X-Git-Url: http://colo12-c703.uibk.ac.at/git/?p=G%C3%B6del%27s%20incompleteness%20theorem%2F.git;a=blobdiff_plain;f=Arithmetic%2Fderived.ml;fp=Arithmetic%2Fderived.ml;h=80372510d6c67db6302d39d9e07b9b0f3705427a;hp=0000000000000000000000000000000000000000;hb=87defde679eb7f7eb6d8f7203472a6f6a8ab2966;hpb=67928fe38836205ca8d0705b3695186e998e3e29 diff --git a/Arithmetic/derived.ml b/Arithmetic/derived.ml new file mode 100644 index 0000000..8037251 --- /dev/null +++ b/Arithmetic/derived.ml @@ -0,0 +1,668 @@ +(* ========================================================================= *) +(* Derived properties of provability. *) +(* ========================================================================= *) + +let negativef = new_definition + `negativef p = ?q. p = q --> False`;; + +let negatef = new_definition + `negatef p = if negativef p then @q. p = q --> False else p --> False`;; + +(* ------------------------------------------------------------------------- *) +(* The primitive basis, separated into its named components. *) +(* ------------------------------------------------------------------------- *) + +let axiom_addimp = prove + (`!A p q. A |-- p --> (q --> p)`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_distribimp = prove + (`!A p q r. A |-- (p --> q --> r) --> (p --> q) --> (p --> r)`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_doubleneg = prove + (`!A p. A |-- ((p --> False) --> False) --> p`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_allimp = prove + (`!A x p q. A |-- (!!x (p --> q)) --> (!!x p) --> (!!x q)`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_impall = prove + (`!A x p. ~(x IN FV p) ==> A |-- p --> !!x p`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_existseq = prove + (`!A x t. ~(x IN FVT t) ==> A |-- ??x (V x === t)`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_eqrefl = prove + (`!A t. A |-- t === t`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_funcong = prove + (`(!A s t. A |-- s === t --> Suc s === Suc t) /\ + (!A s t u v. A |-- s === t --> u === v --> s ++ u === t ++ v) /\ + (!A s t u v. A |-- s === t --> u === v --> s ** u === t ** v)`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_predcong = prove + (`(!A s t u v. A |-- s === t --> u === v --> s === u --> t === v) /\ + (!A s t u v. A |-- s === t --> u === v --> s << u --> t << v) /\ + (!A s t u v. A |-- s === t --> u === v --> s <<= u --> t <<= v)`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_iffimp1 = prove + (`!A p q. A |-- (p <-> q) --> p --> q`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_iffimp2 = prove + (`!A p q. A |-- (p <-> q) --> q --> p`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_impiff = prove + (`!A p q. A |-- (p --> q) --> (q --> p) --> (p <-> q)`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_true = prove + (`A |-- True <-> (False --> False)`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_not = prove + (`!A p. A |-- Not p <-> (p --> False)`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_and = prove + (`!A p q. A |-- (p && q) <-> (p --> q --> False) --> False`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_or = prove + (`!A p q. A |-- (p || q) <-> Not(Not p && Not q)`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let axiom_exists = prove + (`!A x p. A |-- (??x p) <-> Not(!!x (Not p))`, + MESON_TAC[proves_RULES; axiom_RULES]);; + +let assume = prove + (`!A p. p IN A ==> A |-- p`, + MESON_TAC[proves_RULES]);; + +let modusponens = prove + (`!A p. A |-- (p --> q) /\ A |-- p ==> A |-- q`, + MESON_TAC[proves_RULES]);; + +let gen = prove + (`!A p x. A |-- p ==> A |-- !!x p`, + MESON_TAC[proves_RULES]);; + +(* ------------------------------------------------------------------------- *) +(* Now some theorems corresponding to derived rules. *) +(* ------------------------------------------------------------------------- *) + +let iff_imp1 = prove + (`!A p q. A |-- p <-> q ==> A |-- p --> q`, + MESON_TAC[modusponens; axiom_iffimp1]);; + +let iff_imp2 = prove + (`!A p q. A |-- p <-> q ==> A |-- q --> p`, + MESON_TAC[modusponens; axiom_iffimp2]);; + +let imp_antisym = prove + (`!A p q. A |-- p --> q /\ A |-- q --> p ==> A |-- p <-> q`, + MESON_TAC[modusponens; axiom_impiff]);; + +let add_assum = prove + (`!A p q. A |-- q ==> A |-- p --> q`, + MESON_TAC[modusponens; axiom_addimp]);; + +let imp_refl = prove + (`!A p. A |-- p --> p`, + MESON_TAC[modusponens; axiom_distribimp; axiom_addimp]);; + +let imp_add_assum = prove + (`!A p q r. A |-- q --> r ==> A |-- (p --> q) --> (p --> r)`, + MESON_TAC[modusponens; axiom_distribimp; add_assum]);; + +let imp_unduplicate = prove + (`!A p q. A |-- p --> p --> q ==> A |-- p --> q`, + MESON_TAC[modusponens; axiom_distribimp; imp_refl]);; + +let imp_trans = prove + (`!A p q. A |-- p --> q /\ A |-- q --> r ==> A |-- p --> r`, + MESON_TAC[modusponens; imp_add_assum]);; + +let imp_swap = prove + (`!A p q r. A |-- p --> q --> r ==> A |-- q --> p --> r`, + MESON_TAC[imp_trans; axiom_addimp; modusponens; axiom_distribimp]);; + +let imp_trans_chain_2 = prove + (`!A p q1 q2 r. A |-- p --> q1 /\ A |-- p --> q2 /\ A |-- q1 --> q2 --> r + ==> A |-- p --> r`, + ASM_MESON_TAC[imp_trans; imp_swap; imp_unduplicate]);; + + + +(***** + +let imp_trans_chain = prove + (`!A p qs r. ALL (\q. A |-- p --> q) qs /\ + A |-- ITLIST (-->) qs r + ==> A |-- p --> r`, + GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN + REWRITE_TAC[ALL; ITLIST] THENL + [ASM_MESON_TAC[add_assum]; ALL_TAC] THEN + REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC + + +ASM_MESON_TAC[imp_trans; imp_swap; imp_unduplicate; axiom_distribimp; + modusponens; add_assum] + +add_assum] THEN + ... needs more thought. Maybe the REV + + *****) + + +let imp_trans_th = prove + (`!A p q r. A |-- (q --> r) --> (p --> q) --> (p --> r)`, + MESON_TAC[imp_trans; axiom_addimp; axiom_distribimp]);; + +let imp_add_concl = prove + (`!A p q r. A |-- p --> q ==> A |-- (q --> r) --> (p --> r)`, + MESON_TAC[modusponens; imp_swap; imp_trans_th]);; + +let imp_trans2 = prove + (`!A p q r s. A |-- p --> q --> r /\ A |-- r --> s ==> A |-- p --> q --> s`, + MESON_TAC[imp_add_assum; modusponens; imp_trans_th]);; + +let imp_swap_th = prove + (`!A p q r. A |-- (p --> q --> r) --> (q --> p --> r)`, + MESON_TAC[imp_trans; axiom_distribimp; imp_add_concl; axiom_addimp]);; + +let contrapos = prove + (`!A p q. A |-- p --> q ==> A |-- Not q --> Not p`, + MESON_TAC[imp_trans; iff_imp1; axiom_not; imp_add_concl; iff_imp2]);; + +let imp_truefalse = prove + (`!p q. A |-- (q --> False) --> p --> (p --> q) --> False`, + MESON_TAC[imp_trans; imp_trans_th; imp_swap_th]);; + +let imp_insert = prove + (`!A p q r. A |-- p --> r ==> A |-- p --> q --> r`, + MESON_TAC[imp_trans; axiom_addimp]);; + +let ex_falso = prove + (`!A p. A |-- False --> p`, + MESON_TAC[imp_trans; axiom_addimp; axiom_doubleneg]);; + +let imp_contr = prove + (`!A p q. A |-- (p --> False) --> (p --> r)`, + MESON_TAC[imp_add_assum; ex_falso]);; + +let imp_contrf = prove + (`!A p r. A |-- p --> negatef p --> r`, + REPEAT GEN_TAC THEN REWRITE_TAC[negatef; negativef] THEN + COND_CASES_TAC THEN POP_ASSUM STRIP_ASSUME_TAC THEN + ASM_REWRITE_TAC[form_INJ] THEN + ASM_MESON_TAC[imp_contr; imp_swap]);; + +let contrad = prove + (`!A p. A |-- (p --> False) --> p ==> A |-- p`, + MESON_TAC[modusponens; axiom_distribimp; imp_refl; axiom_doubleneg]);; + +let bool_cases = prove + (`!p q. A |-- p --> q /\ A |-- (p --> False) --> q ==> A |-- q`, + MESON_TAC[contrad; imp_trans; imp_add_concl]);; + +(**** + +let imp_front = prove + (`...` a bi more structure);; + +****) + +(*** This takes about a minute, but it does work ***) + +let imp_false_rule = prove + (`!p q r. A |-- (q --> False) --> p --> r + ==> A |-- ((p --> q) --> False) --> r`, + MESON_TAC[imp_add_concl; imp_add_assum; ex_falso; axiom_addimp; imp_swap; + imp_trans; axiom_doubleneg; imp_unduplicate]);; + +let imp_true_rule = prove + (`!A p q r. A |-- (p --> False) --> r /\ A |-- q --> r + ==> A |-- (p --> q) --> r`, + MESON_TAC[imp_insert; imp_swap; modusponens; imp_trans_th; bool_cases]);; + +let iff_def = prove + (`!A p q. A |-- (p <-> q) <-> (p --> q) && (q --> p)`, + REPEAT GEN_TAC THEN MATCH_MP_TAC imp_antisym THEN CONJ_TAC THENL + [SUBGOAL_THEN + `A |-- ((p --> q) --> (q --> p) --> False) --> (p <-> q) --> False` + ASSUME_TAC THENL + [ASM_MESON_TAC[imp_add_concl; imp_trans; axiom_distribimp; modusponens; + imp_swap; axiom_iffimp1; axiom_iffimp2]; + ALL_TAC] THEN + ASM_MESON_TAC[imp_add_concl; imp_trans; imp_swap; imp_refl; + iff_imp2; axiom_and]; + SUBGOAL_THEN + `A |-- (((p --> q) --> (q --> p) --> False) --> False) + --> ((p <-> q) --> False) --> False` + ASSUME_TAC THENL + [ASM_MESON_TAC[imp_swap; imp_trans_th; modusponens; imp_add_assum; + axiom_impiff; imp_add_concl]; + ALL_TAC] THEN + ASM_MESON_TAC[imp_trans; iff_imp1; axiom_and; axiom_doubleneg]]);; + +(* ------------------------------------------------------------------------- *) +(* Equality rules. *) +(* ------------------------------------------------------------------------- *) + +let eq_sym = prove + (`!A s t. A |-- s === t --> t === s`, + MESON_TAC[axiom_eqrefl; modusponens; imp_swap; axiom_predcong]);; + +let icongruence_general = prove + (`!A p x s t tm. + A |-- s === t --> + termsubst ((x |-> s) v) tm === termsubst ((x |-> t) v) tm`, + GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN + MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termsubst] THEN + REPEAT CONJ_TAC THENL + [MESON_TAC[axiom_eqrefl; add_assum]; + GEN_TAC THEN REWRITE_TAC[valmod] THEN + COND_CASES_TAC THEN REWRITE_TAC[imp_refl] THEN + MESON_TAC[axiom_eqrefl; add_assum]; + MESON_TAC[imp_trans; axiom_funcong]; + MESON_TAC[imp_trans; axiom_funcong; imp_swap; imp_unduplicate]; + MESON_TAC[imp_trans; axiom_funcong; imp_swap; imp_unduplicate]]);; + +let icongruence = prove + (`!A x s t tm. + A |-- s === t --> termsubst (x |=> s) tm === termsubst (x |=> t) tm`, + REWRITE_TAC[assign; icongruence_general]);; + +let icongruence_var = prove + (`!A