(* ========================================================================== *) (* FLYSPECK - BOOK FORMALIZATION *) (* *) (* Chapter: Trigonometry *) (* Author: Jason Rute, Thomas C. Hales *) (* Date: 2010-02-09 *) (* ========================================================================== *) module type Trigonometry1_type = sig (* ADD *) end;; (* Formal Proofs Blueprint Chapter on Trigonometry some proofs copied from John Harrison. *) flyspeck_needs "general/sphere.hl";; module Trigonometry1 (* : Trigonometry1_type *) = struct let atn2 = Sphere.atn2;; let arclength = Sphere.arclength;; let ups_x = Sphere.ups_x;; prioritize_real();; (* This is close to CIRCLE_SINCOS *) let atn2_spec_t = `!x y. ?r. ((-- pi < atn2(x, y)) /\ (atn2(x,y) <= pi) /\ (x = r* (cos(atn2(x,y)))) /\ (y = r* (sin (atn2( x, y)))) /\ (&0 <= r))`;; let acs_atn2_t = `!y. (-- &1 <= y /\ y <= &1) ==> (acs y = pi/(&2) - atn2(sqrt(&1 - y pow 2),y))`;; let arcVarc_t = `!u v w:real^3. ~(u=v) /\ ~(u=w) ==> arcV u v w = arclength (dist( u, v)) (dist( u, w)) (dist( v, w))`;; let law_of_cosines_t = `!a b c. (&0 < a) /\ (&0 < b) /\ (&0 <= c) /\ (c <= a + b) /\ (a <= b + c) /\ (b <= c + a) ==> ((c pow 2) = (a pow 2) + (b pow 2) - &2 * a * b * (cos(arclength a b c)))`;; let law_of_sines_t = `!a b c. (&0 < a) /\ (&0 < b) /\ (&0 <= c) /\ (c <= a + b) /\ (a <= b + c) /\ (b <= c + a) ==> (&2 * a * b * sin (arclength a b c) = sqrt(ups_x (a pow 2) (b pow 2) (c pow 2)))`;; let cross_mag_t = `!u v. norm (u cross v) = (norm u) * (norm v) * sin(arcV (vec 0) u v)`;; let cross_skew_t = `!u v. (u cross v) = -- (v cross u)`;; let cross_triple_t = `!u v w. (u cross v) dot w = (v cross w) dot u`;; (* law of cosines *) let spherical_loc_t = `!v0 va vb vc:real^3. ~(collinear {v0,va,vc}) /\ ~(collinear {v0,vb,vc}) ==> ( let gamma = dihV v0 vc va vb in let a = arcV v0 vb vc in let b = arcV v0 va vc in let c = arcV v0 va vb in (cos(gamma) = (cos(c) - cos(a)*cos(b))/(sin(a)*sin(b))))`;; let spherical_loc2_t = `!v0 va vb vc:real^3. ~(collinear {v0,va,vc}) /\ ~(collinear {v0,vb,vc}) ==> ( let alpha = dihV v0 va vb vc in let beta = dihV v0 vb va vc in let gamma = dihV v0 vc vb va in let c = arcV v0 va vb in (cos(c) = (cos(gamma) + cos(alpha)*cos(beta))/(sin(alpha)*sin(beta))))`;; let dih_formula_t = `!v0 v1 v2 v3:real^3. ~(collinear {v0,v1,v2}) /\ ~(collinear {v0,v1,v3}) ==> ( let (x1,x2,x3,x4,x5,x6) = xlist v0 v1 v2 v3 in (dihV v0 v1 v2 v3 = dih_x x1 x2 x3 x4 x5 x6) )`;; let dih_x_acs_t = `!x1 x2 x3 x4 x5 x6. (&0 < ups_x x1 x2 x6) /\ (&0 < ups_x x1 x3 x5) /\ (&0 <= delta_x x1 x2 x3 x4 x5 x6) /\ (&0 <= x1) ==> dih_x x1 x2 x3 x4 x5 x6 = acs ((delta_x4 x1 x2 x3 x4 x5 x6)/ ((sqrt (ups_x x1 x2 x6)) * (sqrt (ups_x x1 x3 x5))))`;; let beta_cone_t = `!v0 v1 v2 v3:real^3. ~(collinear {v0,v1,v2}) /\ ~(collinear {v0,v1,v3}) /\ (dihV v0 v3 v1 v2 = pi/(&2)) ==> (dihV v0 v1 v2 v3 = beta (arcV v0 v1 v3) (arcV v0 v1 v2))`;; let euler_triangle_t = `!v0 v1 v2 v3:real^3. let p = euler_p v0 v1 v2 v3 in let (x1,x2,x3,x4,x5,x6) = xlist v0 v1 v2 v3 in let alpha1 = dihV v0 v1 v2 v3 in let alpha2 = dihV v0 v2 v3 v1 in let alpha3 = dihV v0 v3 v1 v2 in let d = delta_x x1 x2 x3 x4 x5 x6 in ((&0 < d) ==> (alpha1 + alpha2 + alpha3 - pi = pi - &2 * atn2(sqrt(d), (&2 * p))))`;; let polar_cycle_rotate_t = `!V psi u f. (!x y. f (x,y) = (x*cos psi + y*sin psi, -- x*sin psi + y*cos psi)) /\ FINITE V /\ V u ==> (polar_cycle (IMAGE f V) (f u) = f (polar_cycle V u))`;; let thetaij_t = `!theta1 theta2 k12 k21 theta12 theta21. (&0 <= theta1) /\ (theta1 < &2 * pi) /\ (&0 <= theta2) /\ (theta2 < &2 * pi) /\ (theta12 = theta2 - theta1 + &2 * pi * (&k12)) /\ (theta21 = theta1 - theta2 + &2 * pi * (&k21)) /\ (&0 <= theta12) /\ (theta12 < &2 * pi) /\ (&0 <= theta21) /\ (theta21 < &2 * pi) ==> ((theta12+theta21) = (if (theta1=theta2) then (&0) else (&2 * pi)))`;; (* JMR: Changed `polar_angle (FST u) (SND u)` to `Arg(complex u)` *) let thetapq_wind_t = `!W n thetapq kpq. (!x y. (W (x,y) ==> (~(x= &0) /\ ~(y = &0)))) /\ (W HAS_SIZE n) /\ (!u v. W u /\ W v ==> ((thetapq u v = Arg(complex v) - Arg(complex u) + &2 * pi * kpq u v) /\ (&0 <= thetapq u v) /\ (thetapq u v < &2 * pi))) ==> ((!u i j. (W u /\ (0 <= i) /\ (i <= j) /\ (j < n)) ==> thetapq u (ITER i (polar_cycle W) u) + thetapq (ITER i (polar_cycle W) u) (ITER j (polar_cycle W) u) = thetapq u (ITER j (polar_cycle W) u)) /\ ((!u v. (W u /\ W v) ==> (Arg(complex u) = Arg(complex v))) \/ (!u. (W u) ==> (sum(0 .. n-1) (\i. thetapq (ITER i (polar_cycle W) u) (ITER (SUC i) (polar_cycle W) u)) = &2 * pi)) ))`;; let zenith_t = `!u v w:real^3. ~(u=v) /\ ~(w = v) ==> (?u' r phi e3. (phi = arcV v u w) /\ (r = dist( u, v)) /\ ((dist( w, v)) % e3 = (w-v)) /\ ( u' dot e3 = &0) /\ (u = v + u' + (r*cos(phi)) % e3))`;; (* spherical_coord_t deprecated, replaced with Harrison's SPHERICAL_COORDINATES theorem, which is worded slightly differently. *) let