X-Git-Url: http://colo12-c703.uibk.ac.at/git/?p=G%C3%B6del%27s%20incompleteness%20theorem%2F.git;a=blobdiff_plain;f=Library%2Frstc.ml;fp=Library%2Frstc.ml;h=06947adcf0c63cba1925dbf4663b6243e3dd6a07;hp=0000000000000000000000000000000000000000;hb=87defde679eb7f7eb6d8f7203472a6f6a8ab2966;hpb=67928fe38836205ca8d0705b3695186e998e3e29 diff --git a/Library/rstc.ml b/Library/rstc.ml new file mode 100644 index 0000000..06947ad --- /dev/null +++ b/Library/rstc.ml @@ -0,0 +1,700 @@ +(* ========================================================================= *) +(* All you wanted to know about reflexive symmetric and transitive closures. *) +(* ========================================================================= *) + +prioritize_num();; + +let RULE_INDUCT_TAC = + MATCH_MP_TAC o DISCH_ALL o SPEC_ALL o UNDISCH o SPEC_ALL;; + +(* ------------------------------------------------------------------------- *) +(* Little lemmas about equivalent forms of symmetry and transitivity. *) +(* ------------------------------------------------------------------------- *) + +let SYM_ALT = prove + (`!R:A->A->bool. (!x y. R x y ==> R y x) <=> (!x y. R x y <=> R y x)`, + GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL + [EQ_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC; + FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [th])] THEN + FIRST_ASSUM MATCH_ACCEPT_TAC);; + +let TRANS_ALT = prove + (`!(R:A->A->bool) (S:A->A->bool) U. + (!x z. (?y. R x y /\ S y z) ==> U x z) <=> + (!x y z. R x y /\ S y z ==> U x z)`, + REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN + EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);; + +(* ------------------------------------------------------------------------- *) +(* Reflexive closure *) +(* ------------------------------------------------------------------------- *) + +let RC_RULES,RC_INDUCT,RC_CASES = new_inductive_definition + `(!x y. R x y ==> RC R x y) /\ + (!x:A. RC R x x)`;; + +let RC_INC = prove + (`!(R:A->A->bool) x y. R x y ==> RC R x y`, + REWRITE_TAC[RC_RULES]);; + +let RC_REFL = prove + (`!(R:A->A->bool) x. RC R x x`, + REWRITE_TAC[RC_RULES]);; + +let RC_EXPLICIT = prove + (`!(R:A->A->bool) x y. RC R x y <=> R x y \/ (x = y)`, + REWRITE_TAC[RC_CASES; EQ_SYM_EQ]);; + +let RC_MONO = prove + (`!(R:A->A->bool) S. + (!x y. R x y ==> S x y) ==> + (!x y. RC R x y ==> RC S x y)`, + MESON_TAC[RC_CASES]);; + +let RC_CLOSED = prove + (`!R:A->A->bool. (RC R = R) <=> !x. R x x`, + REWRITE_TAC[FUN_EQ_THM; RC_EXPLICIT] THEN MESON_TAC[]);; + +let RC_IDEMP = prove + (`!R:A->A->bool. RC(RC R) = RC R`, + REWRITE_TAC[RC_CLOSED; RC_REFL]);; + +let RC_SYM = prove + (`!R:A->A->bool. + (!x y. R x y ==> R y x) ==> (!x y. RC R x y ==> RC R y x)`, + MESON_TAC[RC_CASES]);; + +let RC_TRANS = prove + (`!R:A->A->bool. + (!x y z. R x y /\ R y z ==> R x z) ==> + (!x y z. RC R x y /\ RC R y z ==> RC R x z)`, + REWRITE_TAC[RC_CASES] THEN MESON_TAC[]);; + +(* ------------------------------------------------------------------------- *) +(* Symmetric closure *) +(* ------------------------------------------------------------------------- *) + +let SC_RULES,SC_INDUCT,SC_CASES = new_inductive_definition + `(!x y. R x y ==> SC R x y) /\ + (!x:A y. SC R x y ==> SC R y x)`;; + +let SC_INC = prove + (`!