x t tm. + A |-- V x === t --> tm === termsubst (x |=> t) tm`, + MESON_TAC[icongruence; TERMSUBST_TRIV; ASSIGN_TRIV]);; + +(* ------------------------------------------------------------------------- *) +(* First-order rules. *) +(* ------------------------------------------------------------------------- *) + +let gen_right = prove + (`!A x p q. ~(x IN FV(p)) /\ A |-- p --> q + ==> A |-- p --> !!x q`, + MESON_TAC[axiom_allimp; modusponens; gen; imp_trans; axiom_impall]);; + +let genimp = prove + (`!x p q. A |-- p --> q ==> A |-- (!!x p) --> (!!x q)`, + MESON_TAC[modusponens; axiom_allimp; gen]);; + +let eximp = prove + (`!x p q. A |-- p --> q ==> A |-- (??x p) --> (??x q)`, + MESON_TAC[contrapos; genimp; contrapos; imp_trans; iff_imp1; iff_imp2; + axiom_exists]);; + +let exists_imp = prove + (`!A x p q. A |-- ??x (p --> q) /\ ~(x IN FV(q)) ==> A |-- (!!x p) --> q`, + REPEAT STRIP_TAC THEN + SUBGOAL_THEN `A |-- (q --> False) --> !!x (p --> Not(p --> q))` + ASSUME_TAC THENL + [MATCH_MP_TAC gen_right THEN + ASM_REWRITE_TAC[FV; IN_UNION; NOT_IN_EMPTY] THEN + ASM_MESON_TAC[iff_imp2; axiom_not; imp_trans2; imp_truefalse]; + ALL_TAC] THEN + SUBGOAL_THEN `A |-- (q --> False) --> !!x p --> !!x (Not(p --> q))` + ASSUME_TAC THENL + [ASM_MESON_TAC[imp_trans; axiom_allimp]; ALL_TAC] THEN + SUBGOAL_THEN `A |-- ((q --> False) --> !!x (Not(p --> q))) + --> (q --> False) --> False` + ASSUME_TAC THENL + [ASM_MESON_TAC[modusponens; iff_imp1; axiom_exists; axiom_not; imp_trans_th]; + ALL_TAC] THEN + ASM_MESON_TAC[imp_trans; imp_swap; axiom_doubleneg]);; + +let subspec = prove + (`!A x t p q. ~(x IN FVT(t)) /\ ~(x IN FV(q)) /\ A |-- V x === t --> p --> q + ==> A |-- (!!x p) --> q`, + MESON_TAC[exists_imp; modusponens; eximp; axiom_existseq]);; + +let subalpha = prove + (`!A x y p q. ((x = y) \/ ~(x IN FV(q)) /\ ~(y IN FV(p))) /\ + A |-- V x === V y --> p --> q + ==> A |-- (!!x p) --> (!!y q)`, + REPEAT GEN_TAC THEN ASM_CASES_TAC `x = y:num` THEN ASM_REWRITE_TAC[] THEN + STRIP_TAC THENL + [FIRST_X_ASSUM SUBST_ALL_TAC THEN + ASM_MESON_TAC[genimp; modusponens; axiom_eqrefl]; + ALL_TAC] THEN + MATCH_MP_TAC gen_right THEN ASM_REWRITE_TAC[FV; IN_DELETE] THEN + MATCH_MP_TAC subspec THEN EXISTS_TAC `V y` THEN + ASM_REWRITE_TAC[FVT; IN_SING]);; + +let imp_mono_th = prove + (`A |-- (p' --> p) --> (q --> q') --> (p --> q) --> (p' --> q')`, + MESON_TAC[imp_trans; imp_swap; imp_trans_th]);; + +(* ------------------------------------------------------------------------- *) +(* We'll perform induction on this measure. *) +(* ------------------------------------------------------------------------- *) + +let complexity = new_recursive_definition form_RECURSION + `(complexity False = 1) /\ + (complexity True = 1) /\ + (!s t. complexity (s === t) = 1) /\ + (!s t. complexity (s << t) = 1) /\ + (!s t. complexity (s <<= t) = 1) /\ + (!p. complexity (Not p) = complexity p + 3) /\ + (!p q. complexity (p && q) = complexity p + complexity q + 6) /\ + (!p q. complexity (p || q) = complexity p + complexity q + 16) /\ + (!p q. complexity (p --> q) = complexity p + complexity q + 1) /\ + (!p q. complexity (p <-> q) = 2 * (complexity p + complexity q) + 9) /\ + (!x p. complexity (!!x p) = complexity p + 1) /\ + (!x p. complexity (??x p) = complexity p + 8)`;; + +let COMPLEXITY_FORMSUBST = prove + (`!p i. complexity(formsubst i