(* ========================================================================= *) (* Properties of real polynomials (not canonically represented). *) (* ========================================================================= *) needs "Library/analysis.ml";; prioritize_real();; parse_as_infix("++",(16,"right"));; parse_as_infix("**",(20,"right"));; parse_as_infix("##",(20,"right"));; parse_as_infix("divides",(14,"right"));; parse_as_infix("exp",(22,"right"));; do_list override_interface ["++",`poly_add:real list->real list->real list`; "**",`poly_mul:real list->real list->real list`; "##",`poly_cmul:real->real list->real list`; "neg",`poly_neg:real list->real list`; "exp",`poly_exp:real list -> num -> real list`; "diff",`poly_diff:real list->real list`];; overload_interface ("divides",`poly_divides:real list->real list->bool`);; (* ------------------------------------------------------------------------- *) (* Application of polynomial as a real function. *) (* ------------------------------------------------------------------------- *) let poly = new_recursive_definition list_RECURSION `(poly [] x = &0) /\ (poly (CONS h t) x = h + x * poly t x)`;; let POLY_CONST = prove (`!c x. poly [c] x = c`, REWRITE_TAC[poly] THEN REAL_ARITH_TAC);; let POLY_X = prove (`!c x. poly [&0; &1] x = x`, REWRITE_TAC[poly] THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Arithmetic operations on polynomials. *) (* ------------------------------------------------------------------------- *) let poly_add = new_recursive_definition list_RECURSION `([] ++ l2 = l2) /\ ((CONS h t) ++ l2 = (if l2 = [] then CONS h t else CONS (h + HD l2) (t ++ TL l2)))`;; let poly_cmul = new_recursive_definition list_RECURSION `(c ## [] = []) /\ (c ## (CONS h t) = CONS (c * h) (c ## t))`;; let poly_neg = new_definition `neg = (##) (--(&1))`;; let poly_mul = new_recursive_definition list_RECURSION `([] ** l2 = []) /\ ((CONS h t) ** l2 = (if t = [] then h ## l2 else (h ## l2) ++ CONS (&0) (t ** l2)))`;; let poly_exp = new_recursive_definition num_RECURSION `(p exp 0 = [&1]) /\ (p exp (SUC n) = p ** p exp n)`;; (* ------------------------------------------------------------------------- *) (* Differentiation of polynomials (needs an auxiliary function). *) (* ------------------------------------------------------------------------- *) let poly_diff_aux = new_recursive_definition list_RECURSION `(poly_diff_aux n [] = []) /\ (poly_diff_aux n (CONS h t) = CONS (&n * h) (poly_diff_aux (SUC n) t))`;; let poly_diff = new_definition `diff l = (if l = [] then [] else (poly_diff_aux 1 (TL l)))`;; (* ------------------------------------------------------------------------- *) (* Lengths. *) (* ------------------------------------------------------------------------- *) let LENGTH_POLY_DIFF_AUX = prove (`!l n. LENGTH(poly_diff_aux n l) = LENGTH l`, LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LENGTH; poly_diff_aux]);; let LENGTH_POLY_DIFF = prove (`!l. LENGTH(poly_diff l) = PRE(LENGTH l)`, LIST_INDUCT_TAC THEN SIMP_TAC[poly_diff; LENGTH; LENGTH_POLY_DIFF_AUX; NOT_CONS_NIL; TL; PRE]);; (* ------------------------------------------------------------------------- *) (* Useful clausifications. *) (* ------------------------------------------------------------------------- *) let POLY_ADD_CLAUSES = prove (`([] ++ p2 = p2) /\ (p1 ++ [] = p1) /\ ((CONS h1 t1) ++ (CONS h2 t2) = CONS (h1 + h2) (t1 ++ t2))`, REWRITE_TAC[poly_add; NOT_CONS_NIL; HD; TL] THEN SPEC_TAC(`p1:real list`,`p1:real list`) THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly_add]);; let POLY_CMUL_CLAUSES = prove (`(c ## [] = []) /\ (c ## (CONS h t) = CONS (c * h) (c ## t))`, REWRITE_TAC[poly_cmul]);; let POLY_NEG_CLAUSES = prove (`(neg [] = []) /\ (neg (CONS h t) = CONS (--h) (neg t))`, REWRITE_TAC[poly_neg; POLY_CMUL_CLAUSES; REAL_MUL_LNEG; REAL_MUL_LID]);; let POLY_MUL_CLAUSES = prove (`([] ** p2 = []) /\ ([h1] ** p2 = h1 ## p2) /\ ((CONS h1 (CONS k1 t1)) ** p2 = h1 ## p2 ++ CONS (&0) (CONS k1 t1 ** p2))`, REWRITE_TAC[poly_mul; NOT_CONS_NIL]);; let POLY_DIFF_CLAUSES = prove (`(diff [] = []) /\ (diff [c] = []) /\ (diff (CONS h t) = poly_diff_aux 1 t)`, REWRITE_TAC[poly_diff; NOT_CONS_NIL; HD; TL; poly_diff_aux]);; (* ------------------------------------------------------------------------- *) (* Various natural consequences of syntactic definitions. *) (* ------------------------------------------------------------------------- *) let POLY_ADD = prove (`!p1 p2 x. poly (p1 ++ p2) x = poly p1 x + poly p2 x`, LIST_INDUCT_TAC THEN REWRITE_TAC[poly_add; poly; REAL_ADD_LID] THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[NOT_CONS_NIL; HD; TL; poly; REAL_ADD_RID] THEN REAL_ARITH_TAC);; let POLY_CMUL = prove (`!p c x. poly (c ## p) x = c * poly p x`, LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly; poly_cmul] THEN REAL_ARITH_TAC);; let POLY_NEG = prove (`!p x. poly (neg p) x = --(poly p x)`, REWRITE_TAC[poly_neg; POLY_CMUL] THEN REAL_ARITH_TAC);; let POLY_MUL = prove (`!x p1 p2. poly (p1 ** p2) x = poly p1 x * poly p2 x`, GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[poly_mul; poly; REAL_MUL_LZERO; POLY_CMUL; POLY_ADD] THEN SPEC_TAC(`h:real`,`h:real`) THEN SPEC_TAC(`t:real list`,`t:real list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[poly_mul; POLY_CMUL; POLY_ADD; poly; POLY_CMUL; REAL_MUL_RZERO; REAL_ADD_RID; NOT_CONS_NIL] THEN ASM_REWRITE_TAC[POLY_ADD; POLY_CMUL; poly] THEN REAL_ARITH_TAC);; let POLY_EXP = prove (`!p n x. poly (p exp n) x = (poly p x) pow n`, GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[poly_exp; real_pow; POLY_MUL] THEN REWRITE_TAC[poly] THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* The derivative is a bit more complicated. *) (* ------------------------------------------------------------------------- *) let POLY_DIFF_LEMMA = prove (`!l n x. ((\x. (x pow (SUC n)) * poly l x) diffl ((x pow n) * poly (poly_diff_aux (SUC n) l) x))(x)`, LIST_INDUCT_TAC THEN REWRITE_TAC[poly; poly_diff_aux; REAL_MUL_RZERO; DIFF_CONST] THEN MAP_EVERY X_GEN_TAC [`n:num`; `x:real`] THEN REWRITE_TAC[REAL_LDISTRIB; REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[REAL_MUL_SYM] (CONJUNCT2 pow))] THEN POP_ASSUM(MP_TAC o SPECL [`SUC n`; `x:real`]) THEN SUBGOAL_THEN `(((\x. (x pow (SUC n)) * h)) diffl ((x pow n) * &(SUC n) * h))(x)` (fun th -> DISCH_THEN(MP_TAC o CONJ th)) THENL [REWRITE_TAC[REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MP_TAC(SPEC `\x. x pow (SUC n)` DIFF_CMUL) THEN BETA_TAC THEN DISCH_THEN MATCH_MP_TAC THEN MP_TAC(SPEC `SUC n` DIFF_POW) THEN REWRITE_TAC[SUC_SUB1] THEN DISCH_THEN(MATCH_ACCEPT_TAC o ONCE_REWRITE_RULE[REAL_MUL_SYM]); DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA_TAC THEN REWRITE_TAC[REAL_MUL_ASSOC]]);; let POLY_DIFF = prove (`!l x. ((\x. poly l x) diffl (poly (diff l) x))(x)`, LIST_INDUCT_TAC THEN REWRITE_TAC[POLY_DIFF_CLAUSES] THEN ONCE_REWRITE_TAC[SYM(ETA_CONV `\x. poly l x`)] THEN REWRITE_TAC[poly; DIFF_CONST] THEN MAP_EVERY X_GEN_TAC [`x:real`] THEN MP_TAC(SPECL [`t:(real)list`; `0`; `x:real`] POLY_DIFF_LEMMA) THEN REWRITE_TAC[SYM(num_CONV `1`)] THEN REWRITE_TAC[pow; REAL_MUL_LID] THEN REWRITE_TAC[POW_1] THEN DISCH_THEN(MP_TAC o CONJ (SPECL [`h:real`; `x:real`] DIFF_CONST)) THEN DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA_TAC THEN REWRITE_TAC[REAL_ADD_LID]);; (* ------------------------------------------------------------------------- *) (* Trivial consequences. *) (* ------------------------------------------------------------------------- *) let POLY_DIFFERENTIABLE = prove (`!l x. (\x. poly l x) differentiable x`, REPEAT GEN_TAC THEN REWRITE_TAC[differentiable] THEN EXISTS_TAC `poly (diff l) x` THEN REWRITE_TAC[POLY_DIFF]);; let POLY_CONT = prove (`!l x. (\x. poly l x) contl x`, REPEAT GEN_TAC THEN MATCH_MP_TAC DIFF_CONT THEN EXISTS_TAC `poly (diff l) x` THEN MATCH_ACCEPT_TAC POLY_DIFF);; let POLY_IVT_POS = prove (`!p a b. a < b /\ poly p a < &0 /\ poly p b > &0 ==> ?x. a < x /\ x < b /\ (poly p x = &0)`, REWRITE_TAC[real_gt] THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`\x. poly p x`; `a:real`; `b:real`; `&0`] IVT) THEN REWRITE_TAC[POLY_CONT] THEN EVERY_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_LT_IMP_LE th]) THEN DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[REAL_LT_LE] THEN CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN FIRST_ASSUM SUBST_ALL_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[REAL_LT_REFL]) THEN FIRST_ASSUM CONTR_TAC);; let POLY_IVT_NEG = prove (`!p a b. a < b /\ poly p a > &0 /\ poly p b < &0 ==> ?x. a < x /\ x < b /\ (poly p x = &0)`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `poly_neg p` POLY_IVT_POS) THEN REWRITE_TAC[POLY_NEG; REAL_ARITH `(--x < &0 <=> x > &0) /\ (--x > &0 <=> x < &0)`] THEN DISCH_THEN(MP_TAC o SPECL [`a:real`; `b:real`]) THEN ASM_REWRITE_TAC[REAL_ARITH `(--x = &0) <=> (x = &0)`]);; let POLY_MVT = prove (`!p a b. a < b ==> ?x. a < x /\ x < b /\ (poly p b - poly p a = (b - a) * poly (diff p) x)`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`poly p`; `a:real`; `b:real`] MVT) THEN ASM_REWRITE_TAC[CONV_RULE(DEPTH_CONV ETA_CONV) (SPEC_ALL POLY_CONT); CONV_RULE(DEPTH_CONV ETA_CONV) (SPEC_ALL POLY_DIFFERENTIABLE)] THEN DISCH_THEN(X_CHOOSE_THEN `l:real` MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN MATCH_MP_TAC DIFF_UNIQ THEN EXISTS_TAC `poly p` THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[CONV_RULE(DEPTH_CONV ETA_CONV) (SPEC_ALL POLY_DIFF)]);; let POLY_MVT_ADD = prove (`!p a x. ?y. abs(y) <= abs(x) /\ (poly p (a + x) = poly p a + x * poly (diff p) (a + y))`, REPEAT GEN_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC `x:real` REAL_LT_NEGTOTAL) THENL [EXISTS_TAC `&0` THEN ASM_REWRITE_TAC[REAL_LE_REFL; REAL_ADD_RID; REAL_MUL_LZERO]; MP_TAC(SPECL [`p:real list`; `a:real`; `a + x`] POLY_MVT) THEN ASM_REWRITE_TAC[REAL_LT_ADDR] THEN DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN REWRITE_TAC[REAL_ARITH `(x - y = ((a + b) - a) * z) <=> (x = y + b * z)`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[REAL_EQ_ADD_LCANCEL] THEN EXISTS_TAC `z - a` THEN REWRITE_TAC[REAL_ARITH `x + (y - x) = y`] THEN MAP_EVERY UNDISCH_TAC [`&0 < x`; `a < z`; `z < a + x`] THEN REAL_ARITH_TAC; MP_TAC(SPECL [`p:real list`; `a + x`; `a:real`] POLY_MVT) THEN ASM_REWRITE_TAC[REAL_ARITH `a + x < a <=> &0 < --x`] THEN DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN REWRITE_TAC[REAL_ARITH `(x - y = (a - (a + b)) * z) <=> (x = y + b * --z)`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[REAL_EQ_ADD_LCANCEL] THEN EXISTS_TAC `z - a` THEN REWRITE_TAC[REAL_ARITH `x + (y - x) = y`] THEN MAP_EVERY UNDISCH_TAC [`&0 < --x`; `a + x < z`; `z < a`] THEN REAL_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Lemmas. *) (* ------------------------------------------------------------------------- *) let POLY_ADD_RZERO = prove (`!p. poly (p ++ []) = poly p`, REWRITE_TAC[FUN_EQ_THM; POLY_ADD; poly; REAL_ADD_RID]);; let POLY_MUL_ASSOC = prove (`!p q r. poly (p ** (q ** r)) = poly ((p ** q) ** r)`, REWRITE_TAC[FUN_EQ_THM; POLY_MUL; REAL_MUL_ASSOC]);; let POLY_EXP_ADD = prove (`!d n p. poly(p exp (n + d)) = poly(p exp n ** p exp d)`, REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN INDUCT_TAC THEN ASM_REWRITE_TAC[POLY_MUL; ADD_CLAUSES; poly_exp; poly] THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Lemmas for derivatives. *) (* ------------------------------------------------------------------------- *) let POLY_DIFF_AUX_ADD = prove (`!p1 p2 n. poly (poly_diff_aux n (p1 ++ p2)) = poly (poly_diff_aux n p1 ++ poly_diff_aux n p2)`, REPEAT(LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff_aux; poly_add]) THEN ASM_REWRITE_TAC[poly_diff_aux; FUN_EQ_THM; poly; NOT_CONS_NIL; HD; TL] THEN REAL_ARITH_TAC);; let POLY_DIFF_AUX_CMUL = prove (`!p c n. poly (poly_diff_aux n (c ## p)) = poly (c ## poly_diff_aux n p)`, LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[FUN_EQ_THM; poly; poly_diff_aux; poly_cmul; REAL_MUL_AC]);; let POLY_DIFF_AUX_NEG = prove (`!p n. poly (poly_diff_aux n (neg p)) = poly (neg (poly_diff_aux n p))`, REWRITE_TAC[poly_neg; POLY_DIFF_AUX_CMUL]);; let POLY_DIFF_AUX_MUL_LEMMA = prove (`!p n. poly (poly_diff_aux (SUC n) p) = poly (poly_diff_aux n p ++ p)`, LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff_aux; poly_add; NOT_CONS_NIL] THEN ASM_REWRITE_TAC[HD; TL; poly; FUN_EQ_THM] THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_ADD_RDISTRIB; REAL_MUL_LID]);; (* ------------------------------------------------------------------------- *) (* Final results for derivatives. *) (* ------------------------------------------------------------------------- *) let POLY_DIFF_ADD = prove (`!p1 p2. poly (diff (p1 ++ p2)) = poly (diff p1 ++ diff p2)`, REPEAT LIST_INDUCT_TAC THEN REWRITE_TAC[poly_add; poly_diff; NOT_CONS_NIL; POLY_ADD_RZERO] THEN ASM_REWRITE_TAC[HD; TL; POLY_DIFF_AUX_ADD]);; let POLY_DIFF_CMUL = prove (`!p c. poly (diff (c ## p)) = poly (c ## diff p)`, LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff; poly_cmul] THEN REWRITE_TAC[NOT_CONS_NIL; HD; TL; POLY_DIFF_AUX_CMUL]);; let POLY_DIFF_NEG = prove (`!p. poly (diff (neg p)) = poly (neg (diff p))`, REWRITE_TAC[poly_neg; POLY_DIFF_CMUL]);; let POLY_DIFF_MUL_LEMMA = prove (`!t h. poly (diff (CONS h t)) = poly (CONS (&0) (diff t) ++ t)`, REWRITE_TAC[poly_diff; NOT_CONS_NIL] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff_aux; NOT_CONS_NIL; HD; TL] THENL [REWRITE_TAC[FUN_EQ_THM; poly; poly_add; REAL_MUL_RZERO; REAL_ADD_LID]; REWRITE_TAC[FUN_EQ_THM; poly; POLY_DIFF_AUX_MUL_LEMMA; POLY_ADD] THEN REAL_ARITH_TAC]);; let POLY_DIFF_MUL = prove (`!p1 p2. poly (diff (p1 ** p2)) = poly (p1 ** diff p2 ++ diff p1 ** p2)`, LIST_INDUCT_TAC THEN REWRITE_TAC[poly_mul] THENL [REWRITE_TAC[poly_diff; poly_add; poly_mul]; ALL_TAC] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [REWRITE_TAC[POLY_DIFF_CLAUSES] THEN REWRITE_TAC[poly_add; poly_mul; POLY_ADD_RZERO; POLY_DIFF_CMUL]; ALL_TAC] THEN REWRITE_TAC[FUN_EQ_THM; POLY_DIFF_ADD; POLY_ADD] THEN REWRITE_TAC[poly; POLY_ADD; POLY_DIFF_MUL_LEMMA; POLY_MUL] THEN ASM_REWRITE_TAC[POLY_DIFF_CMUL; POLY_ADD; POLY_MUL] THEN REAL_ARITH_TAC);; let POLY_DIFF_EXP = prove (`!p n. poly (diff (p exp (SUC n))) = poly ((&(SUC n) ## (p exp n)) ** diff p)`, GEN_TAC THEN INDUCT_TAC THEN ONCE_REWRITE_TAC[poly_exp] THENL [REWRITE_TAC[poly_exp; POLY_DIFF_MUL] THEN REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_ADD; POLY_CMUL] THEN REWRITE_TAC[poly; POLY_DIFF_CLAUSES; ADD1; ADD_CLAUSES] THEN REAL_ARITH_TAC; REWRITE_TAC[POLY_DIFF_MUL] THEN ASM_REWRITE_TAC[POLY_MUL; POLY_ADD; FUN_EQ_THM; POLY_CMUL] THEN REWRITE_TAC[poly_exp; POLY_MUL] THEN REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC]);; let POLY_DIFF_EXP_PRIME = prove (`!n a. poly (diff ([--a; &1] exp (SUC n))) = poly (&(SUC n) ## ([--a; &1] exp n))`, REPEAT GEN_TAC THEN REWRITE_TAC[POLY_DIFF_EXP] THEN REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN REWRITE_TAC[poly_diff; poly_diff_aux; TL; NOT_CONS_NIL] THEN REWRITE_TAC[poly] THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Key property that f(a) = 0 ==> (x - a) divides p(x). Very delicate! *) (* ------------------------------------------------------------------------- *) let POLY_LINEAR_REM = prove (`!t h. ?q r. CONS h t = [r] ++ [--a; &1] ** q`, LIST_INDUCT_TAC THEN REWRITE_TAC[] THENL [GEN_TAC THEN EXISTS_TAC `[]:real list` THEN EXISTS_TAC `h:real` THEN REWRITE_TAC[poly_add; poly_mul; poly_cmul; NOT_CONS_NIL] THEN REWRITE_TAC[HD; TL; REAL_ADD_RID]; X_GEN_TAC `k:real` THEN POP_ASSUM(STRIP_ASSUME_TAC o SPEC `h:real`) THEN EXISTS_TAC `CONS (r:real) q` THEN EXISTS_TAC `r * a + k` THEN ASM_REWRITE_TAC[POLY_ADD_CLAUSES; POLY_MUL_CLAUSES; poly_cmul] THEN REWRITE_TAC[CONS_11] THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN SPEC_TAC(`q:real list`,`q:real list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[POLY_ADD_CLAUSES; POLY_MUL_CLAUSES; poly_cmul] THEN REWRITE_TAC[REAL_ADD_RID; REAL_MUL_LID] THEN REWRITE_TAC[REAL_ADD_AC]]);; let POLY_LINEAR_DIVIDES = prove (`!a p. (poly p a = &0) <=> (p = []) \/ ?q. p = [--a; &1] ** q`, GEN_TAC THEN LIST_INDUCT_TAC THENL [REWRITE_TAC[poly]; ALL_TAC] THEN EQ_TAC THEN STRIP_TAC THENL [DISJ2_TAC THEN STRIP_ASSUME_TAC(SPEC_ALL POLY_LINEAR_REM) THEN EXISTS_TAC `q:real list` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `r = &0` SUBST_ALL_TAC THENL [UNDISCH_TAC `poly (CONS h t) a = &0` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[POLY_ADD; POLY_MUL] THEN