(R:A->A->bool) x y. R x y ==> SC R x y`, + REWRITE_TAC[SC_RULES]);; + +let SC_SYM = prove + (`!(R:A->A->bool) x y. SC R x y ==> SC R y x`, + REWRITE_TAC[SC_RULES]);; + +let SC_EXPLICIT = prove + (`!R:A->A->bool. SC(R) x y <=> R x y \/ R y x`, + GEN_TAC THEN EQ_TAC THENL + [RULE_INDUCT_TAC SC_INDUCT THEN MESON_TAC[]; MESON_TAC[SC_CASES]]);; + +let SC_MONO = prove + (`!(R:A->A->bool) S. + (!x y. R x y ==> S x y) ==> + (!x y. SC R x y ==> SC S x y)`, + MESON_TAC[SC_EXPLICIT]);; + +let SC_CLOSED = prove + (`!R:A->A->bool. (SC R = R) <=> !x y. R x y ==> R y x`, + REWRITE_TAC[FUN_EQ_THM; SC_EXPLICIT] THEN MESON_TAC[]);; + +let SC_IDEMP = prove + (`!R:A->A->bool. SC(SC R) = SC R`, + REWRITE_TAC[SC_CLOSED; SC_SYM]);; + +let SC_REFL = prove + (`!R:A->A->bool. (!x. R x x) ==> (!x. SC R x x)`, + MESON_TAC[SC_EXPLICIT]);; + +(* ------------------------------------------------------------------------- *) +(* Transitive closure *) +(* ------------------------------------------------------------------------- *) + +let TC_RULES,TC_INDUCT,TC_CASES = new_inductive_definition + `(!x y. R x y ==> TC R x y) /\ + (!(x:A) y z. TC R x y /\ TC R y z ==> TC R x z)`;; + +let TC_INC = prove + (`!(R:A->A->bool) x y. R x y ==> TC R x y`, + REWRITE_TAC[TC_RULES]);; + +let TC_TRANS = prove + (`!(R:A->A->bool) x y z. TC R x y /\ TC R y z ==> TC R x z`, + REWRITE_TAC[TC_RULES]);; + +let TC_MONO = prove + (`!(R:A->A->bool) S. + (!x y. R x y ==> S x y) ==> + (!x y. TC R x y ==> TC S x y)`, + REPEAT GEN_TAC THEN STRIP_TAC THEN + MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[TC_RULES]);; + +let TC_CLOSED = prove + (`!R:A->A->bool. (TC R = R) <=> !x y z. R x y /\ R y z ==> R x z`, + GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN EQ_TAC THENL + [MESON_TAC[TC_RULES]; REPEAT STRIP_TAC] THEN + EQ_TAC THENL [RULE_INDUCT_TAC TC_INDUCT; ALL_TAC] THEN + ASM_MESON_TAC[TC_RULES]);; + +let TC_IDEMP = prove + (`!R:A->A->bool. TC(TC R) = TC R`, + REWRITE_TAC[TC_CLOSED; TC_TRANS]);; + +let TC_REFL = prove + (`!R:A->A->bool. (!x. R x x) ==> (!x. TC R x x)`, + MESON_TAC[TC_INC]);; + +let TC_SYM = prove + (`!R:A->A->bool. (!x y. R x y ==> R y x) ==> (!x y. TC R x y ==> TC R y x)`, + GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC TC_INDUCT THEN + ASM_MESON_TAC[TC_RULES]);; + +(* ------------------------------------------------------------------------- *) +(* Commutativity properties of the three basic closure operations *) +(* ------------------------------------------------------------------------- *) + +let RC_SC = prove + (`!R:A->A->bool. RC(SC R) = SC(RC R)`, + REWRITE_TAC[FUN_EQ_THM; RC_EXPLICIT; SC_EXPLICIT] THEN MESON_TAC[]);; + +let SC_RC = prove + (`!R:A->A->bool. SC(RC R) = RC(SC R)`, + REWRITE_TAC[RC_SC]);; + +let RC_TC = prove + (`!R:A->A->bool. RC(TC R) = TC(RC R)`, + REWRITE_TAC[FUN_EQ_THM] THEN REPEAT GEN_TAC THEN EQ_TAC THENL + [RULE_INDUCT_TAC RC_INDUCT THEN MESON_TAC[TC_RULES; RC_RULES; TC_MONO]; + RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[RC_TRANS; TC_RULES; RC_MONO]]);; + +let TC_RC = prove + (`!R:A->A->bool. TC(RC R) = RC(TC R)`, + REWRITE_TAC[RC_TC]);; + +let TC_SC = prove + (`!