(* ========================================================================= *) (* Derivation of Machin's formula and other similar ones. *) (* ========================================================================= *) needs "Library/transc.ml";; let REAL_LE_1_POW2 = prove (`!n. &1 <= &2 pow n`, REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_LE; ARITH_RULE `1 <= n <=> 0 < n`; EXP_LT_0; ARITH]);; let REAL_LT_1_POW2 = prove (`!n. &1 < &2 pow n <=> ~(n = 0)`, GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN SUBST1_TAC(SYM(REAL_RAT_REDUCE_CONV `&2 pow 0`)) THEN MATCH_MP_TAC REAL_POW_MONO_LT THEN REWRITE_TAC[REAL_OF_NUM_LT] THEN POP_ASSUM MP_TAC THEN ARITH_TAC);; let REAL_POW2_CLAUSES = prove (`(!n. &0 <= &2 pow n) /\ (!n. &0 < &2 pow n) /\ (!n. &0 <= inv(&2 pow n)) /\ (!n. &0 < inv(&2 pow n)) /\ (!n. inv(&2 pow n) <= &1) /\ (!n. &1 - inv(&2 pow n) <= &1) /\ (!n. &1 <= &2 pow n) /\ (!n. &1 < &2 pow n <=> ~(n = 0)) /\ (!n. &0 <= &1 - inv(&2 pow n)) /\ (!n. &0 <= &2 pow n - &1) /\ (!n. &0 < &1 - inv(&2 pow n) <=> ~(n = 0))`, SIMP_TAC[REAL_LE_1_POW2; REAL_LT_1_POW2; REAL_SUB_LE; REAL_SUB_LT; REAL_INV_LE_1] THEN SIMP_TAC[REAL_LE_INV_EQ; REAL_LT_INV_EQ; REAL_POW_LT; REAL_POW_LE; REAL_OF_NUM_LE; REAL_OF_NUM_LT; ARITH; REAL_ARITH `&1 - x <= &1 <=> &0 <= x`] THEN GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `inv(&2 pow 1)` THEN ASM_SIMP_TAC[REAL_LE_INV2; REAL_POW_MONO; REAL_POW_LT; REAL_OF_NUM_LT; ARITH; REAL_OF_NUM_LE; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN CONV_TAC REAL_RAT_REDUCE_CONV);; let REAL_POW2_THM = prove (`&0 < &2 pow n /\ &1 <= &2 pow n /\ (&1 < &2 pow n <=> ~(n = 0)) /\ (&2 pow m <= &2 pow n <=> m <= n) /\ (&2 pow m < &2 pow n <=> m < n) /\ (inv(&2 pow m) <= inv(&2 pow n) <=> n <= m) /\ (inv(&2 pow m) < inv(&2 pow n) <=> n < m)`, REWRITE_TAC[REAL_POW2_CLAUSES] THEN SUBGOAL_THEN `!m n. &2 pow m <= &2 pow n <=> m <= n` ASSUME_TAC THENL [REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[REAL_POW_MONO; REAL_OF_NUM_LE; ARITH] THEN CONV_TAC CONTRAPOS_CONV THEN SIMP_TAC[REAL_NOT_LE; REAL_NOT_LT; REAL_POW_MONO_LT; REAL_OF_NUM_LT; NOT_LE; ARITH]; ALL_TAC] THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LE] THEN REWRITE_TAC[GSYM NOT_LE] THEN SUBGOAL_THEN `!m n. inv(&2 pow m) <= inv(&2 pow n) <=> &2 pow n <= &2 pow m` (fun th -> ASM_REWRITE_TAC[th]) THEN REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[REAL_LE_INV2; REAL_POW2_CLAUSES] THEN CONV_TAC CONTRAPOS_CONV THEN SIMP_TAC[REAL_NOT_LE; REAL_LT_INV2; REAL_POW2_CLAUSES]);; (* ------------------------------------------------------------------------- *) (* Compound errors given bounds in assumptions. *) (* ------------------------------------------------------------------------- *) let BOUND_SUMPROD_RULE = let pth_add = REAL_ARITH `abs(x1) <= b1 /\ abs(x2) <= b2 ==> abs(x1 + x2) <= b1 + b2` and pth_sub = REAL_ARITH `abs(x1) <= b1 /\ abs(x2) <= b2 ==> abs(x1 - x2) <= b1 + b2` and pth_mul = prove (`abs(x1) <= b1 /\ abs(x2) <= b2 ==> abs(x1 * x2) <= b1 * b2`, REWRITE_TAC[REAL_ABS_MUL] THEN SIMP_TAC[REAL_LE_MUL2; REAL_ABS_POS]) and pth_neg = REAL_ARITH `abs(x1) <= b1 ==> abs(--x1) <= b1` and pth_pow = prove (`abs(x) <= b1 ==> abs(x pow n) <= b1 pow n`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REAL_ABS_POW] THEN MATCH_MP_TAC REAL_POW_LE2 THEN ASM_REWRITE_TAC[REAL_ABS_POS]) and pth_abs = REAL_ARITH `abs(x) <= b ==> abs(abs(x)) <= b` and pth_triv = REAL_ARITH `abs(x) <= abs(x)` and n_tm = `n:num` in let rec BOUND_SUMPROD_RULE (asl,w) = let tm = rator w in try tryfind (fun (_,th) -> if rator(concl th) = tm then th else fail()) asl with Failure _ -> try let pth,th = tryfind (fun pth -> pth,PART_MATCH (rator o rand) pth tm) [pth_neg; pth_abs] in let th1 = BOUND_SUMPROD_RULE (asl,lhand(concl th)) in MATCH_MP pth th1 with Failure _ -> try let pth = INST [funpow 3 rand tm,n_tm] pth_pow in let th = PART_MATCH (rator o rand) pth tm in let th1 = BOUND_SUMPROD_RULE (asl,lhand(concl th)) in MATCH_MP (INST [funpow 3 rand tm,n_tm] pth_pow) th1 with Failure _ -> try let pth,th = tryfind (fun pth -> pth,PART_MATCH (rator o rand) pth tm) [pth_add; pth_sub; pth_mul] in let trm = lhand(concl th) in let th1 = BOUND_SUMPROD_RULE (asl,lhand trm) and th2 = BOUND_SUMPROD_RULE (asl,rand trm) in MATCH_MP pth (CONJ th1 th2) with Failure _ -> PART_MATCH rator pth_triv tm in BOUND_SUMPROD_RULE;; let BOUND_SUMPROD_TAC = let tac = let pth = REAL_ARITH `x <= a ==> (!b. a <= b ==> x <= b) /\ (!b. a < b ==> x < b)` in fun th -> let th1,th2 = CONJ_PAIR(MATCH_MP pth th) in MATCH_MP_TAC th1 ORELSE MATCH_MP_TAC th2 and le_tm = `(<=):real->real->bool` in fun (asl,w as gl) -> let l,r = dest_comb w in let gv = genvar(type_of r) in let tm = mk_comb(mk_comb(le_tm,rand l),gv) in let th = BOUND_SUMPROD_RULE(asl,tm) in tac th gl;; (* ------------------------------------------------------------------------- *) (* Power series for atn. *) (* ------------------------------------------------------------------------- *) let REAL_ATN_POWSER_SUMMABLE = prove (`!x. abs(x) < &1 ==> summable (\n. (if EVEN n then &0 else --(&1) pow ((n - 1) DIV 2) / &n) * x pow n)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SER_COMPAR THEN EXISTS_TAC `\n. abs(x) pow n` THEN CONJ_TAC THENL [EXISTS_TAC `0` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN SIMP_TAC[REAL_POW_LE; REAL_MUL_LZERO; REAL_ABS_POS; REAL_ABS_NUM] THEN REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_DIV; REAL_ABS_NEG; REAL_ABS_POW] THEN REWRITE_TAC[REAL_ABS_NUM; REAL_POW_ONE; REAL_MUL_LID] THEN REWRITE_TAC[real_div; REAL_MUL_LID] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN MATCH_MP_TAC REAL_LE_LDIV THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_OF_NUM_LT; EVEN; LT_NZ]; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN MATCH_MP_TAC REAL_LE_LMUL THEN SIMP_TAC[REAL_POW_LE; REAL_ABS_POS] THEN ASM_MESON_TAC[REAL_OF_NUM_LE; EVEN; ARITH_RULE `1 <= n <=> ~(n = 0)`]; ALL_TAC] THEN REWRITE_TAC[summable] THEN EXISTS_TAC `inv(&1 - abs x)` THEN MATCH_MP_TAC GP THEN ASM_REWRITE_TAC[REAL_ABS_ABS]);; let REAL_ATN_POWSER_DIFFS_SUMMABLE = prove (`!x. abs(x) < &1 ==> summable (\n. diffs (\n. (if EVEN n then &0 else --(&1) pow ((n - 1) DIV 2) / &n)) n * x pow n)`, REPEAT STRIP_TAC THEN REWRITE_TAC[diffs] THEN MATCH_MP_TAC SER_COMPAR THEN EXISTS_TAC `\n. abs(x) pow n` THEN CONJ_TAC THENL [EXISTS_TAC `0` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN SIMP_TAC[REAL_POW_LE; REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_ABS_POS; REAL_ABS_NUM] THEN SIMP_TAC[REAL_MUL_ASSOC; REAL_DIV_LMUL; REAL_OF_NUM_EQ; NOT_SUC] THEN REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_DIV; REAL_ABS_NEG; REAL_ABS_POW] THEN REWRITE_TAC[REAL_ABS_NUM; REAL_POW_ONE; REAL_MUL_LID; REAL_LE_REFL]; ALL_TAC] THEN REWRITE_TAC[summable] THEN EXISTS_TAC `inv(&1 - abs x)` THEN MATCH_MP_TAC GP THEN ASM_REWRITE_TAC[REAL_ABS_ABS]);; let REAL_ATN_POWSER_DIFFS_SUM = prove (`!x. abs(x) < &1 ==> (\n. diffs (\n. (if EVEN n then &0 else --(&1) pow ((n - 1) DIV 2) / &n)) n * x pow n) sums (inv(&1 + x pow 2))`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REAL_ATN_POWSER_DIFFS_SUMMABLE) THEN DISCH_THEN(fun th -> MP_TAC(MATCH_MP SUMMABLE_SUM th) THEN MP_TAC(MATCH_MP SER_PAIR th)) THEN SUBGOAL_THEN `(\n. sum (2 * n,2) (\n. diffs (\n. (if EVEN n then &0 else --(&1) pow ((n - 1) DIV 2) / &n)) n * x pow n)) = (\n. --(x pow 2) pow n)` SUBST1_TAC THENL [ABS_TAC THEN CONV_TAC(LAND_CONV(LAND_CONV(RAND_CONV(TOP_DEPTH_CONV num_CONV)))) THEN REWRITE_TAC[sum; diffs; ADD_CLAUSES; EVEN_MULT; ARITH_EVEN; EVEN] THEN REWRITE_TAC[REAL_ADD_LID; REAL_ADD_RID; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN SIMP_TAC[ARITH_RULE `SUC n - 1 = n`; DIV_MULT; ARITH_EQ] THEN SIMP_TAC[REAL_MUL_ASSOC; REAL_DIV_LMUL; REAL_OF_NUM_EQ; NOT_SUC] THEN ONCE_REWRITE_TAC[GSYM REAL_POW_POW] THEN REWRITE_TAC[GSYM REAL_POW_MUL] THEN REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_LID]; ALL_TAC] THEN SUBGOAL_THEN `(\n. --(x pow 2) pow n) sums inv (&1 + x pow 2)` MP_TAC THENL [ONCE_REWRITE_TAC[REAL_ARITH `&1 + x = &1 - (--x)`] THEN MATCH_MP_TAC GP THEN REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_POW] THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN ASM_SIMP_TAC[REAL_POW_2; REAL_LT_MUL2; REAL_ABS_POS]; ALL_TAC] THEN MESON_TAC[SUM_UNIQ]);; let REAL_ATN_POWSER_DIFFS_DIFFS_SUMMABLE = prove (`!x. abs(x) < &1 ==> summable (\n. diffs (diffs (\n. (if EVEN n then &0 else --(&1) pow ((n - 1) DIV 2) / &n))) n * x pow n)`, REPEAT STRIP_TAC THEN REWRITE_TAC[diffs] THEN MATCH_MP_TAC SER_COMPAR