X-Git-Url: http://colo12-c703.uibk.ac.at/git/?p=G%C3%B6del%27s%20incompleteness%20theorem%2F.git;a=blobdiff_plain;f=Library%2Fprime.ml;fp=Library%2Fprime.ml;h=e86780a68beb1bbc741c6d6381890951138af6e3;hp=0000000000000000000000000000000000000000;hb=87defde679eb7f7eb6d8f7203472a6f6a8ab2966;hpb=67928fe38836205ca8d0705b3695186e998e3e29 diff --git a/Library/prime.ml b/Library/prime.ml new file mode 100644 index 0000000..e86780a --- /dev/null +++ b/Library/prime.ml @@ -0,0 +1,1575 @@ +(* ========================================================================= *) +(* Basic theory of divisibility, gcd, coprimality and primality (over N). *) +(* ========================================================================= *) + +prioritize_num();; + +(* ------------------------------------------------------------------------- *) +(* HOL88 compatibility (since all this is a port of old HOL88 stuff). *) +(* ------------------------------------------------------------------------- *) + +let MULT_MONO_EQ = prove + (`!m i n. ((SUC n) * m = (SUC n) * i) <=> (m = i)`, + REWRITE_TAC[EQ_MULT_LCANCEL; NOT_SUC]);; + +let LESS_ADD_1 = prove + (`!m n. n < m ==> (?p. m = n + (p + 1))`, + REWRITE_TAC[LT_EXISTS; ADD1; ADD_ASSOC]);; + +let LESS_ADD_SUC = ARITH_RULE `!m n. m < (m + (SUC n))`;; + +let LESS_0_CASES = ARITH_RULE `!m. (0 = m) \/ 0 < m`;; + +let LESS_MONO_ADD = ARITH_RULE `!m n p. m < n ==> (m + p) < (n + p)`;; + +let LESS_EQ_0 = prove + (`!n. n <= 0 <=> (n = 0)`, + REWRITE_TAC[LE]);; + +let LESS_LESS_CASES = ARITH_RULE `!m n. (m = n) \/ m < n \/ n < m`;; + +let LESS_ADD_NONZERO = ARITH_RULE `!m n. ~(n = 0) ==> m < (m + n)`;; + +let NOT_EXP_0 = prove + (`!m n. ~((SUC n) EXP m = 0)`, + REWRITE_TAC[EXP_EQ_0; NOT_SUC]);; + +let LESS_THM = ARITH_RULE `!m n. m < (SUC n) <=> (m = n) \/ m < n`;; + +let NOT_LESS_0 = ARITH_RULE `!n. ~(n < 0)`;; + +let ZERO_LESS_EXP = prove + (`!m n. 0 < ((SUC n) EXP m)`, + REWRITE_TAC[LT_NZ; NOT_EXP_0]);; + +(* ------------------------------------------------------------------------- *) +(* General arithmetic lemmas. *) +(* ------------------------------------------------------------------------- *) + +let MULT_FIX = prove( + `!x y. (x * y = x) <=> (x = 0) \/ (y = 1)`, + REPEAT GEN_TAC THEN + STRUCT_CASES_TAC(SPEC `x:num` num_CASES) THEN + REWRITE_TAC[MULT_CLAUSES; NOT_SUC] THEN + REWRITE_TAC[GSYM(el 4 (CONJUNCTS (SPEC_ALL MULT_CLAUSES)))] THEN + GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) + [GSYM(el 3 (CONJUNCTS(SPEC_ALL MULT_CLAUSES)))] THEN + MATCH_ACCEPT_TAC MULT_MONO_EQ);; + +let LESS_EQ_MULT = prove( + `!m n p q. m <= n /\ p <= q ==> (m * p) <= (n * q)`, + REPEAT GEN_TAC THEN + DISCH_THEN(STRIP_ASSUME_TAC o REWRITE_RULE[LE_EXISTS]) THEN + ASM_REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; + GSYM ADD_ASSOC; LE_ADD]);; + +let LESS_MULT = prove( + `!m n p q. m < n /\ p < q ==> (m * p) < (n * q)`, + REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN + ((CHOOSE_THEN SUBST_ALL_TAC) o MATCH_MP LESS_ADD_1)) THEN + REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN + REWRITE_TAC[GSYM ADD1; MULT_CLAUSES; ADD_CLAUSES; GSYM ADD_ASSOC] THEN + ONCE_REWRITE_TAC[GSYM (el 3 (CONJUNCTS ADD_CLAUSES))] THEN + MATCH_ACCEPT_TAC LESS_ADD_SUC);; + +let MULT_LCANCEL = prove( + `!a b c. ~(a = 0) /\ (a * b = a * c) ==> (b = c)`, + REPEAT GEN_TAC THEN STRUCT_CASES_TAC(SPEC `a:num` num_CASES) THEN + REWRITE_TAC[NOT_SUC; MULT_MONO_EQ]);; + +let LT_POW2_REFL = prove + (`!n. n < 2 EXP n`, + INDUCT_TAC THEN REWRITE_TAC[EXP] THEN TRY(POP_ASSUM MP_TAC) THEN ARITH_TAC);; + +(* ------------------------------------------------------------------------- *) +(* Properties of the exponential function. *) +(* ------------------------------------------------------------------------- *) + +let EXP_0 = prove + (`!n. 0 EXP (SUC n) = 0`, + REWRITE_TAC[EXP; MULT_CLAUSES]);; + +let EXP_MONO_LT_SUC = prove + (`!n x y. (x EXP (SUC n)) < (y EXP (SUC n)) <=> (x < y)`, + REWRITE_TAC[EXP_MONO_LT; NOT_SUC]);; + +let EXP_MONO_LE_SUC = prove + (`!x y n. (x EXP (SUC n)) <= (y EXP (SUC n)) <=> x <= y`, + REWRITE_TAC[EXP_MONO_LE; NOT_SUC]);; + +let EXP_MONO_EQ_SUC = prove + (`!x y n. (x EXP (SUC n) = y EXP (SUC n)) <=> (x = y)`, + REWRITE_TAC[EXP_MONO_EQ; NOT_SUC]);; + +let EXP_EXP = prove + (`!x m n. (x EXP m) EXP n = x EXP (m * n)`, + REWRITE_TAC[EXP_MULT]);; + +(* ------------------------------------------------------------------------- *) +(* More ad-hoc arithmetic lemmas unlikely to be useful elsewhere. *) +(* ------------------------------------------------------------------------- *) + +let DIFF_LEMMA = prove( + `!a b. a < b ==> (a = 0) \/ (a + (b - a)) < (a + b)`, + REPEAT GEN_TAC THEN + DISJ_CASES_TAC(SPEC `a:num` LESS_0_CASES) THEN ASM_REWRITE_TAC[] THEN + DISCH_THEN(CHOOSE_THEN SUBST1_TAC o MATCH_MP LESS_ADD_1) THEN + DISJ2_TAC THEN REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB] THEN + GEN_REWRITE_TAC LAND_CONV [GSYM (CONJUNCT1 ADD_CLAUSES)] THEN + REWRITE_TAC[ADD_ASSOC] THEN + REPEAT(MATCH_MP_TAC LESS_MONO_ADD) THEN POP_ASSUM ACCEPT_TAC);; + +let NOT_EVEN_EQ_ODD = prove( + `!m n. ~(2 * m = SUC(2 * n))`, + REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o AP_TERM `EVEN`) THEN + REWRITE_TAC[EVEN; EVEN_MULT; ARITH]);; + +let CANCEL_TIMES2 = prove( + `!x y. (2 * x = 2 * y) <=> (x = y)`, + REWRITE_TAC[num_CONV `2`; MULT_MONO_EQ]);; + +let EVEN_SQUARE = prove( + `!n. EVEN(n) ==> ?x. n EXP 2 = 4 * x`, + GEN_TAC THEN REWRITE_TAC[EVEN_EXISTS] THEN + DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST1_TAC) THEN + EXISTS_TAC `m * m` THEN REWRITE_TAC[EXP_2] THEN + REWRITE_TAC[SYM(REWRITE_CONV[ARITH] `2 * 2`)] THEN + REWRITE_TAC[MULT_AC]);; + +let ODD_SQUARE = prove( + `!n. ODD(n) ==> ?x. n EXP 2 = (4 * x) + 1`, + GEN_TAC THEN REWRITE_TAC[ODD_EXISTS] THEN + DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST1_TAC) THEN + ASM_REWRITE_TAC[EXP_2; MULT_CLAUSES; ADD_CLAUSES] THEN + REWRITE_TAC[GSYM ADD1; SUC_INJ] THEN + EXISTS_TAC `(m * m) + m` THEN + REWRITE_TAC(map num_CONV [`4`; `3`; `2`; `1`]) THEN + REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN + REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN + REWRITE_TAC[ADD_AC]);; + +let DIFF_SQUARE = prove( + `!x y. (x EXP 2) - (y EXP 2) = (x + y) * (x - y)`, + REPEAT GEN_TAC THEN + DISJ_CASES_TAC(SPECL [`x:num`; `y:num`] LE_CASES) THENL + [SUBGOAL_THEN `(x * x) <= (y * y)` MP_TAC THENL + [MATCH_MP_TAC LESS_EQ_MULT THEN ASM_REWRITE_TAC[]; + POP_ASSUM MP_TAC THEN REWRITE_TAC[GSYM SUB_EQ_0] THEN + REPEAT DISCH_TAC THEN ASM_REWRITE_TAC[EXP_2; MULT_CLAUSES]]; + POP_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN + REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB] THEN + REWRITE_TAC[EXP_2; LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN + REWRITE_TAC[GSYM ADD_ASSOC; ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB] THEN + AP_TERM_TAC THEN GEN_REWRITE_TAC LAND_CONV [ADD_SYM] THEN + AP_TERM_TAC THEN MATCH_ACCEPT_TAC MULT_SYM]);; + +let ADD_IMP_SUB = prove( + `!x y z. (x + y = z) ==> (x = z - y)`, + REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN + REWRITE_TAC[ADD_SUB]);; + +let ADD_SUM_DIFF = prove( + `!v w. v <= w ==> ((w + v) - (w - v) = 2 * v) /\ + ((w + v) + (w - v) = 2 * w)`, + REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN + DISCH_THEN(CHOOSE_THEN SUBST1_TAC) THEN + REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB] THEN + REWRITE_TAC[MULT_2; GSYM ADD_ASSOC] THEN + ONCE_REWRITE_TAC[ADD_SYM] THEN + REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB; GSYM ADD_ASSOC]);; + +let EXP_4 = prove( + `!n. n EXP 4 = (n EXP 2) EXP 2`, + GEN_TAC THEN REWRITE_TAC[EXP_EXP] THEN + REWRITE_TAC[ARITH]);; + +(* ------------------------------------------------------------------------- *) +(* Elementary theory of divisibility *) +(* ------------------------------------------------------------------------- *) + +let divides = prove + (`a divides b <=> ?x. b = a * x`, + EQ_TAC THENL [REWRITE_TAC[num_divides; int_divides]; NUMBER_TAC] THEN + DISCH_THEN(X_CHOOSE_TAC `x:int`) THEN EXISTS_TAC `num_of_int(abs x)` THEN + SIMP_TAC[GSYM INT_OF_NUM_EQ; + INT_ARITH `&m:int = &n <=> abs(&m :int) = abs(&n)`] THEN + ASM_REWRITE_TAC[GSYM INT_OF_NUM_MUL; INT_ABS_MUL] THEN + SIMP_TAC[INT_OF_NUM_OF_INT; INT_ABS_POS; INT_ABS_ABS]);; + +let DIVIDES_0 = prove + (`!x. x divides 