(* ========================================================================= *) (* Arithmetization of syntax and Tarski's theorem. *) (* ========================================================================= *) prioritize_num();; (* ------------------------------------------------------------------------- *) (* This is to fake the fact that we might really be using strings. *) (* ------------------------------------------------------------------------- *) let number = new_definition `number(x) = 2 * (x DIV 2) + (1 - x MOD 2)`;; let denumber = new_definition `denumber = number`;; let NUMBER_DENUMBER = prove (`(!s. denumber(number s) = s) /\ (!n. number(denumber n) = n)`, REWRITE_TAC[number; denumber] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN SIMP_TAC[ARITH_RULE `x < 2 ==> (2 * y + x) DIV 2 = y`; MOD_MULT_ADD; MOD_LT; GSYM DIVISION; ARITH_EQ; ARITH_RULE `1 - m < 2`; ARITH_RULE `x < 2 ==> 1 - (1 - x) = x`]);; let NUMBER_INJ = prove (`!x y. number(x) = number(y) <=> x = y`, MESON_TAC[NUMBER_DENUMBER]);; let NUMBER_SURJ = prove (`!y. ?x. number(x) = y`, MESON_TAC[NUMBER_DENUMBER]);; (* ------------------------------------------------------------------------- *) (* Arithmetization. *) (* ------------------------------------------------------------------------- *) let gterm = new_recursive_definition term_RECURSION `(gterm (V x) = NPAIR 0 (number x)) /\ (gterm Z = NPAIR 1 0) /\ (gterm (Suc t) = NPAIR 2 (gterm t)) /\ (gterm (s ++ t) = NPAIR 3 (NPAIR (gterm s) (gterm t))) /\ (gterm (s ** t) = NPAIR 4 (NPAIR (gterm s) (gterm t)))`;; let gform = new_recursive_definition form_RECURSION `(gform False = NPAIR 0 0) /\ (gform True = NPAIR 0 1) /\ (gform (s === t) = NPAIR 1 (NPAIR (gterm s) (gterm t))) /\ (gform (s << t) = NPAIR 2 (NPAIR (gterm s) (gterm t))) /\ (gform (s <<= t) = NPAIR 3 (NPAIR (gterm s) (gterm t))) /\ (gform (Not p) = NPAIR 4 (gform p)) /\ (gform (p && q) = NPAIR 5 (NPAIR (gform p) (gform q))) /\ (gform (p || q) = NPAIR 6 (NPAIR (gform p) (gform q))) /\ (gform (p --> q) = NPAIR 7 (NPAIR (gform p) (gform q))) /\ (gform (p <-> q) = NPAIR 8 (NPAIR (gform p) (gform q))) /\ (gform (!! x p) = NPAIR 9 (NPAIR (number x) (gform p))) /\ (gform (?? x p) = NPAIR 10 (NPAIR (number x) (gform p)))`;; (* ------------------------------------------------------------------------- *) (* Injectivity. *) (* ------------------------------------------------------------------------- *) let GTERM_INJ = prove (`!s t. (gterm s = gterm t) <=> (s = t)`, MATCH_MP_TAC term_INDUCT THEN REPEAT CONJ_TAC THENL [ALL_TAC; GEN_TAC; GEN_TAC THEN DISCH_TAC; REPEAT GEN_TAC THEN STRIP_TAC; REPEAT GEN_TAC THEN STRIP_TAC] THEN MATCH_MP_TAC term_INDUCT THEN ASM_REWRITE_TAC[term_DISTINCT; term_INJ; gterm; NPAIR_INJ; NUMBER_INJ; ARITH_EQ]);; let GFORM_INJ = prove (`!p q. (gform p = gform q) <=> (p = q)`, MATCH_MP_TAC form_INDUCT THEN REPEAT CONJ_TAC THENL [ALL_TAC; ALL_TAC; GEN_TAC THEN GEN_TAC; GEN_TAC THEN GEN_TAC; GEN_TAC THEN GEN_TAC; REPEAT GEN_TAC THEN STRIP_TAC; REPEAT GEN_TAC THEN STRIP_TAC; REPEAT GEN_TAC THEN STRIP_TAC; REPEAT GEN_TAC THEN STRIP_TAC; REPEAT GEN_TAC THEN STRIP_TAC; REPEAT GEN_TAC THEN STRIP_TAC; REPEAT GEN_TAC THEN STRIP_TAC] THEN MATCH_MP_TAC form_INDUCT THEN ASM_REWRITE_TAC[form_DISTINCT; form_INJ; gform; NPAIR_INJ; ARITH_EQ] THEN