(R:A->A->bool) x y. SC(TC R) x y ==> TC(SC R) x y`, + GEN_TAC THEN MATCH_MP_TAC SC_INDUCT THEN + MESON_TAC[TC_MONO; TC_SYM; SC_RULES]);; + +let SC_TC = prove + (`!(R:A->A->bool) x y. SC(TC R) x y ==> TC(SC R) x y`, + REWRITE_TAC[TC_SC]);; + +(* ------------------------------------------------------------------------- *) +(* Left and right variants of TC. *) +(* ------------------------------------------------------------------------- *) + +let TC_TRANS_L = prove + (`!(R:A->A->bool) x y z. TC R x y /\ R y z ==> TC R x z`, + MESON_TAC[TC_RULES]);; + +let TC_TRANS_R = prove + (`!(R:A->A->bool) x y z. R x y /\ TC R y z ==> TC R x z`, + MESON_TAC[TC_RULES]);; + +let TC_CASES_L = prove + (`!(R:A->A->bool) x z. TC R x z <=> R x z \/ (?y. TC R x y /\ R y z)`, + REPEAT GEN_TAC THEN EQ_TAC THENL + [RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[TC_RULES]; MESON_TAC[TC_RULES]]);; + +let TC_CASES_R = prove + (`!(R:A->A->bool) x z. TC R x z <=> R x z \/ (?y. R x y /\ TC R y z)`, + REPEAT GEN_TAC THEN EQ_TAC THENL + [RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[TC_RULES]; MESON_TAC[TC_RULES]]);; + +let TC_INDUCT_L = prove + (`!(R:A->A->bool) P. + (!x y. R x y ==> P x y) /\ + (!x y z. P x y /\ R y z ==> P x z) ==> + (!x y. TC R x y ==> P x y)`, + REPEAT GEN_TAC THEN STRIP_TAC THEN + SUBGOAL_THEN `!y:A z. TC(R) y z ==> !x:A. P x y ==> P x z` MP_TAC THENL + [MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[]; ASM_MESON_TAC[TC_CASES_R]]);; + +let TC_INDUCT_R = prove + (`!(R:A->A->bool) P. + (!x y. R x y ==> P x y) /\ + (!x z. (?y. R x y /\ P y z) ==> P x z) ==> + (!x y. TC R x y ==> P x y)`, + REPEAT GEN_TAC THEN STRIP_TAC THEN + SUBGOAL_THEN `!x:A y. TC(R) x y ==> !z:A. P y z ==> P x z` MP_TAC THENL + [MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[]; ASM_MESON_TAC[TC_CASES_L]]);; + +(* ------------------------------------------------------------------------- *) +(* Reflexive symmetric closure *) +(* ------------------------------------------------------------------------- *) + +let RSC = new_definition + `RSC(R:A->A->bool) = RC(SC R)`;; + +let RSC_INC = prove + (`!(R:A->A->bool) x y. R x y ==> RSC R x y`, + REWRITE_TAC[RSC] THEN MESON_TAC[RC_INC; SC_INC]);; + +let RSC_REFL = prove + (`!(R:A->A->bool) x. RSC R x x`, + REWRITE_TAC[RSC; RC_REFL]);; + +let RSC_SYM = prove + (`!(R:A->A->bool) x y. RSC R x y ==> RSC R y x`, + REWRITE_TAC[RSC; RC_SC; SC_SYM]);; + +let RSC_CASES = prove + (`!(R:A->A->bool) x y. RSC R x y <=> (x = y) \/ R x y \/ R y x`, + REWRITE_TAC[RSC; RC_EXPLICIT; SC_EXPLICIT; DISJ_ACI]);; + +let RSC_INDUCT = prove + (`!(R:A->A->bool) P. + (!x y. R x y ==> P x y) /\ + (!x. P x x) /\ + (!x y. P x y ==> P y x) + ==> !x y. RSC R x y ==> P x y`, + REWRITE_TAC[RSC; RC_EXPLICIT; SC_EXPLICIT] THEN MESON_TAC[]);; + +let RSC_MONO = prove + (`!