0`, + NUMBER_TAC);; + +let DIVIDES_ZERO = prove + (`!x. 0 divides x <=> (x = 0)`, + NUMBER_TAC);; + +let DIVIDES_1 = prove + (`!x. 1 divides x`, + NUMBER_TAC);; + +let DIVIDES_ONE = prove( + `!x. (x divides 1) <=> (x = 1)`, + GEN_TAC THEN REWRITE_TAC[divides] THEN + CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN + REWRITE_TAC[MULT_EQ_1] THEN EQ_TAC THEN STRIP_TAC THEN + ASM_REWRITE_TAC[] THEN EXISTS_TAC `1` THEN REFL_TAC);; + +let DIVIDES_REFL = prove + (`!x. x divides x`, + NUMBER_TAC);; + +let DIVIDES_TRANS = prove + (`!a b c. a divides b /\ b divides c ==> a divides c`, + NUMBER_TAC);; + +let DIVIDES_ANTISYM = prove + (`!x y. x divides y /\ y divides x <=> (x = y)`, + REPEAT GEN_TAC THEN EQ_TAC THENL + [REWRITE_TAC[divides] THEN + DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (CHOOSE_THEN SUBST1_TAC)) THEN + DISCH_THEN(CHOOSE_THEN MP_TAC) THEN + CONV_TAC(LAND_CONV SYM_CONV) THEN + REWRITE_TAC[GSYM MULT_ASSOC; MULT_FIX; MULT_EQ_1] THEN + STRIP_TAC THEN ASM_REWRITE_TAC[]; + DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[DIVIDES_REFL]]);; + +let DIVIDES_ADD = prove + (`!d a b. d divides a /\ d divides b ==> d divides (a + b)`, + NUMBER_TAC);; + +let DIVIDES_SUB = prove + (`!d a b. d divides a /\ d divides b ==> d divides (a - b)`, + REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN + DISCH_THEN(CONJUNCTS_THEN (CHOOSE_THEN SUBST1_TAC)) THEN + REWRITE_TAC[GSYM LEFT_SUB_DISTRIB] THEN + W(EXISTS_TAC o rand o lhs o snd o dest_exists o snd) THEN + REFL_TAC);; + +let DIVIDES_LMUL = prove + (`!d a x. d divides a ==> d divides (x * a)`, + NUMBER_TAC);; + +let DIVIDES_RMUL = prove + (`!d a x. d divides a ==> d divides (a * x)`, + NUMBER_TAC);; + +let DIVIDES_ADD_REVR = prove + (`!d a b. d divides a /\ d divides (a + b) ==> d divides b`, + NUMBER_TAC);; + +let DIVIDES_ADD_REVL = prove + (`!d a b. d divides b /\ d divides (a + b) ==> d divides a`, + NUMBER_TAC);; + +let DIVIDES_DIV = prove + (`!n x. 0 < n /\ (x MOD n = 0) ==> n divides x`, + REPEAT STRIP_TAC THEN + FIRST_ASSUM(MP_TAC o SPEC `x:num` o MATCH_MP DIVISION o + MATCH_MP (ARITH_RULE `0 < n ==> ~(n = 0)`)) THEN + ASM_REWRITE_TAC[ADD_CLAUSES] THEN DISCH_TAC THEN + REWRITE_TAC[divides] THEN EXISTS_TAC `x DIV n` THEN + ONCE_REWRITE_TAC[MULT_SYM] THEN FIRST_ASSUM MATCH_ACCEPT_TAC);; + +let DIVIDES_MUL_L = prove + (`!a b c. a divides b ==> (c * a) divides (c * b)`, + NUMBER_TAC);; + +let DIVIDES_MUL_R = prove + (`!a b c. a divides b ==> (a * c) divides (b * c)`, + NUMBER_TAC);; + +let DIVIDES_LMUL2 = prove + (`!d a x. (x * d) divides a ==> d divides a`, + NUMBER_TAC);; + +let DIVIDES_RMUL2 = prove + (`!d a x. (d * x) divides a ==> d divides a`, + NUMBER_TAC);; + +let DIVIDES_CMUL2 = prove + (`!a b c. (c * a) divides (c * b) /\ ~(c = 0) ==> a divides b`, + NUMBER_TAC);; + +let DIVIDES_LMUL2_EQ = prove + (`!a b c. ~(c = 0) ==> ((c * a) divides (c * b) <=> a divides b)`, + NUMBER_TAC);; + +let DIVIDES_RMUL2_EQ = prove + (`!a b c. ~(c = 0) ==> ((a * c) divides (b * c) <=> a divides b)`, + NUMBER_TAC);; + +let DIVIDES_CASES = prove + (`!m n. n divides m ==> m = 0 \/ m = n \/ 2 * n <= m`, + SIMP_TAC[ARITH_RULE `m = n \/ 2 * n <= m <=> m = n * 1 \/ n * 2 <= m`] THEN + SIMP_TAC[divides; LEFT_IMP_EXISTS_THM] THEN + REWRITE_TAC[MULT_EQ_0; EQ_MULT_LCANCEL; LE_MULT_LCANCEL] THEN ARITH_TAC);; + +let DIVIDES_LE = prove + (`!m n. m divides n ==> m <= n \/ (n = 0)`, + REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_CASES) THEN + ARITH_TAC);; + +let DIVIDES_LE_STRONG = prove + (`!m n. m divides n ==> 1 <= m /\ m <= n \/ n = 0`, + REPEAT GEN_TAC THEN ASM_CASES_TAC `m = 0` THEN + ASM_REWRITE_TAC[DIVIDES_ZERO; ARITH] THEN + DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN + POP_ASSUM MP_TAC THEN ARITH_TAC);; + +let DIVIDES_DIV_NOT = prove( + `!n x q r. (x = (q * n) + r) /\ 0 < r /\ r < n ==> ~(n divides x)`, + REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN + MP_TAC(SPEC `n:num` DIVIDES_REFL) THEN + DISCH_THEN(MP_TAC o SPEC `q:num` o MATCH_MP DIVIDES_LMUL) THEN + PURE_REWRITE_TAC[TAUT `a ==> ~b <=> a /\ b ==> F`] THEN + DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_ADD_REVR) THEN + DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN + ASM_REWRITE_TAC[DE_MORGAN_THM; NOT_LE; GSYM LESS_EQ_0]);; + +let DIVIDES_MUL2 = prove + (`!a b c d. a divides b /\ c divides d ==> (a * c) divides (b * d)`, + NUMBER_TAC);; + +let DIVIDES_EXP = prove( + `!x y n. x divides y ==> (x EXP n) divides (y EXP n)`, + REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN + DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN + EXISTS_TAC `d EXP n` THEN MATCH_ACCEPT_TAC MULT_EXP);; + +let DIVIDES_EXP2 = prove( + `!n x y. ~(n = 0) /\ (x EXP n) divides y ==> x divides y`, + INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; EXP] THEN NUMBER_TAC);; + +let DIVIDES_EXP_LE = prove + (`!p m n. 2 <= p ==> ((p EXP m) divides (p EXP n) <=> m <= n)`, + REPEAT STRIP_TAC THEN EQ_TAC THENL + [DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN + ASM_REWRITE_TAC[LE_EXP; EXP_EQ_0] THEN POP_ASSUM MP_TAC THEN ARITH_TAC; + SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM; EXP_ADD] THEN NUMBER_TAC]);; + +let DIVIDES_TRIVIAL_UPPERBOUND = prove + (`!p n. ~(n = 0) /\ 2 <= p ==> ~((p EXP n) divides n)`, + REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN + ASM_REWRITE_TAC[NOT_LE] THEN MATCH_MP_TAC LTE_TRANS THEN + EXISTS_TAC `2 EXP n` THEN REWRITE_TAC[LT_POW2_REFL] THEN + UNDISCH_TAC `~(n = 0)` THEN SPEC_TAC(`n:num`,`n:num`) THEN + INDUCT_TAC THEN ASM_REWRITE_TAC[EXP_MONO_LE_SUC]);; + +let FACTORIZATION_INDEX = prove + (`!n p. ~(n = 0) /\ 2 <= p + ==> ?k. (p EXP k) divides n /\ + !l. k < l ==> ~((p EXP l) divides n)`, + REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM NOT_LE; CONTRAPOS_THM] THEN + REWRITE_TAC[GSYM num_MAX] THEN CONJ_TAC THENL + [EXISTS_TAC `0` THEN REWRITE_TAC[EXP; DIVIDES_1]; + EXISTS_TAC `n:num` THEN + GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN + ASM_REWRITE_TAC[] THEN + MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LE_TRANS) THEN + MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `2 EXP l` THEN + SIMP_TAC[LT_POW2_REFL; LT_IMP_LE] THEN + SPEC_TAC(`l:num`,`l:num`) THEN INDUCT_TAC THEN + ASM_REWRITE_TAC[ARITH; CONJUNCT1 EXP; EXP_MONO_LE_SUC]]);; + +let DIVIDES_FACT = prove + (`!n p. 1 <= p /\ p <= n ==> p divides (FACT n)`, + INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL + [ARITH_TAC; ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL; DIVIDES_REFL]]);; + +let DIVIDES_2 = prove( + `!n. 2 divides n <=> EVEN(n)`, + REWRITE_TAC[divides; EVEN_EXISTS]);; + +let DIVIDES_REXP_SUC = prove + (`!x y n. x divides y ==> x divides (y EXP (SUC n))`, + REWRITE_TAC[EXP; DIVIDES_RMUL]);; + +let DIVIDES_REXP = prove + (`!x y n. x divides y /\ ~(n = 0) ==> x divides (y EXP n)`, + GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN SIMP_TAC[DIVIDES_REXP_SUC]);; + +let DIVIDES_MOD = prove + (`!m n. ~(m = 0) ==> (m divides n <=> (n MOD m = 0))`, + REWRITE_TAC[divides] THEN REPEAT STRIP_TAC THEN EQ_TAC THENL + [ASM_MESON_TAC[MOD_MULT]; DISCH_TAC] THEN + FIRST_X_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP DIVISION) THEN + ASM_REWRITE_TAC[ADD_CLAUSES] THEN MESON_TAC[MULT_AC]);; + +let DIVIDES_DIV_MULT = prove + (`!m n. m divides n <=> ((n DIV m) * m = n)`, + REPEAT GEN_TAC THEN ASM_CASES_TAC `m = 0` THENL + [ASM_REWRITE_TAC[DIVIDES_ZERO; MULT_CLAUSES; EQ_SYM_EQ]; ALL_TAC] THEN + EQ_TAC THENL [ALL_TAC; MESON_TAC[DIVIDES_LMUL; DIVIDES_REFL]] THEN + DISCH_TAC THEN MATCH_MP_TAC EQ_TRANS THEN + EXISTS_TAC `n DIV m * m + n MOD m` THEN CONJ_TAC THENL + [ASM_MESON_TAC[DIVIDES_MOD; ADD_CLAUSES]; + ASM_MESON_TAC[DIVISION]]);; + +let FINITE_DIVISORS = prove + (`!n. ~(n = 0) ==> FINITE {d | d divides n}`, + REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN + EXISTS_TAC `{d:num | d <= n}` THEN REWRITE_TAC[FINITE_NUMSEG_LE] THEN + REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[DIVIDES_LE]);; + +let FINITE_SPECIAL_DIVISORS = prove + (`!n. ~(n = 0) ==> FINITE {d | P d /\ d divides n}`, + REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN + EXISTS_TAC `{d | d divides n}` THEN ASM_SIMP_TAC[FINITE_DIVISORS] THEN + SET_TAC[]);; + +let DIVIDES_DIVIDES_DIV = prove + (`!n d. 1 <= n /\ d divides n + ==> (e divides (n DIV d) <=> (d * e) divides