (let tm = MATCH_MP (SPECL [`{}:real^3 -> bool `;` v:real^3 `;` v':real^3 `] (GEN_ALL (MESON[W_SUBSET_SINGLETON_IMP_IDE]` W SUBSET {p} ==> azim_cycle W v w p = p`))) (SET_RULE` {} SUBSET {(q:real^3)} `) in GEN `q:real^3 ` tm); ASSUME_TAC2 ( ISPECL [`FF:real^3 # real^3 -> bool `] (GEN_ALL E_PRIME_SUBSET_E)); DOWN; NHANH ( let ge = GEN_ALL SUBSET_IMP_SO_DO_EE in ISPECL [`W1:(A -> bool ) -> bool`;`v':A `] ge); ASM_SIMP_TAC[SUBSET_EMPTY]; (* SUB 2 *) REWRITE_TAC[PAIR_EQ]; DOWN_TAC THEN NHANH ( MESON[FAN]` FAN (x,V,E) ==> UNIONS E SUBSET V `); STRIP_TAC; ASSUME_TAC2 ( ISPEC `x': real^3 # real ^3 ` (GEN `x:A#A` IN_FF_IMP_FST_SND_IN_V)); DOWN THEN ASM_SIMP_TAC[]; STRIP_TAC; SUBGOAL_THEN` snx:real^3 IN v_prime V (FF:real^3 # real^3 -> bool)` ASSUME_TAC; REWRITE_TAC[v_prime; IN_ELIM_THM]; ASM_SIMP_TAC[]; EXISTS_TAC `ivs_azim_cycle (EE snx E) v snx (fx:real^3)`; FIRST_ASSUM ACCEPT_TAC; DOWN; ASSUME_TAC2 ( SPECL [`v:real^3 `;`V:real^3 -> bool`;` E:(real^3 -> bool) -> bool`;` snx:real^3`] XOHLED); UNDISCH_TAC`FAN ((v:real^3),v_prime V FF,e_prime E FF)`; PHA; NHANH XOHLED; DOWN; ASM_SIMP_TAC[GSYM UNI_E_IMP_EE_EQ_SET_OF_EDGE]; SUBGOAL_THEN `{FST (x':real^3 # real^3), SND x'} IN e_prime E FF ` ASSUME_TAC; ASM_REWRITE_TAC[e_prime; IN_ELIM_THM]; EXISTS_TAC`(fx:real^3 )`; EXISTS_TAC `snx:real^3 `; REPLICATE_TAC 5 DOWN; PHA; REWRITE_TAC[ord_pairs; IN_ELIM_THM]; STRIP_TAC; EXPAND_TAC "fx"; EXPAND_TAC "snx"; REPLICATE_TAC 6 DOWN; SIMP_TAC[]; MESON_TAC[]; SUBGOAL_THEN ` fx:real^3 IN EE snx E /\ fx IN EE snx (e_prime E FF) ` ASSUME_TAC; REWRITE_TAC[EE; IN_ELIM_THM]; REPLICATE_TAC 4 DOWN THEN PHA; ASM_SIMP_TAC[INSERT_COMM; ord_pairs; IN_ELIM_THM]; IMP_TAC THEN STRIP_TAC; DOWN THEN DOWN; EXPAND_TAC "fx"; EXPAND_TAC "snx"; SIMP_TAC[]; DOWN; REPEAT STRIP_TAC; UNDISCH_TAC ` fx:real^3 IN EE snx E `; UNDISCH_TAC ` cyclic_set (EE snx E) (v:real^3) snx`; PHA; IMP_TAC THEN STRIP_TAC; SUBGOAL_THEN ` FAN (v:real^3,V,E)` MP_TAC; ASM_REWRITE_TAC[]; PHA; NHANH PROPERTIES_OF_IVS_AZIM_CYCLE2; PHA THEN IMP_TAC THEN REMOVE_TAC; STRIP_TAC; UNDISCH_TAC `(fx:real^3) IN EE snx (e_prime E FF)`; UNDISCH_TAC `cyclic_set (EE snx (e_prime E FF)) (v:real^3) snx`; PHA; IMP_TAC THEN STRIP_TAC; SUBGOAL_THEN ` FAN (v:real^3,v_prime V FF, e_prime E FF)` MP_TAC; ASM_REWRITE_TAC[]; PHA; NHANH PROPERTIES_OF_IVS_AZIM_CYCLE2; PHA THEN IMP_TAC THEN REMOVE_TAC; STRIP_TAC; ASSUME_TAC2 ( ISPECL [`FF:real^3 # real^3 -> bool`;`snx:real^3 `] (GEN_ALL (MATCH_MP SUBSET_IMP_SO_DO_EE E_PRIME_SUBSET_E))); SUBGOAL_THEN `ivs_azim_cycle (EE snx E) v snx fx IN EE snx (e_prime E FF) ` ASSUME_TAC; PAT_REWRITE_TAC`\x. y IN x ` [EE]; REWRITE_TAC[IN_ELIM_THM; e_prime]; UNDISCH_TAC` ivs_azim_cycle (EE snx E) (v:real^3) snx fx IN EE snx E`; ABBREV_TAC `t = ivs_azim_cycle (EE snx E) v snx (fx:real^3)`; REWRITE_TAC[EE; IN_ELIM_THM]; STRIP_TAC; EXISTS_TAC `snx:real^3 `; EXISTS_TAC `t:real^3 `; ASM_REWRITE_TAC[]; (* new subgoal *) ABBREV_TAC `t = ivs_azim_cycle (EE snx E) v snx (fx:real^3)`; ABBREV_TAC `tt = ivs_azim_cycle (EE snx (e_prime E FF)) v snx (fx:real^3)`; ABBREV_TAC `smalset = EE snx (e_prime (E:(real^3 -> bool) -> bool) FF)`; ABBREV_TAC `lset = EE (snx:real^3) E `; ASM_CASES_TAC ` lset SUBSET {t:real^3} `; DOWN; UNDISCH_TAC` smalset SUBSET (lset:real^3 -> bool) `; PHA; NHANH SUBSET_TRANS; UNDISCH_TAC `(tt:real^3) IN smalset `; SET_TAC[]; DOWN; ASM_CASES_TAC `t = (tt:real^3) `; STRIP_TAC THEN FIRST_ASSUM ACCEPT_TAC; ASSUME_TAC2 ( SET_RULE` ~(t = tt) /\ t IN smalset /\ (tt:real^3) IN smalset ==> ~( smalset SUBSET {tt}) `); USE_FIRST ` cyclic_set lset (v:real^3) snx` MP_TAC; USE_FIRST ` cyclic_set smalset (v:real^3) snx` MP_TAC; REWRITE_TAC[cyclic_set]; REPEAT STRIP_TAC; UNDISCH_TAC `FINITE (lset:real^3 -> bool) `; DOWN THEN PHA; NHANH ( SPECL [`lset:real^3 -> bool `;` t:real^3`;` snx:real^3 `;` v:real^3 ` ] (GEN_ALL AZIM_CYCLE_PROPERTIES)); ASSUME_TAC2 (SPECL [`smalset:real^3 -> bool `;` tt:real^3`;` snx:real^3 `;` v:real^3 ` ] (GEN_ALL AZIM_CYCLE_PROPERTIES)); DOWN; ASM_REWRITE_TAC[]; STRIP_TAC; STRIP_TAC; MP_TAC ( SPECL [`smalset:real^3 -> bool`;`v:real^3 `;`snx:real^3`;`t:real^3 `;` fx:real^3 `] (GEN_ALL IDENTIFY_AZIM_CYCLE)); SUBGOAL_THEN ` ~(smalset SUBSET {t:real^3}) /\ ~collinear {(t:real^3), v, snx} /\ cyclic_set smalset v snx /\ (~(fx = t) /\ smalset fx) /\ (!q. ~(q = t) /\ smalset q ==> azim v snx t fx < azim v snx t q \/ azim v snx t fx = azim v snx t q /\ norm (projection (snx - v) (fx - v)) <= norm (projection (snx - v) (q - v)))` ASSUME_TAC; ASM_REWRITE_TAC[]; CONJ_TAC; UNDISCH_TAC `~( t = (tt:real^3)) `; UNDISCH_TAC ` (tt:real^3) IN smalset`; SET_TAC[]; CONJ_TAC; UNDISCH_TAC` cyclic_set lset (v:real^3) snx `; NHANH CYCLIC_SET_IMP_NOT_COLLINEAR; STRIP_TAC; UNDISCH_TAC ` (t:real^3) IN lset `; FIRST_X_ASSUM NHANH; SIMP_TAC[]; UNDISCH_TAC ` smalset SUBSET (lset:real^3 -> bool) `; REWRITE_TAC[SUBSET]; DOWN; MESON_TAC[IN]; ANTS_TAC; FIRST_X_ASSUM ACCEPT_TAC; UNDISCH_TAC ` cyclic_set smalset (v:real^3) snx `; STRIP_TAC; SUBGOAL_THEN ` (FAN (v:real^3,v_prime V FF,e_prime E FF)) ` MP_TAC; FIRST_ASSUM ACCEPT_TAC; NHANH (SPEC `snx:real^3 ` (GEN `v:real^3 ` BIJ_AZIM_CYCLE_EE)); IMP_TAC THEN REMOVE_TAC; REWRITE_TAC[BIJ; INJ]; STRIP_TAC; STRIP_TAC; FIRST_X_ASSUM (MP_TAC o (SPECL [`t:real^3 `;` tt:real^3 `])); REWRITE_TAC[TAUT` ~( a ==> b) <=> a /\ ~ b `]; ASM_REWRITE_TAC[]]);; let LOCALIZE_PRESERVE_FACE = prove_by_refinement (` FAN (v,V,E) /\ x IN dart (hypermap (HYP (v,V,E))) /\ FF = face (hypermap (HYP (v,V,E))) x ==> FF = face (hypermap (HYP (v,v_prime V FF,e_prime E FF))) x`, [STRIP_TAC; MP_TAC IN_FF_FACE_MAP_IDE; ANTS_TAC; ASM_SIMP_TAC[]; EXISTS_TAC`x: real^3 # real^3 `; ASM_REWRITE_TAC[]; DOWN; NHANH (MESON[face_refl]` D = face H x ==> x IN D `); DISCH_TAC THEN DISCH_TAC; ABBREV_TAC ` hy2 = hypermap (HYP (v,v_prime V FF,e_prime E FF)) `; ASM_REWRITE_TAC[face; orbit_map]; MATCH_MP_TAC ( SET_RULE`(! n. Q n x = P n x ) ==> { Q n x | n >= 0 } = { P n x | n >= 0 } `); ASSUME_TAC ( ISPECL [`face_map ((hypermap (HYP (v,V,E))) )` ] lemma_in_orbit); DOWN_TAC THEN ONCE_REWRITE_TAC[EQ_SYM_EQ]; SIMP_TAC[GSYM face]; STRIP_TAC; DOWN; ASM_REWRITE_TAC[]; STRIP_TAC; INDUCT_TAC; REWRITE_TAC[POWER]; DOWN; FIRST_X_ASSUM (MP_TAC o (SPEC_ALL)); ASM_REWRITE_TAC[]; DISCH_TAC; DISCH_TAC; REWRITE_TAC[GSYM COM_POWER_FUNCTION]; DOWN THEN DOWN; FIRST_ASSUM NHANH; ASM_REWRITE_TAC[]; MESON_TAC[]]);; let FAN_IN_SEFL_PAIRS_IMP_PROGORIOUS_DEGENERATE = prove_by_refinement(` FAN (x,V,E) /\ v IN self_pairs E V ==> edge_map (hypermap (HYP(x,V,E))) v = v /\ face_map (hypermap (HYP(x,V,E))) v = v /\ node_map (hypermap (HYP(x,V,E))) v = v `, [NHANH ELMS_OF_HYPERMAP_HYP; SIMP_TAC[]; STRIP_TAC; DOWN; SIMP_TAC[nn_of_hyp3; ff_of_hyp3]; SIMP_TAC[ee_of_hyp2;darts_of_hyp; IN_UNION]; REWRITE_TAC[self_pairs; IN_ELIM_THM]; STRIP_TAC; ASM_SIMP_TAC[]]);; let FAN_FACE_IMP_IVS_F_IN_F = prove_by_refinement (` FAN (x,V,E) /\ xx IN dart (hypermap (HYP (x,V,E))) /\ FF = face (hypermap (HYP (x,V,E))) xx /\ y IN FF ==> inverse ( face_map (hypermap (HYP (x,V,E))) ) y IN FF /\ ( face_map (hypermap (HYP (x,V,E))) ) o (inverse ( face_map (hypermap (HYP (x,V,E))) )) = I /\ (inverse ( face_map (hypermap (HYP (x,V,E))) )) o ( face_map (hypermap (HYP (x,V,E))) ) = I `, [NHANH HYP_LEMMA; REWRITE_TAC[GSYM hypermap_tybij; HYP]; STRIP_TAC; REPLICATE_TAC 3 DOWN THEN PHA; REWRITE_TAC[GSYM HYP]; ASSUME_TAC2 ELMS_OF_HYPERMAP_HYP; NHANH lemma_face_subset; ASM_SIMP_TAC[SUBSET]; ONCE_REWRITE_TAC[EQ_SYM_EQ]; STRIP_TAC; DOWN; ASM_REWRITE_TAC[face]; UNDISCH_TAC ` ff_of_hyp (x,V,E) permutes darts_of_hyp E V `; UNDISCH_TAC ` FINITE (darts_of_hyp E (V:real^3 -> bool))`; EXPAND_TAC "FF"; PHA; DISCH_TAC THEN CONJ_TAC; DOWN; REWRITE_TAC[face]; ASM_REWRITE_TAC[]; MESON_TAC[lemma_orbit_identity; lemma_inverse_in_orbit]; DOWN; NHANH PERMUTES_INVERSES_o; SIMP_TAC[]]);; let FAN_FACE_IMP_IVS_F_IN_F = prove_by_refinement (` FAN (x,V,E) /\ FF = face (hypermap (HYP (x,V,E))) xx /\ y IN FF ==> inverse (face_map (hypermap (HYP (x,V,E)))) y IN FF /\ face_map (hypermap (HYP (x,V,E))) o inverse (face_map (hypermap (HYP (x,V,E)))) = I /\ inverse (face_map (hypermap (HYP (x,V,E)))) o face_map (hypermap (HYP (x,V,E))) = I`, [STRIP_TAC; ASM_CASES_TAC` xx IN dart (hypermap (HYP ((x:real^3),V,E)))`; ASSUME_TAC2 FAN_FACE_IMP_IVS_F_IN_F; FIRST_X_ASSUM ACCEPT_TAC; DOWN_TAC THEN NHANH HYP_LEMMA; REWRITE_TAC[GSYM hypermap_tybij; HYP]; NHANH ELMS_OF_HYPERMAP_HYP; STRIP_TAC; REWRITE_TAC[GSYM HYP]; CONJ_TAC; REPLICATE_TAC 4 DOWN THEN PHA; REWRITE_TAC[GSYM HYP]; NHANH lemma_face_exception; SIMP_TAC[]; STRIP_TAC; UNDISCH_TAC ` (y:real^3 # real^3 ) IN FF `; ASM_REWRITE_TAC[SET_RULE` x IN {c} <=> x = c `]; SIMP_TAC[]; USE_FIRST ` ff_of_hyp (x,V,E) permutes darts_of_hyp E V` MP_TAC; REWRITE_TAC[permutes]; DOWN THEN DOWN THEN DOWN THEN ASM_REWRITE_TAC[]; REWRITE_TAC[GSYM HYP]; REPEAT STRIP_TAC; UNDISCH_TAC `~((xx:real^3 # real^3 ) IN darts_of_hyp E V) `; FIRST_X_ASSUM NHANH; STRIP_TAC; PAT_ONCE_REWRITE_TAC `\x. y = x ` [GSYM I_THM]; UNDISCH_TAC `ff_of_hyp (x,V,E) permutes darts_of_hyp E V `; NHANH PERMUTES_INVERSES_o; STRIP_TAC; FIRST_X_ASSUM (SUBST1_TAC o SYM); REWRITE_TAC[o_THM]; ASM_REWRITE_TAC[]; UNDISCH_TAC `ff_of_hyp (x,V,E) permutes darts_of_hyp E V`; NHANH PERMUTES_INVERSES_o; ASM_MESON_TAC[]]);; let INVERSE_FACE_EQ_INV_FACE_LOCALLIZED = prove_by_refinement (`FAN (v,V,E) /\ x IN dart (hypermap (HYP (v,V,E))) /\ FF = face (hypermap (HYP (v,V,E))) x ==> (!x. x IN FF ==> inverse ( face_map (hypermap (HYP (v,V,E))) ) x = inverse ( face_map (hypermap (HYP (v,v_prime V FF,e_prime E FF)))) x)`, [STRIP_TAC; GEN_TAC; DOWN_TAC; NHANH FAN_FACE_IMP_IVS_F_IN_F; STRIP_TAC; MP_TAC ( SPECL [` x:real^3 # real^3 `;` x':real^3 # real^3`;` FF:real^3#real^3->bool `;` v:real^3 `;` v_prime (V:real^3 -> bool) (FF:real^3 # real^3 -> bool) ` ;` e_prime E (FF:real^3 # real^3 -> bool)`] (GEN_ALL FAN_FACE_IMP_IVS_F_IN_F)); ANTS_TAC; CONJ_TAC; MP_TAC IMP_FAN_V_PRIME_E_PRIME; ANTS_TAC; ASM_REWRITE_TAC[]; EXISTS_TAC `x: real^3 # real^3 `; ASM_REWRITE_TAC[]; REWRITE_TAC[]; ASSUME_TAC2 LOCALIZE_PRESERVE_FACE; ASM_REWRITE_TAC[]; REWRITE_TAC[GSYM HYP]; UNDISCH_TAC `FF = face (hypermap (HYP (v,V,E))) x `; DOWN; ONCE_REWRITE_TAC[EQ_SYM_EQ]; SIMP_TAC[]; STRIP_TAC; DOWN; REMOVE_TAC; DOWN; REWRITE_TAC[FUN_EQ_THM]; DISCH_THEN (MP_TAC o (SPEC `x': real^3 # real^3` )); ASSUME_TAC2 (SPECL [`x:real^3 # real^3 `;`x':real^3 # real^3 `;` FF: real^3 # real^3 -> bool` ;` v:real^3 `] (GEN_ALL FAN_FACE_IMP_IVS_F_IN_F)); REPEAT (FIRST_X_ASSUM (CONJUNCTS_THEN ASSUME_TAC)); DOWN THEN REMOVE_TAC; FIRST_X_ASSUM (SUBST1_TAC o SYM); REWRITE_TAC[o_THM]; MP_TAC IN_FF_FACE_MAP_IDE; ANTS_TAC; ASM_REWRITE_TAC[]; EXISTS_TAC `x:real^3# real^3 `; ASM_REWRITE_TAC[]; DISCH_TAC; UNDISCH_TAC ` inverse (face_map (hypermap (HYP (v,v_prime V FF,e_prime E FF)))) x' IN FF `; FIRST_X_ASSUM NHANH; STRIP_TAC; FIRST_X_ASSUM (SUBST1_TAC o SYM); UNDISCH_TAC ` FAN ((v:real^3),V,E) `; NHANH HYP_LEMMA; REWRITE_TAC[GSYM hypermap_tybij; HYP]; STRIP_TAC; REWRITE_TAC[GSYM HYP]; DOWN_TAC THEN NHANH ELMS_OF_HYPERMAP_HYP; STRIP_TAC; DOWN; UNDISCH_TAC `ff_of_hyp (v,V,E) permutes darts_of_hyp E V `; ASM_REWRITE_TAC[permutes]; MESON_TAC[]]);; let ED_MA_O_NO_MA_EQ_INV_FA = prove_by_refinement (`!(H:(A) hypermap ). edge_map H o node_map H = inverse ( face_map H ) `, [GEN_TAC; MP_TAC (SPEC_ALL hypermap_lemma); NHANH (MESON[]` x o y o z = b ==> (x o y o z ) o ( inverse z ) = b o ( inverse z ) `); REWRITE_TAC[GSYM o_ASSOC; I_O_ID]; NHANH PERMUTES_INVERSES_o; STRIP_TAC; DOWN; ASM_REWRITE_TAC[I_O_ID]]);; let IN_FF_IMP_AZIM_CYCLE_EQ = prove_by_refinement ( ` FAN (v,V,E) /\ x IN dart (hypermap (HYP (v,V,E))) /\ FF = face (hypermap (HYP (v,V,E))) x ==> (!x. x IN FF ==> azim_cycle (EE (FST x ) E ) v (FST x ) (SND x ), FST x = azim_cycle (EE (FST x ) (e_prime E FF ) ) v (FST x ) (SND x ), FST x)`, [NHANH ( prove(`FAN (v,V,E) /\ x IN dart (hypermap (HYP (v,V,E))) /\ FF = face (hypermap (HYP (v,V,E))) x ==> (!x. x IN FF ==> (edge_map (hypermap (HYP (v,V,E))) o node_map (hypermap (HYP (v,V,E))) ) x = (edge_map (hypermap (HYP (v,v_prime V FF,e_prime E FF))) o node_map ( hypermap (HYP (v,v_prime V FF,e_prime E FF))) ) x ) `, REWRITE_TAC[ED_MA_O_NO_MA_EQ_INV_FA; INVERSE_FACE_EQ_INV_FACE_LOCALLIZED])); STRIP_TAC; GEN_TAC THEN FIRST_X_ASSUM NHANH; MP_TAC IMP_FAN_V_PRIME_E_PRIME; ANTS_TAC; ASM_MESON_TAC[]; DOWN_TAC THEN NHANH ELMS_OF_HYPERMAP_HYP; STRIP_TAC; DOWN; ASM_REWRITE_TAC[]; USE_FIRST ` FF = face (hypermap (HYP (v,V,E))) x ` (SUBST1_TAC o SYM); REWRITE_TAC[o_THM]; PAT_ONCE_REWRITE_TAC `\x. h ( d x ) = h ( i x ) ==> y ` [GSYM PAIR]; SUBGOAL_THEN` (x':real^3 # real^3) IN darts_of_hyp (e_prime E FF) (v_prime V FF) ` MP_TAC; MATCH_MP_TAC IN_DARTS_FF_IMP_DARTS_E_PRIME_V_PRIME; ASM_SIMP_TAC[]; UNDISCH_TAC ` x IN dart (hypermap (HYP (v,V,E))) `; NHANH lemma_face_subset; DOWN THEN DOWN THEN PHA THEN SET_TAC[]; SUBGOAL_THEN ` x' IN darts_of_hyp E (V:real^3 -> bool) ` MP_TAC; UNDISCH_TAC ` x IN dart (hypermap (HYP (v,V,E))) `; NHANH lemma_face_subset; ASM_REWRITE_TAC[]; DOWN THEN DOWN THEN MESON_TAC[SUBSET]; FIRST_X_ASSUM (ASSUME_TAC o SYM); ASM_REWRITE_TAC[]; ASSUME_TAC2 ( MESON[IN_DARTS_IFF_NN_OF_HYP_TOO]` FAN (v:real^3,V,E) ==> (! y. y IN darts_of_hyp E V ==> nn_of_hyp (v,V,E) y IN darts_of_hyp E V )`); FIRST_ASSUM NHANH; ASSUME_TAC2 ( SPECL [`v_prime (V:real^3 -> bool) (FF:real^3 # real^3 -> bool) `; ` e_prime (E:(real^3 -> bool) -> bool) FF`] (MESON[IN_DARTS_IFF_NN_OF_HYP_TOO]`! V E. FAN (v:real^3,V,E) ==> (! y. y IN darts_of_hyp E V ==> nn_of_hyp (v,V,E) y IN darts_of_hyp E V )`)); FIRST_ASSUM NHANH; SIMP_TAC[ee_of_hyp2]; SIMP_TAC[nn_of_hyp2]]);; let IN_DARTS_IMP_NN_OF_HYP_TOO = MESON[IN_DARTS_IFF_NN_OF_HYP_TOO]`! x V E. FAN (x,V,E) ==> (! y. y IN darts_of_hyp E V ==> nn_of_hyp (x,V,E) y IN darts_of_hyp E V )`;; let CARD_E_GT1_EQ_CARD_E_PRIME = prove_by_refinement (` FAN (x,V,E) /\ v IN dart (hypermap (HYP (x,V,E)) ) /\ FF = face (hypermap (HYP (x,V,E))) v /\ y IN FF ==> ( CARD (EE (FST y) E) > 1 <=> CARD (EE (FST y) (e_prime E FF)) > 1 ) `, [ONCE_REWRITE_TAC[TAUT` a /\ b /\ c <=> b /\ a /\ c `]; NHANH FAN_FACE_IMP_IVS_F_IN_F; ONCE_REWRITE_TAC[TAUT` a /\ ( b /\ c /\ d ) /\ p <=> (b /\ a /\ c ) /\ d /\ p`]; NHANH INVERSE_FACE_EQ_INV_FACE_LOCALLIZED; REWRITE_TAC[GSYM ED_MA_O_NO_MA_EQ_INV_FA]; IMP_TAC; STRIP_TAC; FIRST_X_ASSUM (NHANH_PAT`\x. x /\ y ==> k `); STRIP_TAC; MP_TAC (SPEC `x:real^3 ` (GEN `v:real^3 ` IMP_FAN_V_PRIME_E_PRIME)); ANTS_TAC; ASM_MESON_TAC[]; UNDISCH_TAC ` FAN ((x:real^3),V,E)`; NHANH ELMS_OF_HYPERMAP_HYP; PHA THEN STRIP_TAC; UNDISCH_TAC ` (edge_map (hypermap (HYP (x,V,E))) o node_map (hypermap (HYP (x,V,E)))) y = (edge_map (hypermap (HYP (x,v_prime V FF,e_prime E FF))) o node_map (hypermap (HYP (x,v_prime V FF,e_prime E FF)))) y `; UNDISCH_TAC `(edge_map (hypermap (HYP (x,V,E))) o node_map (hypermap (HYP (x,V,E)))) y IN FF `; ASM_REWRITE_TAC[]; UNDISCH_TAC ` FF = face (hypermap (HYP (x,V,E))) v `; DISCH_THEN (ASSUME_TAC o SYM); ASM_REWRITE_TAC[]; PAT_ONCE_REWRITE_TAC `\x. P x IN FF ==> Q x = Y x ==> l ` [GSYM PAIR]; PURE_REWRITE_TAC[o_THM]; SUBGOAL_THEN ` v IN dart (hypermap (HYP (x,V,E))) ` MP_TAC; ASM_REWRITE_TAC[]; NHANH lemma_face_subset; IMP_TAC THEN REMOVE_TAC; SUBGOAL_THEN ` (y:real^3 # real^3) IN FF ` MP_TAC; FIRST_ASSUM ACCEPT_TAC; DISCH_TAC; ASM_REWRITE_TAC[]; DOWN; ONCE_REWRITE_TAC[TAUT` a ==> b ==> c <=> b /\ a ==> c `]; NHANH (SET_RULE` a SUBSET b /\ x IN a ==> x IN b `); IMP_TAC THEN IMP_TAC; REMOVE_TAC; DISCH_TAC; ASM_REWRITE_TAC[]; DOWN; ONCE_REWRITE_TAC[TAUT` a ==> b ==> c <=> b /\ a ==> c `]; NHANH IN_DARTS_FF_IMP_DARTS_E_PRIME_V_PRIME; ASSUME_TAC2 IN_DARTS_IMP_NN_OF_HYP_TOO; FIRST_X_ASSUM NHANH; ASSUME_TAC2 ( SPECL [`x:real^3 `;` v_prime V (FF:real^3 # real^3 -> bool)`; ` e_prime (E:(real^3 -> bool) -> bool) FF `] IN_DARTS_IMP_NN_OF_HYP_TOO); FIRST_X_ASSUM NHANH; SIMP_TAC[ee_of_hyp2]; SIMP_TAC[nn_of_hyp2]; REMOVE_TAC; UNDISCH_TAC ` v IN dart (hypermap (HYP (x,V,E))) `; NHANH lemma_face_subset; ASM_REWRITE_TAC[SUBSET]; STRIP_TAC; UNDISCH_TAC ` (y:real^3 # real^3 ) IN FF`; FIRST_ASSUM (NHANH_PAT` \x. x ==> y `); REWRITE_TAC[darts_of_hyp; IN_UNION; ord_pairs; self_pairs]; STRIP_TAC; DOWN; REWRITE_TAC[IN_ELIM_THM]; STRIP_TAC; FIRST_X_ASSUM SUBST_ALL_TAC; REWRITE_TAC[]; SUBGOAL_THEN ` FINITE (EE (a:real^3) E ) ` ASSUME_TAC; ASM_MESON_TAC[FAN_IMP_FINITE_EE]; STRIP_TAC; STRIP_TAC; EQ_TAC; DISCH_TAC; SUBGOAL_THEN` ~( EE (a:real^3) E SUBSET {b} ) ` ASSUME_TAC; REWRITE_TAC[SET_RULE` a SUBSET {b} <=> a = {} \/ a = {b} `]; DOWN; MESON_TAC[ARITH_RULE` ~( 0 > 1 \/ 1 > 1 )`; CARD_CLAUSES; CARD_SINGLETON]; UNDISCH_TAC ` FINITE (EE (a:real^3) E ) `; DOWN THEN PHA; NHANH (SPECL [`x:real^3 `; `a:real^3 `] (GENL [`v:real^3`;` w:real^3 `] AZIM_CYCLE_PROPERTIES)); STRIP_TAC; SUBGOAL_THEN ` b IN EE (a:real^3) (e_prime E FF) /\ azim_cycle (EE a E) x a b IN EE (a:real^3) (e_prime E FF) ` ASSUME_TAC; UNDISCH_TAC ` {(a:real^3), b} IN E `; UNDISCH_TAC ` (a:real^3),(b:real^3) IN FF `; UNDISCH_TAC `azim_cycle (EE a E) x a b,a IN FF `; UNDISCH_TAC `EE a E (azim_cycle (EE a E) x a b) `; PHA; REWRITE_TAC[EE; e_prime; IN_ELIM_THM]; DISCH_TAC; CONJ_TAC; DOWN THEN MESON_TAC[]; EXISTS_TAC `azim_cycle {(w:real^3) | {a, w} IN E} x a b`; EXISTS_TAC `a:real^3 `; ASM_SIMP_TAC[INSERT_COMM]; UNDISCH_TAC ` FAN ((x:real^3),v_prime V FF,e_prime E FF) `; NHANH (SPEC ` a:real^3` (GEN `v:real^3 ` FAN_IMP_FINITE_EE)); DOWN; REWRITE_TAC[SET_RULE` a IN x /\ b IN x <=> {a,b} SUBSET x `]; ONCE_REWRITE_TAC[TAUT` a ==> b /\ c ==> d <=> b /\ a /\ c ==> d `]; NHANH CARD_SUBSET; UNDISCH_TAC ` ~(azim_cycle (EE a E) x a b = b) `; NHANH CARD_2_FAN; SIMP_TAC[INSERT_COMM]; STRIP_TAC; STRIP_TAC THEN DOWN; ARITH_TAC; MP_TAC ( ISPECL [`FF:real^3 # real^3 -> bool`;` E: (real^3 -> bool) -> bool`] (GEN_ALL E_PRIME_SUBSET_E)); NHANH ( ISPECL [`S: (A -> bool) -> bool`;` a:A`] (GEN_ALL SUBSET_IMP_SO_DO_EE)); ASSUME_TAC2 ( SPEC `a:real^3 ` (GEN `v:real^3 ` FAN_IMP_FINITE_EE)); DOWN; ONCE_REWRITE_TAC[TAUT` a ==> b /\ c ==> d <=> b /\ c /\ a ==> d `]; NHANH CARD_SUBSET; ARITH_TAC; DOWN; REWRITE_TAC[IN_ELIM_THM]; STRIP_TAC; ASM_REWRITE_TAC[]; REMOVE_TAC THEN REMOVE_TAC; MP_TAC ( ISPECL [`FF:real^3 # real^3 -> bool`;` E: (real^3 -> bool) -> bool`] (GEN_ALL E_PRIME_SUBSET_E)); NHANH ( ISPECL [`S: (A -> bool) -> bool`;` v':A`] (GEN_ALL SUBSET_IMP_SO_DO_EE)); ASM_SIMP_TAC[SUBSET_EMPTY]]);; (* OOOOOOOOOOOOOOOOOO *) (* working here *) let AZIM_IN_FAN_EQ_IZIM_E_PRIME = prove_by_refinement (` FAN (vec 0,V,E) /\ v IN dart (hypermap (HYP (vec 0,V,E)) ) /\ FF = face (hypermap (HYP (vec 0,V,E))) v /\ y IN FF ==> azim_in_fan y E = azim_in_fan y ( e_prime E FF ) `, [ONCE_REWRITE_TAC[TAUT` a /\ b /\ c /\ d <=> (a /\ b /\ c ) /\ d `]; NHANH IN_FF_IMP_AZIM_CYCLE_EQ; STRIP_TAC; ONCE_REWRITE_TAC[GSYM PAIR]; REWRITE_TAC[azim_in_fan]; LET_TAC; LET_TAC; ASSUME_TAC2 ( SPEC` vec 0 : real^3 ` (GEN `x:real^3 ` CARD_E_GT1_EQ_CARD_E_PRIME)); ASM_SIMP_TAC[]; ASM_SIMP_TAC[]; UNDISCH_TAC ` (y:real^3 # real^3 ) IN FF`; FIRST_X_ASSUM NHANH; ASM_CASES_TAC ` CARD (EE (FST (y:real^3 # real^3)) (E: (real^3->bool)->bool )) > 1 `; ASM_SIMP_TAC[PAIR_EQ]; ASM_SIMP_TAC[]; DOWN; ASM_SIMP_TAC[]]);; let AZIM_CY_FST_Y_IN_FF = prove_by_refinement( ` xx IN dart (hypermap (HYP (x,V,E))) /\ FAN (x,V,E) /\ FF = face (hypermap (HYP (x,V,E))) xx /\ y IN FF ==> azim_cycle (EE (FST y) E) x (FST y) (SND y),FST y IN FF /\ (inverse (face_map (hypermap (HYP (x,V,E))))) y = azim_cycle (EE (FST y) E) x (FST y) (SND y),FST y `, [NHANH FAN_FACE_IMP_IVS_F_IN_F; REWRITE_TAC[GSYM ED_MA_O_NO_MA_EQ_INV_FA; o_THM]; NHANH ELMS_OF_HYPERMAP_HYP; IMP_TAC THEN IMP_TAC; STRIP_TAC ; SIMP_TAC[]; STRIP_TAC; PAT_ONCE_REWRITE_TAC ` \x. f ( g x ) IN HH /\ hh ==> l ` [GSYM PAIR]; SUBGOAL_THEN ` (y:real^3 # real^3) IN darts_of_hyp E V ` MP_TAC; UNDISCH_TAC ` xx IN dart (hypermap (HYP (x,V,E))) `; NHANH lemma_face_subset; DOWN; PHA; ASM_REWRITE_TAC[]; SET_TAC[]; ASSUME_TAC2 IN_DARTS_IMP_NN_OF_HYP_TOO; FIRST_X_ASSUM NHANH; SIMP_TAC[ee_of_hyp2]; SIMP_TAC[nn_of_hyp2]]);; let EE_FST_Y_EQ_SET_SET_SNDY = prove_by_refinement (` FAN (x,V,E) /\ v IN dart (hypermap (HYP (x,V,E))) /\ FF = face (hypermap (HYP (x,V,E))) v /\ y IN FF ==> ( EE (FST y) E = {SND y} <=> EE (FST y) (e_prime E FF) = {SND y} ) `, [ONCE_REWRITE_TAC[TAUT` a /\ b /\ c /\ d <=> (a/\b/\c) /\d `]; NHANH IN_FF_IMP_AZIM_CYCLE_EQ; PHA; ONCE_REWRITE_TAC[TAUT`a1/\a2/\a3/\a4/\a5 <=> a2 /\ a4 /\ a1/\a3/\a5 `]; ONCE_REWRITE_TAC[TAUT` a /\ b /\ c <=> b /\ a /\ c `]; NHANH AZIM_CY_FST_Y_IN_FF; STRIP_TAC; MP_TAC ( SPEC ` x:real^3 ` (GEN `v:real^3 ` IMP_FAN_V_PRIME_E_PRIME)); ANTS_TAC; ASM_MESON_TAC[]; DOWN_TAC; NHANH (SPEC ` FST (y:real^3#real^3) ` (GEN `v:real^3 ` FAN_IMP_FINITE_EE)); STRIP_TAC; EQ_TAC; NHANH_PAT `\x. x ==> y ` (SET_RULE` a = b ==> a SUBSET b `); NHANH ( SPECL [` x:real^3 `;` FST (y:real^3 # real^3)`] (GENL [` v:real^3 `;` w:real^3 `] (MESON[W_SUBSET_SINGLETON_IMP_IDE]`W SUBSET {p} ==> azim_cycle W v w p = p`) )); ASM_REWRITE_TAC[]; UNDISCH_TAC ` (y:real^3 # real^3 ) IN FF `; FIRST_ASSUM NHANH; SIMP_TAC[PAIR_EQ]; STRIP_TAC; STRIP_TAC; UNDISCH_TAC ` FINITE (EE (FST (y:real^3 # real^3 )) (e_prime E FF)) `; DOWN; PHA; NHANH (MESON[AZIM_CYCLE_PROPERTIES]` azim_cycle W v w p = p /\ FINITE W ==> W SUBSET {p}`); UNDISCH_TAC ` EE (FST y) E = {SND (y:real^3 # real^3 )} `; NHANH_PAT `\x. x ==> y ` (SET_RULE` a = {b} ==> b IN a `); IMP_TAC; STRIP_TAC; STRIP_TAC; SUBGOAL_THEN ` SND (y:real^3 # real^3 ) IN EE (FST y) (e_prime E FF) ` ASSUME_TAC; DOWN; UNDISCH_TAC ` (y:real^3 # real^3 ) IN FF `; REWRITE_TAC[e_prime; EE; IN_ELIM_THM]; MESON_TAC[PAIR]; DOWN THEN PHA; ASM_REWRITE_TAC[]; MESON_TAC[SET_RULE` a IN b /\ b SUBSET {a} ==> b = {a} `]; NHANH_PAT `\x. x ==> y ` (SET_RULE` a = b ==> a SUBSET b `); NHANH ( SPECL [` x:real^3 `;` FST (y:real^3 # real^3)`] (GENL [` v:real^3 `;` w:real^3 `] (MESON[W_SUBSET_SINGLETON_IMP_IDE]`W SUBSET {p} ==> azim_cycle W v w p = p`))); ASM_REWRITE_TAC[]; UNDISCH_TAC ` (y:real^3 # real^3 ) IN FF `; FIRST_ASSUM NHANH; ONCE_REWRITE_TAC[EQ_SYM_EQ]; ASM_SIMP_TAC[PAIR_EQ]; ONCE_REWRITE_TAC[EQ_SYM_EQ]; STRIP_TAC; STRIP_TAC; UNDISCH_TAC ` FINITE (EE (FST (y:real^3 # real^3 )) E) `; ASM_REWRITE_TAC[]; DOWN; PHA; NHANH (MESON[AZIM_CYCLE_PROPERTIES]` azim_cycle W v w p = p /\ FINITE W ==> W SUBSET {p}`); UNDISCH_TAC ` EE (FST y) (e_prime E (face (hypermap (HYP (x,V,E))) v)) = {SND (y:real^3 # real^3 )} `; NHANH_PAT `\x. x ==> y ` (SET_RULE` a = {b} ==> b IN a `); IMP_TAC; STRIP_TAC; STRIP_TAC; SUBGOAL_THEN ` SND (y:real^3 # real^3 ) IN EE (FST y) E ` ASSUME_TAC; DOWN; REWRITE_TAC[e_prime; EE; IN_ELIM_THM]; MESON_TAC[PAIR]; DOWN THEN PHA; MESON_TAC[SET_RULE` a IN b /\ b SUBSET {a} ==> b = {a} `]]);; let W_SUBSET_SINGLETON_IMP_IDE = (MESON[W_SUBSET_SINGLETON_IMP_IDE]`W SUBSET {p} ==> azim_cycle W v w p = p`);; let EE_FST_Y_EQ_SET_SET_SNDY = prove_by_refinement (` FAN (x,V,E) /\ v IN dart (hypermap (HYP (x,V,E))) /\ FF = face (hypermap (HYP (x,V,E))) v /\ y IN FF ==> ( EE (FST y) E = {SND y} <=> EE (FST y) (e_prime E FF) = {SND y} ) `, [ONCE_REWRITE_TAC[TAUT` a /\ b /\ c /\ d <=> (a/\b/\c) /\d `]; NHANH IN_FF_IMP_AZIM_CYCLE_EQ; PHA; ONCE_REWRITE_TAC[TAUT`a1/\a2/\a3/\a4/\a5 <=> a4 /\ a2/\ a1/\a3/\a5 `]; NHANH AZIM_CY_FST_Y_IN_FF; STRIP_TAC; MP_TAC ( SPEC ` x:real^3 ` (GEN `v:real^3 ` IMP_FAN_V_PRIME_E_PRIME)); ANTS_TAC; ASM_MESON_TAC[]; DOWN_TAC; NHANH (SPEC ` FST (y:real^3#real^3) ` (GEN `v:real^3 ` FAN_IMP_FINITE_EE)); STRIP_TAC; EQ_TAC; NHANH_PAT `\x. x ==> y ` (SET_RULE` a = b ==> a SUBSET b `); NHANH ( SPECL [` x:real^3 `;` FST (y:real^3 # real^3)`] (GENL [` v:real^3 `;` w:real^3 `] (MESON[W_SUBSET_SINGLETON_IMP_IDE]`W SUBSET {p} ==> azim_cycle W v w p = p`))); ASM_REWRITE_TAC[]; UNDISCH_TAC ` (y:real^3 # real^3 ) IN FF `; FIRST_ASSUM NHANH; SIMP_TAC[PAIR_EQ]; STRIP_TAC; STRIP_TAC; UNDISCH_TAC ` FINITE (EE (FST (y:real^3 # real^3 )) (e_prime E FF)) `; DOWN; PHA; NHANH (MESON[AZIM_CYCLE_PROPERTIES]` azim_cycle W v w p = p /\ FINITE W ==> W SUBSET {p}`); UNDISCH_TAC ` EE (FST y) E = {SND (y:real^3 # real^3 )} `; NHANH_PAT `\x. x ==> y ` (SET_RULE` a = {b} ==> b IN a `); IMP_TAC; STRIP_TAC; STRIP_TAC; SUBGOAL_THEN ` SND (y:real^3 # real^3 ) IN EE (FST y) (e_prime E FF) ` ASSUME_TAC; DOWN; UNDISCH_TAC ` (y:real^3 # real^3 ) IN FF `; REWRITE_TAC[e_prime; EE; IN_ELIM_THM]; MESON_TAC[PAIR]; DOWN THEN PHA; ASM_REWRITE_TAC[]; MESON_TAC[SET_RULE` a IN b /\ b SUBSET {a} ==> b = {a} `]; NHANH_PAT `\x. x ==> y ` (SET_RULE` a = b ==> a SUBSET b `); NHANH ( SPECL [` x:real^3 `;` FST (y:real^3 # real^3)`] (GENL [` v:real^3 `;` w:real^3 `] W_SUBSET_SINGLETON_IMP_IDE)); ASM_REWRITE_TAC[]; UNDISCH_TAC ` (y:real^3 # real^3 ) IN FF `; FIRST_ASSUM NHANH; ONCE_REWRITE_TAC[EQ_SYM_EQ]; ASM_SIMP_TAC[PAIR_EQ]; ONCE_REWRITE_TAC[EQ_SYM_EQ]; STRIP_TAC; STRIP_TAC; UNDISCH_TAC ` FINITE (EE (FST (y:real^3 # real^3 )) E) `; ASM_REWRITE_TAC[]; DOWN; PHA; NHANH (MESON[AZIM_CYCLE_PROPERTIES]` azim_cycle W v w p = p /\ FINITE W ==> W SUBSET {p}`); UNDISCH_TAC ` EE (FST y) (e_prime E (face (hypermap (HYP (x,V,E))) v)) = {SND (y:real^3 # real^3 )} `; NHANH_PAT `\x. x ==> y ` (SET_RULE` a = {b} ==> b IN a `); IMP_TAC; STRIP_TAC; STRIP_TAC; SUBGOAL_THEN ` SND (y:real^3 # real^3 ) IN EE (FST y) E ` ASSUME_TAC; DOWN; REWRITE_TAC[e_prime; EE; IN_ELIM_THM]; MESON_TAC[PAIR]; DOWN THEN PHA; MESON_TAC[SET_RULE` a IN b /\ b SUBSET {a} ==> b = {a} `]]);; let WEDGE_IN_FAN_EQ_WITH_E_PRIME = prove_by_refinement (` FAN (vec 0,V,E) /\ v IN dart (hypermap (HYP (vec 0,V,E))) /\ FF = face (hypermap (HYP (vec 0,V,E))) v /\ y IN FF ==> wedge_in_fan_ge y E = wedge_in_fan_ge y (e_prime E FF ) /\ wedge_in_fan_gt y E = wedge_in_fan_gt y ( e_prime E FF ) `, [ONCE_REWRITE_TAC[TAUT` a /\ b /\c /\ d <=> (a /\ b /\ c ) /\ d `]; NHANH IN_FF_IMP_AZIM_CYCLE_EQ; STRIP_TAC; ASSUME_TAC2 ( SPEC `vec 0: real^3 ` (GEN `x:real^3 ` CARD_E_GT1_EQ_CARD_E_PRIME)); DOWN THEN DOWN; FIRST_X_ASSUM NHANH; PAT_ONCE_REWRITE_TAC`\x. a ==> b ==> x ` [GSYM PAIR]; SIMP_TAC[wedge_in_fan_ge; wedge_in_fan_gt]; STRIP_TAC; DISCH_TAC; ASM_CASES_TAC `CARD (EE (FST (y:real^3 # real^3)) E) > 1 `; DOWN; ASM_SIMP_TAC[]; ABBREV_TAC ` FD = face (hypermap (HYP (vec 0,V,E))) v `; DOWN_TAC; REWRITE_TAC[PAIR_EQ]; SIMP_TAC[]; DOWN; ASM_SIMP_TAC[]; DOWN_TAC; STRIP_TAC; ABBREV_TAC ` FD = face (hypermap (HYP (vec 0,V,E))) v `; SUBGOAL_THEN ` EE (FST y) E = {SND (y:real^3 # real^3)} <=> EE (FST y) ( e_prime E FD ) = {SND y }` ASSUME_TAC; MATCH_MP_TAC (SPEC ` vec 0:real^3 ` (GEN `x:real^3 ` EE_FST_Y_EQ_SET_SET_SNDY)); ASM_REWRITE_TAC[]; DOWN; EXPAND_TAC "FD"; ASM_SIMP_TAC[EQ_SYM_EQ]; DOWN THEN MESON_TAC[]]);; let FACE_NODE_EDGE_ORBIT_INVERSE = prove( ` face (H:(A) hypermap) x = orbit_map ( inverse (face_map H )) x /\ node H x = orbit_map (inverse ( node_map H)) x /\ edge H x = orbit_map (inverse ( edge_map H )) x `, MP_TAC (SPEC_ALL hypermap_lemma) THEN SIMP_TAC[face;node;edge] THEN MESON_TAC[lemma_card_inverse_map_eq]);; let DARTS_E_PRIME_EQ_FF_UNION_SWITCH = prove_by_refinement(` (! x. x IN FF ==> {FST x, SND x } IN E ) ==> darts_of_hyp (e_prime E FF) (v_prime V FF) = FF UNION { ((v:A),w) | (w,v) IN FF }`, [REWRITE_TAC[darts_of_hyp;EXTENSION; IN_UNION]; REWRITE_TAC[ord_pairs; self_pairs; IN_ELIM_THM; e_prime; v_prime]; STRIP_TAC THEN GEN_TAC; EQ_TAC; STRIP_TAC; DOWN_TAC THEN REWRITE_TAC[Geomdetail.PAIR_EQ_EXPAND]; MESON_TAC[]; DOWN THEN DOWN THEN REWRITE_TAC[EE]; REWRITE_TAC[SET_RULE` x = {} <=> (! a. ~ ( a IN x ))`]; REWRITE_TAC[IN_ELIM_THM; NOT_EXISTS_THM]; ASM_MESON_TAC[FST;SND]; STRIP_TAC; DISJ1_TAC; EXISTS_TAC ` FST (x:A#A) `; EXISTS_TAC ` SND (x:A#A) `; REWRITE_TAC[]; EXISTS_TAC ` FST (x:A#A) `; EXISTS_TAC ` SND (x:A#A) `; ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; DISJ1_TAC; EXISTS_TAC ` v:A`; EXISTS_TAC `w:A`; ASM_REWRITE_TAC[]; EXISTS_TAC `w:A`; EXISTS_TAC ` v:A`; ASM_SIMP_TAC[INSERT_COMM;PAIR; FST; SND]; ASM_MESON_TAC[INSERT_COMM;PAIR; FST; SND]]);; let CARD_FF_GT1_FF_SUBSET = prove_by_refinement(` FAN ((v:real^3),V,E) /\ FF = face (hypermap (HYP (v,V,E))) x /\ 1 < CARD (FF) ==> (! y. y IN FF ==> {FST y, SND y} IN E ) `, [NHANH ELMS_OF_HYPERMAP_HYP; ASM_CASES_TAC ` ~( x IN darts_of_hyp E (V:real^3 -> bool) ) \/ x IN self_pairs E V `; STRIP_TAC; SUBGOAL_THEN ` face_map (hypermap (HYP (v,V,E))) x = x ` MP_TAC; ASM_SIMP_TAC[ff_of_hyp3]; ABBREV_TAC ` tt = face_map (hypermap (HYP (v,V,E))) `; ONCE_REWRITE_TAC[orbit_one_point]; REWRITE_TAC[BETA_THM]; EXPAND_TAC "tt"; REWRITE_TAC[GSYM face]; UNDISCH_TAC ` 1 < CARD (FF: real^3 # real^3 -> bool) `; ASM_REWRITE_TAC[]; MESON_TAC[CARD_SINGLETON; ARITH_RULE ` ~( 1 < 1 ) `]; DOWN; REWRITE_TAC[DE_MORGAN_THM]; ONCE_REWRITE_TAC[EQ_SYM_EQ]; STRIP_TAC THEN STRIP_TAC; UNDISCH_TAC ` x IN darts_of_hyp E (V:real^3 -> bool) `; ASM_REWRITE_TAC[]; NHANH lemma_face_subset; DOWN_TAC; ONCE_REWRITE_TAC[EQ_SYM_EQ]; REWRITE_TAC[SUBSET]; STRIP_TAC; ASM_REWRITE_TAC[]; FIRST_X_ASSUM NHANH; ASM_REWRITE_TAC[darts_of_hyp; IN_UNION]; REPEAT STRIP_TAC; DOWN; REWRITE_TAC[IN_ORD_E_EQ_IN_E]; SUBGOAL_THEN ` face_map (hypermap (HYP (v,V,E))) y = y ` MP_TAC; ASM_REWRITE_TAC[]; ASM_SIMP_TAC[ff_of_hyp3]; ABBREV_TAC ` tt = face_map (hypermap (HYP (v,V,E))) `; ONCE_REWRITE_TAC[orbit_one_point]; REPLICATE_TAC 3 DOWN; NHANH lemma_face_identity; REPEAT STRIP_TAC THEN DOWN; FIRST_X_ASSUM (SUBST1_TAC o SYM); UNDISCH_TAC ` 1 < CARD (FF: real^3 # real^3 -> bool) `; ASM_REWRITE_TAC[GSYM face]; MESON_TAC[CARD_SINGLETON; ARITH_RULE ` ~( 1 < 1 ) `]]);; let DARTS_E_PRIME_GT1_SWITCH = prove( ` FAN (v,V,E) /\ FF = face (hypermap (HYP (v,V,E))) x /\ 1 < CARD FF ==> darts_of_hyp (e_prime E FF) (v_prime V FF) = FF UNION {v,w | w,v IN FF}`, NHANH CARD_FF_GT1_FF_SUBSET THEN NHANH DARTS_E_PRIME_EQ_FF_UNION_SWITCH THEN SIMP_TAC[]);; let FAN_FACE_GT1_IMAGE_EE_OF_HYP = prove_by_refinement (` x IN darts_of_hyp E V /\ FAN (v,V,E) /\ FF = face (hypermap (HYP (v,V,E))) x /\ 1 < CARD FF ==> darts_of_hyp (e_prime E FF) (v_prime V FF) = FF UNION IMAGE (ee_of_hyp (v,V,E)) FF `, [NHANH DARTS_E_PRIME_GT1_SWITCH; NHANH ELMS_OF_HYPERMAP_HYP; SIMP_TAC[]; ONCE_REWRITE_TAC[EQ_SYM_EQ]; STRIP_TAC; UNDISCH_TAC ` x IN darts_of_hyp E (V:real^3 -> bool) `; ASM_REWRITE_TAC[]; NHANH lemma_face_subset; ASM_REWRITE_TAC[]; FIRST_X_ASSUM (SUBST1_TAC o SYM); STRIP_TAC; MATCH_MP_TAC (MESON[]` x = y ==> f x = f y `); REWRITE_TAC[IMAGE; EXTENSION; IN_ELIM_THM]; UNDISCH_TAC ` ee_of_hyp (v,V,E) = edge_map (hypermap (HYP (v,V,E))) `; DISCH_THEN (SUBST1_TAC o SYM); DOWN; REWRITE_TAC[SUBSET]; USE_FIRST ` darts_of_hyp E V = dart (hypermap (HYP (v,V,E))) ` (SUBST1_TAC o SYM); REWRITE_TAC[ee_of_hyp2]; MESON_TAC[FST; SND; PAIR]]);; let IN_ORD_PAIRS_E_PRIME = prove(` x IN ord_pairs (e_prime E FF) ==> x IN ord_pairs E /\ x IN darts_of_hyp E V`, REWRITE_TAC[darts_of_hyp; IN_UNION; e_prime; ord_pairs; IN_ELIM_THM] THEN MESON_TAC[]);; let CARD_GT1_EE_OF_HYP_E_PRIME_EQ = prove_by_refinement (` FAN (v,V,E) /\ x IN dart (hypermap (HYP (v,V,E))) /\ FF = face (hypermap (HYP (v,V,E))) x /\ 1 < CARD FF ==> (! x. x IN FF ==> ee_of_hyp (v,V,E) x = ee_of_hyp (v,v_prime V FF,e_prime E FF) x ) `, [NHANH lemma_face_subset; NHANH ELMS_OF_HYPERMAP_HYP; ONCE_REWRITE_TAC[TAUT` (a1/\a2)/\a3/\a4 <=> a2 /\a3/\a1/\a4`]; NHANH DARTS_E_PRIME_GT1_SWITCH; REPEAT STRIP_TAC; REWRITE_TAC[ee_of_hyp2]; SUBGOAL_THEN ` x' IN darts_of_hyp E (V:real^3 -> bool) ` MP_TAC; UNDISCH_TAC ` face (hypermap (HYP (v,V,E))) x SUBSET dart (hypermap (HYP (v,V,E))) `; ASM_REWRITE_TAC[SUBSET]; DISCH_THEN MATCH_MP_TAC; UNDISCH_TAC ` x':real^3 # real^3 IN FF `; MATCH_MP_TAC (MESON[]` x = y ==> f x ==> f y `); FIRST_X_ASSUM ACCEPT_TAC; UNDISCH_TAC ` x':real^3 # real^3 IN FF `; REWRITE_TAC[TAUT` a ==> b ==> c <=> b /\ a ==> c `]; NHANH IN_DARTS_FF_IMP_DARTS_E_PRIME_V_PRIME; SIMP_TAC[]]);; let FF_IMAGE_EE_OF_HYP_EQ_E_PRIME = prove_by_refinement (` FAN (v,V,E) /\ x IN dart (hypermap (HYP (v,V,E))) /\ FF = face (hypermap (HYP (v,V,E))) x /\ 1 < CARD FF ==> IMAGE (ee_of_hyp (v,V,E)) FF = IMAGE (ee_of_hyp (v,v_prime V FF,e_prime E FF)) FF `, [NHANH lemma_face_subset; NHANH ELMS_OF_HYPERMAP_HYP; ONCE_REWRITE_TAC[TAUT` (a1/\a2)/\a3/\a4 <=> a2 /\a3/\a1/\a4`]; NHANH DARTS_E_PRIME_GT1_SWITCH; STRIP_TAC; REWRITE_TAC[IMAGE; EXTENSION; IN_ELIM_THM]; GEN_TAC THEN EQ_TAC; STRIP_TAC; EXISTS_TAC ` x'': real^3 # real^3 `; ASM_REWRITE_TAC[]; REWRITE_TAC[ee_of_hyp2]; SUBGOAL_THEN ` x'' IN darts_of_hyp E (V:real^3 -> bool) ` MP_TAC; UNDISCH_TAC ` face (hypermap (HYP (v,V,E))) x SUBSET dart (hypermap (HYP (v,V,E))) `; ASM_REWRITE_TAC[SUBSET]; DISCH_THEN MATCH_MP_TAC; UNDISCH_TAC ` x'':real^3 # real^3 IN FF `; MATCH_MP_TAC (MESON[]` x = y ==> f x ==> f y `); FIRST_X_ASSUM ACCEPT_TAC; UNDISCH_TAC ` x'':real^3 # real^3 IN FF `; REWRITE_TAC[TAUT` a ==> b ==> c <=> b /\ a ==> c `]; NHANH IN_DARTS_FF_IMP_DARTS_E_PRIME_V_PRIME; USE_FIRST ` FF = face (hypermap (HYP (v,V,E))) x ` (SUBST1_TAC o SYM); SIMP_TAC[]; STRIP_TAC; SUBGOAL_THEN ` x'' IN darts_of_hyp E (V:real^3 -> bool) ` MP_TAC; UNDISCH_TAC ` face (hypermap (HYP (v,V,E))) x SUBSET dart (hypermap (HYP (v,V,E))) `; ASM_REWRITE_TAC[SUBSET]; DISCH_THEN MATCH_MP_TAC; UNDISCH_TAC ` x'':real^3 # real^3 IN FF `; MATCH_MP_TAC (MESON[]` x = y ==> f x ==> f y `); FIRST_X_ASSUM ACCEPT_TAC; SUBGOAL_THEN ` x'':real^3 # real^3 IN darts_of_hyp (e_prime E FF) (v_prime V FF) ` MP_TAC; UNDISCH_TAC ` x'':real^3 # real^3 IN FF `; ASM_REWRITE_TAC[IN_UNION]; CONV_TAC TAUT; REPEAT STRIP_TAC; EXISTS_TAC `x'':real^3 # real^3 `; ASM_REWRITE_TAC[]; DOWN THEN DOWN; SIMP_TAC[ee_of_hyp2]; USE_FIRST` FF = face (hypermap (HYP (v,V,E))) x ` (SUBST1_TAC o SYM); SIMP_TAC[]]);; let FIRST_AAUHTVE2 = prove(` FAN (x,V,E) ==> FINITE (darts_of_hyp E V) /\ ee_of_hyp (x,V,E) permutes darts_of_hyp E V /\ nn_of_hyp (x,V,E) permutes darts_of_hyp E V /\ ff_of_hyp (x,V,E) permutes darts_of_hyp E V /\ ee_of_hyp (x,V,E) o nn_of_hyp (x,V,E) o ff_of_hyp (x,V,E) = I /\ ee_of_hyp (x,V,E) o ee_of_hyp (x,V,E) = I `, NHANH (SMOOTH_GEN_ALL (REWRITE_RULE[TAUT` a/\b ==> c <=> a ==> b ==> c `] FIRST_AAUHTVE)) THEN REWRITE_TAC[HYP; PAIR_EQ] THEN MESON_TAC[]);; let NOT_IN_DART_IMP_IDE = prove( ` ~( x IN dart H ) ==> edge_map H x = x /\ node_map H x = x /\ face_map H x = x:A `, MP_TAC (SPEC `H:(A) hypermap ` hypermap_lemma) THEN REWRITE_TAC[permutes] THEN SIMP_TAC[]);; let SIMPLE_IMP_DISTINCT_FF_NODE_IMAGE = prove_by_refinement(` simple_hypermap H /\ FF = face H x /\ (! x. (x:A) IN FF ==> ~( node_map H x = x )) ==> FF INTER IMAGE (node_map H ) FF = {} `, [REWRITE_TAC[simple_hypermap; INTER; IMAGE]; STRIP_TAC; REWRITE_TAC[ EXTENSION; NOT_IN_EMPTY]; GEN_TAC; REWRITE_TAC[IN_ELIM_THM]; STRIP_TAC; UNDISCH_TAC ` x'':A IN FF `; REWRITE_TAC[]; FIRST_X_ASSUM NHANH; ASM_CASES_TAC ` x'':A IN dart H `; DOWN; FIRST_X_ASSUM NHANH; REWRITE_TAC[FUN_EQ_THM; IN_ELIM_THM; SET_RULE` {x} a <=> x = a `]; STRIP_TAC; ASM_REWRITE_TAC[]; NHANH lemma_face_identity; STRIP_TAC; SUBGOAL_THEN ` x':A IN node H x'' /\ x'' IN node H x'' ` (fun x -> ASM_MESON_TAC[x]); ASM_REWRITE_TAC[node_refl; node; in_orbit_map1]; DOWN; NHANH NOT_IN_DART_IMP_IDE; SIMP_TAC[]]);; let FX_IN_S_IMP_F_POWER_TOO = prove(` (! (x:A). x IN S ==> f x IN S ) /\ x IN S ==> (!n. (f POWER n ) x IN S ) `, DISCH_TAC THEN INDUCT_TAC THENL [ASM_REWRITE_TAC[POWER; I_THM]; REWRITE_TAC[COM_POWER; o_THM] THEN ASM_MESON_TAC[]]);; let FX_IN_S_IMP_ORBIT_SUBSET = prove( ` (!(x:A). x IN S ==> f x IN S) /\ x IN S ==> orbit_map f x SUBSET S `, NHANH FX_IN_S_IMP_F_POWER_TOO THEN REWRITE_TAC[orbit_map; SUBSET; IN_ELIM_THM; ARITH_RULE` n >= 0`] THEN MESON_TAC[]);; let FAN_DARTS_OF_IN_D = prove_by_refinement( ` FAN (v,V,E) /\ x IN darts_of_hyp E V /\ FF = face (hypermap (HYP (v,V,E))) x /\ x' IN FF ==> x' IN darts_of_hyp E V`, [NHANH ELMS_OF_HYPERMAP_HYP; ONCE_REWRITE_TAC[EQ_SYM_EQ]; IMP_TAC THEN STRIP_TAC; ASM_REWRITE_TAC[]; NHANH_PAT `\x. x ==> y ` lemma_face_subset; REWRITE_TAC[SUBSET]; MESON_TAC[]]);; let FAN_DART_DARTS = prove(` FAN (x,V,E) ==> dart (hypermap (HYP (x,V,E))) = darts_of_hyp E V `, NHANH ELMS_OF_HYPERMAP_HYP THEN SIMP_TAC[]);; let FACE_SUBSET_DARTS = prove(` FAN (v,V,E) /\ x IN darts_of_hyp E V ==> face (hypermap (HYP (v,V,E))) x SUBSET darts_of_hyp E V`, IMP_TAC THEN NHANH ELMS_OF_HYPERMAP_HYP THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN SIMP_TAC[lemma_face_subset]);; let FF_DISJOINT_ITS_IMAGE_CARD_EQ = prove_by_refinement (` FAN (v,V,E) /\ x IN darts_of_hyp E V /\ FF = face (hypermap (HYP (v,V,E))) x /\ simple_hypermap (hypermap (HYP (v,v_prime V FF,e_prime E FF))) /\ 2 < CARD (FF) ==> FF INTER IMAGE (nn_of_hyp (v,v_prime V FF, e_prime E FF)) FF = {} /\ CARD FF = CARD (IMAGE (nn_of_hyp (v,v_prime V FF, e_prime E FF)) FF)`, [ONCE_REWRITE_TAC[TAUT` a1/\a2/\a3/\a4/\a5 <=> (a2/\a1/\a3/\a5)/\a4`]; NHANH FAN_FACE_GT1_IMAGE_EE_OF_HYP; STRIP_TAC; SUBGOAL_THEN ` FAN (v,v_prime V (FF:real^3 # real^3 -> bool),e_prime E FF) ` MP_TAC; DOWN_TAC; NHANH_PAT `\x. x ==> i ` ELMS_OF_HYPERMAP_HYP; ASM_MESON_TAC[IMP_FAN_V_PRIME_E_PRIME]; NHANH ELMS_OF_HYPERMAP_HYP; ONCE_REWRITE_TAC[EQ_SYM_EQ]; SIMP_TAC[]; STRIP_TAC; CONJ_TAC; SUBGOAL_THEN ` (! x. (x:real^3 # real^3) IN FF ==> ~( node_map (hypermap (HYP (v,v_prime V FF,e_prime E FF))) x = x )) ` MP_TAC; ONCE_REWRITE_TAC[inverse2_hypermap_maps]; REPEAT STRIP_TAC; DOWN; REWRITE_TAC[o_THM]; NHANH (MESON[]` ( inverse f) x = y ==> f (( inverse f) x ) = f y `); MP_TAC (ISPEC ` (hypermap (HYP (v,v_prime V FF,e_prime E FF))) ` edge_map_and_darts); NHANH PERMUTES_INVERSES; SIMP_TAC[]; STRIP_TAC; STRIP_TAC; ABBREV_TAC ` f = face_map (hypermap (HYP (v,v_prime V FF,e_prime E FF))) `; ABBREV_TAC ` e = edge_map (hypermap (HYP (v,v_prime V FF,e_prime E FF))) `; ABBREV_TAC ` n = node_map (hypermap (HYP (v,v_prime V FF,e_prime E FF))) `; ASM_CASES_TAC ` (f:real^3 # real^3 -> real^3 # real^3) x' = e x' `; UNDISCH_TAC` FAN ((v:real^3),v_prime V FF,e_prime E FF) `; REWRITE_TAC[]; NHANH FIRST_AAUHTVE2; UNDISCH_TAC `FF = face (hypermap (HYP (v,V,E))) x`; DISCH_THEN (ASSUME_TAC o SYM); ASM_REWRITE_TAC[]; STRIP_TAC; UNDISCH_TAC ` inverse (e:real^3#real^3->real^3#real^3) (inverse (f:real^3#real^3->real^3#real^3) x') = (x':real^3 # real^3 ) `; REWRITE_TAC[]; NHANH (MESON[]` inverse