(R:A->A->bool) S. + (!x y. R x y ==> S x y) ==> + (!x y. RSC R x y ==> RSC S x y)`, + REWRITE_TAC[RSC] THEN MESON_TAC[SC_MONO; RC_MONO]);; + +let RSC_CLOSED = prove + (`!R:A->A->bool. (RSC R = R) <=> (!x. R x x) /\ (!x y. R x y ==> R y x)`, + REWRITE_TAC[FUN_EQ_THM; RSC; RC_EXPLICIT; SC_EXPLICIT] THEN MESON_TAC[]);; + +let RSC_IDEMP = prove + (`!R:A->A->bool. RSC(RSC R) = RSC R`, + REWRITE_TAC[RSC_CLOSED; RSC_REFL; RSC_SYM]);; + +(* ------------------------------------------------------------------------- *) +(* Reflexive transitive closure *) +(* ------------------------------------------------------------------------- *) + +let RTC = new_definition + `RTC(R:A->A->bool) = RC(TC R)`;; + +let RTC_INC = prove + (`!(R:A->A->bool) x y. R x y ==> RTC R x y`, + REWRITE_TAC[RTC] THEN MESON_TAC[RC_INC; TC_INC]);; + +let RTC_REFL = prove + (`!(R:A->A->bool) x. RTC R x x`, + REWRITE_TAC[RTC; RC_REFL]);; + +let RTC_TRANS = prove + (`!(R:A->A->bool) x y z. RTC R x y /\ RTC R y z ==> RTC R x z`, + REWRITE_TAC[RTC; RC_TC; TC_TRANS]);; + +let RTC_RULES = prove + (`!(R:A->A->bool). + (!x y. R x y ==> RTC R x y) /\ + (!x. RTC R x x) /\ + (!x y z. RTC R x y /\ RTC R y z ==> RTC R x z)`, + REWRITE_TAC[RTC_INC; RTC_REFL; RTC_TRANS]);; + +let RTC_TRANS_L = prove + (`!(R:A->A->bool) x y z. RTC R x y /\ R y z ==> RTC R x z`, + REWRITE_TAC[RTC; RC_TC] THEN MESON_TAC[TC_TRANS_L; RC_INC]);; + +let RTC_TRANS_R = prove + (`!(R:A->A->bool) x y z. R x y /\ RTC R y z ==> RTC R x z`, + REWRITE_TAC[RTC; RC_TC] THEN MESON_TAC[TC_TRANS_R; RC_INC]);; + +let RTC_CASES = prove + (`!(R:A->A->bool) x z. RTC R x z <=> (x = z) \/ ?y. RTC R x y /\ RTC R y z`, + REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[TC_TRANS]);; + +let RTC_CASES_L = prove + (`!(R:A->A->bool) x z. RTC R x z <=> (x = z) \/ ?y. RTC R x y /\ R y z`, + REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[TC_CASES_L; TC_TRANS_L]);; + +let RTC_CASES_R = prove + (`!(R:A->A->bool) x z. RTC R x z <=> (x = z) \/ ?y. R x y /\ RTC R y z`, + REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[TC_CASES_R; TC_TRANS_R]);; + +let RTC_INDUCT = prove + (`!(R:A->A->bool) P. + (!x y. R x y ==> P x y) /\ + (!x. P x x) /\ + (!x y z. P x y /\ P y z ==> P x z) + ==> !x y. RTC R x y ==> P x y`, + REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC; RC_TC] THEN + MATCH_MP_TAC TC_INDUCT THEN REWRITE_TAC[RC_EXPLICIT] THEN ASM_MESON_TAC[]);; + +let RTC_INDUCT_L = prove + (`!(R:A->A->bool) P. + (!x. P x x) /\ + (!x y z. P x y /\ R y z ==> P x z) + ==> !x y. RTC R x y ==> P x y`, + REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC; RC_TC] THEN + MATCH_MP_TAC TC_INDUCT_L THEN REWRITE_TAC[RC_EXPLICIT] THEN + ASM_MESON_TAC[]);; + +let RTC_INDUCT_R = prove + (`!(R:A->A->bool) P. + (!x. P x x) /\ + (!x y z. R x y /\ P y z ==> P x z) + ==> !x y. RTC R x y ==> P x y`, + REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC; RC_TC] THEN + MATCH_MP_TAC TC_INDUCT_R THEN REWRITE_TAC[RC_EXPLICIT] THEN + ASM_MESON_TAC[]);; + +let RTC_MONO = prove + (`!