(* ========================================================================= *) (* Godel's theorem in its true form. *) (* ========================================================================= *) (* ------------------------------------------------------------------------- *) (* Classes of formulas, via auxiliary "shared" inductive definition. *) (* ------------------------------------------------------------------------- *) let sigmapi_RULES,sigmapi_INDUCT,sigmapi_CASES = new_inductive_definition `(!b n. sigmapi b n False) /\ (!b n. sigmapi b n True) /\ (!b n s t. sigmapi b n (s === t)) /\ (!b n s t. sigmapi b n (s << t)) /\ (!b n s t. sigmapi b n (s <<= t)) /\ (!b n p. sigmapi (~b) n p ==> sigmapi b n (Not p)) /\ (!b n p q. sigmapi b n p /\ sigmapi b n q ==> sigmapi b n (p && q)) /\ (!b n p q. sigmapi b n p /\ sigmapi b n q ==> sigmapi b n (p || q)) /\ (!b n p q. sigmapi (~b) n p /\ sigmapi b n q ==> sigmapi b n (p --> q)) /\ (!b n p q. (!b. sigmapi b n p) /\ (!b. sigmapi b n q) ==> sigmapi b n (p <-> q)) /\ (!n x p. sigmapi T n p /\ ~(n = 0) ==> sigmapi T n (??x p)) /\ (!n x p. sigmapi F n p /\ ~(n = 0) ==> sigmapi F n (!!x p)) /\ (!b n x p t. sigmapi b n p /\ ~(x IN FVT t) ==> sigmapi b n (??x (V x << t && p))) /\ (!b n x p t. sigmapi b n p /\ ~(x IN FVT t) ==> sigmapi b n (??x (V x <<= t && p))) /\ (!b n x p t. sigmapi b n p /\ ~(x IN FVT t) ==> sigmapi b n (!!x (V x << t --> p))) /\ (!b n x p t. sigmapi b n p /\ ~(x IN FVT t) ==> sigmapi b n (!!x (V x <<= t --> p))) /\ (!b c n p. sigmapi b n p ==> sigmapi c (n + 1) p)`;; let SIGMA = new_definition `SIGMA = sigmapi T`;; let PI = new_definition `PI = sigmapi F`;; let DELTA = new_definition `DELTA n p <=> SIGMA n p /\ PI n p`;; let SIGMAPI_PROP = prove (`(!n b. sigmapi b n False <=> T) /\ (!n b. sigmapi b n True <=> T) /\ (!n b s t. sigmapi b n (s === t) <=> T) /\ (!n b s t. sigmapi b n (s << t) <=> T) /\ (!n b s t. sigmapi b n (s <<= t) <=> T) /\ (!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\ (!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\ (!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\ (!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\ (!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\ (sigmapi b n q /\ sigmapi (~b) n q))`, REWRITE_TAC[sigmapi_RULES] THEN GEN_REWRITE_TAC DEPTH_CONV [AND_FORALL_THM] THEN INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; SUC_SUB1] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN REWRITE_TAC[form_DISTINCT; form_INJ] THEN REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1; FORALL_BOOL_THM] THEN REWRITE_TAC[ARITH_RULE `~(0 = n + 1)`] THEN REWRITE_TAC[ARITH_RULE `(SUC m = n + 1) <=> (n = m)`; UNWIND_THM2] THEN ASM_REWRITE_TAC[] THEN BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[ADD1] THEN REWRITE_TAC[CONJ_ACI] THEN REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN MESON_TAC[sigmapi_RULES]);; let SIGMAPI_MONO_LEMMA = prove (`(!b n p. sigmapi b n p ==> sigmapi b (n + 1) p) /\ (!b n p. ~(n = 0) /\ sigmapi b (n - 1) p ==> sigmapi b n p) /\ (!b n p. ~(n = 0) /\ sigmapi (~b) (n - 1) p ==> sigmapi b n p)`, CONJ_TAC THENL [REPEAT STRIP_TAC; REPEAT STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE `~(n = 0) ==> (n = (n - 1) + 1)`))] THEN POP_ASSUM MP_TAC THEN ASM_MESON_TAC[sigmapi_RULES]);; let SIGMAPI_REV_EXISTS = prove (`!n b x p. sigmapi b n (??x p) ==> sigmapi b n p`, MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN REWRITE_TAC[form_DISTINCT; form_INJ] THEN REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SIGMAPI_PROP] THEN ASM_MESON_TAC[ARITH_RULE `n < n + 1`; sigmapi_RULES]);; let SIGMAPI_REV_FORALL = prove (`!n b x p. sigmapi b n (!!x p) ==> sigmapi b n p`, MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN REWRITE_TAC[form_DISTINCT; form_INJ] THEN REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SIGMAPI_PROP] THEN ASM_MESON_TAC[ARITH_RULE `n < n + 1`; sigmapi_RULES]);; let SIGMAPI_CLAUSES_CODE = prove (`(!n b. sigmapi b n False <=> T) /\ (!n b. sigmapi b n True <=> T) /\ (!n b s t. sigmapi b n (s === t) <=> T) /\ (!n b s t. sigmapi b n (s << t) <=> T) /\ (!n b s t. sigmapi b n (s <<= t) <=> T) /\ (!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\ (!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\ (!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\ (!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\ (!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\ (sigmapi b n q /\ sigmapi (~b) n q)) /\ (!n b x p. sigmapi b n (??x p) <=> if b /\ ~(n = 0) \/ ?q t. (p = (V x << t && q) \/ p = (V x <<= t && q)) /\ ~(x IN FVT t) then sigmapi b n p else ~(n = 0) /\ sigmapi (~b) (n - 1) (??x p)) /\ (!n b x p. sigmapi b n (!!x p) <=> if ~b /\ ~(n = 0) \/ ?q t. (p = (V x << t --> q) \/ p = (V x <<= t --> q)) /\ ~(x IN FVT t) then sigmapi b n p else ~(n = 0) /\ sigmapi (~b) (n - 1) (!!x p))`, REWRITE_TAC[SIGMAPI_PROP] THEN CONJ_TAC THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN REWRITE_TAC[form_DISTINCT; form_INJ] THEN REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN ONCE_REWRITE_TAC[TAUT `a \/ b \/ c \/ d <=> (b \/ c) \/ (a \/ d)`] THEN REWRITE_TAC[CONJ_ASSOC; OR_EXISTS_THM; GSYM RIGHT_OR_DISTRIB] THEN REWRITE_TAC[TAUT `(if b /\ c \/ d then e else c /\ f) <=> d /\ e \/ c /\ ~d /\ (if b then e else f)`] THEN MATCH_MP_TAC(TAUT `(a <=> a') /\ (~a' ==> (b <=> b')) ==> (a \/ b <=> a' \/ b')`) THEN (CONJ_TAC THENL [REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN EQ_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[SIGMAPI_PROP] THEN SIMP_TAC[]; ALL_TAC]) THEN (ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH_RULE `~(0 = n + 1)`]) THEN ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (n = m + 1 <=> m = n - 1)`] THEN REWRITE_TAC[UNWIND_THM2] THEN W(fun (asl,w) -> ASM_CASES_TAC (find_term is_exists w)) THEN ASM_REWRITE_TAC[CONTRAPOS_THM] THENL [DISCH_THEN(DISJ_CASES_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_EXISTS)) THEN DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`]; ASM_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THENL [DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_EXISTS)) THEN DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`]; REWRITE_TAC[EXISTS_BOOL_THM] THEN REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN ONCE_REWRITE_TAC[sigmapi_CASES] THEN REWRITE_TAC[form_DISTINCT; form_INJ] THEN ASM_MESON_TAC[]]; DISCH_THEN(DISJ_CASES_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_FORALL)) THEN DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`]; ASM_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THENL [REWRITE_TAC[EXISTS_BOOL_THM] THEN REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN ONCE_REWRITE_TAC[sigmapi_CASES] THEN REWRITE_TAC[form_DISTINCT; form_INJ] THEN ASM_MESON_TAC[]; DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_FORALL)) THEN DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`]]]);; let SIGMAPI_CLAUSES = prove (`(!n b. sigmapi b n False <=> T) /\ (!n b. sigmapi b n True <=> T) /\ (!n b s t. sigmapi b n (s === t) <=> T) /\ (!n b s t. sigmapi b n (s << t) <=> T) /\ (!n b s t. sigmapi b n (s <<= t) <=> T) /\ (!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\ (!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\ (!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\ (!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\ (!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\ (sigmapi b n q /\ sigmapi (~b) n q)) /\ (!n b x p. sigmapi b n (??x p) <=> if b /\ ~(n = 0) \/ ?q t. (p = (V x << t && q) \/ p = (V x <<= t && q)) /\ ~(x IN FVT t) then sigmapi b n p else 2 <= n /\ sigmapi (~b) (n - 1) p) /\ (!n b x p. sigmapi b n (!!x p) <=> if ~b /\ ~(n = 0) \/ ?q t. (p = (V x << t --> q) \/ p = (V x <<= t --> q)) /\ ~(x IN FVT t) then sigmapi b n p else 2 <= n /\ sigmapi (~b) (n - 1) p)`, REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [SIGMAPI_CLAUSES_CODE] THEN REWRITE_TAC[] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH] THEN BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [SIGMAPI_CLAUSES_CODE] THEN ASM_REWRITE_TAC[ARITH_RULE `~(n - 1 = 0) <=> 2 <= n`] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Show that it respects substitution. *) (* ------------------------------------------------------------------------- *) let SIGMAPI_FORMSUBST = prove (`!p v n b. sigmapi b n p ==> sigmapi b n (formsubst v p)`, MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[SIGMAPI_CLAUSES; formsubst] THEN SIMP_TAC[] THEN REWRITE_TAC[AND_FORALL_THM] THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN MATCH_MP_TAC(TAUT `(a ==> b /\ c) ==> (a ==> b) /\ (a ==> c)`) THEN DISCH_TAC THEN REWRITE_TAC[AND_FORALL_THM] THEN MAP_EVERY X_GEN_TAC [`i:num->term`; `n:num`; `b:bool`] THEN REWRITE_TAC[FV] THEN LET_TAC THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN REWRITE_TAC[SIGMAPI_CLAUSES] THEN ONCE_REWRITE_TAC[TAUT `((if p \/ q then x else y) ==> (if p \/ q' then x' else y')) <=> (p /\ x ==> x') /\ (~p ==> (if q then x else y) ==> (if q' then x' else