n)`, + REPEAT GEN_TAC THEN + GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [DIVIDES_DIV_MULT] THEN + ABBREV_TAC `q = n DIV d` THEN + DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN + ASM_CASES_TAC `d = 0` THENL + [ASM_SIMP_TAC[MULT_CLAUSES; LE_1]; + ASM_MESON_TAC[DIVIDES_LMUL2_EQ; MULT_SYM]]);; + +(* ------------------------------------------------------------------------- *) +(* The Bezout theorem is a bit ugly for N; it'd be easier for Z *) +(* ------------------------------------------------------------------------- *) + +let IND_EUCLID = prove( + `!P. (!a b. P a b <=> P b a) /\ + (!a. P a 0) /\ + (!a b. P a b ==> P a (a + b)) ==> + !a b. P a b`, + REPEAT STRIP_TAC THEN + W(fun (asl,w) -> SUBGOAL_THEN `!n a b. (a + b = n) ==> P a b` + MATCH_MP_TAC) THENL + [ALL_TAC; EXISTS_TAC `a + b` THEN REFL_TAC] THEN + MATCH_MP_TAC num_WF THEN + REPEAT STRIP_TAC THEN REPEAT_TCL DISJ_CASES_THEN MP_TAC + (SPECL [`a:num`; `b:num`] LESS_LESS_CASES) THENL + [DISCH_THEN SUBST1_TAC THEN + GEN_REWRITE_TAC RAND_CONV [GSYM ADD_0] THEN + FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; + ALL_TAC; ALL_TAC] THEN + DISCH_THEN(fun th -> SUBST1_TAC(SYM(MATCH_MP SUB_ADD + (MATCH_MP LT_IMP_LE th))) THEN + DISJ_CASES_THEN MP_TAC (MATCH_MP DIFF_LEMMA th)) THENL + [DISCH_THEN SUBST1_TAC THEN + FIRST_ASSUM (CONV_TAC o REWR_CONV) THEN + FIRST_ASSUM MATCH_ACCEPT_TAC; + REWRITE_TAC[ASSUME `a + b = n`] THEN + DISCH_TAC THEN ONCE_REWRITE_TAC[ADD_SYM] THEN + FIRST_ASSUM MATCH_MP_TAC THEN + UNDISCH_TAC `a + b - a < n` THEN + DISCH_THEN(ANTE_RES_THEN MATCH_MP_TAC); + DISCH_THEN SUBST1_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC; + REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] (ASSUME `a + b = n`)] THEN + DISCH_TAC THEN ONCE_REWRITE_TAC[ADD_SYM] THEN + FIRST_ASSUM (CONV_TAC o REWR_CONV) THEN + FIRST_ASSUM MATCH_MP_TAC THEN + UNDISCH_TAC `b + a - b < n` THEN + DISCH_THEN(ANTE_RES_THEN MATCH_MP_TAC)] THEN + REWRITE_TAC[]);; + +let BEZOUT_LEMMA = prove( + `!a b. (?d x y. (d divides a /\ d divides b) /\ + ((a * x = (b * y) + d) \/ + (b * x = (a * y) + d))) + ==> (?d x y. (d divides a /\ d divides (a + b)) /\ + ((a * x = ((a + b) * y) + d) \/ + ((a + b) * x = (a * y) + d)))`, + REPEAT STRIP_TAC THEN EXISTS_TAC `d:num` THENL + [MAP_EVERY EXISTS_TAC [`x + y`; `y:num`]; + MAP_EVERY EXISTS_TAC [`x:num`; `x + y`]] THEN + ASM_REWRITE_TAC[] THEN + (CONJ_TAC THENL [MATCH_MP_TAC DIVIDES_ADD; ALL_TAC]) THEN + ASM_REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN + REWRITE_TAC[ADD_ASSOC] THEN DISJ1_TAC THEN + REWRITE_TAC[ADD_AC]);; + +let BEZOUT_ADD = prove( + `!a b. ?d x y. (d divides a /\ d divides b) /\ + ((a * x = (b * y) + d) \/ + (b * x = (a * y) + d))`, + W(fun (asl,w) -> MP_TAC(SPEC (list_mk_abs([`a:num`; `b:num`], + snd(strip_forall w))) + IND_EUCLID)) THEN BETA_TAC THEN DISCH_THEN MATCH_MP_TAC THEN + REPEAT CONJ_TAC THENL + [REPEAT GEN_TAC THEN REPEAT + (AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN + GEN_TAC THEN BETA_TAC) THEN + GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [DISJ_SYM] THEN + GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [CONJ_SYM] THEN REFL_TAC; + GEN_TAC THEN MAP_EVERY EXISTS_TAC [`a:num`; `1`; `0`] THEN + REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; DIVIDES_0; DIVIDES_REFL]; + MATCH_ACCEPT_TAC BEZOUT_LEMMA]);; + +let BEZOUT = prove( + `!a b. ?d x y. (d divides a /\ d divides b) /\ + (((a * x) - (b * y) = d) \/ + ((b * x) - (a * y) = d))`, + REPEAT GEN_TAC THEN REPEAT_TCL STRIP_THM_THEN ASSUME_TAC + (SPECL [`a:num`; `b:num`] BEZOUT_ADD) THEN + REPEAT(W(EXISTS_TAC o fst o dest_exists o snd)) THEN + ASM_REWRITE_TAC[] THEN + ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[ADD_SUB]);; + +(* ------------------------------------------------------------------------- *) +(* We can get a stronger version with a nonzeroness assumption. *) +(* ------------------------------------------------------------------------- *) + +let BEZOUT_ADD_STRONG = prove + (`!a b. ~(a = 0) + ==> ?d x y. d divides a /\ d divides b /\ (a * x = b * y + d)`, + REPEAT STRIP_TAC THEN + MP_TAC(SPECL [`a:num`; `b:num`] BEZOUT_ADD) THEN + REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN + REWRITE_TAC[EXISTS_OR_THM; GSYM CONJ_ASSOC] THEN + MATCH_MP_TAC(TAUT `(b ==> a) ==> a \/ b ==> a`) THEN + DISCH_THEN(X_CHOOSE_THEN `d:num` (X_CHOOSE_THEN `x:num` + (X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC))) THEN + FIRST_X_ASSUM(MP_TAC o SYM) THEN + ASM_CASES_TAC `b = 0` THENL + [ASM_SIMP_TAC[MULT_CLAUSES; ADD_EQ_0; MULT_EQ_0; ADD_CLAUSES] THEN + STRIP_TAC THEN UNDISCH_TAC `d divides a` THEN + ASM_REWRITE_TAC[DIVIDES_ZERO]; ALL_TAC] THEN + MP_TAC(SPECL [`d:num`; `b:num`] DIVIDES_LE) THEN ASM_REWRITE_TAC[] THEN + REWRITE_TAC[LE_LT] THEN STRIP_TAC THENL + [ALL_TAC; + DISCH_TAC THEN EXISTS_TAC `b:num` THEN EXISTS_TAC `b:num` THEN + EXISTS_TAC `a - 1` THEN + UNDISCH_TAC `d divides a` THEN ASM_SIMP_TAC[DIVIDES_REFL] THEN + REWRITE_TAC[ARITH_RULE `b * x + b = (x + 1) * b`] THEN + ASM_SIMP_TAC[ARITH_RULE `~(a = 0) ==> ((a - 1) + 1 = a)`]] THEN + ASM_CASES_TAC `x = 0` THENL + [ASM_SIMP_TAC[MULT_CLAUSES; ADD_EQ_0; MULT_EQ_0] THEN STRIP_TAC THEN + UNDISCH_TAC `d divides a` THEN ASM_REWRITE_TAC[DIVIDES_ZERO]; ALL_TAC] THEN + DISCH_THEN(MP_TAC o AP_TERM `( * ) (b - 1)`) THEN + DISCH_THEN(MP_TAC o AP_TERM `(+) (d:num)`) THEN + GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV) + [LEFT_ADD_DISTRIB] THEN + REWRITE_TAC[ARITH_RULE `d + bay + b1 * d = (1 + b1) * d + bay`] THEN + ASM_SIMP_TAC[ARITH_RULE `~(b = 0) ==> (1 + (b - 1) = b)`] THEN + DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE + `(a + b = c + d) ==> a <= d ==> (b = (d - a) + c:num)`)) THEN + ANTS_TAC THENL + [ONCE_REWRITE_TAC[AC MULT_AC `(b - 1) * b * x = b * (b - 1) * x`] THEN + REWRITE_TAC[LE_MULT_LCANCEL] THEN DISJ2_TAC THEN + GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `d = d * 1`] THEN + MATCH_MP_TAC LE_MULT2 THEN + MAP_EVERY UNDISCH_TAC [`d < b:num`; `~(x = 0)`] THEN ARITH_TAC; + ALL_TAC] THEN + DISCH_THEN(fun th -> + MAP_EVERY EXISTS_TAC [`d:num`; `y * (b - 1)`; `(b - 1) * x - d`] THEN + MP_TAC th) THEN + ASM_REWRITE_TAC[] THEN + GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV) [LEFT_SUB_DISTRIB] THEN + REWRITE_TAC[MULT_AC]);; + +(* ------------------------------------------------------------------------- *) +(* Greatest common divisor. *) +(* ------------------------------------------------------------------------- *) + +let GCD = prove + (`!a b. (gcd(a,b) divides a /\ gcd(a,b) divides b) /\ + (!e. e divides a /\ e divides b ==> e divides gcd(a,b))`, + NUMBER_TAC);; + +let DIVIDES_GCD = prove + (`!a b d. d divides gcd(a,b) <=> d divides a /\ d divides b`, + NUMBER_TAC);; + +let GCD_UNIQUE = prove( + `!d a b. (d divides a /\ d divides b) /\ + (!e. e divides a /\ e divides b ==> e divides d) <=> + (d = gcd(a,b))`, + REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[GCD] THEN + ONCE_REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN + ASM_REWRITE_TAC[DIVIDES_GCD] THEN + FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[GCD]);; + +let GCD_EQ = prove + (`(!d. d divides x /\ d divides y <=> d divides u /\ d divides v) + ==> gcd(x,y) = gcd(u,v)`, + REWRITE_TAC[DIVIDES_GCD; GSYM DIVIDES_ANTISYM] THEN MESON_TAC[GCD]);; + +let GCD_SYM = prove + (`!a b. gcd(a,b) = gcd(b,a)`, + REPEAT GEN_TAC THEN REWRITE_TAC[GSYM GCD_UNIQUE] THEN NUMBER_TAC);; + +let GCD_ASSOC = prove( + `!a b c. gcd(a,gcd(b,c)) = gcd(gcd(a,b),c)`, + REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN + REWRITE_TAC[DIVIDES_GCD; CONJ_ASSOC; GCD] THEN + CONJ_TAC THEN MATCH_MP_TAC DIVIDES_TRANS THEN + EXISTS_TAC `gcd(b,c)` THEN ASM_REWRITE_TAC[GCD]);; + +let BEZOUT_GCD = prove( + `!a b. ?x y. ((a * x) - (b * y) = gcd(a,b)) \/ + ((b * x) - (a * y) = gcd(a,b))`, + REPEAT GEN_TAC THEN + MP_TAC(SPECL [`a:num`; `b:num`] BEZOUT) THEN + DISCH_THEN(EVERY_TCL (map X_CHOOSE_THEN [`d:num`; `x:num`; `y:num`]) + (CONJUNCTS_THEN ASSUME_TAC)) THEN + SUBGOAL_THEN `d divides gcd(a,b)` MP_TAC THENL + [MATCH_MP_TAC(last(CONJUNCTS(SPEC_ALL GCD))) THEN ASM_REWRITE_TAC[]; + DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST1_TAC o REWRITE_RULE[divides]) THEN + MAP_EVERY EXISTS_TAC [`x * k`; `y * k`] THEN + ASM_REWRITE_TAC[GSYM RIGHT_SUB_DISTRIB; MULT_ASSOC] THEN + FIRST_ASSUM(DISJ_CASES_THEN