(R:A->A->bool) S. + (!x y. R x y ==> S x y) ==> + (!x y. RTC R x y ==> RTC S x y)`, + REWRITE_TAC[RTC] THEN MESON_TAC[RC_MONO; TC_MONO]);; + +let RTC_CLOSED = prove + (`!R:A->A->bool. (RTC R = R) <=> (!x. R x x) /\ + (!x y z. R x y /\ R y z ==> R x z)`, + REWRITE_TAC[FUN_EQ_THM; RTC; RC_EXPLICIT] THEN + MESON_TAC[TC_CLOSED; TC_RULES]);; + +let RTC_IDEMP = prove + (`!R:A->A->bool. RTC(RTC R) = RTC R`, + REWRITE_TAC[RTC_CLOSED; RTC_REFL; RTC_TRANS]);; + +let RTC_SYM = prove + (`!R:A->A->bool. (!x y. R x y ==> R y x) ==> (!x y. RTC R x y ==> RTC R y x)`, + REWRITE_TAC[RTC] THEN MESON_TAC[RC_SYM; TC_SYM]);; + +let RTC_STUTTER = prove + (`RTC R = RTC (\x y. R x y /\ ~(x = y))`, + REWRITE_TAC[RC_TC; RTC] THEN + AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN + REWRITE_TAC[RC_CASES] THEN MESON_TAC[]);; + +let TC_RTC_CASES_L = prove + (`TC R x z <=> ?y. RTC R x y /\ R y z`, + REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_CASES_L; TC_INC]);; + +let TC_RTC_CASES_R = prove + (`!R x z. TC R x z <=> ?y. R x y /\ RTC R y z`, + REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_CASES_R; TC_INC]);; + +let TC_TC_RTC_CASES = prove + (`!R x z. TC R x z <=> ?y. TC R x y /\ RTC R y z`, + REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_TRANS]);; + +let TC_RTC_TC_CASES = prove + (`!R x z. TC R x z <=> ?y. RTC R x y /\ TC R y z`, + REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_TRANS]);; + +let RTC_NE_IMP_TC = prove + (`!R x y. RTC R x y /\ ~(x = y) ==> TC R x y`, + GEN_TAC THEN ONCE_REWRITE_TAC[GSYM IMP_IMP] THEN + MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[] THEN + MESON_TAC[TC_INC; TC_CASES]);; + +(* ------------------------------------------------------------------------- *) +(* Symmetric transitive closure *) +(* ------------------------------------------------------------------------- *) + +let STC = new_definition + `STC(R:A->A->bool) = TC(SC R)`;; + +let STC_INC = prove + (`!(R:A->A->bool) x y. R x y ==> STC R x y`, + REWRITE_TAC[STC] THEN MESON_TAC[SC_INC; TC_INC]);; + +let STC_SYM = prove + (`!(R:A->A->bool) x y. STC R x y ==> STC R y x`, + REWRITE_TAC[STC] THEN MESON_TAC[TC_SYM; SC_SYM]);; + +let STC_TRANS = prove + (`!(R:A->A->bool) x y z. STC R x y /\ STC R y z ==> STC R x z`, + REWRITE_TAC[STC; TC_TRANS]);; + +let STC_TRANS_L = prove + (`!(R:A->A->bool) x y z. STC R x y /\ R y z ==> STC R x z`, + REWRITE_TAC[STC] THEN MESON_TAC[TC_TRANS_L; SC_INC]);; + +let STC_TRANS_R = prove + (`!(R:A->A->bool) x y z. R x y /\ STC R y z ==> STC R x z`, + REWRITE_TAC[STC] THEN MESON_TAC[TC_TRANS_R; SC_INC]);; + +let STC_CASES = prove + (`!(R:A->A->bool) x z. STC R x z <=> R x z \/ STC R z x \/ + ?y. STC R x y /\ STC R y z`, + REWRITE_TAC[STC] THEN MESON_TAC[SC_SYM; TC_SYM; TC_INC; TC_TRANS; SC_INC]);; + +let STC_CASES_L = prove + (`!(R:A->A->bool) x z. STC R x z <=> R x z \/ STC R z x \/ + ?y. STC R x y /\ R y z`, + REWRITE_TAC[STC] THEN MESON_TAC[SC_SYM; TC_SYM; TC_INC; TC_TRANS; SC_INC]);; + +let STC_CASES_R = prove + (`!(R:A->A->bool) x z. STC R x z <=> R x z \/ STC R z x \/ + ?y. R x y /\ STC R y z`, + REWRITE_TAC[STC] THEN MESON_TAC[SC_SYM; TC_SYM; TC_INC; TC_TRANS; SC_INC]);; + +let STC_INDUCT = prove + (`!(R:A->A->bool) P. + (!x y. R x y ==> P x y) /\ + (!x y. P x y ==> P y x) /\ + (!x y z. P x y /\ P y z ==> P x z) ==> + !x y. STC R x y ==> P x y`, + REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[STC] THEN + MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[SC_EXPLICIT]);; + +let STC_MONO = prove + (`!