(* ========================================================================= *) (* Arithmetic-geometric mean inequality. *) (* ========================================================================= *) needs "Library/products.ml";; prioritize_real();; (* ------------------------------------------------------------------------- *) (* There's already one proof of this in "Library/agm.ml". This one is from *) (* an article by Michael Hirschhorn, Math. Intelligencer vol. 29, p7. *) (* ------------------------------------------------------------------------- *) let LEMMA_1 = prove (`!x n. x pow (n + 1) - (&n + &1) * x + &n = (x - &1) pow 2 * sum(1..n) (\k. &k * x pow (n - k))`, CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH_EQ; ADD_CLAUSES] THENL [REAL_ARITH_TAC; REWRITE_TAC[ARITH_RULE `1 <= SUC n`]] THEN SIMP_TAC[ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; SUB_REFL] THEN REWRITE_TAC[real_pow; REAL_MUL_RID] THEN REWRITE_TAC[REAL_ARITH `k * x * x pow n = (k * x pow n) * x`] THEN ASM_REWRITE_TAC[SUM_RMUL; REAL_MUL_ASSOC; REAL_ADD_LDISTRIB] THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_POW_ADD] THEN REAL_ARITH_TAC);; let LEMMA_2 = prove (`!n x. &0 <= x ==> &0 <= x pow (n + 1) - (&n + &1) * x + &n`, REPEAT STRIP_TAC THEN REWRITE_TAC[LEMMA_1] THEN MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE] THEN MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_POS; REAL_POW_LE]);; let LEMMA_3 = prove (`!n x. 1 <= n /\ (!i. 1 <= i /\ i <= n + 1 ==> &0 <= x i) ==> x(n + 1) * (sum(1..n) x / &n) pow n <= (sum(1..n+1) x / (&n + &1)) pow (n + 1)`, REPEAT STRIP_TAC THEN ABBREV_TAC `a = sum(1..n+1) x / (&n + &1)` THEN ABBREV_TAC `b = sum(1..n) x / &n` THEN SUBGOAL_THEN `x(n + 1) = (&n + &1) * a - &n * b` SUBST1_TAC THENL [MAP_EVERY EXPAND_TAC ["a"; "b"] THEN ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; LE_1; REAL_ARITH `~(&n + &1 = &0)`] THEN SIMP_TAC[SUM_ADD_SPLIT; ARITH_RULE `1 <= n + 1`; SUM_SING_NUMSEG] THEN REAL_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `&0 <= a /\ &0 <= b` STRIP_ASSUME_TAC THENL [MAP_EVERY EXPAND_TAC ["a"; "b"] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_DIV THEN (CONJ_TAC THENL [MATCH_MP_TAC SUM_POS_LE_NUMSEG; REAL_ARITH_TAC]) THEN ASM_SIMP_TAC[ARITH_RULE `p <= n ==> p <= n + 1`]; ALL_TAC] THEN ASM_CASES_TAC `b = &0` THEN ASM_SIMP_TAC[REAL_POW_ZERO; LE_1; REAL_MUL_RZERO; REAL_POW_LE] THEN MP_TAC(ISPECL [`n:num`; `a / b`] LEMMA_2) THEN ASM_SIMP_TAC[REAL_LE_DIV] THEN REWRITE_TAC[REAL_ARITH `&0 <= x - a + b <=> a - b <= x`; REAL_POW_DIV] THEN SUBGOAL_THEN `&0 < b` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_POW_LT] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[REAL_POW_ADD] THEN UNDISCH_TAC `~(b = &0)` THEN CONV_TAC REAL_FIELD);; let AGM = prove (`!n a. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> &0 <= a(i)) ==> product(1..n) a <= (sum(1..n) a / &n) pow n`, INDUCT_TAC THEN REWRITE_TAC[ARITH; PRODUCT_CLAUSES_NUMSEG] THEN REWRITE_TAC[ARITH_RULE `1 <= SUC n`] THEN X_GEN_TAC `x:num->real` THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[PRODUCT_CLAUSES_NUMSEG; ARITH; SUM_SING_NUMSEG] THEN REAL_ARITH_TAC; REWRITE_TAC[ADD1] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `x(n + 1) * (sum(1..n) x / &n) pow n` THEN ASM_SIMP_TAC[LEMMA_3; GSYM REAL_OF_NUM_ADD; LE_1; ARITH_RULE `i <= n ==> i <= n + 1`] THEN GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_SIMP_TAC[LE_REFL; LE_1; ARITH_RULE `i <= n ==> i <= n + 1`]]);; (* ------------------------------------------------------------------------- *) (* Finally, reformulate in the usual way using roots. *) (* ------------------------------------------------------------------------- *) needs "Library/transc.ml";; let AGM_ROOT = prove (`!n a. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> &0 <= a(i)) ==> root n (product(1..n) a) <= sum(1..n) a / &n`, INDUCT_TAC THEN REWRITE_TAC[ARITH; ARITH_RULE `1 <= SUC n`] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `root(SUC n) ((sum(1..SUC n) a / &(SUC n)) pow (SUC n))` THEN CONJ_TAC THENL [MATCH_MP_TAC ROOT_MONO_LE THEN ASM_SIMP_TAC[AGM; ARITH_RULE `1 <= SUC n`] THEN MATCH_MP_TAC PRODUCT_POS_LE THEN ASM_REWRITE_TAC[IN_NUMSEG; FINITE_NUMSEG]; MATCH_MP_TAC REAL_EQ_IMP_LE THEN MATCH_MP_TAC POW_ROOT_POS THEN ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; SUM_POS_LE_NUMSEG]]);;