e ( f x ) = y ==> e (inverse e ( f x )) = e y `); NHANH (MESON[]` e (inverse e ((inverse f ) x )) = y ==>f ( e (inverse e ( (inverse f ) x ))) = f y `); UNDISCH_TAC `e permutes dart (hypermap (HYP (v,v_prime V FF,e_prime E FF)))`; UNDISCH_TAC ` f permutes dart (hypermap (HYP (v,v_prime V FF,e_prime E FF))) `; PHA; NHANH PERMUTES_INVERSES; SIMP_TAC[]; REPEAT STRIP_TAC; UNDISCH_TAC ` x':real^3 # real^3 IN FF `; EXPAND_TAC "FF"; PHA; NHANH lemma_face_identity; SUBGOAL_THEN ` orbit_map f (x':real^3 # real^3) = {x', e x'} ` ASSUME_TAC; REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ]; CONJ_TAC; MATCH_MP_TAC FX_IN_S_IMP_ORBIT_SUBSET; REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY]; GEN_TAC THEN DISCH_THEN DISJ_CASES_TAC; DISJ2_TAC; FIRST_X_ASSUM SUBST1_TAC; FIRST_X_ASSUM ACCEPT_TAC; DISJ1_TAC; FIRST_X_ASSUM SUBST1_TAC; FIRST_X_ASSUM (ACCEPT_TAC o SYM); REWRITE_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY]; REPEAT STRIP_TAC; FIRST_X_ASSUM SUBST1_TAC; REWRITE_TAC[orbit_reflect]; FIRST_X_ASSUM SUBST1_TAC; REWRITE_TAC[orbit_reflect]; EXPAND_TAC "f"; REWRITE_TAC[GSYM face]; ASM_MESON_TAC[lemma_inverse_in_face; face_refl]; DOWN; ASM_REWRITE_TAC[face]; MP_TAC LOCALIZE_PRESERVE_FACE; ANTS_TAC; ASM_REWRITE_TAC[]; DOWN_TAC; NHANH ELMS_OF_HYPERMAP_HYP; SIMP_TAC[]; ASM_SIMP_TAC[face]; REPEAT STRIP_TAC; DOWN; PHA; NHANH (MESON[orbit_reflect]` S = orbit_map f x ==> x IN S `); EXPAND_TAC "f"; REWRITE_TAC[GSYM face]; NHANH lemma_face_identity; ASM_SIMP_TAC[]; REPLICATE_TAC 3 DOWN; UNDISCH_TAC ` 2 < CARD (FF:real^3 # real^3 -> bool) `; EXPAND_TAC "f"; REWRITE_TAC[GSYM face]; SIMP_TAC[]; ONCE_REWRITE_TAC[EQ_SYM_EQ]; SIMP_TAC[]; DISCH_TAC; REMOVE_TAC; DISCH_THEN (SUBST1_TAC o SYM); REMOVE_TAC; DOWN; MESON_TAC[Geomdetail.CARD2; ARITH_RULE` a <= 2 ==> ~(2 < a ) `]; MP_TAC (ISPEC `hypermap (HYP (v,v_prime V FF,e_prime E FF)) ` hypermap_lemma); UNDISCH_TAC `FF = face (hypermap (HYP (v,V,E))) (x:real^3 # real^3) `; DISCH_THEN (ASSUME_TAC o SYM); ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM]; STRIP_TAC; FIRST_ASSUM (MP_TAC o (SPEC `x':real^3 # real^3 `)); PHA; NHANH (MESON[]` f x = y ==> f ( f x ) = f y `); UNDISCH_TAC ` FAN (v:real^3,v_prime V FF,e_prime E FF) `; NHANH FIRST_AAUHTVE2; DOWN THEN REMOVE_TAC; ASM_REWRITE_TAC[]; STRIP_TAC; DOWN; SIMP_TAC[FUN_EQ_THM; o_THM; I_THM]; REPEAT STRIP_TAC; UNDISCH_TAC `simple_hypermap (hypermap (HYP (v,v_prime V FF,e_prime E FF))) `; REWRITE_TAC[simple_hypermap]; STRIP_TAC; FIRST_X_ASSUM (MP_TAC o (SPEC ` (f:real^3 # real^3 -> real^3 # real^3) x' `)); ANTS_TAC; UNDISCH_TAC ` FAN (v:real^3,v_prime V FF,e_prime E FF) `; NHANH (SMOOTH_GEN_ALL (GEN `y:real^3 # real^3 ` FAN_IMP_IN_DARTS_IFF_FF_TOO)); ASM_REWRITE_TAC[]; STRIP_TAC; FIRST_ASSUM (fun x -> ONCE_REWRITE_TAC[GSYM x]); UNDISCH_TAC `darts_of_hyp (e_prime E FF) (v_prime V FF) = dart (hypermap (HYP (v,v_prime V FF,e_prime E FF))) `; DISCH_THEN (ASSUME_TAC o SYM); FIRST_ASSUM SUBST1_TAC; MATCH_MP_TAC IN_DARTS_FF_IMP_DARTS_E_PRIME_V_PRIME; ASM_REWRITE_TAC[]; MATCH_MP_TAC FAN_DARTS_OF_IN_D; ASM_REWRITE_TAC[]; STRIP_TAC; MP_TAC ( ISPECL [`hypermap (HYP (v,v_prime V FF,e_prime E FF)) `; ` (f:real^3 # real^3 -> real^3 # real^3) x' ` ] face_refl); PHA; NHANH lemma_inverse_in_face; NHANH lemma_inverse_in_face; ASM_SIMP_TAC[PERMUTES_INVERSES]; UNDISCH_TAC `f permutes dart (hypermap (HYP (v,v_prime V FF,e_prime E FF))) `; NHANH PERMUTES_INVERSES; SIMP_TAC[]; ASM_REWRITE_TAC[]; REPEAT STRIP_TAC; SUBGOAL_THEN ` n (f (x':real^3 # real^3)) IN node (hypermap (HYP (v,v_prime V FF,e_prime E FF))) (f x') ` MP_TAC; EXPAND_TAC "n"; REWRITE_TAC[node; in_orbit_map1]; ASM_REWRITE_TAC[]; DOWN; MATCH_MP_TAC (SET_RULE` ~( a IN B INTER A ) ==> a IN A ==> ~( a IN B ) `); ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY]; STRIP_TAC; REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_INTER; IMAGE; IN_ELIM_THM]; REPEAT STRIP_TAC; UNDISCH_TAC ` simple_hypermap (hypermap (HYP (v,v_prime V FF,e_prime E FF))) `; REWRITE_TAC[simple_hypermap]; STRIP_TAC; FIRST_X_ASSUM (ASSUME_TAC o (SPEC ` x'':real^3 # real^3 `)); DOWN; ANTS_TAC; UNDISCH_TAC ` FAN (v:real^3,v_prime V FF,e_prime E FF)`; SIMP_TAC[FAN_DART_DARTS]; STRIP_TAC; MATCH_MP_TAC IN_DARTS_FF_IMP_DARTS_E_PRIME_V_PRIME; ASM_REWRITE_TAC[]; MATCH_MP_TAC FAN_DARTS_OF_IN_D; ASM_REWRITE_TAC[]; MP_TAC (SPEC ` x'': real^3 # real^3 ` (GEN `x:real^3 # real^3 ` LOCALIZE_PRESERVE_FACE)); ANTS_TAC; ASM_REWRITE_TAC[]; CONJ_TAC; MATCH_MP_TAC (SET_RULE` x IN FF /\ FF SUBSET A ==> x IN A `); ASM_REWRITE_TAC[]; MATCH_MP_TAC lemma_face_subset; UNDISCH_TAC ` FAN (v:real^3,V,E)`; NHANH ELMS_OF_HYPERMAP_HYP; ASM_SIMP_TAC[]; MATCH_MP_TAC lemma_face_identity; UNDISCH_TAC ` x'':real^3 # real^3 IN FF `; ASM_SIMP_TAC[]; DISCH_TAC; REWRITE_TAC[EXTENSION; IN_INTER; IN_INSERT; NOT_IN_EMPTY]; STRIP_TAC; FIRST_X_ASSUM (MP_TAC o (SPEC ` x':real^3 # real^3 `)); FIRST_X_ASSUM (MP_TAC o (SPEC ` x'': real^3 # real^3 `)); ANTS_TAC; ASM_REWRITE_TAC[]; SUBGOAL_THEN ` x' IN node (hypermap (HYP (v,v_prime V FF,e_prime E FF))) x''` MP_TAC; ASM_REWRITE_TAC[node; in_orbit_map1]; REPLICATE_TAC 4 DOWN THEN PHA; MESON_TAC[]; MATCH_MP_TAC CARD_IMAGE_INJ; MP_TAC (ISPEC ` hypermap (HYP (v,v_prime V FF,e_prime E FF)) ` node_map_and_darts); REWRITE_TAC[permutes; EXISTS_UNIQUE]; STRIP_TAC; CONJ_TAC; DOWN; MESON_TAC[]; UNDISCH_TAC ` FAN (v:real^3,V,E) `; NHANH FAN_IMP_FIMITE_DARTS; ASM_REWRITE_TAC[]; MATCH_MP_TAC (MESON[FINITE_SUBSET]` (a ==> A SUBSET B) ==> a /\ FINITE B ==> FINITE A `); STRIP_TAC; MATCH_MP_TAC FACE_SUBSET_DARTS; ASM_REWRITE_TAC[]]);; let HYP_MAPS_INJ = prove( `(! (x:A) y. edge_map H x = edge_map H y <=> x = y ) /\ (! x y. node_map H x = node_map H y <=> x = y ) /\ (! x y. face_map H x = face_map H y <=> x = y ) `, MP_TAC (SPEC_ALL hypermap_lemma) THEN REWRITE_TAC[permutes] THEN MESON_TAC[]);; let SIMPLE_FACE_DISJOINT_NODE_MAP_2 = prove_by_refinement (` (x:A) IN dart H /\ face H x SUBSET dart H /\ simple_hypermap H /\ face H x INTER IMAGE (node_map H) (face H x) = {} /\ dart H = face H x UNION IMAGE (node_map H) (face H x) ==> !x. x IN dart H ==> ~(node_map H x = x) /\ node_map H (node_map H x) = x `, [STRIP_TAC; ASM_REWRITE_TAC[IN_UNION]; GEN_TAC; DISCH_TAC; SUBGOAL_THEN ` ~( node_map H x':A = x') ` ASSUME_TAC; STRIP_TAC; FIRST_X_ASSUM DISJ_CASES_TAC; UNDISCH_TAC ` face H (x:A) INTER IMAGE (node_map H) (face H x) = {}`; PHA; REWRITE_TAC[SET_RULE `~( a INTER b = {} ) <=> ? x. x IN a /\ x IN b `]; REPEAT (EXISTS_TAC ` x':A` THEN ASM_REWRITE_TAC[IN_IMAGE]); DOWN; REWRITE_TAC[IN_IMAGE]; EXPAND_TAC "x'"; REWRITE_TAC[HYP_MAPS_INJ]; STRIP_TAC; ASM SET_TAC[]; ASM_REWRITE_TAC[]; UNDISCH_TAC ` x' IN face H x \/ x' IN IMAGE (node_map H) (face H (x:A)) `; SPEC_TAC (`x':A`,` x':A `); REWRITE_TAC[MESON[]` a \/ b ==> c <=> (a ==> c ) /\ ( b ==> c ) `; MESON[]` (! x. P x /\ Q x ) <=> (! x. P x ) /\ (! x. Q x ) `]; MATCH_MP_TAC (TAUT` a /\ ( a ==> b ) ==> a /\ b `); CONJ_TAC; DOWN THEN REMOVE_TAC; REPEAT STRIP_TAC; ASM_CASES_TAC ` node_map H (x':A) = x' `; ASM_REWRITE_TAC[]; ASSUME_TAC2 lemma_face_subset; SUBGOAL_THEN` x':A IN dart H ` MP_TAC; DOWN; REWRITE_TAC[SUBSET]; DISCH_THEN MATCH_MP_TAC; ASM_REWRITE_TAC[]; NHANH lemma_dart_invariant; STRIP_TAC; UNDISCH_TAC `node_map H x':A IN dart H `; NHANH lemma_dart_invariant; STRIP_TAC; UNDISCH_TAC `node_map H (node_map H x':A) IN dart H `; ASM_REWRITE_TAC[IN_UNION]; STRIP_TAC; UNDISCH_TAC ` simple_hypermap (H:(A)hypermap) `; REWRITE_TAC[simple_hypermap]; DISCH_THEN (MP_TAC o (SPEC `x': A `)); ANTS_TAC; FIRST_ASSUM ACCEPT_TAC; REWRITE_TAC[EXTENSION; IN_INTER; IN_INSERT; NOT_IN_EMPTY]; DISCH_THEN (fun x -> REWRITE_TAC[GSYM x]); ASM_REWRITE_TAC[]; UNDISCH_TAC ` x':A IN face H x `; NHANH_PAT`\x. x ==> i ` lemma_face_identity; STRIP_TAC; CONJ_TAC; REWRITE_TAC[node]; MESON_TAC[orbit_reflect;IN_ORBIT_MAP_IMP_F_Y]; ASM_MESON_TAC[]; DOWN; REWRITE_TAC[IN_IMAGE; HYP_MAPS_INJ]; STRIP_TAC; UNDISCH_TAC ` face H (x:A) INTER IMAGE (node_map H) (face H x) = {}`; REWRITE_TAC[SET_RULE` A INTER B = {} <=> ! x. x IN A ==> ~( x IN B ) `]; DISCH_THEN (MP_TAC o (SPEC` x'':A`)); ANTS_TAC; ASM_REWRITE_TAC[]; EXPAND_TAC "x''"; REWRITE_TAC[IN_IMAGE]; UNDISCH_TAC ` (x':A) IN face H x `; MESON_TAC[]; STRIP_TAC; REWRITE_TAC[IN_IMAGE]; REPEAT STRIP_TAC; DOWN; FIRST_X_ASSUM NHANH; ASM_SIMP_TAC[]]);; let ITER12 = prove(` ! f x. ITER 1 f x = f x /\ ITER 2 f x = f ( f x )`, REWRITE_TAC[ARITH_RULE` 2 = SUC 1 /\ 1 = SUC 0`; ITER]);; let ENF_RULE t = prove(t, MESON_TAC[edge_map_and_darts;hypermap_lemma; convolution_rep]);; let EDGE_MAP_RESO_INVERSE = ENF_RULE ` (edge_map H ) o (edge_map H ) = I <=> inverse (edge_map H ) = edge_map H `;; let EDGE_MAP_RESO_INVERSE = CONJ EDGE_MAP_RESO_INVERSE ( ENF_RULE `node_map H o node_map H = I <=> inverse (node_map H) = node_map H `);; let HAS_ORD2_INTERPRET = prove(` f has_orders 2 <=> f o f = I /\ ~( f = I ) `, SIMP_TAC[has_orders; ITER12; FUN_EQ_THM; o_THM; ARITH_RULE ` 0 < c /\ c < 2 <=> c = 1 `] THEN MESON_TAC[]);; let HYP_MAPS_INVS = prove(` edge_map H (inverse ( edge_map H ) x ) = x /\ inverse (edge_map H) ( edge_map H x ) = x /\ face_map H (inverse ( face_map H ) x ) = x /\ inverse (face_map H) ( face_map H x ) = x /\ node_map H (inverse ( node_map H ) x ) = x /\ inverse (node_map H) ( node_map H x ) = x `, MESON_TAC[PERMUTES_INVERSES; hypermap_lemma]);; let ITER_CYCLIC_ORBIT = prove(` 0 < i /\ ITER i f x = x ==> orbit_map f x = {ITER n f x | n < i } `, REWRITE_TAC[ARITH_RULE` 0 < i <=> ~( i = 0 ) `; GSYM POWER_TO_ITER] THEN NHANH orbit_cyclic THEN SIMP_TAC[]);; let FACE_CYCLE_CARD = prove( `! x y H. y IN face H x ==> (face_map H POWER CARD (face H x )) y = y`, NHANH lemma_face_identity THEN SIMP_TAC[lemma_face_cycle]);; let INVERSE_FACE_CYCLE = prove( `! (x:A) H. (inverse (face_map H) POWER (CARD (face H x)) ) x = x `, REWRITE_TAC[FACE_NODE_EDGE_ORBIT_INVERSE] THEN REPEAT GEN_TAC THEN MP_TAC (SPEC_ALL face_map_and_darts) THEN NHANH PERMUTES_INVERSE THEN MESON_TAC[lemma_cycle_orbit]);; let INVERSE_FACE_CYCLE_ALL = prove(` ! x y H. y IN face H x ==> (inverse (face_map H) POWER (CARD (face H x)) ) y = y `, NHANH lemma_face_identity THEN SIMP_TAC[INVERSE_FACE_CYCLE]);; let DIH2K_IMP_SIMPLE_HYPERMAP2 = prove( ` dih2k (H:(A)hypermap) k /\ ~( k = 0) ==> simple_hypermap H `, MP_TAC face_map_and_darts THEN MESON_TAC[DIH2K_IMP_SIMPLE_HYPERMAP]);; let DIH2K_FACE_SIMPLIZED = prove_by_refinement (` edge_map H has_orders 2 /\ (x:A) IN dart H /\ simple_hypermap H /\ (face H x ) INTER IMAGE (node_map H ) (face H x ) = {} /\ dart H = (face H x ) UNION IMAGE (node_map H) (face H x ) <=> dih2k H (CARD (face H x )) /\ x IN dart H`, [EQ_TAC; SIMP_TAC[]; NHANH lemma_face_subset; REWRITE_TAC[dih2k]; STRIP_TAC; CONJ_TAC; MP_TAC (SPEC_ALL FACE_FINITE); NHANH (ISPEC ` node_map (H:(A)hypermap) ` FINITE_IMAGE); UNDISCH_TAC ` face H (x:A) INTER IMAGE (node_map H) (face H x) = {}`; ONCE_REWRITE_TAC[TAUT` a ==> b ==> c <=> b /\ a ==> c `]; PHA; NHANH CARD_UNION; STRIP_TAC; DOWN; ASM_REWRITE_TAC[]; MATCH_MP_TAC (ARITH_RULE` b = a ==> x = a + b ==> x = 2 * a `); MATCH_MP_TAC CARD_IMAGE_INJ; ASM_REWRITE_TAC[]; SIMP_TAC[HYP_MAPS_INJ]; SUBGOAL_THEN `(! (x:A). x IN dart H ==> ~( node_map H x = x ) /\ (node_map H (node_map H x )) = x )` ASSUME_TAC; DOWN_TAC; MESON_TAC[SIMPLE_FACE_DISJOINT_NODE_MAP_2]; ASM_SIMP_TAC[]; SUBGOAL_THEN ` node_map (H:(A)hypermap) has_orders 2 ` MP_TAC; REWRITE_TAC[has_orders]; REWRITE_TAC[FUN_EQ_THM]; CONJ_TAC; REWRITE_TAC[ARITH_RULE` 0 < x /\ x < 2 <=> x = 1 `]; SIMP_TAC[ITER12; I_THM]; GEN_TAC THEN STRIP_TAC; REWRITE_TAC[NOT_FORALL_THM]; EXISTS_TAC `x:A`; ASM_MESON_TAC[]; REWRITE_TAC[ITER12; I_THM]; GEN_TAC; ASM_CASES_TAC ` (x':A) IN dart H `; ASM_MESON_TAC[]; DOWN; MP_TAC (REWRITE_RULE[permutes] hypermap_lemma); SIMP_TAC[]; SIMP_TAC[]; STRIP_TAC; SUBGOAL_THEN ` ! y. y IN face H (x:A) ==> face_map H (node_map H y) = node_map H ( (inverse (face_map H )) y )` MP_TAC; REPEAT STRIP_TAC; PAT_ONCE_REWRITE_TAC `\x. f x = y ` [inverse2_hypermap_maps]; DOWN_TAC; REWRITE_TAC[HAS_ORD2_INTERPRET; EDGE_MAP_RESO_INVERSE]; SIMP_TAC[o_THM]; STRIP_TAC; REWRITE_TAC[ MESON[inverse2_hypermap_maps]` face_map H = inverse (node_map H) o inverse (edge_map H) `]; REWRITE_TAC[o_THM; HYP_MAPS_INVS]; ASM_REWRITE_TAC[]; STRIP_TAC; (* hhhhhhh *) SUBGOAL_THEN` !y. y IN face H (x:A) ==> ( ! n. ITER n (face_map H) (node_map H y) = node_map H (ITER n (inverse (face_map H)) y))` MP_TAC; GEN_TAC THEN STRIP_TAC; INDUCT_TAC; REWRITE_TAC[ITER]; SUBGOAL_THEN ` ITER n (inverse (face_map H)) (y:A) IN face H (x:A) ` ASSUME_TAC; DOWN THEN DOWN; NHANH_PAT `\x. x ==> y ` lemma_face_identity; SIMP_TAC[]; REPEAT STRIP_TAC; REWRITE_TAC[FACE_NODE_EDGE_ORBIT_INVERSE; orbit_map; IN_ELIM_THM]; EXISTS_TAC `n:num `; REWRITE_TAC[POWER_TO_ITER; ARITH_RULE ` x >= 0`]; REWRITE_TAC[ITER]; DOWN; FIRST_ASSUM NHANH; ASM_REWRITE_TAC[]; SIMP_TAC[]; (* ,,,,,,,,,,,,,, *) STRIP_TAC; MATCH_MP_TAC (TAUT` a /\ ( a ==> b ) ==> a /\ b `); CONJ_TAC; GEN_TAC; REWRITE_TAC[IN_UNION]; STRIP_TAC; LET_TAC; DOWN THEN DOWN; NHANH lemma_face_identity; SIMP_TAC[]; LET_TAC; DOWN THEN DOWN; REWRITE_TAC[IN_IMAGE]; STRIP_TAC; REPEAT STRIP_TAC; MATCH_MP_TAC (SET_RULE` a = y /\ b = x ==> a UNION b = x UNION y `); SUBGOAL_THEN ` IMAGE (node_map H) (face H (x:A)) = S` ASSUME_TAC; FIRST_X_ASSUM (SUBST1_TAC o SYM); ASM_REWRITE_TAC[]; UNDISCH_TAC ` x'':A IN face H x `; NHANH lemma_face_identity; SIMP_TAC[]; STRIP_TAC; PAT_ONCE_REWRITE_TAC `\x. x = y ` [FACE_NODE_EDGE_ORBIT_INVERSE]; REWRITE_TAC[IMAGE; face; orbit_map; EXTENSION; IN_ELIM_THM; POWER_TO_ITER; ARITH_RULE ` x >= 0 `]; GEN_TAC; DOWN THEN DOWN; FIRST_X_ASSUM NHANH; SIMP_TAC[]; STRIP_TAC THEN STRIP_TAC; MESON_TAC[]; ASM_SIMP_TAC[]; EXPAND_TAC "S"; REWRITE_TAC[GSYM IMAGE_o]; UNDISCH_TAC ` node_map (H:(A)hypermap) has_orders 2`; SIMP_TAC[HAS_ORD2_INTERPRET; IMAGE_I]; REWRITE_TAC[has_orders; FUN_EQ_THM; I_THM]; STRIP_TAC; CONJ_TAC; GEN_TAC; STRIP_TAC; REWRITE_TAC[NOT_FORALL_THM]; EXISTS_TAC`x:A `; STRIP_TAC; ASSUME_TAC2 ( ISPECL [`i:num`;`(face_map H): A -> A `] (GEN_ALL ITER_CYCLIC_ORBIT)); DOWN THEN PHA; REWRITE_TAC[GSYM face]; NHANH (MESON[CARD_LE_K_OF_SET_K_FIRST_ELMS]` S = { ITER n f x | n < i } ==> CARD S <= i`); DOWN THEN DOWN; MESON_TAC[ARITH_RULE` a < (b:num) ==> ~( b <= a ) `]; REWRITE_TAC[GSYM POWER_TO_ITER; lemma_face_cycle]; GEN_TAC; ASM_CASES_TAC `x':A IN dart H `; DOWN; ASM_REWRITE_TAC[IN_UNION]; STRIP_TAC; DOWN; REWRITE_TAC[FACE_CYCLE_CARD]; DOWN; REWRITE_TAC[IN_IMAGE]; DOWN THEN FIRST_ASSUM NHANH; REPEAT STRIP_TAC; ASM_REWRITE_TAC[POWER_TO_ITER]; REWRITE_TAC[GSYM POWER_TO_ITER]; ASM_SIMP_TAC[INVERSE_FACE_CYCLE_ALL]; DOWN THEN NHANH NOT_IN_DART_IMP_IDE; SIMP_TAC[POWER_TO_ITER; ITER_FIXPOINT2]; MP_TAC (SPEC_ALL face_map_and_darts); NHANH_PAT `\x. a ==> x ==> y ` lemma_face_subset; STRIP_TAC THEN STRIP_TAC; UNDISCH_TAC ` face H (x:A) SUBSET dart H`; UNDISCH_TAC ` FINITE (dart (H:(A) hypermap)) `; PHA; NHANH FINITE_SUBSET; IMP_TAC THEN STRIP_TAC; MP_TAC (SPEC_ALL face_refl); PHA; REWRITE_TAC[SET_RULE` x IN A <=> {x} SUBSET A `]; NHANH CARD_SUBSET; REWRITE_TAC[CARD_SINGLETON]; NHANH (ARITH_RULE` 1 <= a ==> ~( a = 0 ) `); STRIP_TAC; DOWN; UNDISCH_TAC ` dih2k H (CARD (face H (x:A)))`; PHA; NHANH