p) = complexity p`, + MATCH_MP_TAC form_INDUCT THEN + SIMP_TAC[formsubst; complexity; LET_DEF; LET_END_DEF]);; + +let isubst_general = prove + (`!A p x v s t. A |-- s === t + --> formsubst ((x |-> s) v) p + --> formsubst ((x |-> t) v) p`, + GEN_TAC THEN GEN_TAC THEN WF_INDUCT_TAC `complexity p` THEN + POP_ASSUM MP_TAC THEN SPEC_TAC(`p:form`,`p:form`) THEN + MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[formsubst; complexity] THEN + REPEAT CONJ_TAC THENL + [MESON_TAC[imp_refl; add_assum]; + MESON_TAC[imp_refl; add_assum]; + MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general]; + MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general]; + MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general]; + X_GEN_TAC `p:form` THEN DISCH_THEN(K ALL_TAC) THEN + DISCH_THEN(MP_TAC o SPEC `p --> False`) THEN + REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN + REWRITE_TAC[formsubst] THEN + MESON_TAC[axiom_not; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]; + MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN + DISCH_THEN(MP_TAC o SPEC `(p --> q --> False) --> False`) THEN + REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN + REWRITE_TAC[formsubst] THEN + MESON_TAC[axiom_and; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]; + MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN + DISCH_THEN(MP_TAC o SPEC `Not(Not p && Not q)`) THEN + REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN + REWRITE_TAC[formsubst] THEN + MESON_TAC[axiom_or; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]; + MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN + DISCH_THEN(fun th -> MP_TAC(SPEC `p:form` th) THEN + MP_TAC(SPEC `q:form` th)) THEN + REWRITE_TAC[ARITH_RULE `p < p + q + 1 /\ q < p + q + 1`] THEN + MESON_TAC[imp_mono_th; eq_sym; imp_trans; imp_trans_chain_2]; + MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN + DISCH_THEN(MP_TAC o SPEC `(p --> q) && (q --> p)`) THEN + REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN + REWRITE_TAC[formsubst] THEN + MESON_TAC[iff_def; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]; + ALL_TAC; + MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN DISCH_THEN(K ALL_TAC) THEN + DISCH_THEN(MP_TAC o SPEC `Not(!!x (Not p))`) THEN + REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN + REWRITE_TAC[formsubst] THEN + REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN + REWRITE_TAC[FV] THEN REPEAT LET_TAC THEN + ASM_MESON_TAC[axiom_exists; iff_imp1; iff_imp2; imp_swap; imp_trans; + imp_trans2]] THEN + MAP_EVERY X_GEN_TAC [`u:num`; `p:form`] THEN DISCH_THEN(K ALL_TAC) THEN + REWRITE_TAC[ARITH_RULE `a < b + 1 <=> a <= b`] THEN DISCH_TAC THEN + MAP_EVERY X_GEN_TAC [`v:num`; `i:num->term`; `s:term`; `t:term`] THEN + MAP_EVERY ABBREV_TAC + [`x = if ?y. y IN FV (!! u p) /\ u IN FVT ((v |-> s) i y) + then VARIANT (FV (formsubst ((u |-> V u) ((v |-> s) i)) p)) + else u`; + `y = if ?y. y IN FV (!! u p) /\ u IN FVT ((v |-> t) i y) + then VARIANT (FV (formsubst ((u |-> V u) ((v |-> t) i)) p)) + else u`] THEN + REWRITE_TAC[LET_DEF; LET_END_DEF] THEN + SUBGOAL_THEN `~(x IN FV(formsubst ((v |-> s) i) (!!u p))) /\ + ~(y IN FV(formsubst ((v |-> t) i) (!!u p)))` + STRIP_ASSUME_TAC THENL + [MAP_EVERY EXPAND_TAC ["x"; "y"] THEN CONJ_TAC THEN + (COND_CASES_TAC THENL + [ALL_TAC; ASM_REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM]] THEN + MATCH_MP_TAC NOT_IN_VARIANT THEN REWRITE_TAC[FV_FINITE] THEN + REWRITE_TAC[SUBSET; FORMSUBST_FV; IN_ELIM_THM; FV; IN_DELETE] THEN + REWRITE_TAC[valmod] THEN MESON_TAC[FVT; IN_SING]); + ALL_TAC] THEN + ASM_CASES_TAC `v:num = u` THENL + [ASM_REWRITE_TAC[VALMOD_VALMOD_BASIC] THEN + MATCH_MP_TAC add_assum THEN MATCH_MP_TAC subalpha THEN + ASM_SIMP_TAC[LE_REFL] THEN + ASM_CASES_TAC `y:num = x` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL + [UNDISCH_TAC `~(x IN FV (formsubst ((v |-> s) i) (!! u p)))`; + UNDISCH_TAC `~(y IN FV (formsubst ((v |-> t) i) (!! u p)))`] THEN + ASM_REWRITE_TAC[FORMSUBST_FV; FV; IN_ELIM_THM; IN_DELETE] THEN + MATCH_MP_TAC MONO_NOT THEN MATCH_MP_TAC MONO_EXISTS THEN + X_GEN_TAC `w:num` THEN ASM_CASES_TAC `w:num = u` THEN + ASM_REWRITE_TAC[VALMOD_BASIC; FVT; IN_SING] THEN + ASM_REWRITE_TAC[valmod; FVT; IN_SING]; + ALL_TAC] THEN + SUBGOAL_THEN + `?z. ~(z IN FVT s) /\ ~(z IN FVT t) /\ + A |-- !!x (formsubst ((u |-> V x) ((v |-> s) i)) p) + --> !!z (formsubst ((u |-> V z) ((v |-> s) i)) p) /\ + A |-- !!z (formsubst ((u |-> V z) ((v |-> t) i)) p) + --> !!y (formsubst ((u |-> V y) ((v |-> t) i)) p)` + MP_TAC THENL + [ALL_TAC; + DISCH_THEN(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN + MATCH_MP_TAC imp_trans THEN + EXISTS_TAC `(!!z (formsubst ((v |-> s) ((u |-> V z) i)) p)) + --> (!!z (formsubst ((v |-> t) ((u |-> V z) i)) p))` THEN + CONJ_TAC THENL + [MATCH_MP_TAC imp_trans THEN + EXISTS_TAC `!!z (formsubst ((v |-> s) ((u |-> V z) i)) p + --> formsubst ((v |-> t) ((u |-> V z) i)) p)` THEN + REWRITE_TAC[axiom_allimp] THEN + ASM_SIMP_TAC[complexity; LE_REFL; FV; IN_UNION; gen_right]; + ALL_TAC] THEN + FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP VALMOD_SWAP th]) THEN + ASM_MESON_TAC[imp_mono_th; modusponens]] THEN + MP_TAC(SPEC + `FVT(s) UNION FVT(t) UNION + FV(formsubst ((u |-> V x) ((v |-> s) i)) p) UNION + FV(formsubst ((u |-> V y) ((v |-> t) i)) p)` VARIANT_FINITE) THEN + REWRITE_TAC[FINITE_UNION; FV_FINITE; FVT_FINITE] THEN + W(fun (_,w) -> ABBREV_TAC(mk_comb(`(=) (z:num)`,lhand(rand(lhand w))))) THEN + REWRITE_TAC[IN_UNION; DE_MORGAN_THM] THEN STRIP_TAC THEN + EXISTS_TAC `z:num` THEN ASM_REWRITE_TAC[] THEN + CONJ_TAC THEN MATCH_MP_TAC subalpha THEN ASM_SIMP_TAC[LE_REFL] THENL + [ASM_CASES_TAC `z:num = x` THEN ASM_REWRITE_TAC[] THEN + UNDISCH_TAC `~(x IN FV (formsubst ((v |-> s) i) (!! u p)))`; + ASM_CASES_TAC `z:num = y` THEN ASM_REWRITE_TAC[] THEN + UNDISCH_TAC `~(y IN FV (formsubst ((v |-> t) i) (!! u p)))`] THEN + ASM_REWRITE_TAC[FORMSUBST_FV; FV; IN_ELIM_THM; IN_DELETE] THEN + MATCH_MP_TAC MONO_NOT THEN MATCH_MP_TAC MONO_EXISTS THEN + X_GEN_TAC `w:num` THEN ASM_CASES_TAC `w:num = u` THEN + ASM_REWRITE_TAC[VALMOD_BASIC; FVT; IN_SING] THEN + ASM_REWRITE_TAC[valmod; FVT; IN_SING]);; + +let isubst = prove + (`!A p x s t. A |-- s === t + --> formsubst (x |=> s) p --> formsubst (x |=> t) p`, + REWRITE_TAC[assign; isubst_general]);; + +let isubst_var = prove + (`!A p x t. A |-- V x === t --> p --> formsubst (x |=> t) p`, + MESON_TAC[FORMSUBST_TRIV; ASSIGN_TRIV; isubst]);; + +let alpha = prove + (`!A x z p. ~(z IN FV p) ==> A |-- (!!x p) --> !!z (formsubst (x |=> V z) p)`, + REPEAT STRIP_TAC THEN MATCH_MP_TAC subalpha THEN CONJ_TAC THENL + [ALL_TAC; MESON_TAC[isubst_var]] THEN + REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; ASSIGN] THEN + ASM_MESON_TAC[IN_SING; FVT]);; + +(* ------------------------------------------------------------------------- *) +(* To conclude cleanly, useful to have all variables. *) +(* ------------------------------------------------------------------------- *) + +let VARS = new_recursive_definition form_RECURSION + `(VARS False = {}) /\ + (VARS True = {}) /\ + (VARS (s === t) = FVT s UNION FVT t) /\ + (VARS (s << t) = FVT s UNION FVT t) /\ + (VARS (s <<= t) = FVT s UNION FVT t) /\ + (VARS (Not p) = VARS p) /\ + (VARS (p && q) = VARS p UNION VARS q) /\ + (VARS (p || q) = VARS p UNION VARS q) /\ + (VARS (p --> q) = VARS p UNION VARS q) /\ + (VARS (p <-> q) = VARS p UNION VARS q) /\ + (VARS (!! x p) = x INSERT VARS p) /\ + (VARS (?? x p) = x INSERT VARS p)`;; + +let VARS_FINITE = prove + (`!p. FINITE(VARS p)`, + MATCH_MP_TAC form_INDUCT THEN + ASM_SIMP_TAC[VARS; FINITE_RULES; FVT_FINITE; FINITE_UNION; FINITE_DELETE]);; + +let FV_SUBSET_VARS = prove + (`!p. FV(p) SUBSET VARS(p)`, + REWRITE_TAC[SUBSET] THEN + MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[FV; VARS] THEN + REWRITE_TAC[IN_INSERT; IN_UNION; IN_DELETE] THEN MESON_TAC[]);; + +let TERMSUBST_TWICE_GENERAL = prove + (`!x z t v s. ~(z IN FVT s) + ==> (termsubst ((x |-> t) v) s = + termsubst ((z |-> t) v) (termsubst (x |=> V z) s))`, + GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN + MATCH_MP_TAC term_INDUCT THEN + REWRITE_TAC[termsubst; ASSIGN; valmod; FVT; IN_SING; IN_UNION] THEN + MESON_TAC[termsubst; ASSIGN]);; + +let TERMSUBST_TWICE = prove + (`!x z t s. ~(z IN FVT s) + ==> (termsubst (x |=> t) s = + termsubst (z |=> t) (termsubst (x |=> V z) s))`, + MESON_TAC[assign; TERMSUBST_TWICE_GENERAL]);; + +let FORMSUBST_TWICE_GENERAL = prove + (`!z p x t v. ~(z IN VARS p) + ==> (formsubst ((z |-> t) v) (formsubst (x |=> V z) p) = + formsubst ((x |-> t) v) p)`, + GEN_TAC THEN MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[CONJ_ASSOC] THEN + GEN_REWRITE_TAC I [GSYM CONJ_ASSOC] THEN CONJ_TAC THENL + [REWRITE_TAC[formsubst; ASSIGN; VARS; IN_UNION; DE_MORGAN_THM] THEN + MESON_TAC[TERMSUBST_TWICE_GENERAL]; + ALL_TAC] THEN + CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`y:num`; `p:form`] THEN + (REWRITE_TAC[VARS; IN_INSERT; DE_MORGAN_THM] THEN + DISCH_THEN(fun th -> REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC th) THEN + ASM_REWRITE_TAC[] THEN DISCH_TAC THEN + GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [formsubst] THEN + COND_CASES_TAC THENL + [FIRST_X_ASSUM(CHOOSE_THEN MP_TAC) THEN + REWRITE_TAC[ASSIGN; FV; IN_DELETE] THEN + ASM_MESON_TAC[FVT; IN_SING]; + ALL_TAC] THEN + REWRITE_TAC[LET_DEF; LET_END_DEF] THEN + ASM_CASES_TAC `x:num = y` THENL + [ASM_REWRITE_TAC[assign; VALMOD_VALMOD_BASIC; VALMOD_REPEAT; + FORMSUBST_TRIV] THEN + MATCH_MP_TAC FORMSUBST_EQ THEN + ASM_REWRITE_TAC[valmod; FV; IN_DELETE] THEN + ASM_MESON_TAC[FV_SUBSET_VARS; SUBSET]; + ALL_TAC] THEN + SUBGOAL_THEN + `(!t. (y |-> V y) (x |=> t) = x |=> t) /\ + (!t. (y |-> V y) (z |=> t) = z |=> t)` + STRIP_ASSUME_TAC THENL + [REWRITE_TAC[assign] THEN ASM_MESON_TAC[VALMOD_SWAP; VALMOD_REPEAT]; + ALL_TAC] THEN + ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC BINOP_CONV [formsubst] THEN + ASM_REWRITE_TAC[FV] THEN + SUBGOAL_THEN + `(?u. u IN (FV(formsubst (x |=> V