(* ========================================================================= *) (* Results connected with topological dimension. *) (* *) (* At the moment this is just Brouwer's fixpoint theorem. The proof is from *) (* Kuhn: "some combinatorial lemmas in topology", IBM J. v4. (1960) p. 518 *) (* See "http://www.research.ibm.com/journal/rd/045/ibmrd0405K.pdf". *) (* *) (* The script below is quite messy, but at least we avoid formalizing any *) (* topological machinery; we don't even use barycentric subdivision; this is *) (* the big advantage of Kuhn's proof over the usual Sperner's lemma one. *) (* *) (* (c) Copyright, John Harrison 1998-2008 *) (* ========================================================================= *) needs "Multivariate/polytope.ml";; let BROUWER_COMPACTNESS_LEMMA = prove (`!f:real^M->real^N s. compact s /\ f continuous_on s /\ ~(?x. x IN s /\ (f x = vec 0)) ==> ?d. &0 < d /\ !x. x IN s ==> d <= norm(f x)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`norm o (f:real^M->real^N)`; `s:real^M->bool`] CONTINUOUS_ATTAINS_INF) THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THENL [MESON_TAC[REAL_LT_01]; ALL_TAC] THEN ASM_SIMP_TAC[CONTINUOUS_ON_COMPOSE; o_ASSOC; CONTINUOUS_ON_LIFT_NORM] THEN REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[NORM_POS_LT]);; let KUHN_LABELLING_LEMMA = prove (`!f:real^N->real^N P Q. (!x. P x ==> P (f x)) ==> (!x. P x ==> (!i. Q i ==> &0 <= x$i /\ x$i <= &1)) ==> ?l. (!x i. l x i <= 1) /\ (!x i. P x /\ Q i /\ (x$i = &0) ==> (l x i = 0)) /\ (!x i. P x /\ Q i /\ (x$i = &1) ==> (l x i = 1)) /\ (!x i. P x /\ Q i /\ (l x i = 0) ==> x$i <= f(x)$i) /\ (!x i. P x /\ Q i /\ (l x i = 1) ==> f(x)$i <= x$i)`, REPEAT GEN_TAC THEN REWRITE_TAC[AND_FORALL_THM; GSYM SKOLEM_THM] THEN REWRITE_TAC[ARITH_RULE `n <= 1 <=> (n = 0) \/ (n = 1)`; RIGHT_OR_DISTRIB; EXISTS_OR_THM; UNWIND_THM2; ARITH_EQ] THEN MESON_TAC[REAL_ARITH `!x y. &0 <= x /\ x <= &1 /\ &0 <= y /\ y <= &1 ==> ~(x = &1) /\ x <= y \/ ~(x = &0) /\ y <= x`]);; (* ------------------------------------------------------------------------- *) (* The key "counting" observation, somewhat abstracted. *) (* ------------------------------------------------------------------------- *) let KUHN_COUNTING_LEMMA = prove (`!face:F->S->bool faces simplices comp comp' bnd. FINITE faces /\ FINITE simplices /\ (!f. f IN faces /\ bnd f ==> (CARD {s | s IN simplices /\ face f s} = 1)) /\ (!f. f IN faces /\ ~bnd f ==> (CARD {s | s IN simplices /\ face f s} = 2)) /\ (!s. s IN simplices /\ comp s ==> (CARD {f | f IN faces /\ face f s /\ comp' f} = 1)) /\ (!s. s IN simplices /\ ~comp s ==> (CARD {f | f IN faces /\ face f s /\ comp' f} = 0) \/ (CARD {f | f IN faces /\ face f s /\ comp' f} = 2)) ==> ODD(CARD {f | f IN faces /\ comp' f /\ bnd f}) ==> ODD(CARD {s | s IN simplices /\ comp s})`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `sum simplices (\s:S. &(CARD {f:F | f IN faces /\ face f s /\ comp' f})) = sum simplices (\s. &(CARD {f | f IN {f | f IN faces /\ comp' f /\ bnd f} /\ face f s})) + sum simplices (\s. &(CARD {f | f IN {f | f IN faces /\ comp' f /\ ~(bnd f)} /\ face f s}))` MP_TAC THENL [ASM_SIMP_TAC[GSYM SUM_ADD] THEN MATCH_MP_TAC SUM_EQ THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN MATCH_MP_TAC CARD_UNION_EQ THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; IN_UNION; NOT_IN_EMPTY] THEN CONJ_TAC THEN GEN_TAC THEN CONV_TAC TAUT; ALL_TAC] THEN MP_TAC(ISPECL [`\s f. (face:F->S->bool) f s`; `simplices:S->bool`; `{f:F | f IN faces /\ comp' f /\ bnd f}`; `1`] SUM_MULTICOUNT) THEN MP_TAC(ISPECL [`\s f. (face:F->S->bool) f s`; `simplices:S->bool`; `{f:F | f IN faces /\ comp' f /\ ~(bnd f)}`; `2`] SUM_MULTICOUNT) THEN REWRITE_TAC[] THEN REPEAT(ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_RESTRICT] THEN GEN_TAC THEN DISCH_THEN(fun th -> FIRST_ASSUM MATCH_MP_TAC THEN MP_TAC th) THEN SIMP_TAC[IN_ELIM_THM]; DISCH_THEN SUBST1_TAC]) THEN SUBGOAL_THEN `sum simplices (\s:S. &(CARD {f:F | f IN faces /\ face f s /\ comp' f})) = sum {s | s IN simplices /\ comp s} (\s:S. &(CARD {f:F | f IN faces /\ face f s /\ comp' f})) + sum {s | s IN simplices /\ ~(comp s)} (\s:S. &(CARD {f:F | f IN faces /\ face f s /\ comp' f}))` SUBST1_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_UNION_EQ THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_ELIM_THM; IN_INTER; IN_UNION] THEN CONJ_TAC THEN GEN_TAC THEN CONV_TAC TAUT; ALL_TAC] THEN SUBGOAL_THEN `sum {s | s IN simplices /\ comp s} (\s:S. &(CARD {f:F | f IN faces /\ face f s /\ comp' f})) = sum {s | s IN simplices /\ comp s} (\s. &1)` SUBST1_TAC THENL [MATCH_MP_TAC SUM_EQ THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN GEN_TAC THEN REWRITE_TAC[REAL_OF_NUM_EQ] THEN DISCH_THEN(fun th -> FIRST_ASSUM MATCH_MP_TAC THEN MP_TAC th) THEN SIMP_TAC[IN_ELIM_THM]; ALL_TAC] THEN SUBGOAL_THEN `sum {s | s IN simplices /\ ~(comp s)} (\s:S. &(CARD {f:F | f IN faces /\ face f s /\ comp' f})) = sum {s | s IN simplices /\ ~(comp s) /\ (CARD {f | f IN faces /\ face f s /\ comp' f} = 0)} (\s:S. &(CARD {f:F | f IN faces /\ face f s /\ comp' f})) + sum {s | s IN simplices /\ ~(comp s) /\ (CARD {f | f IN faces /\ face f s /\ comp' f} = 2)} (\s:S. &(CARD {f:F | f IN faces /\ face f s /\ comp' f}))` SUBST1_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_UNION_EQ THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_INTER; IN_UNION] THEN CONJ_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[ARITH_RULE `~(2 = 0)`]; ALL_TAC] THEN X_GEN_TAC `s:S` THEN UNDISCH_TAC `!s:S. s IN simplices /\ ~comp s ==> (CARD {f:F | f IN faces /\ face f s /\ comp' f} = 0) \/ (CARD {f | f IN faces /\ face f s /\ comp' f} = 2)` THEN DISCH_THEN(MP_TAC o SPEC `s:S`) THEN REWRITE_TAC[IN_ELIM_THM] THEN CONV_TAC TAUT; ALL_TAC] THEN SUBGOAL_THEN `!n. sum {s | s IN simplices /\ ~(comp s) /\ (CARD {f | f IN faces /\ face f s /\ comp' f} = n)} (\s:S. &(CARD {f:F | f IN faces /\ face f s /\ comp' f})) = sum {s | s IN simplices /\ ~(comp s) /\ (CARD {f | f IN faces /\ face f s /\ comp' f} = n)} (\s:S. &n)` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN MATCH_MP_TAC SUM_EQ THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN SIMP_TAC[IN_ELIM_THM]; ALL_TAC] THEN REWRITE_TAC[SUM_0] THEN ASM_SIMP_TAC[SUM_CONST; FINITE_RESTRICT] THEN REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC o GEN_REWRITE_RULE I [ODD_EXISTS]) THEN DISCH_THEN(MP_TAC o AP_TERM `ODD`) THEN REWRITE_TAC[ODD_ADD; ODD_MULT; ARITH_ODD; ODD]);; (* ------------------------------------------------------------------------- *) (* The odd/even result for faces of complete vertices, generalized. *) (* ------------------------------------------------------------------------- *) let HAS_SIZE_1_EXISTS = prove (`!s. s HAS_SIZE 1 <=> ?!x. x IN s`, REPEAT GEN_TAC THEN CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN REWRITE_TAC[EXTENSION; IN_SING] THEN MESON_TAC[]);; let HAS_SIZE_2_EXISTS = prove (`!s. s HAS_SIZE 2 <=> ?x y. ~(x = y) /\ !z. z IN s <=> (z = x) \/ (z = y)`, REPEAT GEN_TAC THEN CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN REWRITE_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);; let IMAGE_LEMMA_0 = prove (`!f:A->B s n. {a | a IN s /\ (IMAGE f (s DELETE a) = t DELETE b)} HAS_SIZE n ==> {s' | ?a. a IN s /\ (s' = s DELETE a) /\ (IMAGE f s' = t DELETE b)} HAS_SIZE n`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `{s' | ?a. a IN s /\ (s' = s DELETE a) /\ (IMAGE f s' = t DELETE b)} = IMAGE (\a. s DELETE a) {a | a IN s /\ (IMAGE (f:A->B) (s DELETE a) = t DELETE b)}` SUBST1_TAC THENL [GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN MESON_TAC[]; MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_DELETE] THEN MESON_TAC[]]);; let IMAGE_LEMMA_1 = prove (`!f:A->B s t b. FINITE s /\ FINITE t /\ (CARD s = CARD t) /\ (IMAGE f s = t) /\ b IN t ==> (CARD {s' | ?a. a IN s /\ (s' = s DELETE a) /\ (IMAGE f s' = t DELETE b)} = 1)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_SIZE_CARD THEN MATCH_MP_TAC IMAGE_LEMMA_0 THEN REWRITE_TAC[HAS_SIZE_1_EXISTS] THEN SUBGOAL_THEN `!x y. x IN s /\ y IN s /\ ((f:A->B) x = f y) ==> (x = y)` ASSUME_TAC THENL [ASM_MESON_TAC[IMAGE_IMP_INJECTIVE_GEN]; ALL_TAC] THEN REWRITE_TAC[EXISTS_UNIQUE_THM; IN_ELIM_THM] THEN CONJ_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN REWRITE_TAC[IN_IMAGE] THENL [DISCH_THEN(fun th -> MP_TAC(SPEC `b:B` th) THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE] THEN ASM_MESON_TAC[]]);; let IMAGE_LEMMA_2 = prove (`!f:A->B s t b. FINITE s /\ FINITE t /\ (CARD s = CARD t) /\ (IMAGE f s) SUBSET t /\ ~(IMAGE f s = t) /\ b IN t ==> (CARD {s' | ?a. a IN s /\ (s' = s DELETE a) /\ (IMAGE f s' = t DELETE b)} = 0) \/ (CARD {s' | ?a. a IN s /\ (s' = s DELETE a) /\ (IMAGE f s' = t DELETE b)} = 2)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `{a | a IN s /\ (IMAGE (f:A->B) (s DELETE a) = t DELETE b)} = {}` THENL [DISJ1_TAC; DISJ2_TAC] THEN MATCH_MP_TAC HAS_SIZE_CARD THEN MATCH_MP_TAC IMAGE_LEMMA_0 THEN ASM_REWRITE_TAC[HAS_SIZE_0; HAS_SIZE_2_EXISTS] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a1:A` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN SUBGOAL_THEN `(f:A->B) a1 IN (t DELETE b)` ASSUME_TAC THENL [REWRITE_TAC[IN_DELETE] THEN ASM_MESON_TAC[SUBSET; IN_IMAGE; INSERT_DELETE; IMAGE_CLAUSES]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN DISCH_THEN(MP_TAC o SPEC `(f:A->B) a1`) THEN ASM_REWRITE_TAC[IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a2:A` THEN REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `!x y. x IN (s DELETE a1) /\ y IN (s DELETE a1) /\ ((f:A->B) x = f y) ==> (x = y)` MP_TAC THENL [MATCH_MP_TAC IMAGE_IMP_INJECTIVE_GEN THEN EXISTS_TAC `t DELETE (b:B)` THEN ASM_SIMP_TAC[CARD_DELETE; FINITE_DELETE]; REWRITE_TAC[IN_DELETE] THEN DISCH_TAC] THEN X_GEN_TAC `a:A` THEN ASM_CASES_TAC `a:A = a1` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(a:A) IN s` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[]] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `(f:A->B) a = f a1` THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[IN_DELETE]] THEN FIRST_X_ASSUM(fun t -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SYM t]) THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `(f:A->B) a`); ALL_TAC] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Combine this with the basic counting lemma. *) (* ------------------------------------------------------------------------- *) let KUHN_COMPLETE_LEMMA = prove (`!face:(A->bool)->(A->bool)->bool simplices rl bnd n. FINITE simplices /\ (!f s. face f s <=> ?a. a IN s /\ (f = s DELETE a)) /\ (!s. s IN simplices ==> s HAS_SIZE (n + 2) /\ (IMAGE rl s) SUBSET 0..n+1) /\ (!f. f IN {f | ?s. s IN simplices /\ face f s} /\ bnd f ==> (CARD {s | s IN simplices /\ face f s} = 1)) /\ (!f. f IN {f | ?s. s IN simplices /\ face f s} /\ ~bnd f ==> (CARD {s | s IN simplices /\ face f s} = 2)) ==> ODD(CARD {f | f IN {f | ?s. s IN simplices /\ face f s} /\ (IMAGE rl f = 0..n) /\ bnd f}) ==> ODD(CARD {s | s IN simplices /\ (IMAGE rl s = 0..n+1)})`, REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!P f:A->bool s. s IN simplices ==> (f IN {f | ?s. s IN simplices /\ (?a. a IN s /\ (f = s DELETE a))} /\ (?a. a IN s /\ (f = s DELETE a)) /\ P f <=> (?a. a IN s /\ (f = s DELETE a) /\ P f))` ASSUME_TAC THENL [ASM_REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `0..n = (0..n+1) DELETE (n+1)` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_NUMSEG; IN_DELETE] THEN ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC KUHN_COUNTING_LEMMA THEN EXISTS_TAC `face:(A->bool)->(A->bool)->bool` THEN REPEAT CONJ_TAC THEN TRY(FIRST_ASSUM ACCEPT_TAC) THEN ASM_SIMP_TAC[] THENL [SUBGOAL_THEN `{f:A->bool | ?s. s IN simplices /\ (?a. a IN s /\ (f = s DELETE a))} = UNIONS (IMAGE (\s. {f | ?a. a IN s /\ (f = s DELETE a)}) simplices)` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; UNIONS_IMAGE; IN_ELIM_THM]; ALL_TAC] THEN ASM_SIMP_TAC[FINITE_UNIONS; FINITE_IMAGE] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{t:A->bool | t SUBSET s}` THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_POWERSET THEN ASM_MESON_TAC[HAS_SIZE]; SIMP_TAC[SUBSET; IN_ELIM_THM; LEFT_IMP_EXISTS_THM; IN_DELETE]]; REPEAT STRIP_TAC THEN MATCH_MP_TAC IMAGE_LEMMA_1; REPEAT STRIP_TAC THEN MATCH_MP_TAC IMAGE_LEMMA_2] THEN ASM_REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; LE_0; LE_REFL] THEN REWRITE_TAC[CARD_NUMSEG; ARITH_RULE `((n + 1) + 1) - 0 = n + 2`] THEN ASM_MESON_TAC[HAS_SIZE]);; (* ------------------------------------------------------------------------- *) (* We use the following notion of ordering rather than pointwise indexing. *) (* ------------------------------------------------------------------------- *) let kle = new_definition `kle n x y <=> ?k. k SUBSET 1..n /\ (!j. y(j) = x(j) + (if j IN k then 1 else 0))`;; let KLE_REFL = prove (`!n x. kle n x x`, REPEAT GEN_TAC THEN REWRITE_TAC[kle] THEN EXISTS_TAC `{}:num->bool` THEN REWRITE_TAC[ADD_CLAUSES; NOT_IN_EMPTY; EMPTY_SUBSET]);; let KLE_ANTISYM = prove (`!n x y. kle n x y /\ kle n y x <=> (x = y)`, REPEAT GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[kle]; MESON_TAC[KLE_REFL]] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[ARITH_RULE `(x = (x + a) + b) ==> (x = x + a:num)`]);; let POINTWISE_MINIMAL,POINTWISE_MAXIMAL = (CONJ_PAIR o prove) (`(!s:(num->num)->bool. FINITE s ==> ~(s = {}) /\ (!x y. x IN s /\ y IN s ==> (!j. x(j) <= y(j)) \/ (!j. y(j) <= x(j))) ==> ?a. a IN s /\ !x. x IN s ==> !j. a(j) <= x(j)) /\ (!s:(num->num)->bool. FINITE s ==> ~(s = {}) /\ (!x y. x IN s /\ y IN s ==> (!j. x(j) <= y(j)) \/ (!j. y(j) <= x(j))) ==> ?a. a IN s /\ !x. x IN s ==> !j. x(j) <= a(j))`, CONJ_TAC THEN (MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[NOT_INSERT_EMPTY] THEN MAP_EVERY X_GEN_TAC [`a:num->num`; `s:(num->num)->bool`] THEN ASM_CASES_TAC `s:(num->num)->bool = {}` THEN ASM_REWRITE_TAC[] THENL [REWRITE_TAC[IN_SING] THEN MESON_TAC[LE_REFL]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ANTS_TAC THENL [ASM_MESON_TAC[IN_INSERT]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `b:num->num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a:num->num`; `b:num->num`]) THEN ASM_REWRITE_TAC[IN_INSERT] THEN ASM_MESON_TAC[LE_CASES; LE_TRANS]));; let KLE_IMP_POINTWISE = prove (`!n x y. kle n x y ==> !j. x(j) <= y(j)`, REWRITE_TAC[kle] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[LE_ADD]);; let POINTWISE_ANTISYM = prove (`!x y:num->num. (!j. x(j) <= y(j)) /\ (!j. y(j) <= x(j)) <=> (x = y)`, REWRITE_TAC[AND_FORALL_THM; FUN_EQ_THM; LE_ANTISYM]);; let KLE_TRANS = prove (`!x y z n. kle n x y /\ kle n y z /\ (kle n x z \/ kle n z x) ==> kle n x z`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `x:num->num = z` (fun th -> REWRITE_TAC[KLE_REFL; th]) THEN REWRITE_TAC[FUN_EQ_THM; GSYM LE_ANTISYM; FORALL_AND_THM] THEN ASM_MESON_TAC[KLE_IMP_POINTWISE; LE_TRANS]);; let KLE_STRICT = prove (`!n x y. kle n x y /\ ~(x = y) ==> (!j. x(j) <= y(j)) /\ (?k. 1 <= k /\ k <= n /\ x(k) < y(k))`, REPEAT GEN_TAC THEN REWRITE_TAC[kle] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `k:num->bool` MP_TAC) THEN ASM_CASES_TAC `k:num->bool = {}` THENL [ASM_REWRITE_TAC[NOT_IN_EMPTY; ADD_CLAUSES; GSYM FUN_EQ_THM; ETA_AX]; STRIP_TAC THEN ASM_REWRITE_TAC[LE_ADD] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[ARITH_RULE `n < n + 1`] THEN ASM_MESON_TAC[SUBSET; IN_NUMSEG]]);; let KLE_MINIMAL = prove (`!s n. FINITE s /\ ~(s = {}) /\ (!x y. x IN s /\ y IN s ==> kle n x y \/ kle n y x) ==> ?a. a IN s /\ !x. x IN s ==> kle n a x`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?a:num->num. a IN s /\ !x. x IN s ==> !j. a(j) <= x(j)` MP_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[IMP_IMP] POINTWISE_MINIMAL); ALL_TAC] THEN ASM_MESON_TAC[POINTWISE_ANTISYM; KLE_IMP_POINTWISE]);; let KLE_MAXIMAL = prove (`!s n. FINITE s /\ ~(s = {}) /\ (!x y. x IN s /\ y IN s ==> kle n x y \/ kle n y x) ==> ?a. a IN s /\ !x. x IN s ==> kle n x a`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?a:num->num. a IN s /\ !x. x IN s ==> !j. x(j) <= a(j)` MP_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[IMP_IMP] POINTWISE_MAXIMAL); ALL_TAC] THEN ASM_MESON_TAC[POINTWISE_ANTISYM; KLE_IMP_POINTWISE]);; let KLE_STRICT_SET = prove (`!n x y. kle n x y /\ ~(x = y) ==> 1 <= CARD {k | k IN 1..n /\ x(k) < y(k)}`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP KLE_STRICT) THEN DISCH_THEN(X_CHOOSE_THEN `i:num` STRIP_ASSUME_TAC o CONJUNCT2) THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD {i:num}` THEN CONJ_TAC THENL [SIMP_TAC[CARD_CLAUSES; FINITE_RULES; ARITH; NOT_IN_EMPTY]; MATCH_MP_TAC CARD_SUBSET THEN SIMP_TAC[FINITE_RESTRICT; FINITE_NUMSEG] THEN SIMP_TAC[IN_ELIM_THM; IN_NUMSEG; SUBSET; IN_SING] THEN ASM_MESON_TAC[]]);; let KLE_RANGE_COMBINE = prove (`!n x y m1 m2. kle n x y /\ kle n y z /\ (kle n x z \/ kle n z x) /\ m1 <= CARD {k | k IN 1..n /\ x(k) < y(k)} /\ m2 <= CARD {k | k IN 1..n /\ y(k) < z(k)} ==> kle n x z /\ m1 + m2 <= CARD {k | k IN 1..n /\ x(k) < z(k)}`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; DISCH_TAC] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD {k | k IN 1..n /\ x(k):num < y(k)} + CARD {k | k IN 1..n /\ y(k) < z(k)}` THEN ASM_SIMP_TAC[LE_ADD2] THEN MATCH_MP_TAC EQ_IMP_LE THEN MATCH_MP_TAC CARD_UNION_EQ THEN SIMP_TAC[FINITE_RESTRICT; FINITE_NUMSEG] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; IN_UNION; NOT_IN_EMPTY] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[KLE_IMP_POINTWISE; ARITH_RULE `x <= y:num /\ y <= z ==> (x < y \/ y < z <=> x < z)`]] THEN X_GEN_TAC `i:num` THEN UNDISCH_TAC `kle n x z` THEN REWRITE_TAC[kle] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `i IN 1..n` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(ARITH_RULE `d <= 1 ==> ~(a < x /\ x < a + d)`) THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH]);; let KLE_RANGE_COMBINE_L = prove (`!n x y m. kle n x y /\ kle n y z /\ (kle n x z \/ kle n z x) /\ m <= CARD {k | k IN 1..n /\ y(k) < z(k)} ==> kle n x z /\ m <= CARD {k | k IN 1..n /\ x(k) < z(k)}`, REPEAT GEN_TAC THEN ASM_CASES_TAC `x:num->num = y` THEN ASM_SIMP_TAC[] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN SUBGOAL_THEN `kle n x z /\ 1 + m <= CARD {k | k IN 1 .. n /\ x k < z k}` (fun th -> MESON_TAC[th; ARITH_RULE `1 + m <= x ==> m <= x`]) THEN MATCH_MP_TAC KLE_RANGE_COMBINE THEN EXISTS_TAC `y:num->num` THEN ASM_SIMP_TAC[KLE_STRICT_SET]);; let KLE_RANGE_COMBINE_R = prove (`!n x y m. kle n x y /\ kle n y z /\ (kle n x z \/ kle n z x) /\ m <= CARD {k | k IN 1..n /\ x(k) < y(k)} ==> kle n x z /\ m <= CARD {k | k IN 1..n /\ x(k) < z(k)}`, REPEAT GEN_TAC THEN ASM_CASES_TAC `y:num->num = z` THEN ASM_SIMP_TAC[] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN SUBGOAL_THEN `kle n x z /\ m + 1 <= CARD {k | k IN 1 .. n /\ x k < z k}` (fun th -> MESON_TAC[th; ARITH_RULE `m + 1 <= x ==> m <= x`]) THEN MATCH_MP_TAC KLE_RANGE_COMBINE THEN EXISTS_TAC `y:num->num` THEN ASM_SIMP_TAC[KLE_STRICT_SET]);; let KLE_RANGE_INDUCT = prove (`!n m s. s HAS_SIZE (SUC m) ==> (!x y. x IN s /\ y IN s ==> kle n x y \/ kle n y x) ==> ?x y. x IN s /\ y IN s /\ kle n x y /\ m <= CARD {k | k IN 1..n /\ x(k) < y(k)}`, GEN_TAC THEN INDUCT_TAC THENL [GEN_TAC THEN REWRITE_TAC[ARITH; LE_0] THEN CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN MESON_TAC[IN_SING; KLE_REFL]; ALL_TAC] THEN X_GEN_TAC `s:(num->num)->bool` THEN ONCE_REWRITE_TAC[HAS_SIZE_SUC] THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`s:(num->num)->bool`; `n:num`] KLE_MINIMAL) THEN ANTS_TAC THENL [ASM_MESON_TAC[HAS_SIZE_SUC; HAS_SIZE]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:num->num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s DELETE (a:num->num)`) THEN REPEAT(ANTS_TAC THENL [ASM_MESON_TAC[IN_DELETE]; ALL_TAC]) THEN DISCH_THEN(X_CHOOSE_THEN `x:num->num` MP_TAC) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:num->num` THEN REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ARITH_RULE `SUC m = 1 + m`] THEN MATCH_MP_TAC KLE_RANGE_COMBINE THEN EXISTS_TAC `x:num->num` THEN ASM_SIMP_TAC[KLE_STRICT_SET]);; let KLE_SUC = prove (`!n x y. kle n x y ==> kle (n + 1) x y`, REPEAT GEN_TAC THEN REWRITE_TAC[kle] THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[SUBSET; IN_NUMSEG] THEN MESON_TAC[ARITH_RULE `k <= n ==> k <= n + 1`]);; let KLE_TRANS_1 = prove (`!n x y. kle n x y ==> !j. x j <= y j /\ y j <= x j + 1`, SIMP_TAC[kle; LEFT_IMP_EXISTS_THM] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ARITH_TAC);; let KLE_TRANS_2 = prove (`!a b c. kle n a b /\ kle n b c /\ (!j. c j <= a j + 1) ==> kle n a c`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[kle] THEN DISCH_THEN(X_CHOOSE_THEN `kk1:num->bool` STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `kk2:num->bool` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> EXISTS_TAC `(kk1:num->bool) UNION kk2` THEN MP_TAC th) THEN ASM_REWRITE_TAC[UNION_SUBSET; IN_UNION] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `(i:num) IN kk1` THEN ASM_CASES_TAC `(i:num) IN kk2` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC);; let KLE_BETWEEN_R = prove (`!a b c x. kle n a b /\ kle n b c /\ kle n a x /\ kle n c x ==> kle n b x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC KLE_TRANS_2 THEN EXISTS_TAC `c:num->num` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[KLE_TRANS_1; ARITH_RULE `x <= c + 1 /\ c <= b ==> x <= b + 1`]);; let KLE_BETWEEN_L = prove (`!a b c x. kle n a b /\ kle n b c /\ kle n x a /\ kle n x c ==> kle n x b`, REPEAT STRIP_TAC THEN MATCH_MP_TAC KLE_TRANS_2 THEN EXISTS_TAC `a:num->num` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[KLE_TRANS_1; ARITH_RULE `c <= x + 1 /\ b <= c ==> b <= x + 1`]);; let KLE_ADJACENT = prove (`!a b x k. 1 <= k /\ k <= n /\ (!j. b(j) = if j = k then a(j) + 1 else a(j)) /\ kle n a x /\ kle n x b ==> (x = a) \/ (x = b)`, REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP KLE_IMP_POINTWISE)) THEN ASM_REWRITE_TAC[FUN_EQ_THM; IMP_IMP; AND_FORALL_THM] THEN ASM_CASES_TAC `(x:num->num) k = a k` THENL [DISCH_THEN(fun th -> DISJ1_TAC THEN MP_TAC th); DISCH_THEN(fun th -> DISJ2_TAC THEN MP_TAC th)] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[LE_ANTISYM] THEN ASM_MESON_TAC[ARITH_RULE `a <= x /\ x <= a + 1 /\ ~(x = a) ==> (x = a + 1)`]);; (* ------------------------------------------------------------------------- *) (* Kuhn's notion of a simplex (my reformulation to avoid so much indexing). *) (* ------------------------------------------------------------------------- *) let ksimplex = new_definition `ksimplex p n s <=> s HAS_SIZE (n + 1) /\ (!x j. x IN s ==> x(j) <= p) /\ (!x j. x IN s /\ ~(1 <= j /\ j <= n) ==> (x j = p)) /\ (!x y. x IN s /\ y IN s ==> kle n x y \/ kle n y x)`;; let KSIMPLEX_EXTREMA = prove (`!p n s. ksimplex p n s ==> ?a b. a IN s /\ b IN s /\ (!x. x IN s ==> kle n a x /\ kle n x b) /\ (!i. b(i) = if 1 <= i /\ i <= n then a(i) + 1 else a(i))`, REPEAT GEN_TAC THEN REWRITE_TAC[ksimplex] THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[ARITH_RULE `1 <= i /\ i <= 0 <=> F`; GSYM FUN_EQ_THM] THEN REWRITE_TAC[ADD_CLAUSES; ETA_AX] THEN CONV_TAC(LAND_CONV(LAND_CONV HAS_SIZE_CONV)) THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[IN_SING] THEN MESON_TAC[KLE_REFL]; ALL_TAC] THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`s:(num->num)->bool`; `n:num`] KLE_MINIMAL) THEN