REWRITE_TAC[GTERM_INJ; NUMBER_INJ]);; (* ------------------------------------------------------------------------- *) (* Useful case theorems. *) (* ------------------------------------------------------------------------- *) let GTERM_CASES = prove (`((gterm u = NPAIR 0 (number x)) <=> (u = V x)) /\ ((gterm u = NPAIR 1 0) <=> (u = Z)) /\ ((gterm u = NPAIR 2 n) <=> (?t. (u = Suc t) /\ (gterm t = n))) /\ ((gterm u = NPAIR 3 (NPAIR m n)) <=> (?s t. (u = s ++ t) /\ (gterm s = m) /\ (gterm t = n))) /\ ((gterm u = NPAIR 4 (NPAIR m n)) <=> (?s t. (u = s ** t) /\ (gterm s = m) /\ (gterm t = n)))`, STRUCT_CASES_TAC(SPEC `u:term` term_CASES) THEN ASM_REWRITE_TAC[gterm; NPAIR_INJ; ARITH_EQ; NUMBER_INJ; term_DISTINCT; term_INJ] THEN MESON_TAC[]);; let GFORM_CASES = prove (`((gform r = NPAIR 0 0) <=> (r = False)) /\ ((gform r = NPAIR 0 1) <=> (r = True)) /\ ((gform r = NPAIR 1 (NPAIR m n)) <=> (?s t. (r = s === t) /\ (gterm s = m) /\ (gterm t = n))) /\ ((gform r = NPAIR 2 (NPAIR m n)) <=> (?s t. (r = s << t) /\ (gterm s = m) /\ (gterm t = n))) /\ ((gform r = NPAIR 3 (NPAIR m n)) <=> (?s t. (r = s <<= t) /\ (gterm s = m) /\ (gterm t = n))) /\ ((gform r = NPAIR 4 n) = (?p. (r = Not p) /\ (gform p = n))) /\ ((gform r = NPAIR 5 (NPAIR m n)) <=> (?p q. (r = p && q) /\ (gform p = m) /\ (gform q = n))) /\ ((gform r = NPAIR 6 (NPAIR m n)) <=> (?p q. (r = p || q) /\ (gform p = m) /\ (gform q = n))) /\ ((gform r = NPAIR 7 (NPAIR m n)) <=> (?p q. (r = p --> q) /\ (gform p = m) /\ (gform q = n))) /\ ((gform r = NPAIR 8 (NPAIR m n)) <=> (?p q. (r = p <-> q) /\ (gform p = m) /\ (gform q = n))) /\ ((gform r = NPAIR 9 (NPAIR (number x) n)) <=> (?p. (r = !!x p) /\ (gform p = n))) /\ ((gform r = NPAIR 10 (NPAIR (number x) n)) <=> (?p. (r = ??x p) /\ (gform p = n)))`, STRUCT_CASES_TAC(SPEC `r:form` form_CASES) THEN ASM_REWRITE_TAC[gform; NPAIR_INJ; ARITH_EQ; NUMBER_INJ; form_DISTINCT; form_INJ] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Definability of "godel number of numeral n". *) (* ------------------------------------------------------------------------- *) let gnumeral = new_definition `gnumeral m n = (gterm(numeral m) = n)`;; let arith_gnumeral1 = new_definition `arith_gnumeral1 a b = formsubst ((3 |-> a) ((4 |-> b) V)) (??0 (??1 (V 3 === arith_pair (V 0) (V 1) && V 4 === arith_pair (Suc(V 0)) (arith_pair (numeral 2) (V 1)))))`;; let ARITH_GNUMERAL1 = prove (`!v a b. holds v (arith_gnumeral1 a b) <=> ?x y. termval v a = NPAIR x y /\ termval v b = NPAIR (SUC x) (NPAIR 2 y)`, REWRITE_TAC[arith_gnumeral1; holds; HOLDS_FORMSUBST] THEN REWRITE_TAC[termval; ARITH_EQ; o_THM; valmod; ARITH_PAIR; TERMVAL_NUMERAL]);; let FV_GNUMERAL1 = prove (`!s t. FV(arith_gnumeral1 s t) = FVT s UNION FVT t`, REWRITE_TAC[arith_gnumeral1] THEN FV_TAC[FVT_PAIR; FVT_NUMERAL]);; let arith_gnumeral1' = new_definition `arith_gnumeral1' x y = arith_rtc arith_gnumeral1 x y`;; let ARITH_GNUMERAL1' = prove (`!v s t. holds v (arith_gnumeral1' s t) <=> RTC (\a b. ?x y. a = NPAIR x y /\ b = NPAIR (SUC x) (NPAIR 2 y)) (termval v s) (termval v t)`, REWRITE_TAC[arith_gnumeral1'] THEN MATCH_MP_TAC ARITH_RTC THEN REWRITE_TAC[ARITH_GNUMERAL1]);; let FV_GNUMERAL1' = prove (`!s t. FV(arith_gnumeral1' s t) = FVT s UNION FVT t`, SIMP_TAC[arith_gnumeral1'; FV_RTC; FV_GNUMERAL1]);; let arith_gnumeral = new_definition `arith_gnumeral n p = formsubst ((0 |-> n) ((1 |-> p) V)) (arith_gnumeral1' (arith_pair Z (numeral 3)) (arith_pair (V 0) (V 1)))`;; let ARITH_GNUMERAL = prove (`!v s t. holds v (arith_gnumeral s t) <=> gnumeral (termval v s) (termval v t)`, REWRITE_TAC[arith_gnumeral; holds; HOLDS_FORMSUBST; ARITH_GNUMERAL1'; ARITH_PAIR; TERMVAL_NUMERAL] THEN REWRITE_TAC[termval; ARITH_EQ; o_THM; valmod] THEN MP_TAC(INST [`(gterm o numeral)`,`fn:num->num`; `3`,`e:num`; `\a:num b:num. NPAIR 2 a`,`f:num->num->num`] PRIMREC_SIGMA) THEN ANTS_TAC THENL [REWRITE_TAC[gterm; numeral; o_THM] THEN REWRITE_TAC[NPAIR; ARITH]; SIMP_TAC[gnumeral; o_THM]]);; let FV_GNUMERAL = prove (`!s t. FV(arith_gnumeral s t) = FVT(s) UNION FVT(t)`, REWRITE_TAC[arith_gnumeral] THEN FV_TAC[FV_GNUMERAL1'; FVT_PAIR; FVT_NUMERAL]);; (* ------------------------------------------------------------------------- *) (* Diagonal substitution. *) (* ------------------------------------------------------------------------- *) let qdiag = new_definition `qdiag x q = qsubst (x,numeral(gform q)) q`;; let arith_qdiag = new_definition `arith_qdiag x s t = formsubst ((1 |-> s) ((2 |-> t) V)) (?? 3 (arith_gnumeral (V 1) (V 3) && arith_pair (numeral 10) (arith_pair (numeral(number x)) (arith_pair (numeral 5) (arith_pair (arith_pair (numeral 1) (arith_pair (arith_pair (numeral 0) (numeral(number x))) (V 3))) (V 1)))) === V 2))`;; let QDIAG_FV = prove (`FV(qdiag x q) = FV(q) DELETE x`, REWRITE_TAC[qdiag; FV_QSUBST; FVT_NUMERAL; UNION_EMPTY]);; let HOLDS_QDIAG = prove (`!v x q. holds v (qdiag x q) = holds ((x |-> gform q) v) q`, SIMP_TAC[qdiag; HOLDS_QSUBST; FVT_NUMERAL; NOT_IN_EMPTY; TERMVAL_NUMERAL]);; let ARITH_QDIAG = prove (`(termval v s = gform p) ==> (holds v (arith_qdiag x s t) <=> (termval v t = gform(qdiag x p)))`, REPEAT STRIP_TAC THEN REWRITE_TAC[qdiag; qsubst; arith_qdiag; gform; gterm] THEN ASM_REWRITE_TAC[HOLDS_FORMSUBST; holds; termval; TERMVAL_NUMERAL; gnumeral; ARITH_GNUMERAL; ARITH_PAIR] THEN ASM_REWRITE_TAC[o_DEF; valmod; ARITH_EQ; termval] THEN MESON_TAC[]);; let FV_QDIAG = prove (`!x s t. FV(arith_qdiag x s t) = FVT(s) UNION FVT(t)`, REWRITE_TAC[arith_qdiag; FORMSUBST_FV; FV; FV_GNUMERAL; FVT_PAIR; UNION_EMPTY; FVT_NUMERAL; FVT; TERMSUBST_FVT] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[DISJ_ACI; IN_DELETE; IN_UNION; IN_SING] THEN REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN REWRITE_TAC[EXISTS_OR_THM; GSYM CONJ_ASSOC; UNWIND_THM2; ARITH_EQ] THEN REWRITE_TAC[valmod; ARITH_EQ; DISJ_ACI]);; (* ------------------------------------------------------------------------- *) (* Hence diagonalization of a predicate. *) (* ------------------------------------------------------------------------- *) let diagonalize = new_definition `diagonalize x q = let y = VARIANT(x INSERT FV(q)) in ??y (arith_qdiag x (V x) (V y) && formsubst ((x |-> V y) V) q)`;; let FV_DIAGONALIZE = prove (`!x q. FV(diagonalize x q) = x INSERT (FV q)`, REPEAT GEN_TAC THEN REWRITE_TAC[diagonalize] THEN LET_TAC THEN REWRITE_TAC[FV; FV_QDIAG; FORMSUBST_FV; EXTENSION; IN_INSERT; IN_DELETE; IN_UNION; IN_ELIM_THM; FVT; NOT_IN_EMPTY] THEN X_GEN_TAC `u:num` THEN SUBGOAL_THEN `~(y = x) /\ !z. z IN FV(q) ==> ~(y = z)` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[VARIANT_FINITE; FINITE_INSERT; FV_FINITE; IN_INSERT]; ALL_TAC] THEN ASM_CASES_TAC `u:num = x` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `u:num = y` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[valmod; COND_RAND; FVT; IN_SING; COND_EXPAND] THEN ASM_MESON_TAC[]);; let ARITH_DIAGONALIZE = prove (`(v x = gform p) ==> !q. holds v (diagonalize x q) <=> holds ((x |-> gform(qdiag x p)) v) q`, REPEAT STRIP_TAC THEN REWRITE_TAC[diagonalize] THEN LET_TAC THEN REWRITE_TAC[holds] THEN SUBGOAL_THEN `!a. holds ((y |-> a) v) (arith_qdiag x (V x) (V y)) <=> (termval ((y |-> a) v) (V y) = gform(qdiag x p))` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN MATCH_MP_TAC ARITH_QDIAG THEN REWRITE_TAC[termval; valmod] THEN SUBGOAL_THEN `~(x:num = y)` (fun th -> ASM_REWRITE_TAC[th]) THEN ASM_MESON_TAC[VARIANT_FINITE; FINITE_INSERT; FV_FINITE; IN_INSERT]; ALL_TAC] THEN REWRITE_TAC[HOLDS_FORMSUBST; termval; VALMOD_BASIC; UNWIND_THM2] THEN MATCH_MP_TAC HOLDS_VALUATION THEN X_GEN_TAC `u:num` THEN DISCH_TAC THEN REWRITE_TAC[o_THM; termval; valmod] THEN COND_CASES_TAC THEN REWRITE_TAC[termval] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[VARIANT_FINITE; FINITE_INSERT; FV_FINITE; IN_INSERT]);; (* ------------------------------------------------------------------------- *) (* And hence the fixed point. *) (* ------------------------------------------------------------------------- *) let fixpoint = new_definition `fixpoint x q = qdiag x (diagonalize x q)`;; let FV_FIXPOINT = prove (`!x p. FV(fixpoint x p) = FV(p) DELETE x`, REWRITE_TAC[fixpoint; FV_QDIAG; QDIAG_FV; FV_DIAGONALIZE; FVT_NUMERAL] THEN SET_TAC[]);; let HOLDS_FIXPOINT = prove (`!x p v. holds v (fixpoint x p) <=> holds ((x |-> gform(fixpoint x p)) v) p`, REPEAT GEN_TAC THEN SIMP_TAC[fixpoint; holds; HOLDS_QDIAG] THEN SUBGOAL_THEN `((x |-> gform(diagonalize x p)) v) x = gform (diagonalize x p)` MP_TAC THENL [REWRITE_TAC[VALMOD_BASIC]; ALL_TAC] THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP ARITH_DIAGONALIZE th]) THEN REWRITE_TAC[VALMOD_VALMOD_BASIC]);; let HOLDS_IFF_FIXPOINT = prove (`!x p v. holds v (fixpoint x p <-> qsubst (x,numeral(gform(fixpoint x p))) p)`, SIMP_TAC[holds; HOLDS_FIXPOINT; HOLDS_QSUBST; FVT_NUMERAL; NOT_IN_EMPTY; TERMVAL_NUMERAL]);; let CARNAP = prove (`!x q. ?p. (FV(p) = FV(q) DELETE x) /\ true (p <-> qsubst (x,numeral(gform p)) q)`, REPEAT GEN_TAC THEN EXISTS_TAC `fixpoint x q` THEN REWRITE_TAC[true_def; HOLDS_IFF_FIXPOINT; FV_FIXPOINT]);; (* ------------------------------------------------------------------------- *) (* Hence Tarski's theorem on the undefinability of truth. *) (* ------------------------------------------------------------------------- *) let definable_by = new_definition `definable_by P s <=> ?p x. P p /\ (!v. holds v p <=> (v(x)) IN s)`;; let definable = new_definition `definable s <=> ?p x. !v. holds v p <=> (v(x)) IN s`;; let TARSKI_THEOREM = prove (`~(definable {gform p | true p})`, REWRITE_TAC[definable; IN_ELIM_THM; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`p:form`; `x:num`] THEN DISCH_TAC THEN MP_TAC(SPECL [`x:num`; `Not p`] CARNAP) THEN DISCH_THEN(X_CHOOSE_THEN `q:form` (MP_TAC o CONJUNCT2)) THEN SIMP_TAC[true_def; holds; HOLDS_QSUBST; FVT_NUMERAL; NOT_IN_EMPTY] THEN ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[VALMOD_BASIC; TERMVAL_NUMERAL] THEN REWRITE_TAC[true_def; GFORM_INJ] THEN MESON_TAC[]);;