z) p) DELETE y) /\ + y IN FVT ((z |-> t) v u)) = + (?u. u IN (FV p DELETE y) /\ y IN FVT ((x |-> t) v u))` + SUBST1_TAC THENL + [REWRITE_TAC[FV; FORMSUBST_FV; IN_ELIM_THM; IN_DELETE; valmod; ASSIGN] THEN + ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RAND] THEN + REWRITE_TAC[FVT; IN_SING] THEN + ASM_MESON_TAC[SUBSET; FV_SUBSET_VARS; FVT; IN_SING]; + ALL_TAC] THEN + COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL + [ALL_TAC; + REWRITE_TAC[LET_DEF; LET_END_DEF; form_INJ] THEN + ASM_MESON_TAC[VALMOD_SWAP]] THEN + REWRITE_TAC[LET_DEF; LET_END_DEF; form_INJ] THEN + MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL + [ALL_TAC; DISCH_THEN SUBST1_TAC] THEN + REPEAT AP_TERM_TAC THEN ASM_MESON_TAC[VALMOD_SWAP]));; + +let FORMSUBST_TWICE = prove + (`!z p x t. ~(z IN VARS p) + ==> (formsubst (z |=> t) (formsubst (x |=> V z) p) = + formsubst (x |=> t) p)`, + MESON_TAC[assign; FORMSUBST_TWICE_GENERAL]);; + +let ispec_lemma = prove + (`!A x p t. ~(x IN FVT(t)) ==> A |-- !!x p --> formsubst (x |=> t) p`, + REPEAT STRIP_TAC THEN MATCH_MP_TAC subspec THEN + EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[isubst_var] THEN + ASM_REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; ASSIGN] THEN + ASM_MESON_TAC[FVT; IN_SING]);; + +let ispec = prove + (`!A x p t. A |-- !!x p --> formsubst (x |=> t) p`, + REPEAT STRIP_TAC THEN ASM_CASES_TAC `x IN FVT(t)` THEN + ASM_SIMP_TAC[ispec_lemma] THEN + ABBREV_TAC `z = VARIANT (FVT t UNION VARS p)` THEN + MATCH_MP_TAC imp_trans THEN + EXISTS_TAC `!!z (formsubst (x |=> V z) p)` THEN CONJ_TAC THENL + [MATCH_MP_TAC alpha THEN EXPAND_TAC "z" THEN + MATCH_MP_TAC NOT_IN_VARIANT THEN + REWRITE_TAC[FINITE_UNION; SUBSET; IN_UNION] THEN + MESON_TAC[SUBSET; FVT_FINITE; VARS_FINITE; FV_SUBSET_VARS]; + SUBGOAL_THEN + `formsubst (x |=> t) p = + formsubst (z |=> t) (formsubst (x |=> V z) p)` + SUBST1_TAC THENL + [MATCH_MP_TAC(GSYM FORMSUBST_TWICE); MATCH_MP_TAC ispec_lemma] THEN + EXPAND_TAC "z" THEN MATCH_MP_TAC NOT_IN_VARIANT THEN + REWRITE_TAC[VARS_FINITE; FVT_FINITE; FINITE_UNION] THEN + SIMP_TAC[SUBSET; IN_UNION]]);; + +let spec = prove + (`!A x p t. A |-- !!x p ==> A |-- formsubst (x |=> t) p`, + MESON_TAC[ispec; modusponens]);; + +(* ------------------------------------------------------------------------- *) +(* Monotonicity and the deduction theorem. *) +(* ------------------------------------------------------------------------- *) + +let PROVES_MONO = prove + (`!A B p. A SUBSET B /\ A |-- p ==> B |-- p`, + GEN_TAC THEN GEN_TAC THEN + REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN + MATCH_MP_TAC proves_INDUCT THEN ASM_MESON_TAC[proves_RULES; SUBSET]);; + +let DEDUCTION_LEMMA = prove + (`!A p q. p INSERT A |-- q /\ closed p ==> A |-- p --> q`, + GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN + REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN + GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC proves_INDUCT THEN + REPEAT CONJ_TAC THEN X_GEN_TAC `r:form` THENL + [REWRITE_TAC[IN_INSERT] THEN MESON_TAC[proves_RULES; add_assum; imp_refl]; + MESON_TAC[modusponens; axiom_distribimp]; + ASM_MESON_TAC[gen_right; closed; NOT_IN_EMPTY]]);; + +let DEDUCTION = prove + (`!A p q. closed p ==> (A |-- p --> q <=> p INSERT A |-- q)`, + MESON_TAC[DEDUCTION_LEMMA; modusponens; IN_INSERT; proves_RULES; + PROVES_MONO; SUBSET]);;