THEN EXISTS_TAC `\n. &(SUC n) * abs(x) pow n` THEN CONJ_TAC THENL [EXISTS_TAC `0` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ABS_NUM; REAL_ABS_MUL; GSYM REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_POS] THEN COND_CASES_TAC THEN SIMP_TAC[REAL_POW_LE; REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_ABS_POS; REAL_ABS_NUM] THEN REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_NUM; REAL_MUL_ASSOC] THEN SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; NOT_SUC] THEN REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NEG; REAL_POW_ONE; REAL_MUL_LID; REAL_ABS_NUM; REAL_LE_REFL]; ALL_TAC] THEN MATCH_MP_TAC SER_RATIO THEN SUBGOAL_THEN `?c. abs(x) < c /\ c < &1` STRIP_ASSUME_TAC THENL [EXISTS_TAC `(&1 + abs(x)) / &2` THEN SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN UNDISCH_TAC `abs(x) < &1` THEN REAL_ARITH_TAC; ALL_TAC] THEN EXISTS_TAC `c:real` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `?N. !n. n >= N ==> &(SUC(SUC n)) * abs(x) <= &(SUC n) * c` STRIP_ASSUME_TAC THENL [ALL_TAC; EXISTS_TAC `N:num` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[real_pow; REAL_ABS_MUL; REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN REWRITE_TAC[REAL_ABS_NUM; REAL_ABS_ABS] THEN GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN ASM_SIMP_TAC[]] THEN ASM_CASES_TAC `x = &0` THENL [ASM_REWRITE_TAC[REAL_ABS_NUM; REAL_MUL_RZERO] THEN EXISTS_TAC `0` THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN UNDISCH_TAC `abs(x) < c` THEN REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; GSYM REAL_ABS_NZ] THEN REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN REWRITE_TAC[GSYM real_div] THEN REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN ONCE_REWRITE_TAC[REAL_ARITH `x + &1 <= y <=> &1 <= y - x * &1`] THEN REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN SUBGOAL_THEN `?N. &1 <= &N * (c / abs x - &1)` STRIP_ASSUME_TAC THENL [ALL_TAC; EXISTS_TAC `N:num` THEN REWRITE_TAC[GE] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `&1 <= x ==> x <= y ==> &1 <= y`)) THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_SIMP_TAC[REAL_ARITH `a <= b ==> a <= b + &1`; REAL_OF_NUM_LE; REAL_LE_RADD] THEN REWRITE_TAC[REAL_LE_SUB_LADD; REAL_ADD_LID] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; GSYM REAL_ABS_NZ; REAL_MUL_LID; REAL_LT_IMP_LE]] THEN ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; REAL_LT_SUB_LADD; REAL_ADD_LID; REAL_LT_RDIV_EQ; GSYM REAL_ABS_NZ; REAL_MUL_LID; REAL_ARCH_SIMPLE]);; let REAL_ATN_POWSER_DIFFL = prove (`!x. abs(x) < &1 ==> ((\x. suminf (\n. (if EVEN n then &0 else --(&1) pow ((n - 1) DIV 2) / &n) * x pow n)) diffl (inv(&1 + x pow 2))) x`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REAL_ATN_POWSER_DIFFS_SUM) THEN DISCH_THEN(SUBST1_TAC o MATCH_MP SUM_UNIQ) THEN MATCH_MP_TAC TERMDIFF THEN SUBGOAL_THEN `?K. abs(x) < abs(K) /\ abs(K) < &1` STRIP_ASSUME_TAC THENL [EXISTS_TAC `(&1 + abs(x)) / &2` THEN SIMP_TAC[REAL_LT_LDIV_EQ; REAL_ABS_DIV; REAL_ABS_NUM; REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN UNDISCH_TAC `abs(x) < &1` THEN REAL_ARITH_TAC; ALL_TAC] THEN EXISTS_TAC `K:real` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[REAL_ATN_POWSER_SUMMABLE; REAL_ATN_POWSER_DIFFS_SUMMABLE; REAL_ATN_POWSER_DIFFS_DIFFS_SUMMABLE]);; let REAL_ATN_POWSER = prove (`!x. abs(x) < &1 ==> (\n. (if EVEN n then &0 else --(&1) pow ((n - 1) DIV 2) / &n) * x pow n) sums (atn x)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REAL_ATN_POWSER_SUMMABLE) THEN DISCH_THEN(MP_TAC o MATCH_MP SUMMABLE_SUM) THEN SUBGOAL_THEN `suminf (\n. (if EVEN n then &0 else --(&1) pow ((n - 1) DIV 2) / &n) * x pow n) = atn(x)` (fun th -> REWRITE_TAC[th]) THEN ONCE_REWRITE_TAC[REAL_ARITH `(a = b) <=> (a - b = &0)`] THEN SUBGOAL_THEN `suminf (\n. (if EVEN n then &0 else --(&1) pow ((n - 1) DIV 2) / &n) * &0 pow n) - atn(&0) = &0` MP_TAC THENL [MATCH_MP_TAC(REAL_ARITH `(a = &0) /\ (b = &0) ==> (a - b = &0)`) THEN CONJ_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_UNIQ THEN MP_TAC(SPEC `&0` GP) THEN REWRITE_TAC[REAL_ABS_NUM; REAL_OF_NUM_LT; ARITH] THEN DISCH_THEN(MP_TAC o SPEC `&0` o MATCH_MP SER_CMUL) THEN REWRITE_TAC[REAL_MUL_LZERO] THEN MATCH_MP_TAC(TAUT `(a = b) ==> a ==> b`) THEN AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_MUL_LZERO] THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0] THEN ASM_MESON_TAC[EVEN]; GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM TAN_0] THEN MATCH_MP_TAC TAN_ATN THEN SIMP_TAC[PI2_BOUNDS; REAL_ARITH `&0 < x ==> --x < &0`]]; ALL_TAC] THEN ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN MP_TAC(SPEC `\x. suminf (\n. (if EVEN n then &0 else --(&1) pow ((n - 1) DIV 2) / &n) * x pow n) - atn x` DIFF_ISCONST_END_SIMPLE) THEN FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH `~(x = &0) ==> &0 < x \/ x < &0`)) THENL [DISCH_THEN(MP_TAC o SPECL [`&0`; `x:real`]); CONV_TAC(RAND_CONV SYM_CONV) THEN DISCH_THEN(MP_TAC o SPECL [`x:real`; `&0`])] THEN (REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `u:real` THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `abs(u) < &1` (MP_TAC o MATCH_MP REAL_ATN_POWSER_DIFFL) THENL [POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(MP_TAC o C CONJ (SPEC `u:real` DIFF_ATN)) THEN DISCH_THEN(MP_TAC o MATCH_MP DIFF_SUB) THEN REWRITE_TAC[REAL_SUB_REFL]));; (* ------------------------------------------------------------------------- *) (* A more Taylor-like version with a simply bounded remainder term. *) (* ------------------------------------------------------------------------- *) let MCLAURIN_ATN_SIMPLE = prove (`!x n k. abs(x) <= inv(&2 pow k) /\ ~(k = 0) ==> abs(atn x - sum(0,n) (\m. (if EVEN m then &0 else --(&1) pow ((m - 1) DIV 2) / &m) * x pow m)) <= &2 * abs(x) pow n`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `abs(x) < &1` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `inv(&2 pow k)` THEN ASM_REWRITE_TAC[REAL_ARITH `a < &1 <=> &0 < &1 - a`; REAL_POW2_CLAUSES]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP REAL_ATN_POWSER) THEN DISCH_THEN(fun th -> ASSUME_TAC(SYM(MATCH_MP SUM_UNIQ th)) THEN MP_TAC(MATCH_MP SUM_SUMMABLE th)) THEN DISCH_THEN(MP_TAC o MATCH_MP SER_OFFSET) THEN DISCH_THEN(MP_TAC o SPEC `n:num`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP SUM_UNIQ) THEN MATCH_MP_TAC(REAL_ARITH `abs(r) <= e ==> (f - s = r) ==> abs(f - s) <= e`) THEN SUBGOAL_THEN `(\m. abs(x) pow (m + n)) sums (abs(x) pow n) * inv(&1 - abs(x))` ASSUME_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP GP o MATCH_MP (REAL_ARITH `abs(x) < &1 ==> abs(abs x) < &1`)) THEN DISCH_THEN(MP_TAC o SPEC `abs(x) pow n` o MATCH_MP SER_CMUL) THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[GSYM REAL_POW_ADD]; ALL_TAC] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `suminf (\m. abs(x) pow (m + n))` THEN CONJ_TAC THENL [ALL_TAC; FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP SUM_UNIQ) THEN GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN MATCH_MP_TAC REAL_LE_LMUL THEN SIMP_TAC[REAL_ABS_POS; REAL_POW_LE] THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_INV] THEN MATCH_MP_TAC REAL_LE_INV2 THEN ONCE_REWRITE_TAC[REAL_ARITH `a <= &1 - b <=> b <= &1 - a`] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&2 pow k)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[real_div; REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_INV2 THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_POW_1] THEN ASM_SIMP_TAC[REAL_POW_MONO; REAL_OF_NUM_LE; ARITH; ARITH_RULE `~(k = 0) ==> 1 <= k`]] THEN SUBGOAL_THEN `!m. abs((if EVEN (m + n) then &0 else --(&1) pow (((m + n) - 1) DIV 2) / &(m + n)) * x pow (m + n)) <= abs(x) pow (m + n)` ASSUME_TAC THENL [GEN_TAC THEN COND_CASES_TAC THEN SIMP_TAC[REAL_MUL_LZERO; REAL_ABS_NUM; REAL_POW_LE; REAL_ABS_POS] THEN REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_DIV; REAL_ABS_POW; REAL_ABS_NEG] THEN REWRITE_TAC[REAL_ABS_NUM; REAL_POW_ONE; REAL_MUL_LID] THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_RMUL THEN SIMP_TAC[REAL_POW_LE; REAL_ABS_POS] THEN REWRITE_TAC[real_div; REAL_MUL_LID] THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_1] THEN MATCH_MP_TAC REAL_LE_INV2 THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_OF_NUM_LE; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN ASM_MESON_TAC[EVEN]; ALL_TAC] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `suminf (\m. abs((if EVEN (m + n) then &0 else --(&1) pow (((m + n) - 1) DIV 2) / &(m + n)) * x pow (m + n)))` THEN CONJ_TAC THENL [MATCH_MP_TAC