ANTS_TAC THENL [ASM_MESON_TAC[HAS_SIZE; HAS_SIZE_SUC; ADD1]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:num->num` THEN STRIP_TAC THEN MP_TAC(SPECL [`s:(num->num)->bool`; `n:num`] KLE_MAXIMAL) THEN ANTS_TAC THENL [ASM_MESON_TAC[HAS_SIZE; HAS_SIZE_SUC; ADD1]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:num->num` THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN MP_TAC(SPECL [`n:num`; `n:num`; `s:(num->num)->bool`] KLE_RANGE_INDUCT) THEN ASM_REWRITE_TAC[ADD1] THEN DISCH_THEN(X_CHOOSE_THEN `c:num->num` (X_CHOOSE_THEN `d:num->num` STRIP_ASSUME_TAC)) THEN SUBGOAL_THEN `{k | k IN 1 .. n /\ a k :num < b k} = 1..n` MP_TAC THENL [MATCH_MP_TAC CARD_SUBSET_LE THEN ASM_REWRITE_TAC[CARD_NUMSEG; ADD_SUB; FINITE_NUMSEG; SUBSET_RESTRICT] THEN SUBGOAL_THEN `kle n a b /\ n <= CARD {k | k IN 1..n /\ a(k) < b(k)}` (fun th -> REWRITE_TAC[th]) THEN MATCH_MP_TAC KLE_RANGE_COMBINE_L THEN EXISTS_TAC `c:num->num` THEN ASM_SIMP_TAC[] THEN SUBGOAL_THEN `kle n c b /\ n <= CARD {k | k IN 1 .. n /\ c k < b k}` (fun th -> REWRITE_TAC[th]) THEN MATCH_MP_TAC KLE_RANGE_COMBINE_R THEN EXISTS_TAC `d:num->num` THEN ASM_SIMP_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `kle n a b` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [kle]) THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:num` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; LT_REFL] THEN ASM_MESON_TAC[SUBSET; IN_NUMSEG]);; let KSIMPLEX_EXTREMA_STRONG = prove (`!p n s. ksimplex p n s /\ ~(n = 0) ==> ?a b. a IN s /\ b IN s /\ ~(a = b) /\ (!x. x IN s ==> kle n a x /\ kle n x b) /\ (!i. b(i) = if 1 <= i /\ i <= n then a(i) + 1 else a(i))`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP KSIMPLEX_EXTREMA) THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `1`) THEN ASM_REWRITE_TAC[LE_REFL; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN ARITH_TAC);; let KSIMPLEX_SUCCESSOR = prove (`!a p n s. ksimplex p n s /\ a IN s ==> (!x. x IN s ==> kle n x a) \/ (?y. y IN s /\ ?k. 1 <= k /\ k <= n /\ !j. y(j) = if j = k then a(j) + 1 else a(j))`, REWRITE_TAC[ksimplex] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN DISCH_TAC THEN MP_TAC(SPECL [`{x | x IN s /\ ~kle n x a}`; `n:num`] KLE_MINIMAL) THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN ASM_SIMP_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:num->num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `1 <= CARD {k | k IN 1..n /\ a(k):num < b(k)}` MP_TAC THENL [MATCH_MP_TAC KLE_STRICT_SET THEN ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC o MATCH_MP (ARITH_RULE `1 <= n ==> (n = 1) \/ 2 <= n`)) THENL [DISCH_TAC THEN MP_TAC(HAS_SIZE_CONV `{k | k IN 1 .. n /\ a k :num < b k} HAS_SIZE 1`) THEN ASM_SIMP_TAC[HAS_SIZE; FINITE_RESTRICT; FINITE_NUMSEG] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING; IN_NUMSEG] THEN DISCH_THEN(fun th -> CONJ_TAC THENL [MESON_TAC[th]; MP_TAC th]) THEN DISCH_THEN(fun th -> CONJ_TAC THENL [MESON_TAC[th]; MP_TAC th]) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:num` THEN SUBGOAL_THEN `kle n a b` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [kle]) THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; LT_REFL] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; LT_REFL] THEN ASM_MESON_TAC[SUBSET; IN_NUMSEG; ARITH_RULE `~(a + 1 = a)`; ARITH_RULE `a < a + 1`]; ALL_TAC] THEN DISCH_TAC THEN MP_TAC(SPECL [`n:num`; `PRE(CARD {x | x IN s /\ ~(kle n x a)})`; `{x | x IN s /\ ~(kle n x a)}`] KLE_RANGE_INDUCT) THEN ASM_SIMP_TAC[HAS_SIZE; FINITE_RESTRICT; CARD_EQ_0; GSYM MEMBER_NOT_EMPTY; ARITH_RULE `(n = SUC(PRE n)) <=> ~(n = 0)`] THEN REPEAT(ANTS_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC]) THEN DISCH_THEN(X_CHOOSE_THEN `c:num->num` (X_CHOOSE_THEN `d:num->num` MP_TAC)) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 (STRIP_ASSUME_TAC o REWRITE_RULE[IN_ELIM_THM]) MP_TAC)) THEN DISCH_TAC THEN MP_TAC(SPECL [`n:num`; `PRE(CARD {x | x IN s /\ kle n x a})`; `{x | x IN s /\ kle n x a}`] KLE_RANGE_INDUCT) THEN ASM_SIMP_TAC[HAS_SIZE; FINITE_RESTRICT; CARD_EQ_0; GSYM MEMBER_NOT_EMPTY; ARITH_RULE `(n = SUC(PRE n)) <=> ~(n = 0)`] THEN REPEAT(ANTS_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[KLE_REFL]; ALL_TAC]) THEN DISCH_THEN(X_CHOOSE_THEN `e:num->num` (X_CHOOSE_THEN `f:num->num` MP_TAC)) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 (STRIP_ASSUME_TAC o REWRITE_RULE[IN_ELIM_THM]) MP_TAC)) THEN DISCH_TAC THEN SUBGOAL_THEN `kle n e d /\ n + 1 <= CARD {k | k IN 1..n /\ e(k) < d(k)}` MP_TAC THENL [ALL_TAC; ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ARITH_RULE `~(n + 1 <= x) <=> x <= n`] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD(1..n)` THEN SIMP_TAC[CARD_SUBSET; SUBSET_RESTRICT; FINITE_RESTRICT; FINITE_NUMSEG] THEN REWRITE_TAC[CARD_NUMSEG; ADD_SUB; LE_REFL]] THEN SUBGOAL_THEN `(CARD {x | x IN s /\ kle n x a} - 1) + 2 + (CARD {x | x IN s /\ ~kle n x a} - 1) = n + 1` (SUBST1_TAC o SYM) THENL [MATCH_MP_TAC(ARITH_RULE `~(a = 0) /\ ~(b = 0) /\ (a + b = n + 1) ==> ((a - 1) + 2 + (b - 1) = n + 1)`) THEN ASM_SIMP_TAC[CARD_EQ_0; FINITE_RESTRICT; GSYM MEMBER_NOT_EMPTY] THEN REPEAT (CONJ_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC]) THEN FIRST_ASSUM(SUBST1_TAC o SYM o CONJUNCT2) THEN MATCH_MP_TAC CARD_UNION_EQ THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_INTER; IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC KLE_RANGE_COMBINE THEN EXISTS_TAC `a:num->num` THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; ALL_TAC] THEN CONJ_TAC THENL [W(fun(asl,w) -> SUBGOAL_THEN(mk_conj(`kle n e a`,w)) (fun th -> REWRITE_TAC[th])) THEN MATCH_MP_TAC KLE_RANGE_COMBINE_R THEN EXISTS_TAC `f:num->num` THEN ASM_REWRITE_TAC[ARITH_RULE `k - 1 = PRE k`]; ALL_TAC] THEN W(fun(asl,w) -> SUBGOAL_THEN(mk_conj(`kle n a d`,w)) (fun th -> REWRITE_TAC[th])) THEN MATCH_MP_TAC KLE_RANGE_COMBINE THEN EXISTS_TAC `b:num->num` THEN ASM_REWRITE_TAC[ARITH_RULE `k - 1 = PRE k`] THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; ALL_TAC] THEN W(fun(asl,w) -> SUBGOAL_THEN(mk_conj(`kle n b d`,w)) (fun th -> REWRITE_TAC[th])) THEN MATCH_MP_TAC KLE_RANGE_COMBINE_L THEN EXISTS_TAC `c:num->num` THEN ASM_REWRITE_TAC[ARITH_RULE `k - 1 = PRE k`] THEN ASM_MESON_TAC[KLE_TRANS]);; let KSIMPLEX_PREDECESSOR = prove (`!a p n s. ksimplex p n s /\ a IN s ==> (!x. x IN s ==> kle n a x) \/ (?y. y IN s /\ ?k. 1 <= k /\ k <= n /\ !j. a(j) = if j = k then y(j) + 1 else y(j))`, REWRITE_TAC[ksimplex] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN DISCH_TAC THEN MP_TAC(SPECL [`{x | x IN s /\ ~kle n a x}`; `n:num`] KLE_MAXIMAL) THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN ASM_SIMP_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:num->num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `1 <= CARD {k | k IN 1..n /\ b(k):num < a(k)}` MP_TAC THENL [MATCH_MP_TAC KLE_STRICT_SET THEN ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC o MATCH_MP (ARITH_RULE `1 <= n ==> (n = 1) \/ 2 <= n`)) THENL [DISCH_TAC THEN MP_TAC(HAS_SIZE_CONV `{k | k IN 1 .. n /\ b k :num < a k} HAS_SIZE 1`) THEN ASM_SIMP_TAC[HAS_SIZE; FINITE_RESTRICT; FINITE_NUMSEG] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING; IN_NUMSEG] THEN DISCH_THEN(fun th -> CONJ_TAC THENL [MESON_TAC[th]; MP_TAC th]) THEN DISCH_THEN(fun th -> CONJ_TAC THENL [MESON_TAC[th]; MP_TAC th]) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:num` THEN SUBGOAL_THEN `kle n b a` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [kle]) THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; LT_REFL] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; LT_REFL] THEN ASM_MESON_TAC[SUBSET; IN_NUMSEG; ARITH_RULE `~(a + 1 = a)`; ARITH_RULE `a < a + 1`]; ALL_TAC] THEN DISCH_TAC THEN MP_TAC(SPECL [`n:num`; `PRE(CARD {x | x IN s /\ ~(kle n a x)})`; `{x | x IN s /\ ~(kle n a x)}`] KLE_RANGE_INDUCT) THEN ASM_SIMP_TAC[HAS_SIZE; FINITE_RESTRICT; CARD_EQ_0; GSYM MEMBER_NOT_EMPTY; ARITH_RULE `(n = SUC(PRE n)) <=> ~(n = 0)`] THEN REPEAT(ANTS_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC]) THEN DISCH_THEN(X_CHOOSE_THEN `d:num->num` (X_CHOOSE_THEN `c:num->num` MP_TAC)) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 (STRIP_ASSUME_TAC o REWRITE_RULE[IN_ELIM_THM]) MP_TAC)) THEN DISCH_TAC THEN MP_TAC(SPECL [`n:num`; `PRE(CARD {x | x IN s /\ kle n a x})`; `{x | x IN s /\ kle n a x}`] KLE_RANGE_INDUCT) THEN ASM_SIMP_TAC[HAS_SIZE; FINITE_RESTRICT; CARD_EQ_0; GSYM MEMBER_NOT_EMPTY; ARITH_RULE `(n = SUC(PRE n)) <=> ~(n = 0)`] THEN REPEAT(ANTS_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[KLE_REFL]; ALL_TAC]) THEN DISCH_THEN(X_CHOOSE_THEN `f:num->num` (X_CHOOSE_THEN `e:num->num` MP_TAC)) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 (STRIP_ASSUME_TAC o REWRITE_RULE[IN_ELIM_THM]) MP_TAC)) THEN DISCH_TAC THEN SUBGOAL_THEN `kle n d e /\ n + 1 <= CARD {k | k IN 1..n /\ d(k) < e(k)}` MP_TAC THENL [ALL_TAC; ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ARITH_RULE `~(n + 1 <= x) <=> x <= n`] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD(1..n)` THEN SIMP_TAC[CARD_SUBSET; SUBSET_RESTRICT; FINITE_RESTRICT; FINITE_NUMSEG] THEN REWRITE_TAC[CARD_NUMSEG; ADD_SUB; LE_REFL]] THEN SUBGOAL_THEN `((CARD {x | x IN s /\ ~kle n a x} - 1) + 2) + (CARD {x | x IN s /\ kle n a x} - 1) = n + 1` (SUBST1_TAC o SYM) THENL [MATCH_MP_TAC(ARITH_RULE `~(a = 0) /\ ~(b = 0) /\ (a + b = n + 1) ==> (((b - 1) + 2) + (a - 1) = n + 1)`) THEN ASM_SIMP_TAC[CARD_EQ_0; FINITE_RESTRICT; GSYM MEMBER_NOT_EMPTY] THEN REPEAT (CONJ_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC]) THEN FIRST_ASSUM(SUBST1_TAC o SYM o CONJUNCT2) THEN MATCH_MP_TAC CARD_UNION_EQ THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_INTER; IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC KLE_RANGE_COMBINE THEN EXISTS_TAC `a:num->num` THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; W(fun(asl,w) -> SUBGOAL_THEN(mk_conj(`kle n a e`,w)) (fun th -> REWRITE_TAC[th])) THEN MATCH_MP_TAC KLE_RANGE_COMBINE_L THEN EXISTS_TAC `f:num->num` THEN ASM_REWRITE_TAC[ARITH_RULE `k - 1 = PRE k`]] THEN W(fun(asl,w) -> SUBGOAL_THEN(mk_conj(`kle n d a`,w)) (fun th -> REWRITE_TAC[th])) THEN MATCH_MP_TAC KLE_RANGE_COMBINE THEN EXISTS_TAC `b:num->num` THEN ASM_REWRITE_TAC[ARITH_RULE `k - 1 = PRE k`] THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_TRANS]; ALL_TAC] THEN W(fun(asl,w) -> SUBGOAL_THEN(mk_conj(`kle n d b`,w)) (fun th -> REWRITE_TAC[th])) THEN MATCH_MP_TAC KLE_RANGE_COMBINE_R THEN EXISTS_TAC `c:num->num` THEN ASM_REWRITE_TAC[ARITH_RULE `k - 1 = PRE k`] THEN ASM_MESON_TAC[KLE_TRANS]);; (* ------------------------------------------------------------------------- *) (* The lemmas about simplices that we need. *) (* ------------------------------------------------------------------------- *) let FINITE_SIMPLICES = prove (`!p n. FINITE {s | ksimplex p n s}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{s | s SUBSET {f | (!i. i IN 1..n ==> f(i) IN 0..p) /\ (!i. ~(i IN 1..n) ==> (f(i) = p))}}` THEN ASM_SIMP_TAC[FINITE_POWERSET; FINITE_FUNSPACE; FINITE_NUMSEG] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; ksimplex] THEN ASM_SIMP_TAC[IN_NUMSEG; LE_0]);; let SIMPLEX_TOP_FACE = prove (`0 < p /\ (!x. x IN f ==> (x(n + 1) = p)) ==> ((?s a. ksimplex p (n + 1) s /\ a IN s /\ (f = s DELETE a)) <=> ksimplex p n f)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [REWRITE_TAC[ksimplex; LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[IN_DELETE] THEN REPEAT CONJ_TAC THENL [UNDISCH_TAC `(s:(num->num)->bool) HAS_SIZE ((n + 1) + 1)` THEN SIMP_TAC[HAS_SIZE; CARD_DELETE; FINITE_DELETE] THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ARITH_TAC; REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; GEN_TAC