REWRITE_TAC[poly; REAL_MUL_RZERO; REAL_ADD_RID; REAL_MUL_RID] THEN REWRITE_TAC[REAL_ARITH `--a + a = &0`] THEN REAL_ARITH_TAC; REWRITE_TAC[poly_mul] THEN REWRITE_TAC[NOT_CONS_NIL] THEN SPEC_TAC(`q:real list`,`q:real list`) THEN LIST_INDUCT_TAC THENL [REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL; HD; TL; REAL_ADD_LID]; REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL; HD; TL; REAL_ADD_LID]]]; ASM_REWRITE_TAC[] THEN REWRITE_TAC[poly]; ASM_REWRITE_TAC[] THEN REWRITE_TAC[poly] THEN REWRITE_TAC[POLY_MUL] THEN REWRITE_TAC[poly] THEN REWRITE_TAC[poly; REAL_MUL_RZERO; REAL_ADD_RID; REAL_MUL_RID] THEN REWRITE_TAC[REAL_ARITH `--a + a = &0`] THEN REAL_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Thanks to the finesse of the above, we can use length rather than degree. *) (* ------------------------------------------------------------------------- *) let POLY_LENGTH_MUL = prove (`!q. LENGTH([--a; &1] ** q) = SUC(LENGTH q)`, let lemma = prove (`!p h k a. LENGTH (k ## p ++ CONS h (a ## p)) = SUC(LENGTH p)`, LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly_cmul; POLY_ADD_CLAUSES; LENGTH]) in REWRITE_TAC[poly_mul; NOT_CONS_NIL; lemma]);; (* ------------------------------------------------------------------------- *) (* Thus a nontrivial polynomial of degree n has no more than n roots. *) (* ------------------------------------------------------------------------- *) let POLY_ROOTS_INDEX_LEMMA = prove (`!n. !p. ~(poly p = poly []) /\ (LENGTH p = n) ==> ?i. !x. (poly p (x) = &0) ==> ?m. m <= n /\ (x = i m)`, INDUCT_TAC THENL [REWRITE_TAC[LENGTH_EQ_NIL] THEN MESON_TAC[]; REPEAT STRIP_TAC THEN ASM_CASES_TAC `?a. poly p a = &0` THENL [UNDISCH_TAC `?a. poly p a = &0` THEN DISCH_THEN(CHOOSE_THEN MP_TAC) THEN GEN_REWRITE_TAC LAND_CONV [POLY_LINEAR_DIVIDES] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `q:real list` SUBST_ALL_TAC) THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN UNDISCH_TAC `~(poly ([-- a; &1] ** q) = poly [])` THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[POLY_LENGTH_MUL; SUC_INJ] THEN DISCH_TAC THEN ASM_CASES_TAC `poly q = poly []` THENL [ASM_REWRITE_TAC[POLY_MUL; poly; REAL_MUL_RZERO; FUN_EQ_THM]; DISCH_THEN(K ALL_TAC)] THEN DISCH_THEN(MP_TAC o SPEC `q:real list`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `i:num->real`) THEN EXISTS_TAC `\m. if m = SUC n then (a:real) else i m` THEN REWRITE_TAC[POLY_MUL; LE; REAL_ENTIRE] THEN X_GEN_TAC `x:real` THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [DISCH_THEN(fun th -> EXISTS_TAC `SUC n` THEN MP_TAC th) THEN REWRITE_TAC[poly] THEN REAL_ARITH_TAC; DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `m:num <= n` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC]; UNDISCH_TAC `~(?a. poly p a = &0)` THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[]]]);; let POLY_ROOTS_INDEX_LENGTH = prove (`!p. ~(poly p = poly []) ==> ?i. !x. (poly p(x) = &0) ==> ?n. n <= LENGTH p /\ (x = i n)`, MESON_TAC[POLY_ROOTS_INDEX_LEMMA]);; let POLY_ROOTS_FINITE_LEMMA = prove (`!p. ~(poly p = poly []) ==> ?N i. !x. (poly p(x) = &0) ==> ?n:num. n < N /\ (x = i n)`, MESON_TAC[POLY_ROOTS_INDEX_LENGTH; LT_SUC_LE]);; let FINITE_LEMMA = prove (`!i N P. (!x. P x ==> ?n:num. n < N /\ (x = i n)) ==> ?a. !x. P x ==> x < a`, GEN_TAC THEN ONCE_REWRITE_TAC[RIGHT_IMP_EXISTS_THM] THEN INDUCT_TAC THENL [REWRITE_TAC[LT] THEN MESON_TAC[]; ALL_TAC] THEN X_GEN_TAC `P:real->bool` THEN POP_ASSUM(MP_TAC o SPEC `\z. P z /\ ~(z = (i:num->real) N)`) THEN DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN EXISTS_TAC `abs(a) + abs(i(N:num)) + &1` THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[LT] THEN MP_TAC(REAL_ARITH `!x v. x < abs(v) + abs(x) + &1`) THEN MP_TAC(REAL_ARITH `!u v x. x < v ==> x < abs(v) + abs(u) + &1`) THEN MESON_TAC[]);; let POLY_ROOTS_FINITE = prove (`!p. ~(poly p = poly []) <=> ?N i. !x. (poly p(x) = &0) ==> ?n:num. n < N /\ (x = i n)`, GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE_LEMMA] THEN REWRITE_TAC[FUN_EQ_THM; LEFT_IMP_EXISTS_THM; NOT_FORALL_THM; poly] THEN MP_TAC(GENL [`i:num->real`; `N:num`] (SPECL [`i:num->real`; `N:num`; `\x. poly p x = &0`] FINITE_LEMMA)) THEN REWRITE_TAC[] THEN MESON_TAC[REAL_LT_REFL]);; (* ------------------------------------------------------------------------- *) (* Hence get entirety and cancellation for polynomials. *) (* ------------------------------------------------------------------------- *) let POLY_ENTIRE_LEMMA = prove (`!p q. ~(poly p = poly []) /\ ~(poly q = poly []) ==> ~(poly (p ** q) = poly [])`, REPEAT GEN_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE] THEN DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `N2:num` (X_CHOOSE_TAC `i2:num->real`)) THEN DISCH_THEN(X_CHOOSE_THEN `N1:num` (X_CHOOSE_TAC `i1:num->real`)) THEN EXISTS_TAC `N1 + N2:num` THEN EXISTS_TAC `\n:num. if n < N1 then i1(n):real else i2(n - N1)` THEN X_GEN_TAC `x:real` THEN REWRITE_TAC[REAL_ENTIRE; POLY_MUL] THEN DISCH_THEN(DISJ_CASES_THEN (ANTE_RES_THEN (X_CHOOSE_TAC `n:num`))) THENL [EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN ARITH_TAC; EXISTS_TAC `N1 + n:num` THEN ASM_REWRITE_TAC[LT_ADD_LCANCEL] THEN REWRITE_TAC[ARITH_RULE `~(m + n < m:num)`] THEN AP_TERM_TAC THEN ARITH_TAC]);; let POLY_ENTIRE = prove (`!p q. (poly (p ** q) = poly []) <=> (poly p = poly []) \/ (poly q = poly [])`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[POLY_ENTIRE_LEMMA]; REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN STRIP_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_MUL_LZERO; poly]]);; let POLY_MUL_LCANCEL = prove (`!p q r. (poly (p ** q) = poly (p ** r)) <=> (poly p = poly []) \/ (poly q = poly r)`, let lemma1 = prove (`!p q. (poly (p ++ neg q) = poly []) <=> (poly p = poly q)`, REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_NEG; poly] THEN REWRITE_TAC[REAL_ARITH `(p + --q = &0) <=> (p = q)`]) in let lemma2 = prove (`!p q r. poly (p ** q ++ neg(p ** r)) = poly (p ** (q ++ neg(r)))`, REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_NEG; POLY_MUL] THEN REAL_ARITH_TAC) in ONCE_REWRITE_TAC[GSYM lemma1] THEN REWRITE_TAC[lemma2; POLY_ENTIRE] THEN REWRITE_TAC[lemma1]);; let POLY_EXP_EQ_0 = prove (`!p n. (poly (p exp n) = poly []) <=> (poly p = poly []) /\ ~(n = 0)`, REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN REWRITE_TAC[LEFT_AND_FORALL_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[poly_exp; poly; REAL_MUL_RZERO; REAL_ADD_RID; REAL_OF_NUM_EQ; ARITH; NOT_SUC] THEN ASM_REWRITE_TAC[POLY_MUL; poly; REAL_ENTIRE] THEN CONV_TAC TAUT);; let POLY_PRIME_EQ_0 = prove (`!a. ~(poly [a ; &1] = poly [])`, GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN DISCH_THEN(MP_TAC o SPEC `&1 - a`) THEN REAL_ARITH_TAC);; let POLY_EXP_PRIME_EQ_0 = prove (`!a n. ~(poly ([a ; &1] exp n) = poly [])`, MESON_TAC[POLY_EXP_EQ_0; POLY_PRIME_EQ_0]);; (* ------------------------------------------------------------------------- *) (* Can also prove a more "constructive" notion of polynomial being trivial. *) (* ------------------------------------------------------------------------- *) let POLY_ZERO_LEMMA = prove (`!h t. (poly (CONS h t) = poly []) ==> (h = &0) /\ (poly t = poly [])`, let lemma = REWRITE_RULE[FUN_EQ_THM; poly] POLY_ROOTS_FINITE in REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN ASM_CASES_TAC `h = &0` THEN ASM_REWRITE_TAC[] THENL [REWRITE_TAC[REAL_ADD_LID]; DISCH_THEN(MP_TAC o SPEC `&0`) THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC] THEN CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(MP_TAC o REWRITE_RULE[lemma]) THEN DISCH_THEN(X_CHOOSE_THEN `N:num` (X_CHOOSE_TAC `i:num->real`)) THEN MP_TAC(SPECL [`i:num->real`; `N:num`; `\x. poly t x = &0`] FINITE_LEMMA) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN DISCH_THEN(MP_TAC o SPEC `abs(a) + &1`) THEN REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM] THEN CONJ_TAC THENL [REAL_ARITH_TAC; DISCH_THEN(MP_TAC o MATCH_MP (ASSUME `!x. (poly t x = &0) ==> x < a`)) THEN REAL_ARITH_TAC]);; let POLY_ZERO = prove (`!p. (poly p = poly []) <=> ALL (\c. c = &0) p`, LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP POLY_ZERO_LEMMA) THEN ASM_REWRITE_TAC[]; POP_ASSUM(SUBST1_TAC o SYM) THEN STRIP_TAC THEN ASM_REWRITE_TAC[FUN_EQ_THM; poly] THEN