SER_ABS THEN MATCH_MP_TAC SER_COMPARA THEN EXISTS_TAC `\m. abs(x) pow (m + n)` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SUM_SUMMABLE]; ALL_TAC] THEN MATCH_MP_TAC SER_LE THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC SER_COMPARA THEN EXISTS_TAC `\m. abs(x) pow (m + n)` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[SUM_SUMMABLE]);; let MCLAURIN_ATN_APPROX = prove (`!x n k. abs(x) <= inv(&2 pow k) /\ ~(k = 0) ==> abs(atn x - sum(0,n) (\m. (if EVEN m then &0 else --(&1) pow ((m - 1) DIV 2) / &m) * x pow m)) <= inv(&2 pow (n * k - 1))`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[sum; REAL_SUB_RZERO; MULT_CLAUSES; SUB_0] THEN MP_TAC(SPECL [`x:real`; `2`; `k:num`] MCLAURIN_ATN_SIMPLE) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `abs(y) + d <= e ==> abs(x - y) <= d ==> abs(x) <= e`) THEN CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN REWRITE_TAC[real_pow; REAL_POW_1] THEN CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[real_div; REAL_MUL_LID; REAL_INV_1; REAL_ADD_LID] THEN SUBGOAL_THEN `abs(x) <= inv(&2)` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&2 pow k)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV2 THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_POW_1] THEN ASM_SIMP_TAC[REAL_POW_MONO; REAL_OF_NUM_LE; ARITH; ARITH_RULE `~(k = 0) ==> 1 <= k`]; ALL_TAC] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&2) + &2 * inv(&2) pow 2` THEN CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[REAL_POW_1] THEN MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_OF_NUM_LT; ARITH; REAL_POW_LE2; REAL_OF_NUM_LE; REAL_ABS_POS]; ALL_TAC] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 * abs(x) pow n` THEN CONJ_TAC THENL [MATCH_MP_TAC MCLAURIN_ATN_SIMPLE THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[REAL_POW_SUB; REAL_OF_NUM_EQ; ARITH_EQ; ARITH_RULE `1 <= x <=> ~(x = 0)`; MULT_EQ_0] THEN REWRITE_TAC[REAL_INV_DIV; REAL_POW_1] THEN REWRITE_TAC[real_div] THEN SIMP_TAC[REAL_LE_LMUL_EQ; REAL_OF_NUM_LT; ARITH] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM REAL_POW_POW] THEN ONCE_REWRITE_TAC[GSYM REAL_POW_INV] THEN MATCH_MP_TAC REAL_POW_LE2 THEN ASM_REWRITE_TAC[REAL_ABS_POS]);; (* ------------------------------------------------------------------------- *) (* Rules to return approximations to atn(x) good to 2^-p given |x| <= 2^-k. *) (* ------------------------------------------------------------------------- *) let mclaurin_atn_rule,MCLAURIN_ATN_RULE = let x_tm = `x:real` and n_tm = `n:num` and k_tm = `k:num` and inv_tm = `inv` and le_tm = `(<=):real->real->bool` and pow2_tm = `(pow) (&2)` in let pth = SPECL [x_tm; n_tm; k_tm] MCLAURIN_ATN_APPROX and CLEAN_RULE = REWRITE_RULE[real_pow] and MATCH_REAL_LE_TRANS = MATCH_MP REAL_LE_TRANS and num_0 = Int 0 and num_1 = Int 1 in let mclaurin_atn_rule k0 p0 = if k0 = 0 then failwith "mclaurin_atn_rule: must have |x| <= 1/2" else let k = Int k0 and p = Int p0 in let n = Num.int_of_num(ceiling_num ((p +/ k) // k)) in let ns = if n mod 2 = 0 then 0--(n - 1) else 0--(n - 2) in map (fun m -> if m mod 2 = 0 then num_0 else (if (m - 1) mod 4 = 0 then I else minus_num) (num_1 // Int m)) ns and MCLAURIN_ATN_RULE k0 p0 = if k0 = 0 then failwith "MCLAURIN_ATN_RULE: must have |x| <= 1/2" else let k = Int k0 and p = Int p0 in let n = ceiling_num ((p +/ k) // k) in let th1 = INST [mk_numeral k,k_tm; mk_numeral n,n_tm] pth in let th2 = ASSUME (lhand(lhand(concl th1))) and th3 = EQF_ELIM(NUM_REDUCE_CONV(rand(rand(lhand(concl th1))))) in let th4 = MP th1 (CONJ th2 th3) in let th5 = CONV_RULE(ONCE_DEPTH_CONV REAL_HORNER_SUM_CONV) th4 in let th6 = CLEAN_RULE th5 in let th7 = CONV_RULE (NUM_REDUCE_CONV THENC LAND_CONV REAL_RAT_REDUCE_CONV) (BETA_RULE th6) in let tm1 = mk_comb(inv_tm,mk_comb(pow2_tm,mk_numeral p)) in let tm2 = mk_comb(mk_comb(le_tm,rand(concl th7)),tm1) in let th8 = EQT_ELIM((NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV) tm2) in let th9 = MATCH_REAL_LE_TRANS (CONJ th7 th8) in GEN x_tm (DISCH_ALL th9) in mclaurin_atn_rule,MCLAURIN_ATN_RULE;; (* ------------------------------------------------------------------------- *) (* Lemmas for Machin-type formulas. *) (* ------------------------------------------------------------------------- *) let TAN_ADD_ATN_SIDECOND = prove (`!x y. ~(x * y = &1) ==> ~(cos(atn x + atn y) = &0)`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[COS_ADD; REAL_ARITH `(a - b = &0) <=> (a = b)`] THEN DISCH_THEN(MP_TAC o AP_TERM `(*) (inv(cos(atn x)))`) THEN SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_LINV; COS_ATN_NZ; REAL_MUL_LID] THEN DISCH_THEN(MP_TAC o AP_TERM `(*) (inv(cos(atn y)))`) THEN SIMP_TAC[REAL_MUL_LINV; COS_ATN_NZ; REAL_MUL_LID; GSYM REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c * d = (c * b) * (d * a)`] THEN ASM_REWRITE_TAC[GSYM tan; GSYM real_div; ATN_TAN]);; let ATN_ADD = prove (`!x y. ~(x * y = &1) /\ abs(atn x + atn y) < pi / &2 ==> (atn(x) + atn(y) = atn((x + y) / (&1 - x * y)))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `tan(atn(x) + atn(y)) = (x + y) / (&1 - x * y)` MP_TAC THENL [ASM_SIMP_TAC[ATN_TAN; TAN_ADD; COS_ATN_NZ; TAN_ADD_ATN_SIDECOND]; DISCH_THEN(SUBST1_TAC o SYM) THEN CONV_TAC SYM_CONV THEN ASM_SIMP_TAC[TAN_ATN; REAL_ARITH `abs(x) < e ==> --e < x /\ x < e`]]);; let ATN_ADD_SMALL_LEMMA_POS = prove (`!x y. &0 < y /\ x * y < &1 ==> atn(x) + atn(y) < pi / &2`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_LT_SUB_LADD] THEN SUBGOAL_THEN `pi / &2 - atn y = atn(tan(pi / &2 - atn y))` SUBST1_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC TAN_ATN THEN MATCH_MP_TAC(REAL_ARITH `&0 < x /\ x < a ==> --a < a - x /\ a - x < a`) THEN REWRITE_TAC[ATN_BOUNDS] THEN GEN_REWRITE_TAC LAND_CONV [GSYM ATN_0] THEN ASM_SIMP_TAC[ATN_MONO_LT]; MATCH_MP_TAC ATN_MONO_LT THEN REWRITE_TAC[TAN_COT; ATN_TAN] THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN ASM_SIMP_TAC[GSYM real_div; REAL_LT_RDIV_EQ; REAL_LT_IMP_NZ]]);; let ATN_ADD_SMALL_LEMMA = prove (`!x y. abs(x * y) < &1 ==> abs(atn(x) + atn(y)) < pi / &2`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH `--a < x /\ x < a /\ --a < y /\ y < a /\ (&0 < y ==> x + y < a) /\ (&0 < --y ==> --x + --y < a) ==> abs(x + y) < a`) THEN REWRITE_TAC[ATN_BOUNDS] THEN CONJ_TAC THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM ATN_NEG] THEN MATCH_MP_TAC ATN_ADD_SMALL_LEMMA_POS THEN ASM_SIMP_TAC[REAL_ARITH `abs(x) < &1 ==> x < &1`; REAL_ARITH `--x * -- y = x * y`] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `&0 < y ==> (z <= &0 ==> y <= &0) ==> &0 < z`)) THEN MATCH_MP_TAC(REAL_ARITH `(y < &0 ==> z < &0) /\ ((y = &0) ==> (z = &0)) ==> y <= &0 ==> z <= &0`) THEN SIMP_TAC[ATN_0; GSYM ATN_NEG] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM ATN_0] THEN SIMP_TAC[ATN_MONO_LT]);; let ATN_ADD_SMALL = prove (`!x y. abs(x * y) < &1 ==> (atn(x) + atn(y) = atn((x + y) / (&1 - x * y)))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC ATN_ADD THEN ASM_SIMP_TAC[ATN_ADD_SMALL_LEMMA] THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);; let ATN_ADD_CONV = let match_fn = PART_MATCH (lhand o rand) ATN_ADD_SMALL in let overall_fn = C MP TRUTH o CONV_RULE (COMB2_CONV REAL_RAT_REDUCE_CONV (RAND_CONV REAL_RAT_REDUCE_CONV)) o match_fn in fun tm -> if is_ratconst(rand(rand tm)) & is_ratconst(rand(lhand tm)) then overall_fn tm else failwith "ATN_ADD_CONV: Atn of nonconstant";; let ATN_CMUL_CONV = let pth_base = prove (`(&0 * atn(x) = &0) /\ (&1 * atn(x) = atn(x))`, REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID]) and pth_0,pth_1 = (CONJ_PAIR o prove) (`(&(NUMERAL(BIT0 n)) * atn(x) = &(NUMERAL n) * atn(x) + &(NUMERAL n) * atn(x)) /\ (&(NUMERAL(BIT1 n)) * atn(x) = atn(x) + &(NUMERAL n) * atn(x) + &(NUMERAL n) * atn(x))`, REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID] THEN REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_SUC] THEN REAL_ARITH_TAC) in let rewr_base = GEN_REWRITE_CONV I [pth_base] and rewr_0 = GEN_REWRITE_CONV I [pth_0] and rewr_1 = GEN_REWRITE_CONV I [pth_1] in let rec ATN_CMUL_CONV tm = if not (is_ratconst(rand(rand tm))) then failwith "ATN_CMUL_CONV" else try rewr_base tm with Failure _ -> try let th1 = rewr_0 tm in let tm1 = rand(concl th1) in let th2 = ATN_CMUL_CONV(rand tm1) in let th3 = MK_COMB(AP_TERM (rator(rator tm1)) th2,th2) in let th4 = TRANS th3 (ATN_ADD_CONV(rand(concl th3))) in TRANS th1 th4 with Failure _ -> let th1 = rewr_1 tm in let tm1 = rand(rand(concl th1)) in let th2 = ATN_CMUL_CONV(rand tm1) in let th3 = MK_COMB(AP_TERM (rator(rator tm1)) th2,th2) in