(R:A->A->bool) S. + (!x y. R x y ==> S x y) ==> + (!x y. STC R x y ==> STC S x y)`, + REWRITE_TAC[STC] THEN MESON_TAC[SC_MONO; TC_MONO]);; + +let STC_CLOSED = prove + (`!R:A->A->bool. (STC R = R) <=> (!x y. R x y ==> R y x) /\ + (!x y z. R x y /\ R y z ==> R x z)`, + GEN_TAC THEN REWRITE_TAC[STC; SC_EXPLICIT] THEN EQ_TAC THENL + [DISCH_THEN(SUBST1_TAC o SYM) THEN MESON_TAC[TC_TRANS; TC_SYM; SC_SYM]; + REWRITE_TAC[GSYM SC_CLOSED; GSYM TC_CLOSED] THEN MESON_TAC[]]);; + +let STC_IDEMP = prove + (`!R:A->A->bool. STC(STC R) = STC R`, + REWRITE_TAC[STC_CLOSED; STC_SYM; STC_TRANS]);; + +let STC_REFL = prove + (`!R:A->A->bool. (!x. R x x) ==> !x. STC R x x`, + MESON_TAC[STC_INC]);; + +(* ------------------------------------------------------------------------- *) +(* Reflexive symmetric transitive closure (smallest equivalence relation) *) +(* ------------------------------------------------------------------------- *) + +let RSTC = new_definition + `RSTC(R:A->A->bool) = RC(TC(SC R))`;; + +let RSTC_INC = prove + (`!(R:A->A->bool) x y. R x y ==> RSTC R x y`, + REWRITE_TAC[RSTC] THEN MESON_TAC[RC_INC; TC_INC; SC_INC]);; + +let RSTC_REFL = prove + (`!(R:A->A->bool) x. RSTC R x x`, + REWRITE_TAC[RSTC; RC_REFL]);; + +let RSTC_SYM = prove + (`!(R:A->A->bool) x y. RSTC R x y ==> RSTC R y x`, + REWRITE_TAC[RSTC] THEN MESON_TAC[SC_SYM; TC_SYM; RC_SYM]);; + +let RSTC_TRANS = prove + (`!(R:A->A->bool) x y z. RSTC R x y /\ RSTC R y z ==> RSTC R x z`, + REWRITE_TAC[RSTC; RC_TC; TC_TRANS]);; + +let RSTC_RULES = prove + (`!(R:A->A->bool). + (!x y. R x y ==> RSTC R x y) /\ + (!x. RSTC R x x) /\ + (!x y. RSTC R x y ==> RSTC R y x) /\ + (!x y z. RSTC R x y /\ RSTC R y z ==> RSTC R x z)`, + REWRITE_TAC[RSTC_INC; RSTC_REFL; RSTC_SYM; RSTC_TRANS]);; + +let RSTC_TRANS_L = prove + (`!(R:A->A->bool) x y z. RSTC R x y /\ R y z ==> RSTC R x z`, + REWRITE_TAC[RSTC; RC_TC] THEN MESON_TAC[TC_TRANS_L; RC_INC; SC_INC]);; + +let RSTC_TRANS_R = prove + (`!(R:A->A->bool) x y z. R x y /\ RSTC R y z ==> RSTC R x z`, + REWRITE_TAC[RSTC; RC_TC] THEN MESON_TAC[TC_TRANS_R; RC_INC; SC_INC]);; + +let RSTC_CASES = prove + (`!(R:A->A->bool) x z. RSTC R x z <=> (x = z) \/ R x z \/ RSTC R z x \/ + ?y. RSTC R x y /\ RSTC R y z`, + REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN + MESON_TAC[STC_CASES; RC_CASES]);; + +let RSTC_CASES_L = prove + (`!(R:A->A->bool) x z. RSTC R x z <=> (x = z) \/ R x z \/ RSTC R z x \/ + ?y. RSTC R x y /\ R y z`, + REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN + MESON_TAC[STC_CASES_L; RC_CASES]);; + +let RSTC_CASES_R = prove + (`!(R:A->A->bool) x z. RSTC R x z <=> (x = z) \/ R x z \/ RSTC R z x \/ + ?y. R x y /\ RSTC R y z`, + REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN + MESON_TAC[STC_CASES_R; RC_CASES]);; + +let RSTC_INDUCT = prove + (`!(R:A->A->bool) P. + (!x y. R x y ==> P x y) /\ + (!x. P x x) /\ + (!x y. P x y ==> P y x) /\ + (!x y z. P x y /\ P y z ==> P x z) + ==> !x y. RSTC R x y ==> P x y`, + REPEAT GEN_TAC THEN STRIP_TAC THEN + REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN + MATCH_MP_TAC STC_INDUCT THEN REWRITE_TAC[RC_EXPLICIT] THEN ASM_MESON_TAC[]);; + +let RSTC_MONO = prove + (`!