THEN X_GEN_TAC `j:num` THEN ONCE_REWRITE_TAC[ARITH_RULE `(1 <= j /\ j <= n) <=> (1 <= j /\ j <= n + 1) /\ ~(j = (n + 1))`] THEN ASM_MESON_TAC[IN_DELETE]; REPEAT STRIP_TAC THEN SUBGOAL_THEN `kle (n + 1) x y \/ kle (n + 1) y x` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_OR THEN CONJ_TAC THEN (REWRITE_TAC[kle] THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[GSYM ADD1; NUMSEG_CLAUSES; ARITH_RULE `1 <= SUC n`] THEN X_GEN_TAC `k:num->bool` THEN SIMP_TAC[] THEN REWRITE_TAC[SUBSET; IN_INSERT] THEN ASM_CASES_TAC `(SUC n) IN k` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN DISCH_THEN(MP_TAC o SPEC `n + 1` o CONJUNCT2) THEN ASM_REWRITE_TAC[GSYM ADD1] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC(ARITH_RULE `(x = p) /\ (y = p) ==> ~(x = SUC y)`) THEN CONJ_TAC THEN ASM_MESON_TAC[ADD1; IN_DELETE])]; ALL_TAC] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP KSIMPLEX_EXTREMA) THEN DISCH_THEN(X_CHOOSE_THEN `a:num->num` (X_CHOOSE_THEN `b:num->num` STRIP_ASSUME_TAC)) THEN ABBREV_TAC `c = \i. if i = (n + 1) then p - 1 else a(i)` THEN MAP_EVERY EXISTS_TAC [`(c:num->num) INSERT f`; `c:num->num`] THEN REWRITE_TAC[IN_INSERT; DELETE_INSERT] THEN SUBGOAL_THEN `~((c:num->num) IN f)` ASSUME_TAC THENL [DISCH_TAC THEN UNDISCH_TAC `!x:num->num. x IN f ==> (x (n + 1) = p)` THEN DISCH_THEN(MP_TAC o SPEC `c:num->num`) THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "c" THEN REWRITE_TAC[] THEN UNDISCH_TAC `0 < p` THEN ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; UNDISCH_TAC `~((c:num->num) IN f)` THEN SET_TAC[]] THEN UNDISCH_TAC `ksimplex p n f` THEN REWRITE_TAC[ksimplex] THEN REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THENL [SIMP_TAC[HAS_SIZE; FINITE_RULES; CARD_CLAUSES] THEN ASM_REWRITE_TAC[ADD1]; EXPAND_TAC "c" THEN REWRITE_TAC[IN_INSERT] THEN SIMP_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN ASM_MESON_TAC[ARITH_RULE `p - 1 <= p`]; EXPAND_TAC "c" THEN REWRITE_TAC[IN_INSERT; TAUT `(a \/ b) /\ c ==> d <=> (a /\ c ==> d) /\ (b /\ c ==> d)`] THEN DISCH_TAC THEN REPEAT GEN_TAC THEN CONJ_TAC THENL [DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC MP_TAC); ALL_TAC] THEN ASM_MESON_TAC[LE_REFL; ARITH_RULE `1 <= n + 1`; ARITH_RULE `j <= n ==> j <= n + 1`]; ALL_TAC] THEN DISCH_TAC THEN REWRITE_TAC[IN_INSERT] THEN SUBGOAL_THEN `!x. x IN f ==> kle (n + 1) c x` (fun th -> ASM_MESON_TAC[th; KLE_SUC; KLE_REFL]) THEN X_GEN_TAC `x:num->num` THEN DISCH_TAC THEN SUBGOAL_THEN `kle (n + 1) a x` MP_TAC THENL [ASM_MESON_TAC[KLE_SUC]; ALL_TAC] THEN EXPAND_TAC "c" THEN REWRITE_TAC[kle] THEN DISCH_THEN(X_CHOOSE_THEN `k:num->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(n + 1) INSERT k` THEN ASM_REWRITE_TAC[INSERT_SUBSET; IN_NUMSEG] THEN ASM_REWRITE_TAC[LE_REFL; ARITH_RULE `1 <= n + 1`] THEN X_GEN_TAC `j:num` THEN REWRITE_TAC[IN_INSERT] THEN ASM_CASES_TAC `j = n + 1` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `~(n + 1 IN k)` (fun th -> ASM_MESON_TAC[th; ARITH_RULE `0 < p ==> (p = (p - 1) + 1)`]) THEN DISCH_TAC THEN UNDISCH_TAC `!x:num->num. x IN f ==> (x (n + 1) = p)` THEN DISCH_THEN(fun th -> MP_TAC(SPEC `x:num->num` th) THEN MP_TAC(SPEC `a:num->num` th)) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[ARITH_RULE `~(p + 1 = p)`]);; let KSIMPLEX_FIX_PLANE = prove (`!p q n j s a a0 a1. ksimplex p n s /\ a IN s /\ 1 <= j /\ j <= n /\ (!x. x IN (s DELETE a) ==> (x j = q)) /\ a0 IN s /\ a1 IN s /\ (!i. a1 i = (if 1 <= i /\ i <= n then a0 i + 1 else a0 i)) ==> (a = a0) \/ (a = a1)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(TAUT `(~a /\ ~b ==> F) ==> a \/ b`) THEN STRIP_TAC THEN UNDISCH_TAC `!x:num->num. x IN s DELETE a ==> (x j = q)` THEN DISCH_THEN(fun th -> MP_TAC(SPEC `a0:num->num` th) THEN MP_TAC(SPEC `a1:num->num` th)) THEN ASM_REWRITE_TAC[IN_DELETE] THEN ARITH_TAC);; let KSIMPLEX_FIX_PLANE_0 = prove (`!p n j s a a0 a1. ksimplex p n s /\ a IN s /\ 1 <= j /\ j <= n /\ (!x. x IN (s DELETE a) ==> (x j = 0)) /\ a0 IN s /\ a1 IN s /\ (!i. a1 i = (if 1 <= i /\ i <= n then a0 i + 1 else a0 i)) ==> (a = a1)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(a = a0) \/ (a = a1:num->num)` MP_TAC THENL [MATCH_MP_TAC KSIMPLEX_FIX_PLANE THEN MAP_EVERY EXISTS_TAC [`p:num`; `0`; `n:num`; `j:num`; `s:(num->num)->bool`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `a0:num->num = a1` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `~a ==> (a \/ b ==> b)`) THEN DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `a1:num->num`) THEN ASM_REWRITE_TAC[IN_DELETE] THEN ARITH_TAC);; let KSIMPLEX_FIX_PLANE_P = prove (`!p n j s a a0 a1. ksimplex p n s /\ a IN s /\ 1 <= j /\ j <= n /\ (!x. x IN (s DELETE a) ==> (x j = p)) /\ a0 IN s /\ a1 IN s /\ (!i. a1 i = (if 1 <= i /\ i <= n then a0 i + 1 else a0 i)) ==> (a = a0)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(a = a0) \/ (a = a1:num->num)` MP_TAC THENL [MATCH_MP_TAC KSIMPLEX_FIX_PLANE THEN MAP_EVERY EXISTS_TAC [`p:num`; `p:num`; `n:num`; `j:num`; `s:(num->num)->bool`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `a0:num->num = a1` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `~b ==> (a \/ b ==> a)`) THEN DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `a0:num->num`) THEN ASM_REWRITE_TAC[IN_DELETE] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ksimplex]) THEN DISCH_THEN(MP_TAC o SPEC `a1:num->num` o CONJUNCT1 o CONJUNCT2) THEN DISCH_THEN(MP_TAC o SPEC `j:num`) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC);; let KSIMPLEX_REPLACE_0 = prove (`ksimplex p n s /\ a IN s /\ ~(n = 0) /\ (?j. 1 <= j /\ j <= n /\ !x. x IN (s DELETE a) ==> (x j = 0)) ==> (CARD {s' | ksimplex p n s' /\ ?b. b IN s' /\ (s' DELETE b = s DELETE a)} = 1)`, let lemma = prove (`!a a'. (s' DELETE a' = s DELETE a) /\ (a' = a) /\ a' IN s' /\ a IN