REAL_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Useful triviality. *) (* ------------------------------------------------------------------------- *) let POLY_DIFF_AUX_ISZERO = prove (`!p n. ALL (\c. c = &0) (poly_diff_aux (SUC n) p) <=> ALL (\c. c = &0) p`, LIST_INDUCT_TAC THEN ASM_REWRITE_TAC [ALL; poly_diff_aux; REAL_ENTIRE; REAL_OF_NUM_EQ; NOT_SUC]);; let POLY_DIFF_ISZERO = prove (`!p. (poly (diff p) = poly []) ==> ?h. poly p = poly [h]`, REWRITE_TAC[POLY_ZERO] THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[POLY_DIFF_CLAUSES; ALL] THENL [EXISTS_TAC `&0` THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN REAL_ARITH_TAC; REWRITE_TAC[num_CONV `1`; POLY_DIFF_AUX_ISZERO] THEN REWRITE_TAC[GSYM POLY_ZERO] THEN DISCH_TAC THEN EXISTS_TAC `h:real` THEN ASM_REWRITE_TAC[poly; FUN_EQ_THM]]);; let POLY_DIFF_ZERO = prove (`!p. (poly p = poly []) ==> (poly (diff p) = poly [])`, REWRITE_TAC[POLY_ZERO] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff; NOT_CONS_NIL] THEN REWRITE_TAC[ALL; TL] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN SPEC_TAC(`1`,`n:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN SPEC_TAC(`t:real list`,`t:real list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; poly_diff_aux] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RZERO] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);; let POLY_DIFF_WELLDEF = prove (`!p q. (poly p = poly q) ==> (poly (diff p) = poly (diff q))`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `p ++ neg(q)` POLY_DIFF_ZERO) THEN REWRITE_TAC[FUN_EQ_THM; POLY_DIFF_ADD; POLY_DIFF_NEG; POLY_ADD] THEN ASM_REWRITE_TAC[POLY_NEG; poly; REAL_ARITH `a + --a = &0`] THEN REWRITE_TAC[REAL_ARITH `(a + --b = &0) <=> (a = b)`]);; (* ------------------------------------------------------------------------- *) (* Basics of divisibility. *) (* ------------------------------------------------------------------------- *) let divides = new_definition `p1 divides p2 <=> ?q. poly p2 = poly (p1 ** q)`;; let POLY_PRIMES = prove (`!a p q. [a; &1] divides (p ** q) <=> [a; &1] divides p \/ [a; &1] divides q`, REPEAT GEN_TAC THEN REWRITE_TAC[divides; POLY_MUL; FUN_EQ_THM; poly] THEN REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_RID; REAL_MUL_RID] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `r:real list` (MP_TAC o SPEC `--a`)) THEN REWRITE_TAC[REAL_ENTIRE; GSYM real_sub; REAL_SUB_REFL; REAL_MUL_LZERO] THEN DISCH_THEN DISJ_CASES_TAC THENL [DISJ1_TAC; DISJ2_TAC] THEN (POP_ASSUM(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN REWRITE_TAC[REAL_NEG_NEG] THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC (X_CHOOSE_THEN `s:real list` SUBST_ALL_TAC)) THENL [EXISTS_TAC `[]:real list` THEN REWRITE_TAC[poly; REAL_MUL_RZERO]; EXISTS_TAC `s:real list` THEN GEN_TAC THEN REWRITE_TAC[POLY_MUL; poly] THEN REAL_ARITH_TAC]); DISCH_THEN(DISJ_CASES_THEN(X_CHOOSE_TAC `s:real list`)) THEN ASM_REWRITE_TAC[] THENL [EXISTS_TAC `s ** q`; EXISTS_TAC `p ** s`] THEN GEN_TAC THEN REWRITE_TAC[POLY_MUL] THEN REAL_ARITH_TAC]);; let POLY_DIVIDES_REFL = prove (`!p. p divides p`, GEN_TAC THEN REWRITE_TAC[divides] THEN EXISTS_TAC `[&1]` THEN REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly] THEN REAL_ARITH_TAC);; let POLY_DIVIDES_TRANS = prove (`!p q r. p divides q /\ q divides r ==> p divides r`, REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `s:real list` ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `t:real list` ASSUME_TAC) THEN EXISTS_TAC `t ** s` THEN ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; REAL_MUL_ASSOC]);; let POLY_DIVIDES_EXP = prove (`!p m n. m <= n ==> (p exp m) divides (p exp n)`, REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; POLY_DIVIDES_REFL] THEN MATCH_MP_TAC POLY_DIVIDES_TRANS THEN EXISTS_TAC `p exp (m + d)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[divides] THEN EXISTS_TAC `p:real list` THEN REWRITE_TAC[poly_exp; FUN_EQ_THM; POLY_MUL] THEN REAL_ARITH_TAC);; let POLY_EXP_DIVIDES = prove (`!p q m n. (p exp n) divides q /\ m <= n ==> (p exp m) divides q`, MESON_TAC[POLY_DIVIDES_TRANS; POLY_DIVIDES_EXP]);; let POLY_DIVIDES_ADD = prove (`!p q r. p divides q /\ p divides r ==> p divides (q ++ r)`, REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `s:real list` ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `t:real list` ASSUME_TAC) THEN EXISTS_TAC `t ++ s` THEN ASM_REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_MUL] THEN REAL_ARITH_TAC);; let POLY_DIVIDES_SUB = prove (`!p q r. p divides q /\ p divides (q ++ r) ==> p divides r`, REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `s:real list` ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `t:real list` ASSUME_TAC) THEN EXISTS_TAC `s ++ neg(t)` THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_MUL; POLY_NEG] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN REWRITE_TAC[REAL_ADD_LDISTRIB; REAL_MUL_RNEG] THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);; let POLY_DIVIDES_SUB2 = prove (`!p q r. p divides r /\ p divides (q ++ r) ==> p divides q`, REPEAT STRIP_TAC THEN MATCH_MP_TAC POLY_DIVIDES_SUB THEN EXISTS_TAC `r:real list` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `p divides (q ++ r)` THEN REWRITE_TAC[divides; POLY_ADD; FUN_EQ_THM; POLY_MUL] THEN DISCH_THEN(X_CHOOSE_TAC `s:real list`) THEN EXISTS_TAC `s:real list` THEN X_GEN_TAC `x:real` THEN POP_ASSUM(MP_TAC o SPEC `x:real`) THEN REAL_ARITH_TAC);; let POLY_DIVIDES_ZERO = prove (`!p q. (poly p = poly []) ==> q divides p`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[divides] THEN EXISTS_TAC `[]:real list` THEN ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; REAL_MUL_RZERO]);; (* ------------------------------------------------------------------------- *) (* At last, we can consider the order of a root. *) (* ------------------------------------------------------------------------- *) let POLY_ORDER_EXISTS = prove (`!a d. !p. (LENGTH p = d) /\ ~(poly p = poly []) ==> ?n. ([--a; &1] exp n) divides p /\ ~(([--a; &1] exp (SUC n)) divides p)`, GEN_TAC THEN (STRIP_ASSUME_TAC o prove_recursive_functions_exist num_RECURSION) `(!p q. mulexp 0 p q = q) /\ (!p q n. mulexp (SUC n) p q = p ** (mulexp n p q))` THEN SUBGOAL_THEN `!d. !p. (LENGTH p = d) /\ ~(poly p = poly []) ==> ?n q. (p = mulexp (n:num) [--a; &1] q) /\ ~(poly q a = &0)` MP_TAC THENL [INDUCT_TAC THENL [REWRITE_TAC[LENGTH_EQ_NIL] THEN MESON_TAC[]; ALL_TAC] THEN X_GEN_TAC `p:real list` THEN ASM_CASES_TAC `poly p a = &0` THENL [STRIP_TAC THEN UNDISCH_TAC `poly p a = &0` THEN DISCH_THEN(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `q:real list` SUBST_ALL_TAC) THEN UNDISCH_TAC `!p. (LENGTH p = d) /\ ~(poly p = poly []) ==> ?n q. (p = mulexp (n:num) [--a; &1] q) /\ ~(poly q a = &0)` THEN DISCH_THEN(MP_TAC o SPEC `q:real list`) THEN RULE_ASSUM_TAC(REWRITE_RULE[POLY_LENGTH_MUL; POLY_ENTIRE; DE_MORGAN_THM; SUC_INJ]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `n:num` (X_CHOOSE_THEN `s:real list` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `SUC n` THEN EXISTS_TAC `s:real list` THEN ASM_REWRITE_TAC[]; STRIP_TAC THEN EXISTS_TAC `0` THEN EXISTS_TAC `p:real list` THEN ASM_REWRITE_TAC[]]; DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `n:num` (X_CHOOSE_THEN `s:real list` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[divides] THEN CONJ_TAC THENL [EXISTS_TAC `s:real list` THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[poly_exp; FUN_EQ_THM; POLY_MUL; poly] THEN REAL_ARITH_TAC; DISCH_THEN(X_CHOOSE_THEN `r:real list` MP_TAC) THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[] THENL [UNDISCH_TAC `~(poly s a = &0)` THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[poly; poly_exp; POLY_MUL] THEN REAL_ARITH_TAC; REWRITE_TAC[] THEN ONCE_ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[poly_exp] THEN REWRITE_TAC[GSYM POLY_MUL_ASSOC; POLY_MUL_LCANCEL] THEN REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THENL [REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `a + &1`) THEN REWRITE_TAC[poly] THEN REAL_ARITH_TAC; DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[]]]]]);; let POLY_ORDER = prove (`!p a. ~(poly p = poly []) ==> ?!n. ([--a; &1] exp n) divides p /\ ~(([--a; &1] exp (SUC n)) divides