(R:A->A->bool) S. + (!x y. R x y ==> S x y) ==> + (!x y. RSTC R x y ==> RSTC S x y)`, + REWRITE_TAC[RSTC] THEN MESON_TAC[RC_MONO; SC_MONO; TC_MONO]);; + +let RSTC_CLOSED = prove + (`!R:A->A->bool. (RSTC R = R) <=> (!x. R x x) /\ + (!x y. R x y ==> R y x) /\ + (!x y z. R x y /\ R y z ==> R x z)`, + REWRITE_TAC[RSTC] THEN REWRITE_TAC[GSYM STC; GSYM STC_CLOSED] THEN + REWRITE_TAC[RC_EXPLICIT; FUN_EQ_THM] THEN MESON_TAC[STC_INC]);; + +let RSTC_IDEMP = prove + (`!R:A->A->bool. RSTC(RSTC R) = RSTC R`, + REWRITE_TAC[RSTC_CLOSED; RSTC_REFL; RSTC_SYM; RSTC_TRANS]);; + +(* ------------------------------------------------------------------------- *) +(* Finally, we prove the inclusion properties for composite closures *) +(* ------------------------------------------------------------------------- *) + +let RSC_INC_RC = prove + (`!R:A->A->bool. !x y. RC R x y ==> RSC R x y`, + REWRITE_TAC[RSC; RC_SC; SC_INC]);; + +let RSC_INC_SC = prove + (`!R:A->A->bool. !x y. SC R x y ==> RSC R x y`, + REWRITE_TAC[RSC; RC_INC]);; + +let RTC_INC_RC = prove + (`!R:A->A->bool. !x y. RC R x y ==> RTC R x y`, + REWRITE_TAC[RTC; RC_TC; TC_INC]);; + +let RTC_INC_TC = prove + (`!R:A->A->bool. !x y. TC R x y ==> RTC R x y`, + REWRITE_TAC[RTC; RC_INC]);; + +let STC_INC_SC = prove + (`!R:A->A->bool. !x y. SC R x y ==> STC R x y`, + REWRITE_TAC[STC; TC_INC]);; + +let STC_INC_TC = prove + (`!R:A->A->bool. !x y. TC R x y ==> STC R x y`, + REWRITE_TAC[STC] THEN MESON_TAC[TC_MONO; SC_INC]);; + +let RSTC_INC_RC = prove + (`!R:A->A->bool. !x y. RC R x y ==> RSTC R x y`, + REWRITE_TAC[RSTC; RC_TC; RC_SC; GSYM STC; STC_INC]);; + +let RSTC_INC_SC = prove + (`!R:A->A->bool. !x y. SC R x y ==> RSTC R x y`, + REWRITE_TAC[RSTC; GSYM RTC; RTC_INC]);; + +let RSTC_INC_TC = prove + (`!R:A->A->bool. !x y. TC R x y ==> RSTC R x y`, + REWRITE_TAC[RSTC; RC_TC; GSYM RSC] THEN MESON_TAC[TC_MONO; RSC_INC]);; + +let RSTC_INC_RSC = prove + (`!R:A->A->bool. !x y. RSC R x y ==> RSTC R x y`, + REWRITE_TAC[RSC; RSTC; RC_TC; TC_INC]);; + +let RSTC_INC_RTC = prove + (`!R:A->A->bool. !x y. RTC R x y ==> RSTC R x y`, + REWRITE_TAC[GSYM RTC; RSTC] THEN MESON_TAC[RTC_MONO; SC_INC]);; + +let RSTC_INC_STC = prove + (`!R:A->A->bool. !x y. STC R x y ==> RSTC R x y`, + REWRITE_TAC[GSYM STC; RSTC; RC_INC]);; + +(* ------------------------------------------------------------------------- *) +(* Handy things about reverse relations. *) +(* ------------------------------------------------------------------------- *) + +let INV = new_definition + `INV R (x:A) (y:B) <=> R y x`;; + +let RC_INV = prove + (`RC(INV R) = INV(RC R)`, + REWRITE_TAC[FUN_EQ_THM; RC_EXPLICIT; INV; EQ_SYM_EQ]);; + +let SC_INV = prove + (`SC(INV R) = INV(SC R)`, + REWRITE_TAC[FUN_EQ_THM; SC_EXPLICIT; INV; DISJ_SYM]);; + +let SC_INV_STRONG = prove + (`SC(INV R) = SC R`, + REWRITE_TAC[FUN_EQ_THM; SC_EXPLICIT; INV; DISJ_SYM]);; + +let TC_INV = prove + (`TC(INV R) = INV(TC R)`, + REWRITE_TAC[FUN_EQ_THM; INV] THEN REPEAT GEN_TAC THEN EQ_TAC THEN + RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[INV; TC_RULES]);; + +let