let th4 = TRANS th3 (ATN_ADD_CONV(rand(concl th3))) in let th5 = AP_TERM (rator(rand(concl th1))) th4 in let th6 = TRANS th5 (ATN_ADD_CONV(rand(concl th5))) in TRANS th1 th6 in ATN_CMUL_CONV;; let ATN_SUB_CONV = let pth = prove (`(atn(x) - atn(y) = atn(x) + atn(--y))`, REWRITE_TAC[real_sub; ATN_NEG]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV(RAND_CONV REAL_RAT_NEG_CONV) THENC ATN_ADD_CONV;; let MACHIN_CONV = DEPTH_CONV(ATN_ADD_CONV ORELSEC ATN_SUB_CONV ORELSEC ATN_CMUL_CONV);; let MACHIN_RULE tm = SYM(TRANS (MACHIN_CONV tm) ATN_1);; let MACHIN_1 = time MACHIN_RULE `&4 * atn(&1 / &5) - atn(&1 / &239)`;; let MACHIN_2 = time MACHIN_RULE `atn(&1 / &2) + atn(&1 / &3)`;; let MACHIN_3 = time MACHIN_RULE `&2 * atn(&1 / &2) - atn(&1 / &7)`;; let MACHIN_4 = time MACHIN_RULE `&2 * atn(&1 / &3) + atn(&1 / &7)`;; let EULER = time MACHIN_RULE `&5 * atn(&1 / &7) + &2 * atn (&3 / &79)`;; let GAUSS_MACHIN = time MACHIN_RULE `&12 * atn(&1 / &18) + &8 * atn (&1 / &57) - &5 * atn(&1 / &239)`;; let STRASSNITZKY_MACHIN = time MACHIN_RULE `atn(&1 / &2) + atn (&1 / &5) + atn(&1 / &8)`;; let MACHINLIKE_1 = time MACHIN_RULE `&6 * atn(&1 / &8) + &2 * atn(&1 / &57) + atn(&1 / &239)`;; let MACHINLIKE_2 = time MACHIN_RULE `&4 * atn(&1 / &5) - &1 * atn(&1 / &70) + atn(&1 / &99)`;; let MACHINLIKE_3 = time MACHIN_RULE `&1 * atn(&1 / &2) + &1 * atn(&1 / &5) + atn(&1 / &8)`;; let MACHINLIKE_4 = time MACHIN_RULE `&8 * atn(&1 / &10) - &1 * atn(&1 / &239) - &4 * atn(&1 / &515)`;; let MACHINLIKE_5 = time MACHIN_RULE `&5 * atn(&1 / &7) + &4 * atn(&1 / &53) + &2 * atn(&1 / &4443)`;; (***** Hopefully this one would work, but it takes a long time let HWANG_MACHIN = time MACHIN_RULE `&183 * atn(&1 / &239) + &32 * atn(&1 / &1023) - &68 * atn(&1 / &5832) + &12 * atn(&1 / &110443) - &12 * atn(&1 / &4841182) - &100 * atn(&1 / &6826318)`;; *****) (* ------------------------------------------------------------------------- *) (* Approximate the arctan of a rational number. *) (* ------------------------------------------------------------------------- *) let rec POLY l x = if l = [] then num_0 else hd l +/ (x */ POLY (tl l) x);; let atn_approx_conv,ATN_APPROX_CONV = let atn_tm = `atn` and num_0 = Int 0 and num_1 = Int 1 and num_2 = Int 2 in let rec log_2 x = if x <=/ num_1 then log_2 (num_2 */ x) -/ num_1 else if x >/ num_2 then log_2 (x // num_2) +/ num_1 else num_1 in let pth = prove (`!p. abs(atn(&0) - &0) <= inv(&2 pow p)`, SIMP_TAC[ATN_0; REAL_SUB_REFL; REAL_ABS_NUM; REAL_LE_INV_EQ; REAL_POW_LE; REAL_POS]) in let atn_approx_conv p r = if r =/ num_0 then num_0 else let k = Num.int_of_num(minus_num(log_2(abs_num r))) in if k < 1 then failwith "atn_approx_conv: argument too big" else let rats = mclaurin_atn_rule k p in POLY rats r and ATN_APPROX_CONV p tm = let atm,rtm = dest_comb tm in if atm <> atn_tm then failwith "ATN_APPROX_CONV" else let r = rat_of_term rtm in if r =/ num_0 then SPEC (mk_small_numeral p) pth else let k = Num.int_of_num(minus_num(log_2(abs_num r))) in if k < 1 then failwith "ATN_APPROX_CONV: argument too big" else let th1 = MCLAURIN_ATN_RULE k p in let th2 = SPEC rtm th1 in let th3 = MP th2 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th2)))) in CONV_RULE(LAND_CONV(RAND_CONV(RAND_CONV REAL_RAT_REDUCE_CONV))) th3 in atn_approx_conv,ATN_APPROX_CONV;; (* ------------------------------------------------------------------------- *) (* Approximate pi using this and a Machin-type formula. *) (* ------------------------------------------------------------------------- *) let pi_approx_rule,PI_APPROX_RULE = let const_1_8 = Int 1 // Int 8 and const_1_57 = Int 1 // Int 57 and const_1_239 = Int 1 // Int 239 and const_24 = Int 24 and const_8 = Int 8 and const_4 = Int 4 and tm_1_8 = `atn(&1 / &8)` and tm_1_57 = `atn(&1 / &57)` and tm_1_239 = `atn(&1 / &239)` and q1_tm = `q1:num` and q2_tm = `q2:num` and p_tm = `p:num` in let pth = prove (`(q1 = p + 5) /\ (q2 = p + 6) /\ abs(atn(&1 / &8) - a1) <= inv(&2 pow q1) /\ abs(atn(&1 / &57) - a2) <= inv(&2 pow q2) /\ abs(atn(&1 / &239) - a3) <= inv(&2 pow q2) ==> abs(pi - (&24 * a1 + &8 * a2 + &4 * a3)) <= inv(&2 pow p)`, DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN POP_ASSUM_LIST(K ALL_TAC) THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `abs(inv(&2 