p)`, MESON_TAC[POLY_ORDER_EXISTS; POLY_EXP_DIVIDES; LE_SUC_LT; LT_CASES]);; (* ------------------------------------------------------------------------- *) (* Definition of order. *) (* ------------------------------------------------------------------------- *) let order = new_definition `order a p = @n. ([--a; &1] exp n) divides p /\ ~(([--a; &1] exp (SUC n)) divides p)`;; let ORDER = prove (`!p a n. ([--a; &1] exp n) divides p /\ ~(([--a; &1] exp (SUC n)) divides p) <=> (n = order a p) /\ ~(poly p = poly [])`, REPEAT GEN_TAC THEN REWRITE_TAC[order] THEN EQ_TAC THEN STRIP_TAC THENL [SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL [FIRST_ASSUM(UNDISCH_TAC o check is_neg o concl) THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[divides] THEN DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `[]:real list` THEN REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; REAL_MUL_RZERO]; ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[]]; ONCE_ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV] THEN ASM_MESON_TAC[POLY_ORDER]);; let ORDER_THM = prove (`!p a. ~(poly p = poly []) ==> ([--a; &1] exp (order a p)) divides p /\ ~(([--a; &1] exp (SUC(order a p))) divides p)`, MESON_TAC[ORDER]);; let ORDER_UNIQUE = prove (`!p a n. ~(poly p = poly []) /\ ([--a; &1] exp n) divides p /\ ~(([--a; &1] exp (SUC n)) divides p) ==> (n = order a p)`, MESON_TAC[ORDER]);; let ORDER_POLY = prove (`!p q a. (poly p = poly q) ==> (order a p = order a q)`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[order; divides; FUN_EQ_THM; POLY_MUL]);; let ORDER_ROOT = prove (`!p a. (poly p a = &0) <=> (poly p = poly []) \/ ~(order a p = 0)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN ASM_REWRITE_TAC[poly] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN ASM_CASES_TAC `p:real list = []` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `q:real list` SUBST_ALL_TAC) THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `a:real` o MATCH_MP ORDER_THM) THEN ASM_REWRITE_TAC[poly_exp; DE_MORGAN_THM] THEN DISJ2_TAC THEN REWRITE_TAC[divides] THEN EXISTS_TAC `q:real list` THEN REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly] THEN REAL_ARITH_TAC; DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `a:real` o MATCH_MP ORDER_THM) THEN UNDISCH_TAC `~(order a p = 0)` THEN SPEC_TAC(`order a p`,`n:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[poly_exp; NOT_SUC] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_THEN `s:real list` SUBST1_TAC) THEN REWRITE_TAC[POLY_MUL; poly] THEN REAL_ARITH_TAC]);; let ORDER_DIVIDES = prove (`!p a n. ([--a; &1] exp n) divides p <=> (poly p = poly []) \/ n <= order a p`, REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN ASM_REWRITE_TAC[] THENL [ASM_REWRITE_TAC[divides] THEN EXISTS_TAC `[]:real list` THEN REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; REAL_MUL_RZERO]; ASM_MESON_TAC[ORDER_THM; POLY_EXP_DIVIDES; NOT_LE; LE_SUC_LT]]);; let ORDER_DECOMP = prove (`!p a. ~(poly p = poly []) ==> ?q. (poly p = poly (([--a; &1] exp (order a p)) ** q)) /\ ~([--a; &1] divides q)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORDER_THM) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC o SPEC `a:real`) THEN DISCH_THEN(X_CHOOSE_TAC `q:real list` o REWRITE_RULE[divides]) THEN EXISTS_TAC `q:real list` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `r: real list` o REWRITE_RULE[divides]) THEN UNDISCH_TAC `~([-- a; &1] exp SUC (order a p) divides p)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[divides] THEN EXISTS_TAC `r:real list` THEN ASM_REWRITE_TAC[POLY_MUL; FUN_EQ_THM; poly_exp] THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Important composition properties of orders. *) (* ------------------------------------------------------------------------- *) let ORDER_MUL = prove (`!a p q. ~(poly (p ** q) = poly []) ==> (order a (p ** q) = order a p + order a q)`, REPEAT GEN_TAC THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN REWRITE_TAC[POLY_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN SUBGOAL_THEN `(order a p + order a q = order a (p ** q)) /\ ~(poly (p ** q) = poly [])` MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN REWRITE_TAC[GSYM ORDER] THEN CONJ_TAC THENL [MP_TAC(CONJUNCT1 (SPEC `a:real` (MATCH_MP ORDER_THM (ASSUME `~(poly p = poly [])`)))) THEN DISCH_THEN(X_CHOOSE_TAC `r: real list` o REWRITE_RULE[divides]) THEN MP_TAC(CONJUNCT1 (SPEC `a:real` (MATCH_MP ORDER_THM (ASSUME `~(poly q = poly [])`)))) THEN DISCH_THEN(X_CHOOSE_TAC `s: real list` o REWRITE_RULE[divides]) THEN REWRITE_TAC[divides; FUN_EQ_THM] THEN EXISTS_TAC `s ** r` THEN ASM_REWRITE_TAC[POLY_MUL; POLY_EXP_ADD] THEN REAL_ARITH_TAC; X_CHOOSE_THEN `r: real list` STRIP_ASSUME_TAC (SPEC `a:real` (MATCH_MP ORDER_DECOMP (ASSUME `~(poly p = poly [])`))) THEN X_CHOOSE_THEN `s: real list` STRIP_ASSUME_TAC (SPEC `a:real` (MATCH_MP ORDER_DECOMP (ASSUME `~(poly q = poly [])`))) THEN ASM_REWRITE_TAC[divides; FUN_EQ_THM; POLY_EXP_ADD; POLY_MUL; poly_exp] THEN DISCH_THEN(X_CHOOSE_THEN `t:real list` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `[--a; &1] divides (r ** s)` MP_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[POLY_PRIMES]] THEN REWRITE_TAC[divides] THEN EXISTS_TAC `t:real list` THEN SUBGOAL_THEN `poly ([-- a; &1] exp (order a p) ** r ** s) = poly ([-- a; &1] exp (order a p) ** ([-- a; &1] ** t))` MP_TAC THENL [ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN SUBGOAL_THEN `poly ([-- a; &1] exp (order a q) ** [-- a; &1] exp (order a p) ** r ** s) = poly ([-- a; &1] exp (order a q) ** [-- a; &1] exp (order a p) ** [-- a; &1] ** t)` MP_TAC THENL [ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_ADD] THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN REWRITE_TAC[REAL_MUL_AC]]);; let ORDER_DIFF = prove (`!p a. ~(poly (diff p) = poly []) /\ ~(order a p = 0) ==> (order a p = SUC (order a (diff p)))`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN SUBGOAL_THEN `~(poly p = poly [])` MP_TAC THENL [ASM_MESON_TAC[POLY_DIFF_ZERO]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `q:real list` MP_TAC o SPEC `a:real` o MATCH_MP ORDER_DECOMP) THEN SPEC_TAC(`order a p`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; SUC_INJ] THEN STRIP_TAC THEN MATCH_MP_TAC ORDER_UNIQUE THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `!r. r divides (diff p) <=> r divides (diff ([-- a; &1] exp SUC n ** q))` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN REWRITE_TAC[divides] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP POLY_DIFF_WELLDEF th]); ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[divides; FUN_EQ_THM] THEN EXISTS_TAC `[--a; &1] ** (diff q) ++ &(SUC n) ## q` THEN REWRITE_TAC[POLY_DIFF_MUL; POLY_DIFF_EXP_PRIME; POLY_ADD; POLY_MUL; POLY_CMUL] THEN REWRITE_TAC[poly_exp; POLY_MUL] THEN REAL_ARITH_TAC; REWRITE_TAC[FUN_EQ_THM; divides; POLY_DIFF_MUL; POLY_DIFF_EXP_PRIME; POLY_ADD; POLY_MUL; POLY_CMUL] THEN DISCH_THEN(X_CHOOSE_THEN `r:real list` ASSUME_TAC) THEN UNDISCH_TAC `~([-- a; &1] divides q)` THEN REWRITE_TAC[divides] THEN EXISTS_TAC `inv(&(SUC n)) ## (r ++ neg(diff q))` THEN SUBGOAL_THEN `poly ([--a; &1] exp n ** q) = poly ([--a; &1] exp n ** ([-- a; &1] ** (inv (&(SUC n)) ## (r ++ neg (diff q)))))` MP_TAC THENL [ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:real` THEN SUBGOAL_THEN `!a b. (&(SUC n) * a = &(SUC n) * b) ==> (a = b)` MATCH_MP_TAC THENL [REWRITE_TAC[REAL_EQ_MUL_LCANCEL; REAL_OF_NUM_EQ; NOT_SUC]; ALL_TAC] THEN REWRITE_TAC[POLY_MUL; POLY_CMUL] THEN SUBGOAL_THEN `!a b c. &(SUC n) * a * b * inv(&(SUC n)) * c = a * b * c` (fun th -> REWRITE_TAC[th]) THENL [REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN MATCH_MP_TAC REAL_MUL_RINV THEN REWRITE_TAC[REAL_OF_NUM_EQ; NOT_SUC]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o SPEC `x:real`) THEN REWRITE_TAC[poly_exp; POLY_MUL; POLY_ADD; POLY_NEG] THEN REAL_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *) (* ------------------------------------------------------------------------- *) let POLY_SQUAREFREE_DECOMP_ORDER = prove (`!p q d e r s. ~(poly (diff p) = poly []) /\ (poly p = poly (q ** d)) /\ (poly (diff p) = poly (e ** d)) /\ (poly d = poly (r ** p ++ s ** diff p)) ==> !a. order a q = (if order a p = 0 then 0 else 