DIH2K_IMP_SIMPLE_HYPERMAP2; ASM_SIMP_TAC[dih2k; INSERT_SUBSET; EMPTY_SUBSET]; STRIP_TAC; CONJ_TAC; UNDISCH_TAC ` (x:A) IN dart H `; FIRST_X_ASSUM NHANH; LET_TAC; STRIP_TAC; MATCH_MP_TAC (MESON[CARD_UNION_OVERLAP_EQ]` FINITE s /\ FINITE t /\ CARD (s UNION t) = CARD s + CARD t ==> s INTER t = {}`); FIRST_X_ASSUM (SUBST_ALL_TAC o SYM); ASM_REWRITE_TAC[ARITH_RULE` 2 * x = x + v <=> x = v `]; CONJ_TAC; MATCH_MP_TAC FINITE_IMAGE; ASM_REWRITE_TAC[]; ONCE_REWRITE_TAC[EQ_SYM_EQ]; MATCH_MP_TAC CARD_IMAGE_INJ; ASM_REWRITE_TAC[HYP_MAPS_INJ]; SIMP_TAC[]; UNDISCH_TAC ` (x:A) IN dart H `; FIRST_X_ASSUM NHANH; LET_TAC; SIMP_TAC[]]);; let EE_OF_HYP_IDE_FST_SND_EQ = prove(`z IN darts_of_hyp E V ==> ( ee_of_hyp (x,V,E) z = z <=> FST z = SND z )`, REWRITE_TAC[ee_of_hyp2] THEN SIMP_TAC[] THEN ONCE_REWRITE_TAC[PAIR_EQ2] THEN SIMP_TAC[EQ_SYM_EQ]);; let MP_TAC2 th = MP_TAC th THEN ANTS_TAC THENL [ ASM_SIMP_TAC[]; SIMP_TAC[]] ;; let TR_ENF_TAC = MATCH_MP_TAC W_EQ_ITS_ORBIT_IMP_EQ_ITS_IMAGE THEN REWRITE_TAC[GSYM face; GSYM node; GSYM edge; lemma_face_identity; lemma_node_identity; lemma_edge_identity];; let ENF_IMAGE_ITSELF = let t1 = CONJ ( prove( ` face H x = IMAGE (face_map H ) (face H x )`, TR_ENF_TAC)) (prove( ` node H x = IMAGE (node_map H ) (node H x )`, TR_ENF_TAC)) in CONJ (prove( ` edge H x = IMAGE (edge_map H ) (edge H x )`, TR_ENF_TAC)) t1;; let IDE_ON_S_IMP_SAME_IMAGE = prove(` (! x. x IN S ==> f x = g x ) ==> IMAGE f S = IMAGE g S `, REWRITE_TAC[EXTENSION; IMAGE; IN_ELIM_THM] THEN MESON_TAC[]);; let DIH_K_HYP_E_PRIME = prove_by_refinement (` FAN (v,V,E) /\ x IN darts_of_hyp E V /\ FF = face (hypermap (HYP (v,V,E))) x /\ simple_hypermap (hypermap (HYP (v,v_prime V FF,e_prime E FF))) /\ 2 < CARD (FF) ==> dih2k (hypermap (HYP (v,v_prime V FF,e_prime E FF))) (CARD FF ) `, [ONCE_REWRITE_TAC[TAUT` a1/\a2/\a3/\a4/\a5 <=> (a2/\a1/\a3/\a5)/\a4`]; NHANH FAN_FACE_GT1_IMAGE_EE_OF_HYP; STRIP_TAC; MP_TAC LOCALIZE_PRESERVE_FACE THEN ANTS_TAC; ASM_REWRITE_TAC[]; DOWN_TAC THEN NHANH FAN_DART_DARTS; SIMP_TAC[]; ABBREV_TAC ` hy = HYP (v,v_prime V FF,e_prime E FF) `; SIMP_TAC[]; STRIP_TAC; MATCH_MP_TAC (MESON[]` dih2k H k /\ (x:A) IN dart H ==> dih2k H k `); REWRITE_TAC[GSYM DIH2K_FACE_SIMPLIZED]; CONJ_TAC; REWRITE_TAC[HAS_ORD2_INTERPRET]; CONJ_TAC; MP_TAC IMP_FAN_V_PRIME_E_PRIME; ANTS_TAC; ASM_REWRITE_TAC[]; DOWN_TAC THEN NHANH FAN_DART_DARTS; ASM_SIMP_TAC[]; MESON_TAC[]; NHANH FIRST_AAUHTVE2; NHANH ELMS_OF_HYPERMAP_HYP; ASM_MESON_TAC[]; MP_TAC IMP_FAN_V_PRIME_E_PRIME; ANTS_TAC; ASM_REWRITE_TAC[]; DOWN_TAC THEN NHANH FAN_DART_DARTS; ASM_SIMP_TAC[]; MESON_TAC[]; STRIP_TAC; REWRITE_TAC[FUN_EQ_THM; NOT_FORALL_THM]; EXISTS_TAC `x:real^3 # real^3 `; REWRITE_TAC[I_THM]; EXPAND_TAC "hy"; DOWN; SIMP_TAC[ELMS_OF_HYPERMAP_HYP]; STRIP_TAC; SUBGOAL_THEN ` (x:real^3 # real^3) IN darts_of_hyp (e_prime E FF) (v_prime V FF) ` MP_TAC; MATCH_MP_TAC IN_DARTS_FF_IMP_DARTS_E_PRIME_V_PRIME; ASM_SIMP_TAC[face_refl]; SIMP_TAC[EE_OF_HYP_IDE_FST_SND_EQ]; REWRITE_TAC[darts_of_hyp; IN_UNION; IN_ORD_E_EQ_IN_E]; STRIP_TAC; DOWN; REWRITE_TAC[e_prime; IN_ELIM_THM]; UNDISCH_TAC `FAN (v:real^3, V,E) `; REWRITE_TAC[FAN; graph; HAS_SIZE]; STRIP_TAC THEN STRIP_TAC; UNDISCH_TAC ` {v',w:real^3} IN E `; REWRITE_TAC[IN]; FIRST_X_ASSUM (SUBST1_TAC o SYM); FIRST_X_ASSUM NHANH; REWRITE_TAC[Geomdetail.CARD2]; SIMP_TAC[]; SUBGOAL_THEN ` ff_of_hyp (v:real^3,v_prime V FF,e_prime E FF) x = x ` MP_TAC; DOWN; SIMP_TAC[ff_of_hyp3]; PAT_ONCE_REWRITE_TAC `\x. x ==> i ` [orbit_one_point]; REWRITE_TAC[ETA_AX]; UNDISCH_TAC ` FF = face (hypermap hy) (x:real^3 # real^3 )`; UNDISCH_TAC ` FAN (v:real^3,v_prime V FF,e_prime E FF)`; EXPAND_TAC "hy"; REWRITE_TAC[face]; SIMP_TAC[GSYM ELMS_OF_HYPERMAP_HYP]; ONCE_REWRITE_TAC[EQ_SYM_EQ]; SIMP_TAC[]; NHANH (MESON[CARD_SINGLETON]` {p} = FF ==> CARD FF = 1 `); REPEAT STRIP_TAC; UNDISCH_TAC ` CARD (FF:real^3#real^3->bool) = 1 `; UNDISCH_TAC ` 2 < CARD (FF:real^3#real^3->bool) `; ARITH_TAC; EXPAND_TAC "hy"; MP_TAC2 IMP_FAN_V_PRIME_E_PRIME; ASM_MESON_TAC[ELMS_OF_HYPERMAP_HYP]; NHANH FAN_DART_DARTS; SIMP_TAC[]; STRIP_TAC; CONJ_TAC; MATCH_MP_TAC IN_DARTS_FF_IMP_DARTS_E_PRIME_V_PRIME; ASM_REWRITE_TAC[face_refl]; DOWN THEN DOWN; FIRST_X_ASSUM (ASSUME_TAC o SYM); UNDISCH_TAC ` FF = face (hypermap (HYP ((v:real^3),V,E))) x`; DISCH_THEN (ASSUME_TAC o SYM); ASM_REWRITE_TAC[]; MP_TAC2 FF_DISJOINT_ITS_IMAGE_CARD_EQ; MP_TAC2 IMP_FAN_V_PRIME_E_PRIME; ASM_MESON_TAC[ELMS_OF_HYPERMAP_HYP; face_refl]; NHANH ELMS_OF_HYPERMAP_HYP; ASM_SIMP_TAC[]; EXPAND_TAC "hy"; SIMP_TAC[]; REPEAT STRIP_TAC; ABBREV_TAC ` nn = nn_of_hyp (v,v_prime V FF, e_prime E FF)`; MP_TAC2 LOCALIZE_PRESERVE_FACE; ASM_SIMP_TAC[FAN_DART_DARTS]; DISCH_THEN (ASSUME_TAC o SYM); FIRST_ASSUM ( fun x -> PAT_ONCE_REWRITE_TAC `\x. c = a UNION x ` [GSYM x]); PAT_ONCE_REWRITE_TAC `\x. c = a UNION x ` [ENF_IMAGE_ITSELF]; ASM_REWRITE_TAC[GSYM IMAGE_o]; MP_TAC2 FAN_FACE_GT1_IMAGE_EE_OF_HYP; DOWN THEN DOWN; FIRST_X_ASSUM (SUBST1_TAC o SYM); ASM_SIMP_TAC[ARITH_RULE` 2 < a ==> 1 < a `]; STRIP_TAC; MP_TAC2 CARD_GT1_EE_OF_HYP_E_PRIME_EQ; ASM_SIMP_TAC[FAN_DART_DARTS]; DOWN THEN DOWN THEN DOWN THEN PHA THEN REMOVE_TAC; FIRST_X_ASSUM (SUBST1_TAC o SYM); ASM_SIMP_TAC[ARITH_RULE` 2 < c ==> 1 < c`]; NHANH IDE_ON_S_IMP_SAME_IMAGE; SIMP_TAC[ETA_AX]; STRIP_TAC; MATCH_MP_TAC (MESON[]` a = x ==> f a = f x `); MATCH_MP_TAC (MESON[]` a = x ==> IMAGE a S = IMAGE x S `); UNDISCH_TAC `FAN (v:real^3,v_prime V FF,e_prime E FF) `; NHANH FIRST_AAUHTVE2; ASM_REWRITE_TAC[]; ABBREV_TAC ` e = ee_of_hyp (v:real^3,v_prime V FF,e_prime E FF) `; ABBREV_TAC ` f = ff_of_hyp (v:real^3,v_prime V FF,e_prime E FF) `; ASM_REWRITE_TAC[]; NHANH (MESON[]` e o x = I /\ e o e = I ==> e o e o x = e o I `); REWRITE_TAC[I_O_ID; o_ASSOC]; PHA; REWRITE_TAC[MESON[]` x = y /\ (x o t ) o i = p <=> x = y /\ (y o t ) o i = p`; I_O_ID]; SIMP_TAC[EQ_SYM_EQ]]);; let LVDUCXU = prove_by_refinement (` FAN ((vec 0):real^3,V,E) /\ x IN darts_of_hyp E V /\ FF = face (hypermap (HYP (vec 0,V,E))) x ==> FF = face (hypermap (HYP (vec 0,v_prime V FF,e_prime E FF))) x /\ (! x. x IN FF ==> azim_in_fan x E = azim_in_fan x (e_prime E FF ) /\ wedge_in_fan_ge x E = wedge_in_fan_ge x (e_prime E FF) /\ wedge_in_fan_gt x E = wedge_in_fan_gt x (e_prime E FF)) /\ ( 2 < CARD FF /\ simple_hypermap (hypermap (HYP (vec 0,v_prime V FF,e_prime E FF))) ==> local_fan (v_prime V FF,e_prime E FF,FF) ) `, [STRIP_TAC; CONJ_TAC; MATCH_MP_TAC LOCALIZE_PRESERVE_FACE; ASM_REWRITE_TAC[]; ASM_SIMP_TAC[FAN_DART_DARTS]; CONJ_TAC; GEN_TAC THEN STRIP_TAC; CONJ_TAC; MATCH_MP_TAC (SPEC `x:real^3 # real^3 ` (GEN `v:real^3 # real^3 ` AZIM_IN_FAN_EQ_IZIM_E_PRIME)); ASM_REWRITE_TAC[]; ASM_SIMP_TAC[FAN_DART_DARTS]; MATCH_MP_TAC (SPEC `x:real^3 # real^3 ` (GEN `v:real^3 # real^3 ` WEDGE_IN_FAN_EQ_WITH_E_PRIME)); ASM_REWRITE_TAC[]; ASM_SIMP_TAC[FAN_DART_DARTS]; REWRITE_TAC[local_fan]; STRIP_TAC; LET_TAC; MP_TAC2 ( SPEC `(vec 0): real^3 ` (GEN `v:real^3` IMP_FAN_V_PRIME_E_PRIME)); EXISTS_TAC `x:real^3 # real^3 `; REWRITE_TAC[]; ASM_SIMP_TAC[FAN_DART_DARTS]; STRIP_TAC; CONJ_TAC; EXISTS_TAC ` x:real^3 # real^3 `; FIRST_X_ASSUM (SUBST1_TAC o SYM); DOWN THEN SIMP_TAC[FAN_DART_DARTS]; STRIP_TAC; MP_TAC2 ( ISPEC `x:real^3 # real^3 ` (GEN `x:A#A` IN_DARTS_FF_IMP_DARTS_E_PRIME_V_PRIME)); ASM_SIMP_TAC[GSYM FAN_DART_DARTS; face_refl]; DISCH_TAC THEN MATCH_MP_TAC LOCALIZE_PRESERVE_FACE; ASM_SIMP_TAC[FAN_DART_DARTS]; EXPAND_TAC "H"; MATCH_MP_TAC DIH_K_HYP_E_PRIME; ASM_REWRITE_TAC[]]);; end;; (* ______________________________________________________________ _________________________________________________________________ flyspeck_needs "general/update_database_310.ml";; *)