polar_coord_zenith_t = `!u v w u' n. ~(collinear {u,v,w}) /\ (aff {u,v,w} u') /\ ~(u' = v) /\ (n = (w - v) cross (u - v)) ==> (arcV v (v + n) u' = pi/ (&2))`;; let azim_pair_t = `!v w w1 w2. let a1 = azim v w w1 w2 in let a2 = azim v w w2 w1 in (cyclic_set {w1,w2} v w) ==> (a1 + a2 = (if (a1 = &0) then (&0) else (&2 * pi)))`;; let azim_cycle_sum_t = `!W v w n. (cyclic_set W v w) /\ (W HAS_SIZE n) ==> (!p i j. (W p /\ (0 <= i) /\ (i <= j) /\ (j < n)) ==> ((!q. W q ==> (azim v w p q = &0) ) \/ (sum(0 .. n-1) (\i. azim v w (ITER i (azim_cycle W v w) p) (ITER (SUC i) (azim_cycle W v w) p)) = &2 * pi )))`;; let dih_azim_t = `!v w v1 v2. ~(collinear {v,w,v1}) /\ ~(collinear {v,w,v2}) ==> (cos(azim v w v1 v2) = cos(dihV v w v1 v2))`;; let sph_triangle_ineq_t = `!p u v w:real^3. ~(collinear {p,u,w}) /\ ~(collinear {p,u,v}) /\ ~(collinear {p,v,w}) ==> (arcV p u w <= arcV p u v + arcV p v w)`;; let sph_triangle_ineq_sum_t = `!p:real^3 u r. (!i. (i < r) ==> ~(collinear {p,u i, u (SUC i)})) /\ ~(collinear {p,u 0, u r}) ==> (arcV p (u 0) (u r) <= sum(0 .. r-1) (\i. arcV p (u i) (u (SUC i))))`;; let azim_t = `!v w w1 w2 e1 e2 e3. ?psi h1 h2 r1 r2. ~collinear {v, w, w1} /\ ~collinear {v, w, w2} /\ orthonormal e1 e2 e3 /\ (dist( w, v) % e3 = w - v) ==> &0 <= azim v w w1 w2 /\ azim v w w1 w2 < &2 * pi /\ &0 < r1 /\ &0 < r2 /\ w1 = (r1 * cos psi) % e1 + (r1 * sin psi) % e2 + h1 % (w - v) /\ (w2 = (r2 * cos (psi + azim v w w1 w2)) % e1 + (r2 * sin (psi + azim v w w1 w2)) % e2 + h2 % (w - v))`;; (* signature for trig theorems. This is the list of theorems that should be provided by an implementation of the blueprint on trig. The signature can be extended, but care needs to made in removing anything, because it may create incompatibilities with other pieces of code. *) (* In every case, there is a term giving the precise theorem to be proved *) module type Trigsig = sig val atn2_spec : thm (* atn2_spec_t *) val acs_atn2: thm (* acs_atn2_t *) val arcVarc : thm (* arcVarc_t *) val law_of_cosines : thm (* law_of_cosines_t *) val law_of_sines : thm (* law_of_sines_t *) val cross_mag : thm (* cross_mag_t *) val cross_skew : thm (* cross_skew_t *) val cross_triple : thm (* cross_triple_t *) val spherical_loc : thm (* spherical_loc_t *) val spherical_loc2 : thm (* spherical_loc2_t *) val dih_formula : thm (* dih_formula_t *) val dih_x_acs : thm (* dih_x_acs_t *) val beta_cone : thm (* beta_cone_t *) val euler_triangle : thm (* euler_triangle_t *) (* val polar_coords : thm (* polar_coords_t *) *) val polar_cycle_rotate : thm (* polar_cycle_rotate_t *) val thetaij : thm (* thetaij_t *) val thetapq_wind : thm (* thetapq_wind_t *) val zenith : thm (* zenith_t *) (* val spherical_coord : thm (* spherical_coord_t *) *) val polar_coord_zenith : thm (* polar_coord_zenith_t *) val azim_pair : thm (* azim_pair_t *) val azim_cycle_sum : thm (* azim_cycle_sum_t *) val dih_azim : thm (* dih_azim_t *) val sph_triangle_ineq : thm (* sph_triangle_ineq_t *) val sph_triangle_ineq_sum : thm (* sph_triangle_ineq_sum_t *) val azim : thm (* azim_t *) end;; (* Here is a single axiom that permits a quick implementation of the module with the given signature. The axiom can be used so that the proofs in different chapters can proceed independently. *) (* let trig_term_list = new_definition (mk_eq (`trig_term:bool`, (list_mk_conj [ atn2_spec_t ; acs_atn2_t ; arcVarc_t ; law_of_cosines_t ; law_of_sines_t ; cross_mag_t ; cross_skew_t ; cross_triple_t ; spherical_loc_t ; spherical_loc2_t ; dih_formula_t ; dih_x_acs_t ; beta_cone_t ; euler_triangle_t ; polar_cycle_rotate_t ; thetaij_t ; thetapq_wind_t ; zenith_t ; polar_coord_zenith_t ; azim_pair_t ; azim_cycle_sum_t ; dih_azim_t ; sph_triangle_ineq_t ; sph_triangle_ineq_sum_t ; azim_t; ])));; *) (* ---------------------------------------------------------------------- *) (* These are theorems proved in HOL Light, but not in the *) (* Multivariate files. Unless noted, all proofs by John Harrison. *) (* ---------------------------------------------------------------------- *) (* REAL_LE_POW_2 is in HOL-Light Examples/transc.ml. *) (* Also called REAL_LE_SQUARE_POW in Examples/analysis.ml. *) let REAL_LE_POW_2 = prove (`!x. &0 <= x pow 2`, REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE]);; (* REAL_DIV_MUL2 is in HOL-Light Examples/analysis.ml. *) (* Proof in now trivial *) let REAL_DIV_MUL2 = REAL_FIELD `!x z. ~(x = &0) /\ ~(z = &0) ==> !y. y / z = (x * y) / (x * z)`;; (* ---------------------------------------------------------------------- *) (* Useful theorems about real numbers. *) (* ---------------------------------------------------------------------- *) let REAL_LT_MUL_3 = prove (`!x y z. &0 < x /\ &0 < y /\ &0 < z ==> &0 < x * y * z`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC [] THEN MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC []);; let