(* ========================================================================= *) (* Euclidean GCD algorithm. *) (* ========================================================================= *) needs "Library/prime.ml";; let egcd = define `egcd(m,n) = if m = 0 then n else if n = 0 then m else if m <= n then egcd(m,n - m) else egcd(m - n,n)`;; (* ------------------------------------------------------------------------- *) (* Main theorems. *) (* ------------------------------------------------------------------------- *) let EGCD_INVARIANT = prove (`!m n d. d divides egcd(m,n) <=> d divides m /\ d divides n`, GEN_TAC THEN GEN_TAC THEN WF_INDUCT_TAC `m + n` THEN GEN_TAC THEN ONCE_REWRITE_TAC[egcd] THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[DIVIDES_0] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[DIVIDES_0] THEN COND_CASES_TAC THEN (W(fun (asl,w) -> FIRST_X_ASSUM(fun th -> MP_TAC(PART_MATCH (lhs o snd o dest_forall o rand) th (lhand w)))) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN ASM_MESON_TAC[DIVIDES_SUB; DIVIDES_ADD; SUB_ADD; LE_CASES]);; (* ------------------------------------------------------------------------- *) (* Hence we get the proper behaviour, and it's equal to the real GCD. *) (* ------------------------------------------------------------------------- *) let EGCD_GCD = prove (`!m n. egcd(m,n) = gcd(m,n)`, ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN MESON_TAC[EGCD_INVARIANT; DIVIDES_REFL]);; let EGCD = prove (`!a b. (egcd (a,b) divides a /\ egcd (a,b) divides b) /\ (!e. e divides a /\ e divides b ==> e divides egcd (a,b))`, REWRITE_TAC[EGCD_GCD; GCD]);;