pow 2))` THEN SIMP_TAC[REAL_POW2_CLAUSES; REAL_ARITH `&0 < x ==> &0 < abs(x)`] THEN REWRITE_TAC[GSYM REAL_ABS_MUL] THEN REWRITE_TAC[REAL_ABS_INV; REAL_ABS_POW; REAL_ABS_NUM] THEN REWRITE_TAC[GSYM REAL_INV_MUL; GSYM REAL_POW_ADD] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_SUB_LDISTRIB; REAL_ADD_LDISTRIB; REAL_MUL_ASSOC] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[real_div; REAL_MUL_LID] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div; MACHINLIKE_1] THEN REWRITE_TAC[REAL_ARITH `(x1 + x2 + x3) - (y1 + y2 + y3) = (x1 - y1) + (x2 - y2) + (x3 - y3)`] THEN REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN BOUND_SUMPROD_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [ADD_SYM] THEN REWRITE_TAC[REAL_POW_ADD; REAL_INV_MUL; REAL_MUL_ASSOC] THEN SIMP_TAC[GSYM REAL_ADD_RDISTRIB; REAL_LE_RMUL_EQ; REAL_POW2_CLAUSES] THEN CONV_TAC REAL_RAT_REDUCE_CONV) in let pi_approx_rule p = let q1 = p + 5 and q2 = p + 6 in let a1 = atn_approx_conv q1 const_1_8 and a2 = atn_approx_conv q2 const_1_57 and a3 = atn_approx_conv q2 const_1_239 in const_24 */ a1 +/ const_8 */ a2 +/ const_4 */ a3 and PI_APPROX_RULE p = let q1 = p + 5 and q2 = p + 6 in let th1 = ATN_APPROX_CONV q1 tm_1_8 and th2 = ATN_APPROX_CONV q2 tm_1_57 and th3 = ATN_APPROX_CONV q2 tm_1_239 in let th4 = INST [mk_small_numeral p,p_tm; mk_small_numeral q1,q1_tm; mk_small_numeral q2,q2_tm] pth in let th5 = EQT_ELIM(NUM_REDUCE_CONV(lhand(lhand(concl th4)))) and th6 = EQT_ELIM(NUM_REDUCE_CONV(lhand(rand(lhand(concl th4))))) in let th7 = MATCH_MP th4 (end_itlist CONJ [th5; th6; th1; th2; th3]) in CONV_RULE(LAND_CONV(RAND_CONV(RAND_CONV REAL_RAT_REDUCE_CONV))) th7 in pi_approx_rule,PI_APPROX_RULE;; (* ------------------------------------------------------------------------- *) (* A version that yields a fraction with power of two denominator. *) (* ------------------------------------------------------------------------- *) let pi_approx_binary_rule,PI_APPROX_BINARY_RULE = let pth = prove (`abs(x - r) <= inv(&2 pow (SUC p)) ==> !a. abs(&2 pow p * r - a) <= inv(&2) ==> abs(x - a / &2 pow p) <= inv(&2 pow p)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `abs(x - r) <= q ==> abs(r - r') <= p - q ==> abs(x - r') <= p`)) THEN MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `abs(&2 pow p)` THEN SIMP_TAC[REAL_ARITH `&0 < x ==> &0 < abs(x)`; REAL_POW2_THM] THEN REWRITE_TAC[GSYM REAL_ABS_MUL; REAL_SUB_LDISTRIB] THEN SIMP_TAC[REAL_ABS_POW; REAL_ABS_NUM; GSYM real_div; REAL_DIV_LMUL; REAL_LT_IMP_NZ; REAL_POW2_CLAUSES; REAL_DIV_POW2; REAL_OF_NUM_EQ; ARITH_EQ; LE_REFL; ARITH_RULE `~(SUC p <= p)`; ARITH_RULE `SUC p - p = 1`; SUB_REFL] THEN UNDISCH_TAC `abs (&2 pow p * r - a) <= inv (&2)` THEN CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RAT_REDUCE_CONV) and num_2 = Int 2 in let pi_approx_binary_rule p = let ppow = power_num num_2 (Int p) in let r = pi_approx_rule (p + 1) in let a = round_num (ppow */ r) in a // ppow and PI_APPROX_BINARY_RULE p = let ppow = power_num num_2 (Int p) in let th1 = PI_APPROX_RULE (p + 1) in let th2 = CONV_RULE(funpow 3 RAND_CONV num_CONV) th1 in let r = rat_of_term(rand(rand(lhand(concl th2)))) in let th3 = SPEC (mk_realintconst(round_num(ppow */ r))) (MATCH_MP pth th2) in let th4 = MP th3 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th3)))) in CONV_RULE(LAND_CONV(RAND_CONV(RAND_CONV REAL_RAT_REDUCE_CONV))) th4 in pi_approx_binary_rule,PI_APPROX_BINARY_RULE;; (* ------------------------------------------------------------------------- *) (* Rule to expand atn(r) for rational r into more easily calculable bits. *) (* ------------------------------------------------------------------------- *) let ATN_EXPAND_CONV = let num_0 = Int 0 and num_1 = Int 1 and num_2 = Int 2 and eighth = Int 1 // Int 8 and atn_tm = `atn` and eighth_tm = `&1 / &8` and mk_mul = mk_binop `(*)` and mk_add = mk_binop `(+)` and amp_tm = `&` in let home_in = let rec homein n x = let x' = (x -/ eighth) // (num_1 +/ x */ eighth) in if x' let ltm,rtm = dest_comb tm in if ltm <> atn_tm then failwith "ATN_EXPAND_CONV" else let r = rat_of_term rtm in let (x,n) = home_in r in let xtm = mk_add (mk_mul (mk_comb(amp_tm,mk_small_numeral n)) (mk_comb(atn_tm,eighth_tm))) (mk_comb(atn_tm,term_of_rat x)) in SYM(MACHIN_CONV xtm);;