1)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `order a p = order a q + order a d` MP_TAC THENL [MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `order a (q ** d)` THEN CONJ_TAC THENL [MATCH_MP_TAC ORDER_POLY THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC ORDER_MUL THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [SYM th]) THEN ASM_MESON_TAC[POLY_DIFF_ZERO]]; ALL_TAC] THEN ASM_CASES_TAC `order a p = 0` THEN ASM_REWRITE_TAC[] THENL [ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `order a (diff p) = order a e + order a d` MP_TAC THENL [MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `order a (e ** d)` THEN CONJ_TAC THENL [ASM_MESON_TAC[ORDER_POLY]; ASM_MESON_TAC[ORDER_MUL]]; ALL_TAC] THEN SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL [ASM_MESON_TAC[POLY_DIFF_ZERO]; ALL_TAC] THEN MP_TAC(SPECL [`p:real list`; `a:real`] ORDER_DIFF) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC(AP_TERM `PRE` th)) THEN REWRITE_TAC[PRE] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN SUBGOAL_THEN `order a (diff p) <= order a d` MP_TAC THENL [SUBGOAL_THEN `([--a; &1] exp (order a (diff p))) divides d` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[POLY_ENTIRE; ORDER_DIVIDES]] THEN SUBGOAL_THEN `([--a; &1] exp (order a (diff p))) divides p /\ ([--a; &1] exp (order a (diff p))) divides (diff p)` MP_TAC THENL [REWRITE_TAC[ORDER_DIVIDES; LE_REFL] THEN DISJ2_TAC THEN REWRITE_TAC[ASSUME `order a (diff p) = PRE (order a p)`] THEN ARITH_TAC; DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN REWRITE_TAC[divides] THEN REWRITE_TAC[ASSUME `poly d = poly (r ** p ++ s ** diff p)`] THEN POP_ASSUM_LIST(K ALL_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `f:real list` ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `g:real list` ASSUME_TAC) THEN EXISTS_TAC `r ** g ++ s ** f` THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_ADD] THEN ARITH_TAC]; ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Define being "squarefree" --- NB with respect to real roots only. *) (* ------------------------------------------------------------------------- *) let rsquarefree = new_definition `rsquarefree p <=> ~(poly p = poly []) /\ !a. (order a p = 0) \/ (order a p = 1)`;; (* ------------------------------------------------------------------------- *) (* Standard squarefree criterion and rephasing of squarefree decomposition. *) (* ------------------------------------------------------------------------- *) let RSQUAREFREE_ROOTS = prove (`!p. rsquarefree p <=> !a. ~((poly p a = &0) /\ (poly (diff p) a = &0))`, GEN_TAC THEN REWRITE_TAC[rsquarefree] THEN ASM_CASES_TAC `poly p = poly []` THEN ASM_REWRITE_TAC[] THENL [FIRST_ASSUM(SUBST1_TAC o MATCH_MP POLY_DIFF_ZERO) THEN ASM_REWRITE_TAC[poly; NOT_FORALL_THM]; ASM_CASES_TAC `poly(diff p) = poly []` THEN ASM_REWRITE_TAC[] THENL [FIRST_ASSUM(X_CHOOSE_THEN `h:real` MP_TAC o MATCH_MP POLY_DIFF_ISZERO) THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP ORDER_POLY th]) THEN UNDISCH_TAC `~(poly p = poly [])` THEN ASM_REWRITE_TAC[poly] THEN REWRITE_TAC[FUN_EQ_THM; poly; REAL_MUL_RZERO; REAL_ADD_RID] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `a:real` THEN DISJ1_TAC THEN MP_TAC(SPECL [`[h:real]`; `a:real`] ORDER_ROOT) THEN ASM_REWRITE_TAC[FUN_EQ_THM; poly; REAL_MUL_RZERO; REAL_ADD_RID]; ASM_REWRITE_TAC[ORDER_ROOT; DE_MORGAN_THM; num_CONV `1`] THEN ASM_MESON_TAC[ORDER_DIFF; SUC_INJ]]]);; let RSQUAREFREE_DECOMP = prove (`!p a. rsquarefree p /\ (poly p a = &0) ==> ?q. (poly p = poly ([--a; &1] ** q)) /\ ~(poly q a = &0)`, REPEAT GEN_TAC THEN REWRITE_TAC[rsquarefree] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORDER_DECOMP) THEN DISCH_THEN(X_CHOOSE_THEN `q:real list` MP_TAC o SPEC `a:real`) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ORDER_ROOT]) THEN FIRST_ASSUM(DISJ_CASES_TAC o SPEC `a:real`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ARITH] THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN EXISTS_TAC `q:real list` THEN CONJ_TAC THENL [REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN GEN_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV) [num_CONV `1`] THEN REWRITE_TAC[poly_exp; POLY_MUL] THEN REWRITE_TAC[poly] THEN REAL_ARITH_TAC; DISCH_TAC THEN UNDISCH_TAC `~([-- a; &1] divides q)` THEN REWRITE_TAC[divides] THEN UNDISCH_TAC `poly q a = &0` THEN GEN_REWRITE_TAC LAND_CONV [POLY_LINEAR_DIVIDES] THEN ASM_CASES_TAC `q:real list = []` THEN ASM_REWRITE_TAC[] THENL [EXISTS_TAC `[] : real list` THEN REWRITE_TAC[FUN_EQ_THM] THEN REWRITE_TAC[POLY_MUL; poly; REAL_MUL_RZERO]; MESON_TAC[]]]);; let POLY_SQUAREFREE_DECOMP = prove (`!p q d e r s. ~(poly (diff p) = poly []) /\ (poly p = poly (q ** d)) /\ (poly (diff p) = poly (e ** d)) /\ (poly d = poly (r ** p ++ s ** diff p)) ==> rsquarefree q /\ (!a. (poly q a = &0) <=> (poly p a = &0))`, REPEAT GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN ASSUME_TAC(MATCH_MP POLY_SQUAREFREE_DECOMP_ORDER th)) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL [ASM_MESON_TAC[POLY_DIFF_ZERO]; ALL_TAC] THEN DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN UNDISCH_TAC `~(poly p = poly [])` THEN DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC th) THEN DISCH_THEN(fun th -> ASM_REWRITE_TAC[] THEN ASSUME_TAC th) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[POLY_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN UNDISCH_TAC `poly p = poly (q ** d)` THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM_REWRITE_TAC[rsquarefree; ORDER_ROOT] THEN CONJ_TAC THEN GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH]);; (* ------------------------------------------------------------------------- *) (* Normalization of a polynomial. *) (* ------------------------------------------------------------------------- *) let normalize = new_recursive_definition list_RECURSION `(normalize [] = []) /\ (normalize (CONS h t) = if normalize t = [] then if h = &0 then [] else [h] else CONS h (normalize t))`;; let POLY_NORMALIZE = prove (`!p. poly (normalize p) = poly p`, LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; poly] THEN ASM_CASES_TAC `h = &0` THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[poly; FUN_EQ_THM] THEN UNDISCH_TAC `poly (normalize t) = poly t` THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[poly] THEN REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_LID]);; (* ------------------------------------------------------------------------- *) (* The degree of a polynomial. *) (* ------------------------------------------------------------------------- *) let degree = new_definition `degree p = PRE(LENGTH(normalize p))`;; let DEGREE_ZERO = prove (`!p. (poly p = poly []) ==> (degree p = 0)`, REPEAT STRIP_TAC THEN REWRITE_TAC[degree] THEN SUBGOAL_THEN `normalize p = []` SUBST1_TAC THENL [POP_ASSUM MP_TAC THEN SPEC_TAC(`p:real list`,`p:real list`) THEN REWRITE_TAC[POLY_ZERO] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; ALL] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `normalize t = []` (fun th -> REWRITE_TAC[th]) THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; REWRITE_TAC[LENGTH; PRE]]);; (* ------------------------------------------------------------------------- *) (* Tidier versions of finiteness of roots. *) (* ------------------------------------------------------------------------- *) let POLY_ROOTS_FINITE_SET = prove (`!p. ~(poly p = poly []) ==> FINITE { x | poly p x = &0}`, GEN_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE] THEN DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `i:num->real` ASSUME_TAC) THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{x:real | ?n:num. n < N /\ (x = i n)}` THEN CONJ_TAC THENL [SPEC_TAC(`N:num`,`N:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN INDUCT_TAC THENL [SUBGOAL_THEN `{x:real | ?n. n < 0 /\ (x = i n)} = {}` (fun th -> REWRITE_TAC[th; FINITE_RULES]) THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LT]; SUBGOAL_THEN `{x:real | ?n. n < SUC N /\ (x = i n)} = (i N) INSERT {x:real | ?n. n < N /\ (x = i n)}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; LT] THEN MESON_TAC[]; MATCH_MP_TAC(CONJUNCT2 FINITE_RULES) THEN ASM_REWRITE_TAC[]]]; ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM]]);; (* ------------------------------------------------------------------------- *) (* Crude bound for polynomial. *) (* ------------------------------------------------------------------------- *) let POLY_MONO = prove (`!x k p. abs(x) <= k ==> abs(poly p x) <= poly (MAP abs p) k`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[poly; REAL_LE_REFL; MAP; REAL_ABS_0] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(h) + abs(x * poly t x)` THEN REWRITE_TAC[REAL_ABS_TRIANGLE; REAL_LE_LADD] THEN REWRITE_TAC[REAL_ABS_MUL] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_ABS_POS]);; (* ------------------------------------------------------------------------- *) (* Conversions to perform operations if coefficients are rational constants. *) (* ------------------------------------------------------------------------- *) let POLY_DIFF_CONV = let aux_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_diff_aux] and aux_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_diff_aux] and diff_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_DIFF_CLAUSES)) and diff_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_DIFF_CLAUSES)] in let rec POLY_DIFF_AUX_CONV tm = (aux_conv0 ORELSEC (aux_conv1 THENC LAND_CONV REAL_RAT_MUL_CONV THENC RAND_CONV (LAND_CONV NUM_SUC_CONV THENC POLY_DIFF_AUX_CONV))) tm in diff_conv0 ORELSEC (diff_conv1 THENC POLY_DIFF_AUX_CONV);; let POLY_CMUL_CONV = let cmul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_cmul] and cmul_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_cmul] in let rec POLY_CMUL_CONV tm = (cmul_conv0 ORELSEC (cmul_conv1 THENC LAND_CONV REAL_RAT_MUL_CONV THENC RAND_CONV POLY_CMUL_CONV)) tm in POLY_CMUL_CONV;; let POLY_ADD_CONV = let add_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_ADD_CLAUSES)) and add_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_ADD_CLAUSES)] in let rec POLY_ADD_CONV tm = (add_conv0 ORELSEC (add_conv1 THENC LAND_CONV REAL_RAT_ADD_CONV THENC RAND_CONV POLY_ADD_CONV)) tm in POLY_ADD_CONV;; let POLY_MUL_CONV = let mul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 POLY_MUL_CLAUSES] and mul_conv1 = GEN_REWRITE_CONV I [CONJUNCT1(CONJUNCT2 POLY_MUL_CLAUSES)] and mul_conv2 = GEN_REWRITE_CONV I [CONJUNCT2(CONJUNCT2 POLY_MUL_CLAUSES)] in let rec POLY_MUL_CONV tm = (mul_conv0 ORELSEC (mul_conv1 THENC POLY_CMUL_CONV) ORELSEC (mul_conv2 THENC LAND_CONV POLY_CMUL_CONV THENC RAND_CONV(RAND_CONV POLY_MUL_CONV) THENC POLY_ADD_CONV)) tm in POLY_MUL_CONV;; let POLY_NORMALIZE_CONV = let pth = prove (`normalize (CONS h t) = (\n. if n = [] then if h = &0 then [] else [h] else CONS h n) (normalize t)`, REWRITE_TAC[normalize]) in let norm_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 normalize] and norm_conv1 = GEN_REWRITE_CONV I [pth] and norm_conv2 = GEN_REWRITE_CONV DEPTH_CONV [COND_CLAUSES; NOT_CONS_NIL; EQT_INTRO(SPEC_ALL EQ_REFL)] in let rec POLY_NORMALIZE_CONV tm = (norm_conv0 ORELSEC (norm_conv1 THENC RAND_CONV POLY_NORMALIZE_CONV THENC BETA_CONV THENC RATOR_CONV(RAND_CONV(RATOR_CONV(LAND_CONV REAL_RAT_EQ_CONV))) THENC norm_conv2)) tm in POLY_NORMALIZE_CONV;; (* ------------------------------------------------------------------------- *) (* Some theorems asserting that operations give non-nil results. *) (* ------------------------------------------------------------------------- *) let NOT_POLY_CMUL_NIL = prove (`!h p. ~(p = []) ==> ~((h ## p) = [])`, STRIP_TAC THEN LIST_INDUCT_TAC THENL [SIMP_TAC[]; SIMP_TAC[poly_cmul; NOT_CONS_NIL]]);; let NOT_POLY_MUL_NIL = prove (`!p1 p2. ~(p1 = []) /\ ~(p2 = []) ==> ~((p1 ** p2) = [])`, LIST_INDUCT_TAC THENL [SIMP_TAC[]; LIST_INDUCT_TAC THENL [SIMP_TAC[]; SIMP_TAC[poly_mul;NOT_CONS_NIL] THEN SPEC_TAC (`t:(real)list`,`t:(real)list`) THEN LIST_INDUCT_TAC THENL [SIMP_TAC[poly_cmul;NOT_CONS_NIL]; SIMP_TAC[poly_cmul;poly_add;NOT_CONS_NIL]] ] ]);; let NOT_POLY_EXP_NIL = prove (`!n p . ~(p = []) ==> ~((poly_exp p n) = [])`, let lem001 = ASSUME `!p . ~(p = []) ==> ~(poly_exp p n = [])` in let lem002 = SIMP_RULE[NOT_CONS_NIL] (SPEC `CONS (h:real) t` lem001) in INDUCT_TAC THENL [SIMP_TAC[poly_exp;NOT_CONS_NIL]; LIST_INDUCT_TAC THENL [SIMP_TAC[]; SIMP_TAC[lem002;NOT_POLY_MUL_NIL;poly_exp;NOT_CONS_NIL] ] ]);; let NOT_POLY_EXP_X_NIL = prove (`!n. ~((poly_exp [&0;&1] n) = [])`, let lem01 = prove(`~([&0;&1] = [])`,SIMP_TAC[NOT_CONS_NIL]) in INDUCT_TAC THENL [SIMP_TAC[poly_exp;NOT_CONS_NIL]; ASM_SIMP_TAC[poly_exp;NOT_POLY_MUL_NIL;lem01]]);; (* ------------------------------------------------------------------------- *) (* Some general lemmas. *) (* ------------------------------------------------------------------------- *) let POLY_CMUL_LID = prove (`!p. &1 ## p = p`, LIST_INDUCT_TAC THENL [SIMP_TAC[poly_cmul]; ASM_SIMP_TAC[poly_cmul] THEN SIMP_TAC[REAL_ARITH `&1 * h = h`]]);; let POLY_MUL_LID = prove (`!p. [&1] ** p = p`, LIST_INDUCT_TAC THENL [SIMP_TAC[poly_mul;poly_cmul]; ONCE_REWRITE_TAC[poly_mul] THEN SIMP_TAC[POLY_CMUL_LID]]);; let POLY_MUL_RID = prove (`!p. p ** [&1] = p`, LIST_INDUCT_TAC THENL [SIMP_TAC[poly_mul]; ASM_CASES_TAC `t:(real)list = []` THEN ASM_SIMP_TAC[poly_mul;poly_cmul;poly_add;NOT_CONS_NIL;HD;TL; REAL_ARITH `h + (real_of_num 0) = h`;REAL_ARITH `h * (real_of_num 1) = h`] ]);; let POLY_ADD_SYM = prove (`!x y . x ++ y = y ++ x`, let lem1 = ASSUME `!y . t ++ y = y ++ t` in let lem2 = SPEC `t':(real)list` lem1 in LIST_INDUCT_TAC THENL [LIST_INDUCT_TAC THENL [SIMP_TAC[poly_add]; SIMP_TAC[poly_add]]; LIST_INDUCT_TAC THENL [SIMP_TAC[poly_add]; SIMP_TAC[POLY_ADD_CLAUSES] THEN ONCE_REWRITE_TAC[lem2] THEN SIMP_TAC[SPECL [`h:real`;`h':real`] REAL_ADD_SYM] ] ]);; let POLY_ADD_ASSOC = prove (`!x y z . x ++ (y ++ z) = (x ++ y) ++ z`, let lem1 = ASSUME `!y z. t ++ y ++ z = (t ++ y) ++ z` in let lem2 = SPECL [`t':(real)list`;`t'':(real)list`] lem1 in LIST_INDUCT_TAC THENL [SIMP_TAC[POLY_ADD_CLAUSES]; LIST_INDUCT_TAC THENL [SIMP_TAC[POLY_ADD_CLAUSES]; LIST_INDUCT_TAC THENL [SIMP_TAC[POLY_ADD_CLAUSES]; SIMP_TAC[POLY_ADD_CLAUSES] THEN SIMP_TAC[REAL_ADD_ASSOC] THEN SIMP_TAC[lem2] ] ] ]);; (* ------------------------------------------------------------------------- *) (* Heads and tails resulting from operations. *) (* ------------------------------------------------------------------------- *) let TL_POLY_MUL_X = prove (`!p. TL ([&0;&1] ** p) = p`, LIST_INDUCT_TAC THENL [ONCE_REWRITE_TAC[poly_mul] THEN SIMP_TAC[NOT_CONS_NIL;poly_cmul;poly_add;TL;poly_mul]; ONCE_REWRITE_TAC[poly_mul] THEN SIMP_TAC[NOT_CONS_NIL] THEN ONCE_REWRITE_TAC[poly_cmul] THEN ONCE_REWRITE_TAC[poly_add] THEN SIMP_TAC[NOT_CONS_NIL] THEN SIMP_TAC[TL;POLY_MUL_LID] THEN SPEC_TAC (`h:real`,`h:real`) THEN SPEC_TAC (`t:(real)list`,`t:(real)list`) THEN LIST_INDUCT_TAC THENL [SIMP_TAC[poly_cmul;poly_add]; ASM_SIMP_TAC[poly_cmul;poly_add;NOT_CONS_NIL;HD;TL; REAL_ARITH `(&0) * h + h' = h'`] ] ]);; let HD_POLY_MUL_X = prove (`!p. HD ([&0;&1] ** p) = &0`, LIST_INDUCT_TAC THEN SIMP_TAC[poly_mul;NOT_CONS_NIL;poly_cmul;poly_add;HD; REAL_ARITH `&0 * h + &0 = &0`]);; let TL_POLY_EXP_X_SUC = prove (`!n . TL (poly_exp [&0;&1] (SUC n)) = poly_exp [&0;&1] n`, SIMP_TAC[poly_exp;TL_POLY_MUL_X]);; let HD_POLY_EXP_X_SUC = prove (`!n . HD (poly_exp [&0;&1] (SUC n)) = &0`, INDUCT_TAC THENL [SIMP_TAC[poly_exp;poly_add;HD;TL;poly_cmul;poly_mul;NOT_CONS_NIL; REAL_ARITH `&0 * &1 + &0 = &0`]; SIMP_TAC[poly_exp;HD_POLY_MUL_X]]);; let HD_POLY_ADD = prove (`!p1 p2. ~(p1 = []) /\ ~(p2 = []) ==> HD (p1 ++ p2) = (HD p1) + (HD p2)`, LIST_INDUCT_TAC THENL [SIMP_TAC[]; LIST_INDUCT_TAC THENL [SIMP_TAC[]; SIMP_TAC[NOT_CONS_NIL;poly_add] THEN ONCE_REWRITE_TAC[ISPECL [`h':real`;`t':(real)list`] NOT_CONS_NIL] THEN SIMP_TAC[HD] ] ]);; let HD_POLY_CMUL = prove (`!x p . ~(p = []) ==> HD (x ## p) = x * (HD p)`, STRIP_TAC THEN LIST_INDUCT_TAC THENL [SIMP_TAC[]; SIMP_TAC[NOT_CONS_NIL;poly_cmul;HD]]);; let TL_POLY_CMUL = prove (`!x p . ~(p = []) ==> TL (x ## p) = x ## (TL p)`, STRIP_TAC THEN LIST_INDUCT_TAC THENL [SIMP_TAC[]; SIMP_TAC[NOT_CONS_NIL;poly_cmul;TL]]);; let HD_POLY_MUL = prove (`!p1 p2 . ~(p1 = []) /\ ~(p2 = []) ==> HD (p1 ** p2) = (HD p1) * (HD p2)`, LIST_INDUCT_TAC THENL [SIMP_TAC[]; LIST_INDUCT_TAC THENL [SIMP_TAC[]; SIMP_TAC[NOT_CONS_NIL;poly_mul] THEN ASM_CASES_TAC `(t:(real)list) = []` THENL [ASM_SIMP_TAC[poly_cmul;HD]; ASM_SIMP_TAC[poly_cmul;poly_add;NOT_CONS_NIL;HD] THEN