SUBST1_TAC) THEN REWRITE_TAC[]]);; + +let BEZOUT_GCD_STRONG = prove + (`!a b. ~(a = 0) ==> ?x y. a * x = b * y + gcd(a,b)`, + REPEAT STRIP_TAC THEN + FIRST_ASSUM(MP_TAC o SPEC `b:num` o MATCH_MP BEZOUT_ADD_STRONG) THEN + REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN + MAP_EVERY X_GEN_TAC [`d:num`; `x:num`; `y:num`] THEN + STRIP_TAC THEN ASM_REWRITE_TAC[] THEN + SUBGOAL_THEN `d divides gcd(a,b)` MP_TAC THENL + [ASM_MESON_TAC[GCD]; ALL_TAC] THEN + DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST1_TAC o REWRITE_RULE[divides]) THEN + MAP_EVERY EXISTS_TAC [`x * k`; `y * k`] THEN + ASM_REWRITE_TAC[GSYM RIGHT_ADD_DISTRIB; MULT_ASSOC]);; + +let GCD_LMUL = prove( + `!a b c. gcd(c * a, c * b) = c * gcd(a,b)`, + REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN + ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN + REPEAT CONJ_TAC THEN TRY(MATCH_MP_TAC DIVIDES_MUL_L) THEN + REWRITE_TAC[GCD] THEN REPEAT STRIP_TAC THEN + REPEAT_TCL STRIP_THM_THEN (SUBST1_TAC o SYM) + (SPECL [`a:num`; `b:num`] BEZOUT_GCD) THEN + REWRITE_TAC[LEFT_SUB_DISTRIB; MULT_ASSOC] THEN + MATCH_MP_TAC DIVIDES_SUB THEN CONJ_TAC THEN + MATCH_MP_TAC DIVIDES_RMUL THEN ASM_REWRITE_TAC[]);; + +let GCD_RMUL = prove( + `!a b c. gcd(a * c, b * c) = c * gcd(a,b)`, + REPEAT GEN_TAC THEN + GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN + MATCH_ACCEPT_TAC GCD_LMUL);; + +let GCD_BEZOUT = prove( + `!a b d. (?x y. ((a * x) - (b * y) = d) \/ ((b * x) - (a * y) = d)) <=> + gcd(a,b) divides d`, + REPEAT GEN_TAC THEN EQ_TAC THENL + [STRIP_TAC THEN POP_ASSUM(SUBST1_TAC o SYM) THEN + MATCH_MP_TAC DIVIDES_SUB THEN CONJ_TAC THEN + MATCH_MP_TAC DIVIDES_RMUL THEN REWRITE_TAC[GCD]; + DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST1_TAC o REWRITE_RULE[divides]) THEN + STRIP_ASSUME_TAC(SPECL [`a:num`; `b:num`] BEZOUT_GCD) THEN + MAP_EVERY EXISTS_TAC [`x * k`; `y * k`] THEN + ASM_REWRITE_TAC[GSYM RIGHT_SUB_DISTRIB; MULT_ASSOC] THEN + FIRST_ASSUM(DISJ_CASES_THEN SUBST1_TAC) THEN REWRITE_TAC[]]);; + +let GCD_BEZOUT_SUM = prove( + `!a b d x y. ((a * x) + (b * y) = d) ==> gcd(a,b) divides d`, + REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN + MATCH_MP_TAC DIVIDES_ADD THEN CONJ_TAC THEN + MATCH_MP_TAC DIVIDES_RMUL THEN REWRITE_TAC[GCD]);; + +let GCD_0 = prove( + `!a. gcd(0,a) = a`, + GEN_TAC THEN CONV_TAC SYM_CONV THEN + REWRITE_TAC[GSYM GCD_UNIQUE] THEN + REWRITE_TAC[DIVIDES_0; DIVIDES_REFL] THEN + REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);; + +let GCD_ZERO = prove( + `!a b. (gcd(a,b) = 0) <=> (a = 0) /\ (b = 0)`, + REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN + ASM_REWRITE_TAC[GCD_0] THEN + MP_TAC(SPECL [`a:num`; `b:num`] GCD) THEN + ASM_REWRITE_TAC[DIVIDES_ZERO] THEN + STRIP_TAC THEN ASM_REWRITE_TAC[]);; + +let GCD_REFL = prove( + `!a. gcd(a,a) = a`, + GEN_TAC THEN CONV_TAC SYM_CONV THEN + ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN + REWRITE_TAC[DIVIDES_REFL]);; + +let GCD_1 = prove( + `!a. gcd(1,a) = 1`, + GEN_TAC THEN CONV_TAC SYM_CONV THEN + ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN + REWRITE_TAC[DIVIDES_1] THEN + REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);; + +let GCD_MULTIPLE = prove( + `!a b. gcd(b,a * b) = b`, + REPEAT GEN_TAC THEN + GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) + [GSYM(el 2 (CONJUNCTS(SPEC_ALL MULT_CLAUSES)))] THEN + REWRITE_TAC[GCD_RMUL; GCD_1] THEN + REWRITE_TAC[MULT_CLAUSES]);; + +let GCD_ADD = prove + (`(!a b. gcd(a + b,b) = gcd(a,b)) /\ + (!a b. gcd(b + a,b) = gcd(a,b)) /\ + (!a b. gcd(a,a + b) = gcd(a,b)) /\ + (!a b. gcd(a,b + a) = gcd(a,b))`, + REWRITE_TAC[GSYM GCD_UNIQUE] THEN NUMBER_TAC);; + +let GCD_SUB = prove + (`(!a b. b <= a ==> gcd(a - b,b) = gcd(a,b)) /\ + (!a b. a <= b ==> gcd(a,b - a) = gcd(a,b))`, + MESON_TAC[SUB_ADD; GCD_ADD]);; + +(* ------------------------------------------------------------------------- *) +(* Coprimality *) +(* ------------------------------------------------------------------------- *) + +let coprime = prove + (`coprime(a,b) <=> !d. d divides a /\ d divides b ==> (d = 1)`, + EQ_TAC THENL + [REWRITE_TAC[GSYM DIVIDES_ONE]; + DISCH_THEN(MP_TAC o SPEC `gcd(a,b)`) THEN REWRITE_TAC[GCD]] THEN + NUMBER_TAC);; + +let COPRIME = prove( + `!a b. coprime(a,b) <=> !d. d divides a /\ d divides b <=> (d = 1)`, + REPEAT GEN_TAC THEN REWRITE_TAC[coprime] THEN + REPEAT(EQ_TAC ORELSE STRIP_TAC) THEN ASM_REWRITE_TAC[DIVIDES_1] THENL + [FIRST_ASSUM MATCH_MP_TAC; + FIRST_ASSUM(CONV_TAC o REWR_CONV o GSYM) THEN CONJ_TAC] THEN + ASM_REWRITE_TAC[]);; + +let COPRIME_GCD = prove + (`!a b. coprime(a,b) <=> (gcd(a,b) = 1)`, + REWRITE_TAC[GSYM DIVIDES_ONE] THEN NUMBER_TAC);; + +let COPRIME_SYM = prove + (`!a b. coprime(a,b) <=> coprime(b,a)`, + NUMBER_TAC);; + +let COPRIME_BEZOUT = prove( + `!a b. coprime(a,b) <=> ?x y. ((a * x) - (b * y) = 1) \/ + ((b * x) - (a * y) = 1)`, + REWRITE_TAC[GCD_BEZOUT; DIVIDES_ONE; COPRIME_GCD]);; + +let COPRIME_DIVPROD = prove + (`!d a b. d divides (a * b) /\ coprime(d,a) ==> d divides b`, + NUMBER_TAC);; + +let COPRIME_1 = prove + (`!a. coprime(a,1)`, + NUMBER_TAC);; + +let GCD_COPRIME = prove + (`!a b a' b'. ~(gcd(a,b) = 0) /\ a = a' * gcd(a,b) /\ b = b' * gcd(a,b) + ==> coprime(a',b')`, + NUMBER_TAC);; + +let GCD_COPRIME_EXISTS = prove( + `!a b. ~(gcd(a,b) = 0) ==> + ?a' b'. (a = a' * gcd(a,b)) /\ + (b = b' * gcd(a,b)) /\ + coprime(a',b')`, + REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPECL [`a:num`; `b:num`] GCD) THEN + DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[divides] THEN + DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a':num` o GSYM) + (X_CHOOSE_TAC `b':num` o GSYM)) THEN + MAP_EVERY EXISTS_TAC [`a':num`; `b':num`] THEN + ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_REWRITE_TAC[] THEN + MATCH_MP_TAC GCD_COPRIME THEN + MAP_EVERY EXISTS_TAC [`a:num`; `b:num`] THEN + ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_REWRITE_TAC[]);; + +let COPRIME_0 = prove + (`(!d. coprime(d,0) <=> d = 1) /\ + (!d. coprime(0,d) <=> d = 1)`, + REWRITE_TAC[GSYM DIVIDES_ONE] THEN NUMBER_TAC);; + +let COPRIME_MUL = prove + (`!d a b. coprime(d,a) /\ coprime(d,b) ==> coprime(d,a * b)`, + NUMBER_TAC);; + +let COPRIME_LMUL2 = prove + (`!d a b. coprime(d,a * b) ==> coprime(d,b)`, + NUMBER_TAC);; + +let COPRIME_RMUL2 = prove + (`!d a b. coprime(d,a * b) ==> coprime(d,a)`, + NUMBER_TAC);; + +let COPRIME_LMUL = prove + (`!d a b. coprime(a * b,d) <=> coprime(a,d) /\ coprime(b,d)`, + NUMBER_TAC);; + +let COPRIME_RMUL = prove + (`!d a b. coprime(d,a * b) <=> coprime(d,a) /\ coprime(d,b)`, + NUMBER_TAC);; + +let COPRIME_EXP = prove + (`!n a d. coprime(d,a) ==> coprime(d,a EXP n)`, + INDUCT_TAC THEN REWRITE_TAC[EXP; COPRIME_1] THEN + REPEAT GEN_TAC THEN DISCH_TAC THEN + MATCH_MP_TAC COPRIME_MUL THEN ASM_REWRITE_TAC[] THEN + FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);; + +let COPRIME_EXP_IMP = prove + (`!n a b. coprime(a,b) ==> coprime(a EXP n,b EXP n)`, + REPEAT GEN_TAC THEN DISCH_TAC THEN + MATCH_MP_TAC COPRIME_EXP THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN + MATCH_MP_TAC COPRIME_EXP THEN + ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[]);; + +let COPRIME_REXP = prove + (`!m n k. coprime(m,n EXP k) <=> coprime(m,n) \/ k = 0`, + GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN + REWRITE_TAC[CONJUNCT1 EXP; COPRIME_1] THEN + REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[COPRIME_EXP; NOT_SUC] THEN + REWRITE_TAC[EXP] THEN CONV_TAC NUMBER_RULE);; + +let COPRIME_LEXP = prove + (`!m n k. coprime(m EXP k,n) <=> coprime(m,n) \/ k = 0`, + ONCE_REWRITE_TAC[COPRIME_SYM] THEN REWRITE_TAC[COPRIME_REXP]);; + +let COPRIME_EXP2 = prove + (`!m n k. coprime(m EXP k,n EXP k) <=> coprime(m,n) \/ k = 0`, + REWRITE_TAC[COPRIME_REXP; COPRIME_LEXP; DISJ_ACI]);; + +let COPRIME_EXP2_SUC = prove + (`!n a b. coprime(a EXP (SUC n),b EXP (SUC n)) <=> coprime(a,b)`, + REWRITE_TAC[COPRIME_EXP2; NOT_SUC]);; + +let COPRIME_REFL = prove + (`!n. coprime(n,n) <=> (n = 1)`, + REWRITE_TAC[COPRIME_GCD; GCD_REFL]);; + +let COPRIME_PLUS1 = prove + (`!n. coprime(n + 1,n)`, + NUMBER_TAC);; + +let COPRIME_MINUS1 = prove + (`!n. ~(n = 0) ==> coprime(n - 1,n)`, + REPEAT STRIP_TAC THEN SIMP_TAC[coprime] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN + GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_SUB) THEN + ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> n - (n - 1) = 1`; DIVIDES_ONE]);; + +let BEZOUT_GCD_POW = prove( + `!n a b. ?x y. (((a EXP n) * x) - ((b EXP n) * y) = gcd(a,b) EXP n) \/ + (((b EXP n) * x) - ((a EXP n) * y) = gcd(a,b) EXP n)`, + REPEAT GEN_TAC THEN ASM_CASES_TAC `gcd(a,b) = 0` THENL + [STRUCT_CASES_TAC(SPEC `n:num` num_CASES) THEN + ASM_REWRITE_TAC[EXP; MULT_CLAUSES] THENL + [MAP_EVERY EXISTS_TAC [`1`; `0`] THEN REWRITE_TAC[SUB_0]; + REPEAT(EXISTS_TAC `0`) THEN REWRITE_TAC[MULT_CLAUSES; SUB_0]]; + MP_TAC(SPECL [`a:num`; `b:num`] GCD) THEN + DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN + DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN REWRITE_TAC[divides] THEN + DISCH_THEN(X_CHOOSE_THEN `b':num` ASSUME_TAC) THEN + DISCH_THEN(X_CHOOSE_THEN `a':num` ASSUME_TAC) THEN + MP_TAC(SPECL [`a:num`; `b:num`; `a':num`; `b':num`] GCD_COPRIME) THEN + RULE_ASSUM_TAC GSYM THEN RULE_ASSUM_TAC(ONCE_REWRITE_RULE[MULT_SYM]) THEN + ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o GSYM) THEN + ASM_REWRITE_TAC[] THEN + DISCH_THEN(MP_TAC o SPEC `n:num` o MATCH_MP COPRIME_EXP_IMP) THEN + REWRITE_TAC[COPRIME_BEZOUT] THEN + DISCH_THEN(X_CHOOSE_THEN `x:num` (X_CHOOSE_THEN `y:num` MP_TAC)) THEN + DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN + DISCH_THEN (MP_TAC o AP_TERM `(*) (gcd(a,b) EXP n)`) THEN + REWRITE_TAC[MULT_CLAUSES; LEFT_SUB_DISTRIB] THEN + DISCH_THEN(SUBST1_TAC o SYM) THEN + MAP_EVERY EXISTS_TAC [`x:num`; `y:num`] THEN + REWRITE_TAC[MULT_ASSOC; GSYM MULT_EXP] THEN + RULE_ASSUM_TAC(ONCE_REWRITE_RULE[MULT_SYM]) THEN + ASM_REWRITE_TAC[]]);; + +let GCD_EXP = prove( + `!n a b. gcd(a EXP n,b EXP n) = gcd(a,b) EXP n`, + REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN + ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN REPEAT CONJ_TAC THENL + [MATCH_MP_TAC DIVIDES_EXP THEN REWRITE_TAC[GCD]; + MATCH_MP_TAC DIVIDES_EXP THEN REWRITE_TAC[GCD]; + X_GEN_TAC `d:num` THEN STRIP_TAC THEN + MP_TAC(SPECL [`n:num`; `a:num`; `b:num`] BEZOUT_GCD_POW) THEN + DISCH_THEN(REPEAT_TCL CHOOSE_THEN (DISJ_CASES_THEN + (SUBST1_TAC o SYM))) THEN + MATCH_MP_TAC DIVIDES_SUB THEN CONJ_TAC THEN + MATCH_MP_TAC DIVIDES_RMUL THEN ASM_REWRITE_TAC[]]);; + +let DIVISION_DECOMP = prove( + `!a b c. a divides (b * c) ==> + ?b' c'. (a = b' * c') /\ b' divides b /\ c' divides c`, + REPEAT GEN_TAC THEN DISCH_TAC THEN + EXISTS_TAC `gcd(a,b)` THEN REWRITE_TAC[GCD] THEN + MP_TAC(SPECL [`a:num`; `b:num`] GCD_COPRIME_EXISTS) THEN + ASM_CASES_TAC `gcd(a,b) = 0` THENL + [ASM_REWRITE_TAC[] THEN EXISTS_TAC `1` THEN + RULE_ASSUM_TAC(REWRITE_RULE[GCD_ZERO]) THEN + ASM_REWRITE_TAC[MULT_CLAUSES; DIVIDES_1]; + ASM_REWRITE_TAC[] THEN + DISCH_THEN(X_CHOOSE_THEN `a':num` (X_CHOOSE_THEN `b':num` + (STRIP_ASSUME_TAC o GSYM o ONCE_REWRITE_RULE[MULT_SYM]))) THEN + EXISTS_TAC `a':num` THEN ASM_REWRITE_TAC[] THEN + UNDISCH_TAC `a divides (b * c)` THEN + FIRST_ASSUM(fun th -> GEN_REWRITE_TAC + (LAND_CONV o LAND_CONV) [GSYM th]) THEN + FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) + [GSYM th]) THEN REWRITE_TAC[MULT_ASSOC] THEN + DISCH_TAC THEN MATCH_MP_TAC COPRIME_DIVPROD THEN + EXISTS_TAC `b':num` THEN ASM_REWRITE_TAC[] THEN + MATCH_MP_TAC DIVIDES_CMUL2 THEN EXISTS_TAC `gcd(a,b)` THEN + REWRITE_TAC[MULT_ASSOC] THEN CONJ_TAC THEN + FIRST_ASSUM MATCH_ACCEPT_TAC]);; + +let DIVIDES_EXP2_REV = prove + (`!n a b. (a EXP n) divides (b EXP n) /\ ~(n = 0) ==> a divides b`, + REPEAT GEN_TAC THEN ASM_CASES_TAC `gcd(a,b) = 0` THENL + [ASM_MESON_TAC[GCD_ZERO; DIVIDES_REFL]; ALL_TAC] THEN + FIRST_ASSUM(MP_TAC o MATCH_MP GCD_COPRIME_EXISTS) THEN + STRIP_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN + ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[MULT_EXP] THEN + ASM_SIMP_TAC[EXP_EQ_0; DIVIDES_RMUL2_EQ] THEN + DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE + `a divides b ==> coprime(a,b) ==> a divides 1`)) THEN + ASM_SIMP_TAC[COPRIME_EXP2; DIVIDES_ONE; DIVIDES_1; EXP_EQ_1]);; + +let DIVIDES_EXP2_EQ = prove + (`!n a b. ~(n = 0) ==> ((a EXP n) divides (b EXP n) <=> a divides b)`, + MESON_TAC[DIVIDES_EXP2_REV; DIVIDES_EXP]);; + +let DIVIDES_MUL = prove + (`!m n r. m divides r /\ n divides r /\ coprime(m,n) ==> (m * n) divides r`, + NUMBER_TAC);; + +(* ------------------------------------------------------------------------- *) +(* A binary form of the Chinese Remainder Theorem. *) +(* ------------------------------------------------------------------------- *) + +let CHINESE_REMAINDER = prove + (`!a b u v. coprime(a,b) /\ ~(a = 0) /\ ~(b = 0) + ==> ?x q1 q2. (x = u + q1 * a) /\ (x = v + q2 * b)`, + let lemma = prove + (`(?d x y. (d = 1) /\ P x y d) <=> (?x y. P x y 1)`, + MESON_TAC[]) in + REPEAT STRIP_TAC THEN + MP_TAC(SPECL [`b:num`; `a:num`] BEZOUT_ADD_STRONG) THEN + MP_TAC(SPECL [`a:num`; `b:num`] BEZOUT_ADD_STRONG) THEN + ASM_REWRITE_TAC[CONJ_ASSOC] THEN + SUBGOAL_THEN `!d. d divides a /\ d divides b <=> (d = 1)` + (fun th -> REWRITE_TAC[th; ONCE_REWRITE_RULE[CONJ_SYM] th]) + THENL + [UNDISCH_TAC `coprime(a,b)` THEN + SIMP_TAC[GSYM DIVIDES_GCD; COPRIME_GCD; DIVIDES_ONE]; ALL_TAC] THEN + REWRITE_TAC[lemma] THEN + DISCH_THEN(X_CHOOSE_THEN `x1:num` (X_CHOOSE_TAC `y1:num`)) THEN + DISCH_THEN(X_CHOOSE_THEN `x2:num` (X_CHOOSE_TAC `y2:num`)) THEN + EXISTS_TAC `v * a * x1 + u * b * x2:num` THEN + EXISTS_TAC `v * x1 + u * y2:num` THEN + EXISTS_TAC `v * y1 + u * x2:num` THEN CONJ_TAC THENL + [SUBST1_TAC(ASSUME `b * x2 = a * y2 + 1`); + SUBST1_TAC(ASSUME `a * x1 = b * y1 + 1`)] THEN + REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN + REWRITE_TAC[MULT_AC] THEN REWRITE_TAC[ADD_AC]);; + +(* ------------------------------------------------------------------------- *) +(* Primality *) +(* ------------------------------------------------------------------------- *) + +let prime = new_definition + `prime(p) <=> ~(p = 1) /\ !x. x divides p ==> (x = 1) \/ (x = p)`;; + +(* ------------------------------------------------------------------------- *) +(* A few useful theorems about primes *) +(* ------------------------------------------------------------------------- *) + +let PRIME_0 = prove( + `~prime(0)`, + REWRITE_TAC[prime] THEN + DISCH_THEN(MP_TAC o SPEC `2` o CONJUNCT2) THEN + REWRITE_TAC[DIVIDES_0; ARITH]);; + +let PRIME_1 = prove( + `~prime(1)`, + REWRITE_TAC[prime]);; + +let PRIME_2 = prove( + `prime(2)`, + REWRITE_TAC[prime; ARITH] THEN + REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN + FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN + REWRITE_TAC[ARITH] THEN REWRITE_TAC[LE_LT] THEN + REWRITE_TAC[num_CONV `2`; num_CONV `1`; LESS_THM; NOT_LESS_0] THEN + DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN SUBST_ALL_TAC) THEN + REWRITE_TAC[] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[DIVIDES_ZERO] THEN + REWRITE_TAC[ARITH] THEN REWRITE_TAC[]);; + +let PRIME_GE_2 = prove( + `!p. prime(p) ==> 2 <= p`, + GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[NOT_LE] THEN + REWRITE_TAC[num_CONV `2`; num_CONV `1`; LESS_THM; NOT_LESS_0] THEN + DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN SUBST1_TAC) THEN + REWRITE_TAC[SYM(num_CONV `1`); PRIME_0; PRIME_1]);; + +let PRIME_FACTOR = prove( + `!n. ~(n = 1) ==> ?p. prime(p) /\ p divides n`, + MATCH_MP_TAC num_WF THEN + X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN + ASM_CASES_TAC `prime(n)` THENL + [EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[DIVIDES_REFL]; + UNDISCH_TAC `~prime(n)` THEN + DISCH_THEN(MP_TAC o REWRITE_RULE[prime]) THEN + ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[NOT_FORALL_THM] THEN + DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC) THEN + REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN STRIP_TAC THEN + FIRST_ASSUM(DISJ_CASES_THEN MP_TAC o MATCH_MP DIVIDES_LE) THENL + [ASM_REWRITE_TAC[LE_LT] THEN + DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN ASM_REWRITE_TAC[] THEN + DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN + EXISTS_TAC `p:num` THEN ASM_REWRITE_TAC[] THEN + MATCH_MP_TAC DIVIDES_TRANS THEN EXISTS_TAC `m:num` THEN + ASM_REWRITE_TAC[]; + DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `2` THEN + REWRITE_TAC[PRIME_2; DIVIDES_0]]]);; + +let PRIME_FACTOR_LT = prove( + `!n m p. prime(p) /\ ~(n = 0) /\ (n = p * m) ==> m < n`, + REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN + ASM_REWRITE_TAC[LE_EXISTS] THEN + DISCH_THEN(X_CHOOSE_THEN `q:num` SUBST_ALL_TAC) THEN + REWRITE_TAC[num_CONV `2`; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN + REWRITE_TAC[GSYM ADD_ASSOC] THEN MATCH_MP_TAC LESS_ADD_NONZERO THEN + REWRITE_TAC[ADD_EQ_0] THEN DISCH_THEN(CONJUNCTS_THEN SUBST_ALL_TAC) THEN + FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN + ASM_REWRITE_TAC[MULT_CLAUSES]);; + +let PRIME_FACTOR_INDUCT = prove + (`!P. P 0 /\ P 1 /\ + (!p n. prime p /\ ~(n = 0) /\ P n ==> P(p * n)) + ==> !n. P n`, + GEN_TAC THEN STRIP_TAC THEN + MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN + DISCH_TAC THEN MAP_EVERY ASM_CASES_TAC [`n = 0`; `n = 1`] THEN + ASM_REWRITE_TAC[] THEN FIRST_ASSUM(X_CHOOSE_THEN `p:num` + STRIP_ASSUME_TAC o MATCH_MP PRIME_FACTOR) THEN + FIRST_X_ASSUM(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC o + GEN_REWRITE_RULE I [divides]) THEN + FIRST_X_ASSUM(MP_TAC o SPECL [`p:num`; `d:num`]) THEN + RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN + DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN + FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[PRIME_FACTOR_LT; MULT_EQ_0]);; + +(* ------------------------------------------------------------------------- *) +(* Infinitude of primes. *) +(* ------------------------------------------------------------------------- *) + +let EUCLID_BOUND = prove + (`!n. ?p. prime(p) /\ n < p /\ p <= SUC(FACT n)`, + GEN_TAC THEN MP_TAC(SPEC `FACT n + 1` PRIME_FACTOR) THEN + SIMP_TAC[ARITH_RULE `0 < n ==> ~(n + 1 = 1)`; ADD1; FACT_LT] THEN + MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL + [ASM_MESON_TAC[DIVIDES_ADD_REVR; DIVIDES_ONE; PRIME_1; NOT_LT; PRIME_0; + ARITH_RULE `(p = 0) \/ 1 <= p`; DIVIDES_FACT]; + ASM_MESON_TAC[DIVIDES_LE; ARITH_RULE `~(x + 1 = 0)`]]);; + +let EUCLID = prove + (`!n. ?p. prime(p) /\ p > n`, + REWRITE_TAC[GT] THEN MESON_TAC[EUCLID_BOUND]);; + +let PRIMES_INFINITE = prove + (`INFINITE {p | prime p}`, + REWRITE_TAC[INFINITE; num_FINITE; IN_ELIM_THM] THEN + MESON_TAC[EUCLID; NOT_LE; GT]);; + +let COPRIME_PRIME = prove( + `!p a b. coprime(a,b) ==> ~(prime(p) /\ p divides a /\ p divides b)`, + REPEAT GEN_TAC THEN REWRITE_TAC[coprime] THEN REPEAT STRIP_TAC THEN + SUBGOAL_THEN `p = 1` SUBST_ALL_TAC THENL + [FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; + UNDISCH_TAC `prime 1` THEN REWRITE_TAC[PRIME_1]]);; + +let COPRIME_PRIME_EQ = prove( + `!a b. coprime(a,b) <=> !p. ~(prime(p) /\ p divides a /\ p divides b)`, + REPEAT GEN_TAC THEN EQ_TAC THENL + [DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP COPRIME_PRIME th]); + CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[coprime] THEN + ONCE_REWRITE_TAC[NOT_FORALL_THM] THEN REWRITE_TAC[NOT_IMP] THEN + DISCH_THEN(X_CHOOSE_THEN `d:num` STRIP_ASSUME_TAC) THEN + FIRST_ASSUM(X_CHOOSE_TAC `p:num` o MATCH_MP PRIME_FACTOR) THEN + EXISTS_TAC `p:num` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN + MATCH_MP_TAC DIVIDES_TRANS THEN EXISTS_TAC `d:num` THEN + ASM_REWRITE_TAC[]]);; + +let PRIME_COPRIME = prove( + `!n p. prime(p) ==> (n = 1) \/ p divides n \/ coprime(p,n)`, + REPEAT GEN_TAC THEN REWRITE_TAC[prime; COPRIME_GCD] THEN + STRIP_ASSUME_TAC(SPECL [`p:num`; `n:num`] GCD) THEN + DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN + DISCH_THEN(MP_TAC o SPEC `gcd(p,n)`) THEN ASM_REWRITE_TAC[] THEN + DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THEN + ASM_REWRITE_TAC[]);; + +let PRIME_COPRIME_STRONG = prove + (`!n p. prime(p) ==> p divides n \/ coprime(p,n)`, + MESON_TAC[PRIME_COPRIME; COPRIME_1]);; + +let PRIME_COPRIME_EQ = prove + (`!p n. prime p ==> (coprime(p,n) <=> ~(p divides n))`, + REPEAT STRIP_TAC THEN + MATCH_MP_TAC(TAUT `(b \/ a) /\ ~(a /\ b) ==> (a <=> ~b)`) THEN + ASM_SIMP_TAC[PRIME_COPRIME_STRONG] THEN + ASM_MESON_TAC[COPRIME_REFL; PRIME_1; NUMBER_RULE + `coprime(p,n) /\ p divides n ==> coprime(p,p)`]);; + +let COPRIME_PRIMEPOW = prove + (`!p k m. prime p /\ ~(k = 0) ==> (coprime(m,p EXP k) <=> ~(p divides m))`, + SIMP_TAC[COPRIME_REXP] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN + SIMP_TAC[PRIME_COPRIME_EQ]);; + +let COPRIME_BEZOUT_STRONG = prove + (`!a b. coprime(a,b) /\ ~(b = 1) ==> ?x y. a * x = b * y + 1`, + REPEAT GEN_TAC THEN STRIP_TAC THEN + FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_GCD]) THEN + DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC BEZOUT_GCD_STRONG THEN + ASM_MESON_TAC[COPRIME_0; COPRIME_SYM]);; + +let COPRIME_BEZOUT_ALT = prove + (`!a b. coprime(a,b) /\ ~(a = 0) ==> ?x y. a * x = b * y + 1`, + REPEAT GEN_TAC THEN STRIP_TAC THEN + FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_GCD]) THEN + DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC BEZOUT_GCD_STRONG THEN + ASM_MESON_TAC[COPRIME_0; COPRIME_SYM]);; + +let BEZOUT_PRIME = prove + (`!a p. prime p /\ ~(p divides a) ==> ?x y. a * x = p * y + 1`, + MESON_TAC[PRIME_COPRIME_STRONG; COPRIME_SYM; + COPRIME_BEZOUT_STRONG; PRIME_1]);; + +let PRIME_DIVPROD = prove( + `!p a b. prime(p) /\ p divides (a * b) ==> p divides a \/ p divides b`, + REPEAT GEN_TAC THEN STRIP_TAC THEN + FIRST_ASSUM(MP_TAC o SPEC `a:num` o MATCH_MP PRIME_COPRIME) THEN + DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC) THEN + ASM_REWRITE_TAC[] THENL + [DISJ2_TAC THEN UNDISCH_TAC `p divides (a * b)` THEN + ASM_REWRITE_TAC[MULT_CLAUSES]; + DISJ2_TAC THEN MATCH_MP_TAC COPRIME_DIVPROD THEN + EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[]]);; + +let PRIME_DIVPROD_EQ = prove + (`!p a b. prime(p) ==> (p divides (a * b) <=> p divides a \/ p divides b)`, + MESON_TAC[PRIME_DIVPROD; DIVIDES_LMUL; DIVIDES_RMUL]);; + +let PRIME_DIVEXP = prove( + `!n p x. prime(p) /\ p divides (x EXP n) ==> p divides x`, + INDUCT_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[EXP; DIVIDES_ONE] THENL + [DISCH_THEN(SUBST1_TAC o CONJUNCT2) THEN REWRITE_TAC[DIVIDES_1]; + DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT1 th) THEN MP_TAC th) THEN + DISCH_THEN(DISJ_CASES_TAC o MATCH_MP PRIME_DIVPROD) THEN + ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN + ASM_REWRITE_TAC[]]);; + +let PRIME_DIVEXP_N = prove( + `!n p x. prime(p) /\ p divides (x EXP n) ==> (p EXP n) divides (x EXP n)`, + REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP PRIME_DIVEXP) THEN + MATCH_ACCEPT_TAC DIVIDES_EXP);; + +let PRIME_DIVEXP_EQ = prove + (`!n p x. prime p ==> (p divides x EXP n <=> p divides x /\ ~(n = 0))`, + REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN + ASM_REWRITE_TAC[EXP; DIVIDES_ONE] THEN + ASM_MESON_TAC[PRIME_DIVEXP; DIVIDES_REXP; PRIME_1]);; + +let PARITY_EXP = prove( + `!n x. EVEN(x EXP (SUC n)) = EVEN(x)`, + REPEAT GEN_TAC THEN REWRITE_TAC[GSYM DIVIDES_2] THEN EQ_TAC THENL + [DISCH_TAC THEN MATCH_MP_TAC PRIME_DIVEXP THEN + EXISTS_TAC `SUC n` THEN ASM_REWRITE_TAC[PRIME_2]; + REWRITE_TAC[EXP] THEN MATCH_ACCEPT_TAC DIVIDES_RMUL]);; + +let COPRIME_SOS = prove + (`!x y. coprime(x,y) ==> coprime(x * y,(x EXP 2) + (y EXP 2))`, + NUMBER_TAC);; + +let PRIME_IMP_NZ = prove + (`!p. prime(p) ==> ~(p = 0)`, + MESON_TAC[PRIME_0]);; + +let DISTINCT_PRIME_COPRIME = prove + (`!p q. prime p /\ prime q /\ ~(p = q) ==> coprime(p,q)`, + MESON_TAC[prime; coprime; PRIME_1]);; + +let PRIME_COPRIME_LT = prove + (`!x p. prime p /\ 0 < x /\ x < p ==> coprime(x,p)`, + REWRITE_TAC[coprime; prime] THEN + MESON_TAC[LT_REFL; DIVIDES_LE; NOT_LT; PRIME_0]);; + +let DIVIDES_PRIME_PRIME = prove + (`!p q. prime p /\ prime q ==> (p divides q <=> p = q)`, + MESON_TAC[DIVIDES_REFL; DISTINCT_PRIME_COPRIME; PRIME_COPRIME_EQ]);; + +let DIVIDES_PRIME_EXP_LE = prove + (`!p q m n. prime p /\ prime q + ==> ((p EXP m) divides (q EXP n) <=> m = 0 \/ p = q /\ m <= n)`, + GEN_TAC THEN GEN_TAC THEN REPEAT INDUCT_TAC THEN + ASM_SIMP_TAC[EXP; DIVIDES_1; DIVIDES_ONE; MULT_EQ_1; NOT_SUC] THENL + [MESON_TAC[PRIME_1; ARITH_RULE `~(SUC m <= 0)`]; ALL_TAC] THEN + ASM_CASES_TAC `p:num = q` THEN + ASM_SIMP_TAC[DIVIDES_EXP_LE; PRIME_GE_2; GSYM(CONJUNCT2 EXP)] THEN + ASM_MESON_TAC[PRIME_DIVEXP; DIVIDES_PRIME_PRIME; EXP; DIVIDES_RMUL2]);; + +let EQ_PRIME_EXP = prove + (`!p q m n. prime p /\ prime q + ==> (p EXP m = q EXP n <=> m = 0 /\ n = 0 \/ p = q /\ m = n)`, + REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM DIVIDES_ANTISYM] THEN + ASM_SIMP_TAC[DIVIDES_PRIME_EXP_LE] THEN ARITH_TAC);; + +let PRIME_ODD = prove + (`!p. prime p ==> p = 2 \/ ODD p`, + GEN_TAC THEN REWRITE_TAC[prime; GSYM NOT_EVEN; EVEN_EXISTS] THEN + DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `2`)) THEN + REWRITE_TAC[divides; ARITH] THEN MESON_TAC[]);; + +let DIVIDES_FACT_PRIME = prove + (`!p. prime p ==> !n. p divides (FACT n) <=> p <= n`, + GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL + [ASM_MESON_TAC[DIVIDES_ONE; PRIME_0; PRIME_1]; + ASM_MESON_TAC[PRIME_DIVPROD_EQ; DIVIDES_LE; NOT_SUC; DIVIDES_REFL; + ARITH_RULE `~(p <= n) /\ p <= SUC n ==> p = SUC n`]]);; + +let EQ_PRIMEPOW = prove + (`!p m n. prime p ==> (p EXP m = p EXP n <=> m = n)`, + ONCE_REWRITE_TAC[GSYM LE_ANTISYM] THEN + SIMP_TAC[LE_EXP; PRIME_IMP_NZ] THEN MESON_TAC[PRIME_1]);; + +let COPRIME_2 = prove + (`(!n. coprime(2,n) <=> ODD n) /\ (!n. coprime(n,2) <=> ODD n)`, + GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [COPRIME_SYM] THEN + SIMP_TAC[PRIME_COPRIME_EQ; PRIME_2; DIVIDES_2; NOT_EVEN]);; + +let DIVIDES_EXP_PLUS1 = prove + (`!n k. ODD k ==> (n + 1) divides (n EXP k + 1)`, + GEN_TAC THEN REWRITE_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM] THEN + ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[FORALL_UNWIND_THM2] THEN + INDUCT_TAC THEN CONV_TAC NUM_REDUCE_CONV THEN + REWRITE_TAC[EXP_1; DIVIDES_REFL] THEN + REWRITE_TAC[ARITH_RULE `SUC(2 * SUC n) = SUC(2 * n) + 2`] THEN + REWRITE_TAC[EXP_ADD; EXP_2] THEN POP_ASSUM MP_TAC THEN NUMBER_TAC);; + +let DIVIDES_EXP_MINUS1 = prove + (`!k n. (n - 1) divides (n EXP k - 1)`, + REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL + [STRUCT_CASES_TAC(SPEC `k:num` num_CASES) THEN + ASM_REWRITE_TAC[EXP; MULT_CLAUSES] THEN CONV_TAC NUM_REDUCE_CONV THEN + REWRITE_TAC[DIVIDES_REFL]; + REWRITE_TAC[num_divides] THEN + ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; LE_1; EXP_EQ_0; ARITH] THEN + POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[GSYM INT_OF_NUM_POW] THEN + SPEC_TAC(`k:num`,`k:num`) THEN INDUCT_TAC THEN REWRITE_TAC[INT_POW] THEN + REPEAT(POP_ASSUM MP_TAC) THEN INTEGER_TAC]);; + +(* ------------------------------------------------------------------------- *) +(* One property of coprimality is easier to prove via prime factors. *) +(* ------------------------------------------------------------------------- *) + +let COPRIME_EXP_DIVPROD = prove + (`!d n a b. + (d EXP n) divides (a * b) /\ coprime(d,a) ==> (d EXP n) divides b`, + MESON_TAC[COPRIME_DIVPROD; COPRIME_EXP; COPRIME_SYM]);; + +let PRIME_COPRIME_CASES = prove + (`!p a b. prime p /\ coprime(a,b) ==> coprime(p,a) \/ coprime(p,b)`, + MESON_TAC[COPRIME_PRIME; PRIME_COPRIME_EQ]);; + +let PRIME_DIVPROD_POW = prove + (`!n p a b. prime(p) /\ coprime(a,b) /\ (p EXP n) divides (a * b) + ==> (p EXP n) divides a \/ (p EXP n) divides b`, + MESON_TAC[COPRIME_EXP_DIVPROD; PRIME_COPRIME_CASES; MULT_SYM]);; + +let EXP_MULT_EXISTS = prove + (`!m n p k. ~(m = 0) /\ m EXP k * n = p EXP k ==> ?q. n = q EXP k`, + REPEAT GEN_TAC THEN ASM_CASES_TAC `k = 0` THEN + ASM_REWRITE_TAC[EXP; MULT_CLAUSES] THEN STRIP_TAC THEN + MP_TAC(SPECL [`k:num`; `m:num`; `p:num`] DIVIDES_EXP2_REV) THEN + ASM_REWRITE_TAC[] THEN ANTS_TAC THENL + [ASM_MESON_TAC[divides; MULT_SYM]; ALL_TAC] THEN + REWRITE_TAC[divides] THEN DISCH_THEN(CHOOSE_THEN SUBST_ALL_TAC) THEN + FIRST_X_ASSUM(MP_TAC o SYM) THEN + ASM_REWRITE_TAC[MULT_EXP; GSYM MULT_ASSOC; EQ_MULT_LCANCEL; EXP_EQ_0] THEN + MESON_TAC[]);; + +let COPRIME_POW = prove + (`!n a b c. coprime(a,b) /\ a * b = c EXP n + ==> ?r s. a = r EXP n /\ b = s EXP n`, + GEN_TAC THEN GEN_REWRITE_TAC BINDER_CONV [SWAP_FORALL_THM] THEN + GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN ASM_CASES_TAC `n = 0` THEN + ASM_SIMP_TAC[EXP; MULT_EQ_1] THEN MATCH_MP_TAC PRIME_FACTOR_INDUCT THEN + REPEAT CONJ_TAC THENL + [ASM_REWRITE_TAC[EXP_ZERO; MULT_EQ_0] THEN + ASM_MESON_TAC[COPRIME_0; EXP_ZERO; COPRIME_0; EXP_ONE]; + SIMP_TAC[EXP_ONE; MULT_EQ_1] THEN MESON_TAC[EXP_ONE]; + REWRITE_TAC[MULT_EXP] THEN REPEAT STRIP_TAC THEN + SUBGOAL_THEN `p EXP n divides a \/ p EXP n divides b` MP_TAC THENL + [ASM_MESON_TAC[PRIME_DIVPROD_POW; divides]; ALL_TAC] THEN + REWRITE_TAC[divides] THEN + DISCH_THEN(DISJ_CASES_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC)) THEN + FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_SYM]) THEN + ASM_SIMP_TAC[COPRIME_RMUL; COPRIME_LMUL; COPRIME_LEXP; COPRIME_REXP] THEN + STRIP_TAC THENL + [FIRST_X_ASSUM(MP_TAC o SPECL [`b:num`; `d:num`]); + FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `a:num`])] THEN + ASM_REWRITE_TAC[] THEN + (ANTS_TAC THENL + [MATCH_MP_TAC(NUM_RING `!p. ~(p = 0) /\ a * p = b * p ==> a = b`) THEN + EXISTS_TAC `p EXP n` THEN ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ] THEN + FIRST_X_ASSUM(MP_TAC o SYM) THEN CONV_TAC NUM_RING; + STRIP_TAC THEN ASM_REWRITE_TAC[GSYM MULT_EXP] THEN MESON_TAC[]])]);; + +(* ------------------------------------------------------------------------- *) +(* More useful lemmas. *) +(* ------------------------------------------------------------------------- *) + +let PRIME_EXP = prove + (`!p n. prime(p EXP n) <=> prime(p) /\ (n = 1)`, + GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[EXP; PRIME_1; ARITH_EQ] THEN + POP_ASSUM_LIST(K ALL_TAC) THEN SPEC_TAC(`n:num`,`n:num`) THEN + ASM_CASES_TAC `p = 0` THENL + [ASM_REWRITE_TAC[PRIME_0; EXP; MULT_CLAUSES]; ALL_TAC] THEN + INDUCT_TAC THEN REWRITE_TAC[ARITH; EXP_1; EXP; MULT_CLAUSES] THEN + REWRITE_TAC[ARITH_RULE `~(SUC(SUC n) = 1)`] THEN + REWRITE_TAC[prime; DE_MORGAN_THM] THEN + ASM_REWRITE_TAC[MULT_EQ_1; EXP_EQ_1] THEN ASM_CASES_TAC `p = 1` THEN + ASM_REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN + DISCH_THEN(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[NOT_IMP] THEN + CONJ_TAC THENL [MESON_TAC[EXP; divides]; ALL_TAC] THEN + MATCH_MP_TAC(ARITH_RULE `p < pn:num ==> ~(p = pn)`) THEN + GEN_REWRITE_TAC LAND_CONV [GSYM EXP_1] THEN + REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN + ASM_REWRITE_TAC[LT_EXP; ARITH_EQ] THEN + MAP_EVERY UNDISCH_TAC [`~(p = 0)`; `~(p = 1)`] THEN ARITH_TAC);; + +let PRIME_POWER_MULT = prove + (`!k x y p. prime p /\ (x * y = p EXP k) + ==> ?i j. (x = p EXP i) /\ (y = p EXP j)`, + INDUCT_TAC THEN REWRITE_TAC[EXP; MULT_EQ_1] THENL + [MESON_TAC[EXP]; ALL_TAC] THEN + REPEAT STRIP_TAC THEN + SUBGOAL_THEN `p divides x \/ p divides y` MP_TAC THENL + [ASM_MESON_TAC[PRIME_DIVPROD; divides; MULT_AC]; ALL_TAC] THEN + REWRITE_TAC[divides] THEN + SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL + [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN + DISCH_THEN(DISJ_CASES_THEN (X_CHOOSE_THEN `d:num` SUBST_ALL_TAC)) THENL + [UNDISCH_TAC `(p * d) * y = p * p EXP k`; + UNDISCH_TAC `x * p * d = p * p EXP k` THEN + GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [MULT_SYM]] THEN + REWRITE_TAC[GSYM MULT_ASSOC] THEN + ASM_REWRITE_TAC[EQ_MULT_LCANCEL] THEN DISCH_TAC THENL + [FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `y:num`; `p:num`]); + FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `x:num`; `p:num`])] THEN + ASM_REWRITE_TAC[] THEN MESON_TAC[EXP]);; + +let PRIME_POWER_EXP = prove + (`!n x p k. prime p /\ ~(n = 0) /\ (x EXP n = p EXP k) ==> ?i. x = p EXP i`, + INDUCT_TAC THEN REWRITE_TAC[EXP] THEN + REPEAT GEN_TAC THEN REWRITE_TAC[NOT_SUC] THEN + ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[EXP] THEN + ASM_MESON_TAC[PRIME_POWER_MULT]);; + +let DIVIDES_PRIMEPOW = prove + (`!p. prime p ==> !d. d divides (p EXP k) <=> ?i. i <= k /\ d = p EXP i`, + GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN EQ_TAC THENL + [REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:num` THEN + DISCH_TAC THEN + MP_TAC(SPECL [`k:num`; `d:num`; `e:num`; `p:num`] PRIME_POWER_MULT) THEN + ASM_REWRITE_TAC[] THEN + DISCH_THEN(REPEAT_TCL CHOOSE_THEN (CONJUNCTS_THEN SUBST_ALL_TAC)) THEN + FIRST_X_ASSUM(MP_TAC o SYM) THEN REWRITE_TAC[GSYM EXP_ADD] THEN + REWRITE_TAC[GSYM LE_ANTISYM; LE_EXP] THEN REWRITE_TAC[LE_ANTISYM] THEN + POP_ASSUM MP_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_SIMP_TAC[PRIME_0] THEN + ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1; LE_ANTISYM] THEN + MESON_TAC[LE_ADD]; + REWRITE_TAC[LE_EXISTS] THEN STRIP_TAC THEN + ASM_REWRITE_TAC[EXP_ADD] THEN MESON_TAC[DIVIDES_RMUL; DIVIDES_REFL]]);; + +let COPRIME_DIVISORS = prove + (`!a b d e. d divides a /\ e divides