RSC_INV = prove + (`RSC(INV R) = INV(RSC R)`, + REWRITE_TAC[RSC; RC_INV; SC_INV]);; + +let RTC_INV = prove + (`RTC(INV R) = INV(RTC R)`, + REWRITE_TAC[RTC; RC_INV; TC_INV]);; + +let STC_INV = prove + (`STC(INV R) = INV(STC R)`, + REWRITE_TAC[STC; SC_INV; TC_INV]);; + +let RSTC_INV = prove + (`RSTC(INV R) = INV(RSTC R)`, + REWRITE_TAC[RSTC; RC_INV; SC_INV; TC_INV]);; + +(* ------------------------------------------------------------------------- *) +(* An iterative version of (R)TC. *) +(* ------------------------------------------------------------------------- *) + +let RELPOW = new_recursive_definition num_RECURSION + `(RELPOW 0 (R:A->A->bool) x y <=> (x = y)) /\ + (RELPOW (SUC n) R x y <=> ?z. RELPOW n R x z /\ R z y)`;; + +let RELPOW_R = prove + (`(RELPOW 0 (R:A->A->bool) x y <=> (x = y)) /\ + (RELPOW (SUC n) R x y <=> ?z. R x z /\ RELPOW n R z y)`, + CONJ_TAC THENL [REWRITE_TAC[RELPOW]; ALL_TAC] THEN + MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`x:A`; `y:A`; `n:num`] THEN + INDUCT_TAC THEN ASM_MESON_TAC[RELPOW]);; + +let RELPOW_M = prove + (`!m n x:A y. RELPOW (m + n) R x y <=> ?z. RELPOW m R x z /\ RELPOW n R z y`, + INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; RELPOW_R; UNWIND_THM1] THEN + MESON_TAC[]);; + +let RTC_RELPOW = prove + (`!R (x:A) y. RTC R x y <=> ?n. RELPOW n R x y`, + REPEAT GEN_TAC THEN EQ_TAC THENL + [RULE_INDUCT_TAC RTC_INDUCT_L THEN MESON_TAC[RELPOW]; + REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN SPEC_TAC(`y:A`,`y:A`) THEN + ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN INDUCT_TAC THEN + REWRITE_TAC[RELPOW] THEN ASM_MESON_TAC[RTC_REFL; RTC_TRANS_L]]);; + +let TC_RELPOW = prove + (`!R (x:A) y. TC R x y <=> ?n. RELPOW (SUC n) R x y`, + REWRITE_TAC[RELPOW] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN + REWRITE_TAC[LEFT_EXISTS_AND_THM; GSYM RTC_RELPOW] THEN + ONCE_REWRITE_TAC[TC_CASES_L] THEN REWRITE_TAC[RTC; RC_EXPLICIT] THEN + MESON_TAC[]);; + +let RELPOW_SEQUENCE = prove + (`!R n x y. RELPOW n R x y <=> ?f. (f(0) = x:A) /\ (f(n) = y) /\ + !i. i < n ==> R (f i) (f(SUC i))`, + GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LT; RELPOW] THENL + [REPEAT GEN_TAC THEN EQ_TAC THENL + [DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `\n:num. y:A` THEN REWRITE_TAC[]; + MESON_TAC[]]; + REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL + [DISJ_CASES_TAC(ARITH_RULE `(n = 0) \/ 0 < n`) THENL + [EXISTS_TAC `\i. if i = 0 then x else y:A` THEN + ASM_REWRITE_TAC[ARITH; LT] THEN + REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[NOT_SUC] THEN + ASM_MESON_TAC[]; + EXISTS_TAC `\i. if i <= n then f(i) else (y:A)` THEN + ASM_REWRITE_TAC[LE_0; ARITH_RULE `~(SUC n <= n)`] THEN + REPEAT STRIP_TAC THEN + ASM_REWRITE_TAC[LE_REFL; ARITH_RULE `~(SUC n <= n)`] THEN + ASM_REWRITE_TAC[LE_SUC_LT] THEN + ASM_REWRITE_TAC[LE_LT] THEN + FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]; + EXISTS_TAC `(f:num->A) n` THEN CONJ_TAC THENL + [EXISTS_TAC `f:num->A` THEN ASM_REWRITE_TAC[] THEN + REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN + ASM_REWRITE_TAC[]; + ASM_MESON_TAC[]]]]);;