REAL_ARITH_TAC ] ] ]);; let HD_POLY_EXP = prove (`!n p . ~(p = []) ==> HD (poly_exp p n) = (HD p) pow n`, INDUCT_TAC THENL [SIMP_TAC[poly_exp] THEN LIST_INDUCT_TAC THENL [SIMP_TAC[]; SIMP_TAC[HD;pow]]; SIMP_TAC[poly_exp] THEN LIST_INDUCT_TAC THENL [SIMP_TAC[]; SIMP_TAC[HD;GSYM pow;NOT_CONS_NIL;poly_mul] THEN ASM_CASES_TAC `(t:(real)list) = []` THENL [ASM_SIMP_TAC[HD_POLY_CMUL;NOT_POLY_CMUL_NIL;NOT_POLY_EXP_NIL; NOT_CONS_NIL;HD;GSYM pow]; ASM_SIMP_TAC[NOT_POLY_CMUL_NIL;NOT_POLY_EXP_NIL;NOT_CONS_NIL; HD_POLY_ADD;HD;HD_POLY_CMUL;GSYM pow] THEN REAL_ARITH_TAC] ] ]);; (* ------------------------------------------------------------------------- *) (* Additional general lemmas. *) (* ------------------------------------------------------------------------- *) let POLY_ADD_IDENT = prove (`neutral (++) = []`, let l1 = ASSUME `!x. (!y. x ++ y = y /\ y ++ x = y) ==> (!y. (CONS h t) ++ y = y /\ y ++ (CONS h t) = y)` in let l2 = SPEC `[]:(real)list` l1 in let l3 = SIMP_RULE[POLY_ADD_CLAUSES] l2 in let l4 = SPEC `[]:(real)list` l3 in let l5 = CONJUNCT1 l4 in let l6 = SIMP_RULE[POLY_ADD_CLAUSES;NOT_CONS_NIL] l5 in let l7 = NOT_INTRO (DISCH_ALL l6) in ONCE_REWRITE_TAC[neutral] THEN SELECT_ELIM_TAC THEN LIST_INDUCT_TAC THENL [SIMP_TAC[];SIMP_TAC[l7]]);; let POLY_ADD_NEUTRAL = prove (`!x. neutral (++) ++ x = x`, SIMP_TAC[POLY_ADD_IDENT;POLY_ADD_CLAUSES]);; let MONOIDAL_POLY_ADD = prove (`monoidal poly_add`, let lem1 = CONJ POLY_ADD_SYM (CONJ POLY_ADD_ASSOC POLY_ADD_NEUTRAL) in ONCE_REWRITE_TAC[monoidal] THEN ACCEPT_TAC lem1);; let POLY_DIFF_AUX_ADD_LEMMA = prove (`!t1 t2 n. poly_diff_aux n (t1 ++ t2) = (poly_diff_aux n t1) ++ (poly_diff_aux n t2)`, let lem = REAL_ARITH `!n h h'. (&n * h) + (&n * h') = &n * (h + h')` in LIST_INDUCT_TAC THEN SIMP_TAC[POLY_ADD_CLAUSES;poly_diff_aux] THEN LIST_INDUCT_TAC THEN SIMP_TAC[POLY_ADD_CLAUSES;poly_diff_aux] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[POLY_ADD_CLAUSES] THEN ONCE_REWRITE_TAC[poly_diff_aux] THEN ONCE_REWRITE_TAC[POLY_ADD_CLAUSES] THEN ONCE_REWRITE_TAC[lem] THEN ASM_SIMP_TAC[]);; let POLYDIFF_ADD = prove (`!p1 p2. (poly_diff (p1 ++ p2)) = (poly_diff p1 ++ poly_diff p2)`, let lem1 = prove (`!h0 t0 h1 t1. ~(((CONS h0 t0) ++ (CONS h1 t1)) = [])`, SIMP_TAC[POLY_ADD_CLAUSES;NOT_CONS_NIL]) in let lem2 = prove (`!h0 t0 h1 t1. (TL ((CONS h0 t0) ++ (CONS h1 t1)) = (TL (CONS h0 t0)) ++ (TL (CONS h1 t1)))`, REPEAT STRIP_TAC THEN REWRITE_TAC[poly_add] THEN ONCE_REWRITE_TAC[NOT_CONS_NIL] THEN REWRITE_TAC[TL] THEN SIMP_TAC[]) in REPEAT LIST_INDUCT_TAC THENL [SIMP_TAC[poly_add;poly_diff]; SIMP_TAC[poly_add;poly_diff]; SIMP_TAC[poly_add;poly_diff;POLY_ADD_CLAUSES]; SIMP_TAC[poly_diff] THEN ONCE_REWRITE_TAC[lem1;NOT_CONS_NIL] THEN SIMP_TAC[lem2;POLY_DIFF_AUX_ADD_LEMMA] ]);; let POLY_DIFF_AUX_POLY_CMUL = prove (`!p c n. poly_diff_aux n (c ## p) = c ## (poly_diff_aux n p)`, let lem01 = ASSUME `!c n. poly_diff_aux n (c ## t) = c ## poly_diff_aux n t` in let lem02 = SPECL [`c:real`;`SUC n`] lem01 in LIST_INDUCT_TAC THEN STRIP_TAC THEN STRIP_TAC THEN SIMP_TAC[poly_cmul;poly_diff_aux;lem02; REAL_ARITH `(a:real) * b * c = b * a * c`]);; let POLY_CMUL_POLY_DIFF = prove (`!p c. poly_diff (c ## p) = c ## (poly_diff p)`, LIST_INDUCT_TAC THEN SIMP_TAC[poly_diff;POLY_DIFF_AUX_POLY_CMUL;TL_POLY_CMUL; poly_cmul;NOT_CONS_NIL]);; (* ------------------------------------------------------------------------- *) (* Theorems about the lengths of lists from the polynomial operations. *) (* ------------------------------------------------------------------------- *) let POLY_CMUL_LENGTH = prove (`!c p. LENGTH (c ## p) = LENGTH p`, STRIP_TAC THEN LIST_INDUCT_TAC THENL [SIMP_TAC[poly_cmul]; SIMP_TAC[poly_cmul] THEN ASM_SIMP_TAC[LENGTH] ]);; let POLY_ADD_LENGTH = prove (`!p q. LENGTH (p ++ q) = MAX (LENGTH p) (LENGTH q)`, LIST_INDUCT_TAC THENL [SIMP_TAC[poly_add;LENGTH] THEN ARITH_TAC; LIST_INDUCT_TAC THENL [SIMP_TAC[poly_add;LENGTH] THEN ARITH_TAC; SIMP_TAC[poly_add;LENGTH] THEN ONCE_REWRITE_TAC[NOT_CONS_NIL] THEN SIMP_TAC[HD;TL;LENGTH] THEN ASM_SIMP_TAC[] THEN ONCE_REWRITE_TAC[ARITH_RULE `MAX x y = if (x > y) then x else y`] THEN ASM_CASES_TAC `LENGTH (t:(real)list) > LENGTH (t':(real)list)` THENL [ASM_SIMP_TAC[ARITH_RULE `x > y ==> (SUC x) > (SUC y)`]; ASM_SIMP_TAC[ARITH_RULE `~(x > y) ==> ~((SUC x) > (SUC y))`]] ] ]);; let POLY_MUL_LENGTH = prove (`!p h t. LENGTH (p ** (CONS h t)) >= LENGTH p`, let lemma01 = ASSUME `!h t'. LENGTH (t ** CONS h t') >= LENGTH t` in let lemma02 = SPECL [`h':real`;`t':(real)list`] lemma01 in let lemma03 = ONCE_REWRITE_RULE[ARITH_RULE `(x:num) >= y <=> SUC x >= SUC y`] lemma02 in let lemma05 = ARITH_RULE `(y:num) >= z ==> (x + (y - x) >= z) ` in let lemma06 = SPECL [`SUC (LENGTH (t ** (CONS (h':real) t')))`; `LENGTH (h ## (CONS h' t'))`; `SUC (LENGTH (t:(real)list))`] (GEN_ALL lemma05) in let lemma07 = MATCH_MP (lemma06) (lemma03) in LIST_INDUCT_TAC THENL [SIMP_TAC[POLY_MUL_CLAUSES] THEN ARITH_TAC; SIMP_TAC[poly_mul] THEN ASM_CASES_TAC `(t:(real)list) = []` THENL [ASM_SIMP_TAC[POLY_CMUL_LENGTH;LENGTH] THEN ARITH_TAC; ASM_SIMP_TAC[POLY_ADD_LENGTH;LENGTH;lemma07; ARITH_RULE `!x y. (MAX x y) = x + (y - x)`] ] ]);; let POLY_EXP_X_REC = prove (`!n. poly_exp [&0;&1] (SUC n) = CONS (&0) (poly_exp [&0;&1] n)`, let lem01 = MATCH_MP CONS_HD_TL (SPEC `(SUC n)` NOT_POLY_EXP_X_NIL) in let lem02 = ONCE_REWRITE_RULE[HD_POLY_EXP_X_SUC; TL_POLY_EXP_X_SUC] lem01 in ACCEPT_TAC (GEN_ALL lem02));; let POLY_MUL_LENGTH2 = prove (`!q p. ~(q = []) ==> LENGTH (p ** q) >= LENGTH p`, LIST_INDUCT_TAC THEN SIMP_TAC[NOT_CONS_NIL; POLY_MUL_LENGTH]);; let POLY_EXP_X_LENGTH = prove (`!n. LENGTH (poly_exp [&0;&1] n) = SUC n`, INDUCT_TAC THEN ASM_SIMP_TAC[poly_exp;LENGTH; POLY_EXP_X_REC; ARITH_RULE `(SUC x) = (SUC y) <=> x = y`]);; (* ------------------------------------------------------------------------- *) (* Expansion of a polynomial as a power sum. *) (* ------------------------------------------------------------------------- *) let POLY_SUM_EQUIV = prove (`!p x. ~(p = []) ==> poly p x = sum (0..(PRE (LENGTH p))) (\i. (EL i p)*(x pow i))`, let lem000 = ARITH_RULE `0 <= 0 + 1 /\ 0 <= (LENGTH (t:(real)list))` in let lem001 = SPECL [`f:num->real`;`0`;`0`;`LENGTH (t:(real)list)`] SUM_COMBINE_R in let lem002 = MP lem001 lem000 in let lem003 = SPECL [`f:num->real`;`1`;`LENGTH (t:(real)list)`] SUM_OFFSET_0 in let lem004 = ASSUME `~((t:(real)list) = [])` in let lem005 = ONCE_REWRITE_RULE[GSYM LENGTH_EQ_NIL] lem004 in let lem006 = ONCE_REWRITE_RULE[ARITH_RULE `~(x = 0) <=> (1 <= x)`] lem005 in let lem007 = MP lem003 lem006 in let lem017 = ARITH_RULE `1 <= (LENGTH (t:(real)list)) ==> ((LENGTH t) - 1 = PRE (LENGTH t))` in let lem018 = MP lem017 lem006 in LIST_INDUCT_TAC THENL [ SIMP_TAC[NOT_CONS_NIL] ; ASM_CASES_TAC `(t:(real)list) = []` THENL [ ASM_SIMP_TAC[POLY_CONST;LENGTH;PRE] THEN ONCE_REWRITE_TAC[NUMSEG_CONV `0..0`] THEN ONCE_REWRITE_TAC[SUM_SING] THEN BETA_TAC THEN ONCE_REWRITE_TAC[EL] THEN ONCE_REWRITE_TAC[HD] THEN REAL_ARITH_TAC ; ASM_SIMP_TAC[POLY_CONST;LENGTH;PRE] THEN ONCE_REWRITE_TAC[poly] THEN ONCE_REWRITE_TAC[GSYM lem002] THEN ONCE_REWRITE_TAC[ARITH_RULE `0 + 1 = 1`] THEN ONCE_REWRITE_TAC[NUMSEG_CONV `0..0`] THEN ONCE_REWRITE_TAC[SUM_SING] THEN BETA_TAC THEN SIMP_TAC[EL;HD] THEN ONCE_REWRITE_TAC[lem007] THEN BETA_TAC THEN ONCE_REWRITE_TAC[GSYM ADD1] THEN SIMP_TAC[EL;TL] THEN ONCE_REWRITE_TAC[real_pow] THEN ONCE_REWRITE_TAC[REAL_MUL_RID] THEN ONCE_REWRITE_TAC[REAL_ARITH `(A:real) * B * C = B * (A * C)`] THEN ONCE_REWRITE_TAC[NSUM_LMUL] THEN ONCE_REWRITE_TAC[SUM_LMUL] THEN ASM_SIMP_TAC[] THEN SIMP_TAC[NOT_CONS_NIL] THEN ONCE_REWRITE_TAC[lem018] THEN SIMP_TAC[] ]]);; let ITERATE_RADD_POLYADD = prove (`!n x f. iterate (+) (0..n) (\i.poly (f i) x) = poly (iterate (++) (0..n) f) x`, INDUCT_TAC THEN ASM_SIMP_TAC[ITERATE_CLAUSES_NUMSEG; MONOIDAL_REAL_ADD; MONOIDAL_POLY_ADD; LE_0; POLY_ADD]);; (* ------------------------------------------------------------------------- *) (* Now we're finished with polynomials... *) (* ------------------------------------------------------------------------- *) do_list reduce_interface ["divides",`poly_divides:real list->real list->bool`; "exp",`poly_exp:real list -> num -> real list`; "diff",`poly_diff:real list->real list`];; unparse_as_infix "exp";;