b /\ coprime(a,b) ==> coprime(d,e)`, + NUMBER_TAC);; + +let PRIMEPOW_FACTOR = prove + (`!n. 2 <= n + ==> ?p k m. prime p /\ 1 <= k /\ coprime(p,m) /\ n = p EXP k * m`, + REPEAT STRIP_TAC THEN MP_TAC(ISPEC `n:num` PRIME_FACTOR) THEN + ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN + MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN + MP_TAC(ISPECL [`n:num`; `p:num`] FACTORIZATION_INDEX) THEN + ASM_SIMP_TAC[PRIME_GE_2; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN + MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN + REWRITE_TAC[divides; LEFT_AND_EXISTS_THM] THEN + MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN + DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `k + 1`)) THEN + ASM_REWRITE_TAC[ARITH_RULE `k < k + 1`; EXP_ADD; GSYM MULT_ASSOC] THEN + ASM_SIMP_TAC[EQ_MULT_LCANCEL; EXP_EQ_0; PRIME_IMP_NZ] THEN + REWRITE_TAC[EXP_1; GSYM divides] THEN UNDISCH_TAC `(p:num) divides n` THEN + ASM_REWRITE_TAC[] THEN + ASM_CASES_TAC `k = 0` THEN ASM_SIMP_TAC[EXP; MULT_CLAUSES; LE_1] THEN + ASM_MESON_TAC[PRIME_COPRIME_STRONG]);; + +(* ------------------------------------------------------------------------- *) +(* Induction principle for multiplicative functions etc. *) +(* ------------------------------------------------------------------------- *) + +let INDUCT_COPRIME = prove + (`!P. (!a b. 1 < a /\ 1 < b /\ coprime(a,b) /\ P a /\ P b ==> P(a * b)) /\ + (!p k. prime p ==> P(p EXP k)) + ==> !n. 1 < n ==> P n`, + GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC num_WF THEN + X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN + FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `1 < n ==> ~(n = 1)`)) THEN + DISCH_THEN(X_CHOOSE_TAC `p:num` o MATCH_MP PRIME_FACTOR) THEN + MP_TAC(SPECL [`n:num`; `p:num`] FACTORIZATION_INDEX) THEN + ASM_SIMP_TAC[PRIME_GE_2; ARITH_RULE `1 < n ==> ~(n = 0)`] THEN + REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN + MAP_EVERY X_GEN_TAC [`k:num`; `m:num`] THEN STRIP_TAC THEN + FIRST_X_ASSUM SUBST_ALL_TAC THEN + ASM_CASES_TAC `m = 1` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN + FIRST_X_ASSUM(CONJUNCTS_THEN2 MATCH_MP_TAC MP_TAC) THEN + ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN + MATCH_MP_TAC(TAUT + `!p. (a /\ b /\ ~p) /\ c /\ (a /\ ~p ==> b ==> d) + ==> a /\ b /\ c /\ d`) THEN + EXISTS_TAC `m = 0` THEN + SUBGOAL_THEN `~(k = 0)` ASSUME_TAC THENL + [DISCH_THEN SUBST_ALL_TAC THEN + FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `0 < 1`)) THEN + FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN + REWRITE_TAC[EXP; EXP_1; MULT_CLAUSES; divides]; + ALL_TAC] THEN + CONJ_TAC THENL + [UNDISCH_TAC `1 < p EXP k * m` THEN + ASM_REWRITE_TAC[ARITH_RULE `1 < x <=> ~(x = 0) /\ ~(x = 1)`] THEN + ASM_REWRITE_TAC[EXP_EQ_0; EXP_EQ_1; MULT_EQ_0; MULT_EQ_1] THEN + FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2 o CONJUNCT1) THEN + ASM_ARITH_TAC; + ALL_TAC] THEN + CONJ_TAC THENL + [FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `k < k + 1`)) THEN + REWRITE_TAC[EXP_ADD; EXP_1; GSYM MULT_ASSOC; EQ_MULT_LCANCEL] THEN + ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ; GSYM divides] THEN DISCH_TAC THEN + ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN + ASM_MESON_TAC[PRIME_COPRIME; COPRIME_SYM]; + DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN + GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `m = 1 * m`] THEN + ASM_REWRITE_TAC[LT_MULT_RCANCEL]]);; + +let INDUCT_COPRIME_STRONG = prove + (`!P. (!a b. 1 < a /\ 1 < b /\ coprime(a,b) /\ P a /\ P b ==> P(a * b)) /\ + (!p k. prime p /\ ~(k = 0) ==> P(p EXP k)) + ==> !n. 1 < n ==> P n`, + GEN_TAC THEN STRIP_TAC THEN + ONCE_REWRITE_TAC[TAUT `a ==> b <=> a ==> a ==> b`] THEN + MATCH_MP_TAC INDUCT_COPRIME THEN CONJ_TAC THENL + [ASM_MESON_TAC[]; + MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN ASM_CASES_TAC `k = 0` THEN + ASM_REWRITE_TAC[LT_REFL; EXP] THEN ASM_MESON_TAC[]]);; + +(* ------------------------------------------------------------------------- *) +(* A conversion for divisibility. *) +(* ------------------------------------------------------------------------- *) + +let DIVIDES_CONV = + let pth_0 = SPEC `b:num` DIVIDES_ZERO + and pth_1 = prove + (`~(a = 0) ==> (a divides b <=> (b MOD a = 0))`, + REWRITE_TAC[DIVIDES_MOD]) + and a_tm = `a:num` and b_tm = `b:num` and zero_tm = `0` + and dest_divides = dest_binop `(divides)` in + fun tm -> + let a,b = dest_divides tm in + if a = zero_tm then + CONV_RULE (RAND_CONV NUM_EQ_CONV) (INST [b,b_tm] pth_0) + else + let th1 = INST [a,a_tm; b,b_tm] pth_1 in + let th2 = MP th1 (EQF_ELIM(NUM_EQ_CONV(rand(lhand(concl th1))))) in + CONV_RULE (RAND_CONV (LAND_CONV NUM_MOD_CONV THENC NUM_EQ_CONV)) th2;; + +(* ------------------------------------------------------------------------- *) +(* A conversion for coprimality. *) +(* ------------------------------------------------------------------------- *) + +let COPRIME_CONV = + let pth_yes_l = prove + (`(m * x = n * y + 1) ==> (coprime(m,n) <=> T)`, + MESON_TAC[coprime; DIVIDES_RMUL; DIVIDES_ADD_REVR; DIVIDES_ONE]) + and pth_yes_r = prove + (`(m * x = n * y + 1) ==> (coprime(n,m) <=> T)`, + MESON_TAC[coprime; DIVIDES_RMUL; DIVIDES_ADD_REVR; DIVIDES_ONE]) + and pth_no = prove + (`(m = x * d) /\ (n = y * d) /\ ~(d = 1) ==> (coprime(m,n) <=> F)`, + REWRITE_TAC[coprime; divides] THEN MESON_TAC[MULT_AC]) + and pth_oo = prove + (`coprime(0,0) <=> F`, + MESON_TAC[coprime; DIVIDES_REFL; NUM_REDUCE_CONV `1 = 0`]) + and m_tm = `m:num` and n_tm = `n:num` + and x_tm = `x:num` and y_tm = `y:num` + and d_tm = `d:num` and coprime_tm = `coprime` in + let rec bezout (m,n) = + if m =/ Int 0 then (Int 0,Int 1) else if n =/ Int 0 then (Int 1,Int 0) + else if m <=/ n then + let q = quo_num n m and r = mod_num n m in + let (x,y) = bezout(m,r) in + (x -/ q */ y,y) + else let (x,y) = bezout(n,m) in (y,x) in + fun tm -> + let pop,ptm = dest_comb tm in + if pop <> coprime_tm then failwith "COPRIME_CONV" else + let l,r = dest_pair ptm in + let m = dest_numeral l and n = dest_numeral r in + if m =/ Int 0 & n =/ Int 0 then pth_oo else + let (x,y) = bezout(m,n) in + let d = x */ m +/ y */ n in + let th = + if d =/ Int 1 then + if x >/ Int 0 then + INST [l,m_tm; r,n_tm; mk_numeral x,x_tm; + mk_numeral(minus_num y),y_tm] pth_yes_l + else + INST [r,m_tm; l,n_tm; mk_numeral(minus_num x),y_tm; + mk_numeral y,x_tm] pth_yes_r + else + INST [l,m_tm; r,n_tm; mk_numeral d,d_tm; + mk_numeral(m // d),x_tm; mk_numeral(n // d),y_tm] pth_no in + MP th (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th))));; + +(* ------------------------------------------------------------------------- *) +(* More general (slightly less efficiently coded) GCD_CONV. *) +(* ------------------------------------------------------------------------- *) + +let GCD_CONV = + let pth0 = prove(`gcd(0,0) = 0`,REWRITE_TAC[GCD_0]) in + let pth1 = prove + (`!m n x y d m' n'. + (m * x = n * y + d) /\ (m = m' * d) /\ (n = n' * d) ==> (gcd(m,n) = d)`, + REPEAT GEN_TAC THEN + DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN + CONV_TAC(RAND_CONV SYM_CONV) THEN ASM_REWRITE_TAC[GSYM GCD_UNIQUE] THEN + ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL; + DIVIDES_ADD_REVR; DIVIDES_REFL]) in + let pth2 = prove + (`!m n x y d m' n'. + (n * y = m * x + d) /\ (m = m' * d) /\ (n = n' * d) ==> (gcd(m,n) = d)`, + MESON_TAC[pth1; GCD_SYM]) in + let gcd_tm = `gcd` in + let rec bezout (m,n) = + if m =/ Int 0 then (Int 0,Int 1) else if n =/ Int 0 then (Int 1,Int 0) + else if m <=/ n then + let q = quo_num n m and r = mod_num n m in + let (x,y) = bezout(m,r) in + (x -/ q */ y,y) + else let (x,y) = bezout(n,m) in (y,x) in + fun tm -> let gt,lr = dest_comb tm in + if gt <> gcd_tm then failwith "GCD_CONV" else + let mtm,ntm = dest_pair lr in + let m = dest_numeral mtm and n = dest_numeral ntm in + if m =/ Int 0 & n =/ Int 0 then pth0 else + let x0,y0 = bezout(m,n) in + let x = abs_num x0 and y = abs_num y0 in + let xtm = mk_numeral x and ytm = mk_numeral y in + let d = abs_num(x */ m -/ y */ n) in + let dtm = mk_numeral d in + let m' = m // d and n' = n // d in + let mtm' = mk_numeral m' and ntm' = mk_numeral n' in + let th = SPECL [mtm;ntm;xtm;ytm;dtm;mtm';ntm'] + (if m */ x =/ n */ y +/ d then pth1 else pth2) in + MP th (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th))));;