y'))`] THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC(TAUT `(p ==> p') /\ (x ==> x') /\ (y ==> y') /\ (y ==> x) ==> (if p then x else y) ==> (if p' then x' else y')`) THEN ASM_SIMP_TAC[SIGMAPI_MONO_LEMMA; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[formsubst; form_INJ; termsubst] THEN REWRITE_TAC[form_DISTINCT] THEN ONCE_REWRITE_TAC[TAUT `((a /\ b) /\ c) /\ d <=> b /\ c /\ a /\ d`] THEN REWRITE_TAC[UNWIND_THM1; termsubst; VALMOD_BASIC] THEN REWRITE_TAC[TERMSUBST_FVT; IN_ELIM_THM; NOT_EXISTS_THM] THEN X_GEN_TAC `y:num` THEN REWRITE_TAC[valmod] THEN (COND_CASES_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (funpow 2 LAND_CONV) [SYM th]) THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[FV; FVT] THEN REWRITE_TAC[IN_DELETE; IN_UNION; IN_SING; GSYM DISJ_ASSOC] THEN REWRITE_TAC[TAUT `(a \/ b \/ c) /\ ~a <=> ~a /\ b \/ ~a /\ c`] THEN (COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]) THEN W(fun (asl,w) -> let t = lhand(rand w) in MP_TAC(SPEC (rand(rand t)) VARIANT_THM) THEN SPEC_TAC(t,`u:num`)) THEN REWRITE_TAC[CONTRAPOS_THM; FORMSUBST_FV; IN_ELIM_THM; FV] THEN GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `y:num` THEN ASM_REWRITE_TAC[valmod; IN_UNION]);; (* ------------------------------------------------------------------------- *) (* Hence all our main concepts are OK. *) (* ------------------------------------------------------------------------- *) let SIGMAPI_TAC ths = REPEAT STRIP_TAC THEN REWRITE_TAC ths THEN TRY(MATCH_MP_TAC SIGMAPI_FORMSUBST) THEN let ths' = ths @ [SIGMAPI_CLAUSES; form_DISTINCT; form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1; GSYM EXISTS_REFL; FVT; IN_SING; ARITH_EQ] in REWRITE_TAC ths' THEN ASM_SIMP_TAC ths';; let SIGMAPI_DIVIDES = prove (`!n s t. sigmapi b n (arith_divides s t)`, SIGMAPI_TAC[arith_divides]);; let SIGMAPI_PRIME = prove (`!n t. sigmapi b n (arith_prime t)`, SIGMAPI_TAC[arith_prime; SIGMAPI_DIVIDES]);; let SIGMAPI_PRIMEPOW = prove (`!n s t. sigmapi b n (arith_primepow s t)`, SIGMAPI_TAC[arith_primepow; SIGMAPI_DIVIDES; SIGMAPI_PRIME]);; let SIGMAPI_RTC = prove (`(!s t. sigmapi T 1 (R s t)) ==> !s t. sigmapi T 1 (arith_rtc R s t)`, REPEAT STRIP_TAC THEN REWRITE_TAC[arith_rtc] THEN MATCH_MP_TAC SIGMAPI_FORMSUBST THEN REWRITE_TAC[SIGMAPI_CLAUSES; form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1; GSYM EXISTS_REFL; FVT; IN_SING; ARITH_EQ; SIGMAPI_DIVIDES; SIGMAPI_PRIME; SIGMAPI_PRIMEPOW; form_DISTINCT] THEN ASM_REWRITE_TAC[]);; let SIGMAPI_RTCP = prove (`(!s t u. sigmapi T 1 (R s t u)) ==> !s t u. sigmapi T 1 (arith_rtcp R s t u)`, REPEAT STRIP_TAC THEN REWRITE_TAC[arith_rtcp] THEN MATCH_MP_TAC SIGMAPI_FORMSUBST THEN REWRITE_TAC[SIGMAPI_CLAUSES; form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1; GSYM EXISTS_REFL; FVT; IN_SING; ARITH_EQ; SIGMAPI_DIVIDES; SIGMAPI_PRIME; SIGMAPI_PRIMEPOW; form_DISTINCT] THEN ASM_REWRITE_TAC[]);; let SIGMAPI_TERM1 = prove (`!s t. sigmapi T 1 (arith_term1 s t)`, SIGMAPI_TAC[arith_term1]);; let SIGMAPI_TERM = prove (`!t. sigmapi T 1 (arith_term t)`, SIGMAPI_TAC[arith_term; SIGMAPI_RTC; SIGMAPI_TERM1]);; let SIGMAPI_FORM1 = prove (`!s t. sigmapi T 1 (arith_form1 s t)`, SIGMAPI_TAC[arith_form1; SIGMAPI_TERM]);; let SIGMAPI_FORM = prove (`!t. sigmapi T 1 (arith_form t)`, SIGMAPI_TAC[arith_form; SIGMAPI_RTC; SIGMAPI_FORM1]);; let SIGMAPI_FREETERM1 = prove (`!s t u. sigmapi T 1 (arith_freeterm1 s t u)`, SIGMAPI_TAC[arith_freeterm1]);; let SIGMAPI_FREETERM = prove (`!s t. sigmapi T 1 (arith_freeterm s t)`, SIGMAPI_TAC[arith_freeterm; SIGMAPI_FREETERM1; SIGMAPI_RTCP]);; let SIGMAPI_FREEFORM1 = prove (`!s t u. sigmapi T 1 (arith_freeform1 s t u)`, SIGMAPI_TAC[arith_freeform1; SIGMAPI_FREETERM; SIGMAPI_FORM]);; let SIGMAPI_FREEFORM = prove (`!s t. sigmapi T 1 (arith_freeform s t)`, SIGMAPI_TAC[arith_freeform; SIGMAPI_FREEFORM1; SIGMAPI_RTCP]);; let SIGMAPI_AXIOM = prove (`!t. sigmapi T 1 (arith_axiom t)`, SIGMAPI_TAC[arith_axiom; SIGMAPI_FREEFORM; SIGMAPI_FREETERM; SIGMAPI_FORM; SIGMAPI_TERM]);; let SIGMAPI_PROV1 = prove (`!A. (!t. sigmapi T 1 (A t)) ==> !s t. sigmapi T 1 (arith_prov1 A s t)`, SIGMAPI_TAC[arith_prov1; SIGMAPI_AXIOM]);; let SIGMAPI_PROV = prove (`(!t. sigmapi T 1 (A t)) ==> !t. sigmapi T 1 (arith_prov A t)`, SIGMAPI_TAC[arith_prov; SIGMAPI_PROV1; SIGMAPI_RTC]);; let SIGMAPI_PRIMRECSTEP = prove (`(!s t u. sigmapi T 1 (R s t u)) ==> !s t. sigmapi T 1 (arith_primrecstep R s t)`, SIGMAPI_TAC[arith_primrecstep]);; let SIGMAPI_PRIMREC = prove (`(!s t u. sigmapi T 1 (R s t u)) ==> !s t. sigmapi T 1 (arith_primrec R c s t)`, SIGMAPI_TAC[arith_primrec; SIGMAPI_PRIMRECSTEP; SIGMAPI_RTC]);; let SIGMAPI_GNUMERAL1 = prove (`!s t. sigmapi T 1 (arith_gnumeral1 s t)`, SIGMAPI_TAC[arith_gnumeral1]);; let SIGMAPI_GNUMERAL = prove (`!s t. sigmapi T 1 (arith_gnumeral s t)`, SIGMAPI_TAC[arith_gnumeral; arith_gnumeral1'; SIGMAPI_GNUMERAL1; SIGMAPI_RTC]);; let SIGMAPI_QSUBST = prove (`!x n p. sigmapi T 1 p ==> sigmapi T 1 (qsubst(x,n) p)`, SIGMAPI_TAC[qsubst]);; let SIGMAPI_QDIAG = prove (`!x s t. sigmapi T 1 (arith_qdiag x s t)`, SIGMAPI_TAC[arith_qdiag; SIGMAPI_GNUMERAL]);; let SIGMAPI_DIAGONALIZE = prove (`!x p. sigmapi T 1 p ==> sigmapi T 1 (diagonalize x p)`, SIGMAPI_TAC[diagonalize; SIGMAPI_QDIAG; SIGMAPI_FORMSUBST; LET_DEF; LET_END_DEF]);; let SIGMAPI_FIXPOINT = prove (`!x p. sigmapi T 1 p ==> sigmapi T 1 (fixpoint x p)`, SIGMAPI_TAC[fixpoint; qdiag; SIGMAPI_QSUBST; SIGMAPI_DIAGONALIZE]);; (* ------------------------------------------------------------------------- *) (* The Godel sentence, "H" being Sigma and "G" being Pi. *) (* ------------------------------------------------------------------------- *) let hsentence = new_definition `hsentence Arep = fixpoint 0 (arith_prov Arep (arith_pair (numeral 4) (V 0)))`;; let gsentence = new_definition `gsentence Arep = Not(hsentence Arep)`;; let FV_HSENTENCE = prove (`!Arep. (!t. FV(Arep t) = FVT t) ==> (FV(hsentence Arep) = {})`, SIMP_TAC[hsentence; FV_FIXPOINT; FV_PROV] THEN REWRITE_TAC[FVT_PAIR; FVT_NUMERAL; FVT; UNION_EMPTY; DELETE_INSERT; EMPTY_DELETE]);; let