SQRT_MUL_L = prove (`!x y. &0 <= x /\ &0 <= y ==> x * sqrt y = sqrt(x pow 2 * y)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC [REAL_LE_POW_2; SQRT_MUL; POW_2_SQRT]);; let SQRT_MUL_R = prove (`!x y. &0 <= x /\ &0 <= y ==> sqrt x * y = sqrt(x * y pow 2)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC [REAL_LE_POW_2; SQRT_MUL; POW_2_SQRT]);; (* ---------------------------------------------------------------------- *) (* Basic trig results not included in Examples/transc.ml *) (* ---------------------------------------------------------------------- *) (* Next two proofs similar to TAN_PERIODIC_NPI in *) (* Examples/transc.ml by John Harrison *) (* They are no longer needed, but may be useful later. *) let SIN_PERIODIC_N2PI = prove (`!x n. sin(x + &n * (&2 * pi)) = sin(x)`, GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_RID] THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_ADD_RDISTRIB; REAL_MUL_LID] THEN ASM_REWRITE_TAC[REAL_ADD_ASSOC; SIN_PERIODIC]);; let COS_PERIODIC_N2PI = prove (`!x n. cos(x + &n * (&2 * pi)) = cos(x)`, GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_RID] THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_ADD_RDISTRIB; REAL_MUL_LID] THEN ASM_REWRITE_TAC[REAL_ADD_ASSOC; COS_PERIODIC]);; let CIRCLE_SINCOS_PI = prove (`!x y. (x pow 2 + y pow 2 = &1) ==> ?t. (--pi < t /\ t <= pi) /\ ((x = cos(t)) /\ (y = sin(t)))`, ASM_MESON_TAC [CIRCLE_SINCOS; SINCOS_PRINCIPAL_VALUE]);; let SIN_NEGPOS_PI = prove (`!x. (--pi < x /\ x <= pi) ==> (sin x < &0 <=> --pi < x /\ x < &0) /\ (sin x = &0 <=> (x = &0 \/ x = pi)) /\ (&0 < sin x <=> &0 < x /\ x < pi)`, STRIP_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `if (sin x < &0) then (sin x < &0 <=> --pi < x /\ x < &0) else if (sin x = &0) then (sin x = &0 <=> (x = &0 \/ x = pi)) else (&0 < sin x <=> &0 < x /\ x < pi)` MP_TAC THENL [ SUBGOAL_TAC "a" `--pi < x /\ x < &0 ==> sin x < &0` [ MP_TAC (REWRITE_RULE [SIN_NEG] (SPEC `--x:real` SIN_POS_PI)) THEN REAL_ARITH_TAC ] THEN SUBGOAL_TAC "b" `x = &0 ==> sin x = &0` [ STRIP_TAC THEN ASM_REWRITE_TAC [SIN_0] ] THEN SUBGOAL_TAC "c" `x = pi ==> sin x = &0` [ STRIP_TAC THEN ASM_REWRITE_TAC [SIN_PI] ] THEN LABEL_TAC "d" (SPEC `x:real` SIN_POS_PI) THEN REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC; REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC ]);; let COS_NEGPOS_PI = prove (`!x. (--pi < x /\ x <= pi) ==> (cos x < &0 <=> (--pi < x /\ x < --(pi / &2)) \/ (pi / &2 < x /\ x <= pi)) /\ (cos x = &0 <=> (x = --(pi / &2) \/ x = pi / &2)) /\ (&0 < cos x <=> --(pi / &2) < x /\ x < pi / &2)`, STRIP_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `if (cos x < &0) then (cos x < &0 <=> (--pi < x /\ x < --(pi / &2)) \/ (pi / &2 < x /\ x <= pi)) else if (cos x = &0) then (cos x = &0 <=> (x = --(pi / &2) \/ x = pi / &2)) else (&0 < cos x <=> --(pi / &2) < x /\ x < pi / &2)` MP_TAC THENL [ SUBGOAL_TAC "a" `--pi < x /\ x < --(pi / &2) ==> cos x < &0` [ MP_TAC (REWRITE_RULE [COS_PERIODIC_PI] (SPEC `x + pi:real` COS_POS_PI2)) THEN REAL_ARITH_TAC ] THEN SUBGOAL_TAC "b" `pi / &2 < x /\ x <= pi ==> cos x < &0` [ MP_TAC (REWRITE_RULE [SIN_NEG; GSYM COS_SIN] (SPEC `--(pi / &2 - x)` SIN_POS_PI2)) THEN SUBGOAL_TAC "b1" `x = pi ==> cos x < &0` [ STRIP_TAC THEN ASM_REWRITE_TAC [COS_PI; REAL_ARITH `&0 < &1`] THEN REAL_ARITH_TAC ] THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC ] THEN SUBGOAL_TAC "c" `x = --(pi / &2) ==> cos x = &0` [ STRIP_TAC THEN ASM_REWRITE_TAC [COS_NEG; COS_PI2] ] THEN SUBGOAL_TAC "d" `x = pi / &2 ==> cos x = &0` [ STRIP_TAC THEN ASM_REWRITE_TAC [COS_PI2] ] THEN LABEL_TAC "e" (SPEC `x:real` COS_POS_PI) THEN REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC; REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC ]);; (* ----------------------------------------------------------------------- *) (* Theory of atan_2 function. See sphere.hl for the definiton. *) (* ----------------------------------------------------------------------- *) (* lemma:atn2_spec *) let dist_lemma = prove (`!x y. ~(x = &0) \/ ~(y = &0) ==> (x / sqrt(x pow 2 + y pow 2)) pow 2 + (y / sqrt(x pow 2 + y pow 2)) pow 2 = &1 /\ &0 < sqrt(x pow 2 + y pow 2)`, STRIP_TAC THEN STRIP_TAC THEN STRIP_TAC THEN SUBGOAL_TAC "sum_pos" `&0 < x pow 2 + y pow 2 /\ &0 <= x pow 2 + y pow 2` [ MP_TAC (SPEC `x:real` REAL_LE_POW_2) THEN MP_TAC (SPEC `y:real` REAL_LE_POW_2) THEN IMP_RES_THEN MP_TAC (SPECL [`x:real`; `2`] REAL_POW_NZ) THEN IMP_RES_THEN MP_TAC (SPECL [`y:real`; `2`] REAL_POW_NZ) THEN REAL_ARITH_TAC ] THEN POP_ASSUM MP_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC [REAL_POW_DIV; SQRT_POW_2; SQRT_POS_LT] THEN POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD);; let ATAN2_EXISTS = prove (`!x y. ?t. (--pi < t /\ t <= pi) /\ x = sqrt(x pow 2 + y pow 2) * cos t /\ y = sqrt(x pow 2 + y pow 2) * sin t`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `(x = &0) /\ (y = &0)` THENL [ ASM_REWRITE_TAC [(SPEC `2` REAL_POW_ZERO)] THEN NUM_REDUCE_TAC THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC [SQRT_0] THEN EXISTS_TAC `pi` THEN MP_TAC PI_POS THEN REAL_ARITH_TAC ; IMP_RES_THEN STRIP_ASSUME_TAC (REWRITE_RULE [TAUT `(~A \/ ~B) <=> ~(A /\ B)`] dist_lemma) THEN IMP_RES_THEN STRIP_ASSUME_TAC CIRCLE_SINCOS_PI THEN POP_ASSUM (MP_TAC o GSYM) THEN POP_ASSUM (MP_TAC o GSYM) THEN STRIP_TAC THEN STRIP_TAC THEN EXISTS_TAC `t:real` THEN ASM_REWRITE_TAC [] THEN POP_ASSUM (K ALL_TAC) THEN POP_ASSUM (K ALL_TAC) THEN POP_ASSUM (K ALL_TAC) THEN POP_ASSUM (K ALL_TAC) THEN POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD ]);; (* The official Kepler definition (atn2) is different, but it was easier *) (* to start with this one and prove it is equivalent. *) let ATAN2_TEMP_DEF = new_definition `atan2_temp (x,y) = if (x = &0 /\ y = &0) then pi else @t. (--pi < t /\ t <= pi) /\ x = sqrt(x pow 2 + y pow 2) * cos t /\ y = sqrt(x pow 2 + y pow 2) * sin t`;; let ATAN2_TEMP = prove (`!x y. (--pi < atan2_temp (x,y) /\ atan2_temp (x,y) <= pi) /\ x = sqrt(x pow 2 + y pow 2) * cos (atan2_temp (x,y)) /\ y = sqrt(x pow 2 + y pow 2) * sin (atan2_temp (x,y))`, STRIP_TAC THEN STRIP_TAC THEN REWRITE_TAC [ATAN2_TEMP_DEF] THEN COND_CASES_TAC THENL [ ASM_REWRITE_TAC [(SPEC `2` REAL_POW_ZERO)] THEN NUM_REDUCE_TAC THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC [SQRT_0] THEN MP_TAC PI_POS THEN REAL_ARITH_TAC ; REWRITE_TAC [(SELECT_RULE (SPECL [`x:real`;`y:real`] ATAN2_EXISTS))]]);; let ATAN2_TEMP_SPEC = prove (`!x y. ?r. ((-- pi < atan2_temp(x, y)) /\ (atan2_temp(x,y) <= pi) /\ (x = r* (cos(atan2_temp(x,y)))) /\ (y = r* (sin (atan2_temp( x, y)))) /\ (&0 <= r))`, STRIP_TAC THEN STRIP_TAC THEN EXISTS_TAC `sqrt(x pow 2 + y pow 2)` THEN REWRITE_TAC [ATAN2_TEMP] THEN SUBGOAL_TAC "sum_pos" `&0 <= x pow 2 + y pow 2` [ MP_TAC (SPEC `x:real` REAL_LE_POW_2) THEN MP_TAC (SPEC `y:real` REAL_LE_POW_2) THEN REAL_ARITH_TAC ] THEN MP_TAC (SPEC `x pow 2 + y pow 2` SQRT_POS_LE) THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);; let ATAN2_TEMP_BREAKDOWN = prove (`!x y. (&0 < x ==> atan2_temp(x,y) = atn(y / x)) /\ (&0 < y ==> atan2_temp(x,y) = pi / &2 - atn(x / y)) /\ (y < &0 ==> atan2_temp(x,y) = --(pi / &2) - atn(x / y)) /\ (y = &0 /\ x <= &0 ==> atan2_temp(x,y) = pi)`, REPEAT GEN_TAC THEN REPEAT CONJ_TAC THENL [ STRIP_ASSUME_TAC (SPECL [`x:real`;`y:real`] ATAN2_TEMP) THEN ABBREV_TAC `t = atan2_temp (x,y)` THEN ABBREV_TAC `r = sqrt (x pow 2 + y pow 2)` THEN STRIP_TAC THEN SUBGOAL_TAC "r_pos" `&0 < r` [ EXPAND_TAC "r" THEN MP_TAC (SPECL [`x:real`;`y:real`] dist_lemma) THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC] THEN SUBGOAL_TAC "tan" `(r * sin t) / (r * cos t) = tan t` [ REWRITE_TAC [tan] THEN POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD ] THEN ASM_REWRITE_TAC [] THEN MATCH_MP_TAC (GSYM TAN_ATN) THEN POP_ASSUM (K ALL_TAC) THEN POP_ASSUM (fun th -> POP_ASSUM MP_TAC THEN ASSUME_TAC th) THEN ASM_SIMP_TAC [GSYM COS_NEGPOS_PI; REAL_LT_MUL_EQ] THEN REAL_ARITH_TAC ; STRIP_ASSUME_TAC (SPECL [`x:real`;`y:real`] ATAN2_TEMP) THEN ABBREV_TAC `t = atan2_temp (x,y)` THEN ABBREV_TAC `r = sqrt (x pow 2 + y pow 2)` THEN STRIP_TAC THEN SUBGOAL_TAC "r_pos" `&0 < r` [ EXPAND_TAC "r" THEN MP_TAC (SPECL [`x:real`;`y:real`] dist_lemma) THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC] THEN SUBGOAL_TAC "tan" `(r * cos t) / (r * sin t) = inv (tan t)` [ REWRITE_TAC [tan] THEN POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD ] THEN ASM_REWRITE_TAC [GSYM TAN_COT] THEN SUBGOAL_THEN `pi / &2 - t = atn (tan (pi / &2 - t))` (fun th -> REWRITE_TAC [GSYM th] THEN REAL_ARITH_TAC) THEN MATCH_MP_TAC (GSYM TAN_ATN) THEN SUBGOAL_THEN `&0 < t /\ t < pi` (fun th -> MP_TAC th THEN REAL_ARITH_TAC) THEN POP_ASSUM (K ALL_TAC) THEN POP_ASSUM (fun th -> POP_ASSUM MP_TAC THEN ASSUME_TAC th) THEN ASM_SIMP_TAC [GSYM SIN_NEGPOS_PI; REAL_LT_MUL_EQ] THEN REAL_ARITH_TAC ; STRIP_ASSUME_TAC (SPECL [`x:real`;`y:real`] ATAN2_TEMP) THEN ABBREV_TAC `t = atan2_temp (x,y)` THEN ABBREV_TAC `r = sqrt (x pow 2 + y pow 2)` THEN STRIP_TAC THEN SUBGOAL_TAC "r_pos" `&0 < r` [ EXPAND_TAC "r" THEN MP_TAC (SPECL [`x:real`;`y:real`] dist_lemma) THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC] THEN SUBGOAL_TAC "tan" `(r * cos t) / (r * sin t) = --inv (tan (--t))` [ REWRITE_TAC [TAN_NEG; REAL_INV_NEG] THEN REWRITE_TAC [tan; REAL_NEG_NEG] THEN POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD ] THEN ASM_REWRITE_TAC [GSYM TAN_COT; ATN_NEG] THEN SUBGOAL_THEN `pi / &2 + t = atn (tan (pi / &2 + t))` (fun th -> REWRITE_TAC [REAL_ARITH `pi / &2 - --t = pi / &2 + t`;GSYM th] THEN REAL_ARITH_TAC) THEN MATCH_MP_TAC (GSYM TAN_ATN) THEN SUBGOAL_THEN `--pi < t /\ t < &0` (fun th -> MP_TAC th THEN REAL_ARITH_TAC) THEN POP_ASSUM (K ALL_TAC) THEN POP_ASSUM (fun th -> POP_ASSUM (MP_TAC o (REWRITE_RULE [GSYM REAL_NEG_GT0])) THEN ASSUME_TAC th) THEN ASM_SIMP_TAC [GSYM SIN_NEGPOS_PI; REAL_LT_MUL_EQ; REAL_NEG_RMUL] THEN REAL_ARITH_TAC ; ASM_CASES_TAC `x = &0` THENL [ STRIP_TAC THEN ASM_REWRITE_TAC [ATAN2_TEMP_DEF]; ALL_TAC] THEN STRIP_ASSUME_TAC (SPECL [`x:real`;`y:real`] ATAN2_TEMP) THEN ABBREV_TAC `t = atan2_temp (x,y)` THEN ABBREV_TAC `r = sqrt (x pow 2 + y pow 2)` THEN STRIP_TAC THEN SUBGOAL_TAC "r_pos" `&0 < r` [ EXPAND_TAC "r" THEN MP_TAC (SPECL [`x:real`;`y:real`] dist_lemma) THEN POP_ASSUM MP_TAC THEN FIND_ASSUM MP_TAC `~(x = &0)` THEN REAL_ARITH_TAC ] THEN SUBGOAL_TAC "sin_cos" `sin t = &0 /\ cos t < &0 ==> t = pi` [ ASM_SIMP_TAC [SIN_NEGPOS_PI; COS_NEGPOS_PI] THEN MP_TAC PI_POS THEN REAL_ARITH_TAC ] THEN POP_ASSUM MATCH_MP_TAC THEN SUBGOAL_TAC "x_pos" `&0 < --x` [ FIND_ASSUM MP_TAC `x <= &0` THEN FIND_ASSUM MP_TAC `~(x = &0)` THEN REAL_ARITH_TAC ] THEN POP_ASSUM MP_TAC THEN POP_ASSUM (fun th -> POP_ASSUM (K ALL_TAC) THEN POP_ASSUM MP_TAC THEN ASSUME_TAC th) THEN ASM_SIMP_TAC [REAL_LT_MUL_EQ; REAL_NEG_RMUL] THEN POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD]);; let ATAN2_TEMP_ALT = prove (`!x y. atan2_temp (x,y) = if ( abs y < x ) then atn(y / x) else (if (&0 < y) then ((pi / &2) - atn(x / y)) else (if (y < &0) then (-- (pi/ &2) - atn (x / y)) else ( pi )))`, STRIP_TAC THEN STRIP_TAC THEN COND_CASES_TAC THENL [ SUBGOAL_THEN `&0 < x` (fun th -> SIMP_TAC [th; ATAN2_TEMP_BREAKDOWN]) THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; COND_CASES_TAC THENL [ SUBGOAL_THEN `&0 < y` (fun th -> SIMP_TAC [th; ATAN2_TEMP_BREAKDOWN]) THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; COND_CASES_TAC THENL [ SUBGOAL_THEN `y < &0` (fun th -> SIMP_TAC [th; ATAN2_TEMP_BREAKDOWN]) THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; SUBGOAL_THEN `y = &0` (fun th -> POP_ASSUM (K ALL_TAC) THEN POP_ASSUM (K ALL_TAC) THEN ASSUME_TAC th) THENL [ POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC ; SUBGOAL_THEN `x <= &0` (fun th -> ASM_SIMP_TAC [th; ATAN2_TEMP_BREAKDOWN]) THEN POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC ]]]]);; (* Show that the working def and the official def are equivalent. *) let ATAN_TEMP_ATN2 = prove (`atn2 = atan2_temp`, REWRITE_TAC [FORALL_PAIR_THM; FUN_EQ_THM; atn2; ATAN2_TEMP_ALT]);; (* These three and the definition should suffice as the basic *) (* specifications for atn2. No more need for atan2_temp.*) let atn2_spec = prove (atn2_spec_t, REWRITE_TAC [ATAN_TEMP_ATN2; ATAN2_TEMP_SPEC]);; let ATN2_BREAKDOWN = prove (`!x y. (&0 < x ==> atn2 (x,y) = atn(y / x)) /\ (&0 < y ==> atn2 (x,y) = pi / &2 - atn(x / y)) /\ (y < &0 ==> atn2 (x,y) = --(pi / &2) - atn(x / y)) /\ (y = &0 /\ x <= &0 ==> atn2(x,y) = pi)`, REWRITE_TAC [ATAN_TEMP_ATN2; ATAN2_TEMP_BREAKDOWN]);; let ATN2_CIRCLE = prove (`!x y. (--pi < atan2_temp (x,y) /\ atan2_temp (x,y) <= pi) /\ x = sqrt(x pow 2 + y pow 2) * cos (atan2_temp (x,y)) /\ y = sqrt(x pow 2 + y pow 2) * sin (atan2_temp (x,y))`, REWRITE_TAC [ATAN_TEMP_ATN2; ATAN2_TEMP]);; (* Useful properties of atn2. *) let ATN2_0_1 = prove (`atn2 (&0, &1) = pi / &2`, ASSUME_TAC (REAL_ARITH `&0 < &1`) THEN ASM_SIMP_TAC [ATN2_BREAKDOWN] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC [ATN_0] THEN REAL_ARITH_TAC);; let ATN2_0_NEG_1 = prove (`atn2 (&0, --(&1)) = --(pi / &2)`, ASSUME_TAC (REAL_ARITH `--(&1) < &0`) THEN ASM_SIMP_TAC [ATN2_BREAKDOWN] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC [ATN_0] THEN REAL_ARITH_TAC);; let ATN2_LMUL_EQ = prove (`!a x y. &0 < a ==> atn2(a * x, a * y) = atn2 (x, y)`, REPEAT STRIP_TAC THEN STRIP_ASSUME_TAC (REAL_ARITH `&0 < x \/ &0 < y \/ y < &0 \/ (y = &0 /\ x <= &0)`) THENL [ SUBGOAL_TAC "pos_x" `&0 < a * x` [ let th = SPECL [`&0`;`x:real`;`a:real`] REAL_LT_LMUL_EQ in let th2 = REWRITE_RULE [REAL_MUL_RZERO] th in ASM_SIMP_TAC [th2] ] ; SUBGOAL_TAC "pos_y" `&0 < a * y` [ let th = SPECL [`&0`;`y:real`;`a:real`] REAL_LT_LMUL_EQ in let th2 = REWRITE_RULE [REAL_MUL_RZERO] th in ASM_SIMP_TAC [th2] ] ; SUBGOAL_TAC "neg_y" `a * y < &0` [ let th = SPECL [`y:real`;`&0`;`a:real`] REAL_LT_LMUL_EQ in let th2 = REWRITE_RULE [REAL_MUL_RZERO] th in ASM_SIMP_TAC [th2] ] ; SUBGOAL_TAC "other" `a * y = &0 /\ a * x <= &0` [ ASM_REWRITE_TAC [REAL_MUL_RZERO] THEN let th = SPECL [`x:real`;`&0`;`a:real`] REAL_LE_LMUL_EQ in let th2 = REWRITE_RULE [REAL_MUL_RZERO] th in ASM_SIMP_TAC [th2] ] ] THEN let th1 = SPECL [`x:real`;`y:real`] ATN2_BREAKDOWN in let th2 = SPECL [`a * x:real`;`a * y:real`] ATN2_BREAKDOWN in let th3 = REAL_ARITH `!x. (x < &0 \/ &0 < x) ==> ~(&0 = x)` in ASM_SIMP_TAC [th1; th2; th3; GSYM (SPEC `a:real` REAL_DIV_MUL2)] );; let ATN2_RNEG = prove (`!x y. (~(y = &0) \/ &0 < x) ==> atn2(x,--y) = --(atn2(x,y))`, STRIP_TAC THEN STRIP_TAC THEN STRIP_ASSUME_TAC (REAL_ARITH `&0 < x \/ &0 < y \/ y < &0 \/ (y = &0 /\ x <= &0)`) THENL [ ASM_REWRITE_TAC [] ; ASM_SIMP_TAC [REAL_LT_IMP_NE] THEN SUBGOAL_TAC "neg" `--y < &0` [ ASM_REWRITE_TAC [REAL_NEG_LT0] ] ; ASM_SIMP_TAC [REAL_LT_IMP_NE] THEN SUBGOAL_TAC "pos" `&0 < --y` [ ASM_REWRITE_TAC [REAL_NEG_GT0] ] ; ASM_REWRITE_TAC [real_lt] ] THEN let th1 = SPECL [`x:real`;`y:real`] ATN2_BREAKDOWN in let th2 = SPECL [`x:real`;`--y:real`] ATN2_BREAKDOWN in let th3 = REAL_ARITH `(--x)/y = --(x/y)` in let th4 = REAL_FIELD `(y < &0 \/ &0 < y) ==> x / (--y) = --(x/y)` in ASM_SIMP_TAC [th1; th2; th3; th4; ATN_NEG] THEN REAL_ARITH_TAC);; (* lemma:acs_atn2 *) let acs_atn2 = prove (acs_atn2_t, STRIP_TAC THEN ASM_CASES_TAC `y = &1 \/ y = --(&1)` THENL [ POP_ASSUM DISJ_CASES_TAC THENL [ ASM_REWRITE_TAC [] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC [ACS_1; SQRT_0; ATN2_0_1] THEN REAL_ARITH_TAC ; ASM_REWRITE_TAC [] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC [ACS_NEG_1; SQRT_0; ATN2_0_NEG_1] THEN REAL_ARITH_TAC ] ; STRIP_TAC THEN SUBGOAL_TAC "sqrt" `&0 < sqrt (&1 - y pow 2)` [ MATCH_MP_TAC SQRT_POS_LT THEN SUBGOAL_THEN `&0 <= y pow 2 /\ y pow 2 < &1` (fun th -> MP_TAC th THEN REAL_ARITH_TAC) THEN REWRITE_TAC [REAL_LE_POW_2; REAL_ARITH `a < &1 <=> a < &1 pow 2`; GSYM REAL_LT_SQUARE_ABS ] THEN REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC ] THEN ASM_SIMP_TAC [ATN2_BREAKDOWN] THEN MATCH_MP_TAC ACS_ATN THEN REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC ]);; (* ----------------------------------------------------------------------- *) (* Theory of triangles (without vectors). Includes laws of cosines/sines. *) (* ----------------------------------------------------------------------- *) let UPS_X_SQUARES = prove (`!a b c. ups_x (a * a) (b * b) (c * c) = &16 * ((a + b + c) / &2) * (((a + b + c) / &2) - a) * (((a + b + c) / &2) - b) * (((a + b + c) / &2) - c)`, REPEAT STRIP_TAC THEN REWRITE_TAC [ups_x] THEN REAL_ARITH_TAC);; (* Theorems assuming a, b, c are lengths of a triangle (c not 0). *) let TRI_UPS_X_POS = prove (`!a b c. (&0 < a) /\ (&0 < b) /\ (&0 <= c) /\ (c <= a + b) /\ (a <= b + c) /\ (b <= c + a) ==> &0 <= ups_x (a * a) (b * b) (c * c)`, REPEAT STRIP_TAC THEN REWRITE_TAC [UPS_X_SQUARES] THEN REPEAT (MATCH_MP_TAC REAL_LE_MUL THEN STRIP_TAC) THENL [ REAL_ARITH_TAC ; REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC ; SUBGOAL_THEN `&2 * a <= a + b + c` (fun th -> MP_TAC th THEN REAL_ARITH_TAC) THEN REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC ; SUBGOAL_THEN `&2 * b <= a + b + c` (fun th -> MP_TAC th THEN REAL_ARITH_TAC) THEN REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC ; SUBGOAL_THEN `&2 * c <= a + b + c` (fun th -> MP_TAC th THEN REAL_ARITH_TAC) THEN REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC ]);; let TRI_SQUARES_BOUNDS = prove (`!a b c. (&0 < a) /\ (&0 < b) /\ (&0 <= c) /\ (c <= a + b) /\ (a <= b + c) /\ (b <= c + a) ==> --(&1) <= ((a * a) + (b * b) - (c * c)) / (&2 * a * b) /\ ((a * a) + (b * b) - (c * c)) / (&2 * a * b) <= &1`, REPEAT STRIP_TAC THEN SUBGOAL_TAC "2ab_pos" `&0 < &2 * a * b` [ ASM_SIMP_TAC [REAL_LT_MUL_3; REAL_ARITH `&0 < &2`] ] THENL [ SUBGOAL_TAC "abc_square" `c*c <= (a + b) * (a + b)` [ MATCH_MP_TAC (REWRITE_RULE [IMP_IMP] REAL_LE_MUL2) THEN REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC ] THEN ASM_SIMP_TAC [REAL_LE_RDIV_EQ] THEN REMOVE_THEN "abc_square" MP_TAC THEN REAL_ARITH_TAC ; SUBGOAL_TAC "abc_square" `(a - b) * (a - b) <= c*c` [ DISJ_CASES_TAC (REAL_ARITH `a <= b \/ b <= a`) THENL [ SUBST1_TAC (REAL_ARITH `(a-b)*(a-b)=(b-a)*(b-a)`); ALL_TAC ] THEN MATCH_MP_TAC (REWRITE_RULE [IMP_IMP] REAL_LE_MUL2) THEN REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC ] THEN ASM_SIMP_TAC [REAL_LE_LDIV_EQ] THEN REMOVE_THEN "abc_square" MP_TAC THEN REAL_ARITH_TAC ]);; let ATN2_ARCLENGTH = prove (`!a b c. (&0 < a) /\ (&0 < b) /\ (&0 <= c) /\ (c <= a + b) /\ (a <= b + c) /\ (b <= c + a) ==> arclength a b c = pi / &2 - atn2(sqrt(ups_x (a*a) (b*b) (c*c)), (a*a) + (b*b) - (c*c))`, REPEAT STRIP_TAC THEN let th = REAL_ARITH `c * c - a * a - b * b = --(a * a + b * b - c * c)` in REWRITE_TAC [arclength; th; ATN2_RNEG] THEN SUBGOAL_THEN `~(a * a + b * b - c * c = &0) \/ &0 < sqrt(ups_x (a*a) (b*b) (c*c))` (fun th -> ASM_SIMP_TAC [th; ATN2_RNEG] THEN REAL_ARITH_TAC) THEN REWRITE_TAC [TAUT `(~A \/ B) <=> (A ==> B)`] THEN STRIP_TAC THEN SUBGOAL_TAC "c_ab" `c*c = a*a + b*b` [ POP_ASSUM MP_TAC THEN REAL_ARITH_TAC ] THEN REMOVE_THEN "c_ab" (fun th -> REWRITE_TAC [ups_x; th]) THEN MATCH_MP_TAC SQRT_POS_LT THEN CONV_TAC (DEPTH_BINOP_CONV `(<)` REAL_POLY_CONV) THEN MATCH_MP_TAC REAL_LT_MUL_3 THEN STRIP_TAC THENL [ REAL_ARITH_TAC ; ASM_SIMP_TAC [REAL_POW_LT] ]);; let TRI_LEMMA = prove (`!a b c. (&0 < a) /\ (&0 < b) /\ (&0 <= c) /\ (c <= a + b) /\ (a <= b + c) /\ (b <= c + a) ==> (&2 * a * b) * (a * a + b * b - c * c) / (&2 * a * b) = a * a + b * b - c * c`, REPEAT STRIP_TAC THEN SUBGOAL_TAC "2ab_pos" `&0 < &2 * a * b` [ ASM_SIMP_TAC [REAL_LT_MUL_3; REAL_ARITH `&0 < &2`] ] THEN SUBGOAL_TAC "2ab_not0" `~(&2 * a * b = &0)` [ POP_ASSUM MP_TAC THEN REAL_ARITH_TAC ] THEN ASM_SIMP_TAC [REAL_DIV_LMUL]);; let TRI_UPS_X_SQUARES = prove (`!a b c. (&0 < a) /\ (&0 < b) /\ (&0 <= c) /\ (c <= a + b) /\ (a <= b + c) /\ (b <= c + a) ==> ups_x (a * a) (b * b) (c * c) = (&2 * a * b) pow 2 * (&1 - ((a * a + b * b - c * c) / (&2 * a * b)) pow 2)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC [ups_x; REAL_SUB_LDISTRIB; GSYM REAL_POW_MUL; TRI_LEMMA] THEN REAL_ARITH_TAC);; let TRI_UPS_X_SQRT = prove (`!a b c. (&0 < a) /\ (&0 < b) /\ (&0 <= c) /\ (c <= a + b) /\ (a <= b + c) /\ (b <= c + a) ==> sqrt(ups_x (a * a) (b * b) (c * c)) = (&2 * a * b) * sqrt(&1 - ((a * a + b * b - c * c) / (&2 * a * b)) pow 2)`, REPEAT STRIP_TAC THEN SUBGOAL_TAC "2ab_pos" `&0 < &2 * a * b` [ ASM_SIMP_TAC [REAL_LT_MUL_3; REAL_ARITH `&0 < &2`] ] THEN SUBGOAL_TAC "other_pos" `&0 <= &1 - ((a * a + b * b - c * c) / (&2 * a * b)) pow 2` [ SUBGOAL_THEN `((a * a + b * b - c * c) / (&2 * a * b)) pow 2 <= &1` (fun th -> MP_TAC th THEN REAL_ARITH_TAC) THEN ASM_SIMP_TAC [ABS_SQUARE_LE_1; REAL_ABS_BOUNDS; TRI_SQUARES_BOUNDS] ] THEN ASM_SIMP_TAC [SQRT_MUL_L; REAL_LT_IMP_LE; TRI_UPS_X_SQUARES] );; let ACS_ARCLENGTH = prove (`!a b c. (&0 < a) /\ (&0 < b) /\ (&0 <= c) /\ (c <= a + b) /\ (a <= b + c) /\ (b <= c + a) ==> arclength a b c = acs (((a * a) + (b * b) - (c * c)) / (&2 * a * b))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC [ATN2_ARCLENGTH; TRI_SQUARES_BOUNDS; acs_atn2] THEN SUBGOAL_TAC "2ab_pos" `&0 < &2 * a * b` [ ASM_SIMP_TAC [REAL_LT_MUL_3; REAL_ARITH `&0 < &2`] ] THEN SUBGOAL_THEN `(sqrt (ups_x (a * a) (b * b) (c * c)), a * a + b * b - c * c) = ((&2 * a * b) * sqrt (&1 - ((a * a + b * b - c * c) / (&2 * a * b)) pow 2), (&2 * a * b) * ((a * a + b * b - c * c) / (&2 * a * b)))` (fun th -> ASM_SIMP_TAC [ATN2_LMUL_EQ; th]) THEN ASM_SIMP_TAC [TRI_UPS_X_SQRT; TRI_LEMMA]);; let law_of_cosines = prove (law_of_cosines_t, REPEAT STRIP_TAC THEN REWRITE_TAC [REAL_ARITH `&2 * a * b * x = (&2 * a * b) * x`] THEN ASM_SIMP_TAC [ACS_ARCLENGTH; TRI_SQUARES_BOUNDS; COS_ACS; TRI_LEMMA] THEN REAL_ARITH_TAC);; let law_of_sines = prove (law_of_sines_t, REPEAT STRIP_TAC THEN REWRITE_TAC [REAL_ARITH `&2 * a * b * x = (&2 * a * b) * x`; REAL_ARITH `x pow 2 = x * x` ] THEN ASM_SIMP_TAC [ACS_ARCLENGTH; TRI_SQUARES_BOUNDS; SIN_ACS; TRI_UPS_X_SQRT]);; (* ----------------------------------------------------------------------- *) (* Cross product properties. *) (* ----------------------------------------------------------------------- *) let DIST_TRIANGLE_DETAILS = prove (`~(u = v) /\ ~(u = w) <=> &0 < dist(u,v) /\ &0 < dist(u,w) /\ &0 <= dist(v,w) /\ dist(v,w) <= dist(u,v) + dist(u,w) /\ dist(u,v) <= dist(u,w) + dist(v,w) /\ dist(u,w) <= dist(v,w) + dist(u,v)`, NORM_ARITH_TAC);; let arcVarc = prove (arcVarc_t, SIMP_TAC [DIST_TRIANGLE_DETAILS; arcV; ACS_ARCLENGTH] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC [DOT_NORM_NEG; dist] THEN let tha = NORM_ARITH `norm (v - u) = norm (u - v)` in let thb = NORM_ARITH `norm (w - u) = norm (u - w)` in let thc = NORM_ARITH `norm (v - u - (w - u)) = norm (v - w)` in REWRITE_TAC [tha; thb; thc] THEN CONV_TAC REAL_FIELD);; let DIST_LAW_OF_COS = prove (`(dist(v:real^3,w)) pow 2 = (dist(u,v)) pow 2 + (dist(u,w)) pow 2 - &2 * (dist(u,v)) * (dist(u,w)) * cos (arcV u v w)`, ASM_CASES_TAC `~(u = v:real^3) /\ ~(u = w)` THEN POP_ASSUM MP_TAC THENL [ ASM_SIMP_TAC [arcVarc] THEN REWRITE_TAC [law_of_cosines; DIST_TRIANGLE_DETAILS]; REWRITE_TAC [TAUT `~(~A /\ ~B) <=> (A \/ B)`] THEN STRIP_TAC THEN ASM_REWRITE_TAC [DIST_REFL; DIST_SYM] THEN REAL_ARITH_TAC]);; let DIST_L_ZERO = prove (`!v. dist(vec 0, v) = norm v`, NORM_ARITH_TAC);; (* I would like to change this to real^N but that means changing arcV to real^N *) let DOT_COS = prove (`u:real^3 dot v = (norm u) * (norm v) * cos (arcV (vec 0) u v)`, MP_TAC (INST [`vec 0:real^3`,`u:real^3`; `u:real^3`,`v:real^3`; `v:real^3`,`w:real^3`] DIST_LAW_OF_COS) THEN SUBGOAL_THEN `dist(u:real^3,v) pow 2 = dist(vec 0, v) pow 2 + dist(vec 0, u) pow 2 - &2 * u dot v` (fun th -> REWRITE_TAC [th; DIST_L_ZERO] THEN REAL_ARITH_TAC) THEN REWRITE_TAC [NORM_POW_2; dist; DOT_RSUB; DOT_LSUB; DOT_SYM; DOT_LZERO; DOT_RZERO] THEN REAL_ARITH_TAC);; (* DIMINDEX_3, FORALL_3, SUM_3, DOT_3, VECTOR_3, FORALL_VECTOR_3 *) (* are all very useful. Any time you see a theorem you need with *) (* 1 <= i /\ i <= dimindex(:3), first use INST_TYPE and then rewrite *) (* with DIMINDEX_3 and FORALL_3 or see if it's in the list below. *) let CART_EQ_3 = prove (`!x y. (x:A^3) = y <=> x$1 = y$1 /\ x$2 = y$2 /\ x$3 = y$3`, REWRITE_TAC [CART_EQ; DIMINDEX_3; FORALL_3]);; let LAMBDA_BETA_3 = prove (`((lambda) g:A^3) $1 = g 1 /\ ((lambda) g:A^3) $2 = g 2 /\ ((lambda) g:A^3) $3 = g 3`, let th = REWRITE_RULE [DIMINDEX_3; FORALL_3] (INST_TYPE [`:3`,`:B`] LAMBDA_BETA) in REWRITE_TAC [th]);; let VEC_COMPONENT_3 = prove (`!k. (vec k :real^3)$1 = &k /\ (vec k :real^3)$2 = &k /\ (vec k :real^3)$3 = &k`, let th = REWRITE_RULE [DIMINDEX_3; FORALL_3] (INST_TYPE [`:3`,`:N`] VEC_COMPONENT) in REWRITE_TAC [th]);; let VECTOR_ADD_COMPONENT_3 = prove (`!x:real^3 y. (x + y)$1 = x$1 + y$1 /\ (x + y)$2 = x$2 + y$2 /\ (x + y)$3 = x$3 + y$3`, let th = REWRITE_RULE [DIMINDEX_3; FORALL_3] (INST_TYPE [`:3`,`:N`] VECTOR_ADD_COMPONENT) in REWRITE_TAC [th]);; let VECTOR_SUB_COMPONENT_3 = prove (`!x:real^3 y. (x - y)$1 = x$1 - y$1 /\ (x - y)$2 = x$2 - y$2 /\ (x - y)$3 = x$3 - y$3`, let th = REWRITE_RULE [DIMINDEX_3; FORALL_3] (INST_TYPE [`:3`,`:N`] VECTOR_SUB_COMPONENT) in REWRITE_TAC [th]);; let VECTOR_NEG_COMPONENT_3 = prove (`!x:real^3. (--x)$1 = --(x$1) /\ (--x)$2 = --(x$2) /\ (--x)$3 = --(x$3)`, let th = REWRITE_RULE [DIMINDEX_3; FORALL_3] (INST_TYPE [`:3`,`:N`] VECTOR_NEG_COMPONENT) in REWRITE_TAC [th]);; let VECTOR_MUL_COMPONENT_3 = prove (`!c x:real^3. (c % x)$1 = c * x$1 /\ (c % x)$2 = c * x$2 /\ (c % x)$3 = c * x$3`, let th = REWRITE_RULE [DIMINDEX_3; FORALL_3] (INST_TYPE [`:3`,`:N`] VECTOR_MUL_COMPONENT) in REWRITE_TAC [th]);; (* COND_COMPONENT_3 - no need, COND_COMPONENT works fine. *) let BASIS_3 = prove (`(basis 1:real^3)$1 = &1 /\ (basis 1:real^3)$2 = &0 /\ (basis 1:real^3)$3 = &0 /\ (basis 2:real^3)$1 = &0 /\ (basis 2:real^3)$2 = &1 /\ (basis 2:real^3)$3 = &0 /\ (basis 3:real^3)$1 = &0 /\ (basis 3:real^3)$2 = &0 /\ (basis 3:real^3)$3 = &1`, REWRITE_TAC [basis; REWRITE_RULE [DIMINDEX_3; FORALL_3] (INST_TYPE [`:3`,`:B`] LAMBDA_BETA)] THEN ARITH_TAC);; let COMPONENTS_3 = prove (`!v. v:real^3 = v$1 % basis 1 + v$2 % basis 2 + v$3 % basis 3`, REWRITE_TAC [CART_EQ_3; VECTOR_ADD_COMPONENT_3; VECTOR_MUL_COMPONENT_3; BASIS_3] THEN REAL_ARITH_TAC);; let VECTOR_COMPONENTS_3 = prove (`!a b c. vector [a;b;c]:real^3 = a % basis 1 + b % basis 2 + c % basis 3`, let th = REWRITE_RULE [VECTOR_3] (ISPEC `vector [a;b;c]:real^3` COMPONENTS_3) in REWRITE_TAC [th]);; let cross_skew = prove (cross_skew_t, REWRITE_TAC [CART_EQ_3; CROSS_COMPONENTS; VECTOR_NEG_COMPONENT_3] THEN REAL_ARITH_TAC);; let cross_triple = prove (cross_triple_t, REWRITE_TAC [ DOT_3; CROSS_COMPONENTS] THEN REAL_ARITH_TAC);; let NORM_CAUCHY_SCHWARZ_FRAC = prove (`!(u:real^N) v. ~(u = vec 0) /\ ~(v = vec 0) ==> -- &1 <= (u dot v) / (norm u * norm v) /\ (u dot v) / (norm u * norm v) <= &1`, REPEAT STRIP_TAC THEN SUBGOAL_TAC "norm_pos" `&0 < norm (u:real^N) * norm (v:real^N)` [ POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN SIMP_TAC [GSYM NORM_POS_LT; IMP_IMP; REAL_LT_MUL] ] THEN MP_TAC (SPECL [`u:real^N`;`v:real^N`] NORM_CAUCHY_SCHWARZ_ABS) THEN ASM_SIMP_TAC [REAL_ABS_BOUNDS; REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ] THEN REAL_ARITH_TAC);; let CROSS_LZERO = prove (`!x. (vec 0) cross x = vec 0`, REWRITE_TAC [CART_EQ_3; CROSS_COMPONENTS; VEC_COMPONENT_3] THEN REAL_ARITH_TAC);; let CROSS_RZERO = prove (`!x. x cross (vec 0) = vec 0`, REWRITE_TAC [CART_EQ_3; CROSS_COMPONENTS; VEC_COMPONENT_3] THEN REAL_ARITH_TAC);; let CROSS_SQUARED = prove (`!u v. (u cross v) dot (u cross v) = (ups_x (u dot u) (v dot v) ((u - v) dot (u - v))) / &4`, REWRITE_TAC [DOT_3; CROSS_COMPONENTS; ups_x; VECTOR_SUB_COMPONENT_3] THEN REAL_ARITH_TAC);; let DIST_UPS_X_POS = prove (`~(u = v) /\ ~(u = w) ==> &0 <= ups_x (dist(u,v) pow 2) (dist(u,w) pow 2) (dist(v,w) pow 2)`, REWRITE_TAC [DIST_TRIANGLE_DETAILS; TRI_UPS_X_POS; REAL_POW_2]);; let SQRT_DIV_R = prove (`&0 <= x /\ &0 <= y ==> sqrt (x) / y = sqrt (x/ (y pow 2)) /\ &0 <= x/(y pow 2)`, SIMP_TAC [SQRT_DIV; REAL_LE_POW_2; POW_2_SQRT; REAL_LE_DIV]);; let NORM_CROSS = prove (`!u v. ~(vec 0 = u) /\ ~(vec 0 = v) ==> norm (u cross v) = sqrt (ups_x ((norm u) pow 2) ((norm v) pow 2) ((dist(u,v)) pow 2)) / &2`, REPEAT GEN_TAC THEN DISCH_TAC THEN IMP_RES_THEN MP_TAC DIST_UPS_X_POS THEN REWRITE_TAC [DIST_L_ZERO] THEN SIMP_TAC[SQRT_DIV_R; REAL_ARITH `&0 <= &2`; REAL_ARITH `&2 pow 2 = &4`] THEN DISCH_TAC THEN MATCH_MP_TAC (GSYM SQRT_UNIQUE) THEN REWRITE_TAC [dist; NORM_POW_2; CROSS_SQUARED] THEN NORM_ARITH_TAC);; let VECTOR_LAW_OF_SINES = prove (`~(vec 0 = u:real^3) /\ ~(vec 0 = v) ==> &2 * (norm u) * (norm v) * sin (arcV (vec 0) u v) = sqrt (ups_x (norm u pow 2) (norm v pow 2) (dist (u,v) pow 2))`, SIMP_TAC [arcVarc; DIST_TRIANGLE_DETAILS; law_of_sines; DIST_L_ZERO]);; let cross_mag = prove (cross_mag_t, REPEAT STRIP_TAC THEN REWRITE_TAC [arcVarc; VECTOR_SUB_RZERO] THEN ASM_CASES_TAC `(u:real^3) = vec 0 \/ (v:real^3) = vec 0` THENL [ POP_ASSUM STRIP_ASSUME_TAC THEN ASM_REWRITE_TAC [CROSS_LZERO; CROSS_RZERO; NORM_0] THEN REAL_ARITH_TAC ; POP_ASSUM MP_TAC THEN REWRITE_TAC [DE_MORGAN_THM; MESON [] `a = vec 0 <=> vec 0 = a`] THEN SIMP_TAC [NORM_CROSS; GSYM VECTOR_LAW_OF_SINES] THEN REAL_ARITH_TAC ]);; end;;