FV_GSENTENCE = prove (`!Arep. (!t. FV(Arep t) = FVT t) ==> (FV(gsentence Arep) = {})`, SIMP_TAC[gsentence; FV_HSENTENCE; FV]);; let SIGMAPI_HSENTENCE = prove (`!Arep. (!t. sigmapi T 1 (Arep t)) ==> sigmapi T 1 (hsentence Arep)`, SIGMAPI_TAC[hsentence; SIGMAPI_FIXPOINT; SIGMAPI_PROV]);; let SIGMAPI_GSENTENCE = prove (`!Arep. (!t. sigmapi T 1 (Arep t)) ==> sigmapi F 1 (gsentence Arep)`, SIGMAPI_TAC[gsentence; SIGMAPI_HSENTENCE]);; (* ------------------------------------------------------------------------- *) (* Hence the key fixpoint properties. *) (* ------------------------------------------------------------------------- *) let HSENTENCE_FIX_STRONG = prove (`!A Arep. (!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A) ==> !v. holds v (hsentence Arep) <=> A |-- Not(hsentence Arep)`, REWRITE_TAC[hsentence; true_def; HOLDS_FIXPOINT] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ARITH_PROV) THEN REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN DISCH_TAC THEN ASM_REWRITE_TAC[ARITH_PAIR; TERMVAL_NUMERAL] THEN REWRITE_TAC[termval; valmod; GSYM gform] THEN REWRITE_TAC[PROV_THM]);; let HSENTENCE_FIX = prove (`!A Arep. (!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A) ==> (true(hsentence Arep) <=> A |-- Not(hsentence Arep))`, REWRITE_TAC[true_def] THEN MESON_TAC[HSENTENCE_FIX_STRONG]);; let GSENTENCE_FIX = prove (`!A Arep. (!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A) ==> (true(gsentence Arep) <=> ~(A |-- gsentence Arep))`, REWRITE_TAC[true_def; holds; gsentence] THEN MESON_TAC[HSENTENCE_FIX_STRONG]);; (* ------------------------------------------------------------------------- *) (* Auxiliary concepts. *) (* ------------------------------------------------------------------------- *) let ground = new_definition `ground t <=> (FVT t = {})`;; let complete_for = new_definition `complete_for P A <=> !p. P p /\ true p ==> A |-- p`;; let sound_for = new_definition `sound_for P A <=> !p. P p /\ A |-- p ==> true p`;; let consistent = new_definition `consistent A <=> ~(?p. A |-- p /\ A |-- Not p)`;; let CONSISTENT_ALT = prove (`!A p. A |-- p /\ A |-- Not p <=> A |-- False`, MESON_TAC[proves_RULES; axiom_RULES]);; (* ------------------------------------------------------------------------- *) (* The purest and most symmetric and beautiful form of G1. *) (* ------------------------------------------------------------------------- *) let DEFINABLE_BY_ONEVAR = prove (`definable_by (SIGMA 1) s <=> ?p x. SIGMA 1 p /\ (FV p = {x}) /\ !v. holds v p <=> (v x) IN s`, REWRITE_TAC[definable_by; SIGMA] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_THEN(X_CHOOSE_THEN `p:form` (X_CHOOSE_TAC `x:num`)) THEN EXISTS_TAC `(V x === V x) && formsubst (\y. if y = x then V x else Z) p` THEN EXISTS_TAC `x:num` THEN ASM_SIMP_TAC[SIGMAPI_CLAUSES; SIGMAPI_FORMSUBST] THEN ASM_REWRITE_TAC[HOLDS_FORMSUBST; FORMSUBST_FV; FV; holds] THEN REWRITE_TAC[COND_RAND; EXTENSION; IN_ELIM_THM; IN_SING; FVT; IN_UNION; COND_EXPAND; NOT_IN_EMPTY; o_THM; termval] THEN MESON_TAC[]);; let CLOSED_NOT_TRUE = prove (`!p. closed p ==> (true(Not p) <=> ~(true p))`, REWRITE_TAC[closed; true_def; holds] THEN MESON_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]);; let G1 = prove (`!A. definable_by (SIGMA 1) (IMAGE gform A) ==> ?G. PI 1 G /\ closed G /\ (sound_for (PI 1 INTER closed) A ==> true G /\ ~(A |-- G)) /\ (sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))`, GEN_TAC THEN REWRITE_TAC[sound_for; INTER; IN_ELIM_THM; DEFINABLE_BY_ONEVAR] THEN DISCH_THEN(X_CHOOSE_THEN `Arep:form` (X_CHOOSE_THEN `a:num` STRIP_ASSUME_TAC)) THEN MP_TAC(SPECL [`A:form->bool`; `\t. formsubst ((a |-> t) V) Arep`] GSENTENCE_FIX) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_REWRITE_TAC[HOLDS_FORMSUBST] THEN REWRITE_TAC[termval; valmod; o_THM]; ALL_TAC] THEN STRIP_TAC THEN EXISTS_TAC `gsentence (\t. formsubst ((a |-> t) V) Arep)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `a /\ b /\ (a /\ b ==> c /\ d) ==> a /\ b /\ c /\ d`) THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[PI] THEN MATCH_MP_TAC SIGMAPI_GSENTENCE THEN RULE_ASSUM_TAC(REWRITE_RULE[SIGMA]) THEN ASM_SIMP_TAC[SIGMAPI_FORMSUBST]; REWRITE_TAC[closed] THEN MATCH_MP_TAC FV_GSENTENCE THEN ASM_REWRITE_TAC[FORMSUBST_FV; EXTENSION; IN_ELIM_THM; IN_SING; valmod; UNWIND_THM2]; ALL_TAC] THEN ABBREV_TAC `G = gsentence (\t. formsubst ((a |-> t) V) Arep)` THEN REPEAT STRIP_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN SUBGOAL_THEN `true(Not G)` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN] THEN REWRITE_TAC[SIGMA; SIGMAPI_CLAUSES] THEN ASM_MESON_TAC[closed; FV; PI]; ALL_TAC] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP CLOSED_NOT_TRUE) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `true False` MP_TAC THENL [ALL_TAC; REWRITE_TAC[true_def; holds]] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[closed; IN; SIGMA; SIGMAPI_CLAUSES; FV] THEN ASM_MESON_TAC[CONSISTENT_ALT]);; (* ------------------------------------------------------------------------- *) (* Some more familiar variants. *) (* ------------------------------------------------------------------------- *) let COMPLETE_SOUND_SENTENCE = prove (`consistent A /\ complete_for (sigmapi (~b) n INTER closed) A ==> sound_for (sigmapi b n INTER closed) A`, REWRITE_TAC[consistent; sound_for; complete_for; IN; INTER; IN_ELIM_THM] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(fun th -> X_GEN_TAC `p:form` THEN MP_TAC(SPEC `Not p` th)) THEN REWRITE_TAC[SIGMAPI_CLAUSES] THEN REWRITE_TAC[closed; FV; true_def; holds] THEN ASM_MESON_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]);; let G1_TRAD = prove (`!A. consistent A /\ complete_for (SIGMA 1 INTER closed) A /\ definable_by (SIGMA 1) (IMAGE gform A) ==> ?G. PI 1 G /\ closed G /\ true G /\ ~(A |-- G) /\ (sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))`, REWRITE_TAC[SIGMA] THEN REPEAT STRIP_TAC THEN MP_TAC(SPEC `A:form->bool` G1) THEN ASM_REWRITE_TAC[SIGMA; PI] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[COMPLETE_SOUND_SENTENCE]);;