s ==> (s' = s)`, SET_TAC[]) in REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_SIZE_CARD THEN REWRITE_TAC[HAS_SIZE_1_EXISTS] THEN REWRITE_TAC[IN_ELIM_THM] THEN SUBGOAL_THEN `!s' a'. ksimplex p n s' /\ a' IN s' /\ (s' DELETE a' = s DELETE a) ==> (s' = s)` (fun th -> ASM_MESON_TAC[th]) THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`p:num`; `n:num`; `s:(num->num)->bool`] KSIMPLEX_EXTREMA_STRONG) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `a0:num->num` (X_CHOOSE_THEN `a1:num->num` STRIP_ASSUME_TAC)) THEN MP_TAC(SPECL [`p:num`; `n:num`; `s':(num->num)->bool`] KSIMPLEX_EXTREMA_STRONG) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `b0:num->num` (X_CHOOSE_THEN `b1:num->num` STRIP_ASSUME_TAC)) THEN SUBGOAL_THEN `a:num->num = a1` SUBST_ALL_TAC THENL [MATCH_MP_TAC KSIMPLEX_FIX_PLANE_0 THEN MAP_EVERY EXISTS_TAC [`p:num`; `n:num`; `j:num`; `s:(num->num)->bool`; `a0:num->num`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `a':num->num = b1` SUBST_ALL_TAC THENL [MATCH_MP_TAC KSIMPLEX_FIX_PLANE_0 THEN MAP_EVERY EXISTS_TAC [`p:num`; `n:num`; `j:num`; `s':(num->num)->bool`; `b0:num->num`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MATCH_MP_TAC lemma THEN MAP_EVERY EXISTS_TAC [`a1:num->num`; `b1:num->num`] THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `b0:num->num = a0` MP_TAC THENL [ONCE_REWRITE_TAC[GSYM KLE_ANTISYM] THEN ASM_MESON_TAC[IN_DELETE]; ASM_REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[]]);; let KSIMPLEX_REPLACE_1 = prove (`ksimplex p n s /\ a IN s /\ ~(n = 0) /\ (?j. 1 <= j /\ j <= n /\ !x. x IN (s DELETE a) ==> (x j = p)) ==> (CARD {s' | ksimplex p n s' /\ ?b. b IN s' /\ (s' DELETE b = s DELETE a)} = 1)`, let lemma = prove (`!a a'. (s' DELETE a' = s DELETE a) /\ (a' = a) /\ a' IN s' /\ a IN s ==> (s' = s)`, SET_TAC[]) in REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_SIZE_CARD THEN REWRITE_TAC[HAS_SIZE_1_EXISTS] THEN REWRITE_TAC[IN_ELIM_THM] THEN SUBGOAL_THEN `!s' a'. ksimplex p n s' /\ a' IN s' /\ (s' DELETE a' = s DELETE a) ==> (s' = s)` (fun th -> ASM_MESON_TAC[th]) THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`p:num`; `n:num`; `s:(num->num)->bool`] KSIMPLEX_EXTREMA_STRONG) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `a0:num->num` (X_CHOOSE_THEN `a1:num->num` STRIP_ASSUME_TAC)) THEN MP_TAC(SPECL [`p:num`; `n:num`; `s':(num->num)->bool`] KSIMPLEX_EXTREMA_STRONG) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `b0:num->num` (X_CHOOSE_THEN `b1:num->num` STRIP_ASSUME_TAC)) THEN SUBGOAL_THEN `a:num->num = a0` SUBST_ALL_TAC THENL [MATCH_MP_TAC KSIMPLEX_FIX_PLANE_P THEN MAP_EVERY EXISTS_TAC [`p:num`; `n:num`; `j:num`; `s:(num->num)->bool`; `a1:num->num`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `a':num->num = b0` SUBST_ALL_TAC THENL [MATCH_MP_TAC KSIMPLEX_FIX_PLANE_P THEN MAP_EVERY EXISTS_TAC [`p:num`; `n:num`; `j:num`; `s':(num->num)->bool`; `b1:num->num`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MATCH_MP_TAC lemma THEN MAP_EVERY EXISTS_TAC [`a0:num->num`; `b0:num->num`] THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `b1:num->num = a1` MP_TAC THENL [ONCE_REWRITE_TAC[GSYM KLE_ANTISYM] THEN ASM_MESON_TAC[IN_DELETE]; ASM_REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC MONO_FORALL THEN MESON_TAC[EQ_ADD_RCANCEL]]);; let KSIMPLEX_REPLACE_2 = prove (`ksimplex p n s /\ a IN s /\ ~(n = 0) /\ ~(?j. 1 <= j /\ j <= n /\ !x. x IN (s DELETE a) ==> (x j = 0)) /\ ~(?j. 1 <= j /\ j <= n /\ !x. x IN (s DELETE a) ==> (x j = p)) ==> (CARD {s' | ksimplex p n s' /\ ?b. b IN s' /\ (s' DELETE b = s DELETE a)} = 2)`, let lemma = prove (`!a a'. (s' DELETE a' = s DELETE a) /\ (a' = a) /\ a' IN s' /\ a IN s ==> (s' = s)`, SET_TAC[]) and lemma_1 = prove (`a IN s /\ ~(b = a) ==> ~(s = b INSERT (s DELETE a))`, SET_TAC[]) in REPEAT STRIP_TAC THEN MP_TAC(SPECL [`p:num`; `n:num`; `s:(num->num)->bool`] KSIMPLEX_EXTREMA_STRONG) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `a0:num->num` (X_CHOOSE_THEN `a1:num->num` STRIP_ASSUME_TAC)) THEN ASM_CASES_TAC `a:num->num = a0` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN MP_TAC(SPECL [`a0:num->num`; `p:num`; `n:num`; `s:(num->num)->bool`] KSIMPLEX_SUCCESSOR) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `~a /\ (b ==> c) ==> a \/ b ==> c`) THEN CONJ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `a1:num->num`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `1` o MATCH_MP KLE_IMP_POINTWISE) THEN ASM_REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; ARITH] THEN ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `a2:num->num` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN ABBREV_TAC `a3 = \j:num. if j = k then a1 j + 1 else a1 j` THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM]) THEN REWRITE_TAC[] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN MATCH_MP_TAC HAS_SIZE_CARD THEN CONV_TAC HAS_SIZE_CONV THEN MAP_EVERY EXISTS_TAC [`s:(num->num)->bool`; `a3 INSERT (s DELETE (a0:num->num))`] THEN SUBGOAL_THEN `~((a3:num->num) IN s)` ASSUME_TAC THENL [DISCH_TAC THEN SUBGOAL_THEN `kle n a3 a1` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `k:num` o MATCH_MP KLE_IMP_POINTWISE) THEN ASM_REWRITE_TAC[LE_REFL] THEN ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `~(a3:num->num = a0) /\ ~(a3 = a1)` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~(a2:num->num = a0)` ASSUME_TAC THENL [ASM_REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[ARITH_RULE `~(x + 1 = x)`]; ALL_TAC] THEN CONJ_TAC THENL [MATCH_MP_TAC lemma_1 THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x. x IN (s DELETE a0) ==> kle n a2 x` ASSUME_TAC THENL [GEN_TAC THEN REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN SUBGOAL_THEN `kle n a2 x \/ kle n x a2` MP_TAC THENL [ASM_MESON_TAC[ksimplex]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `(~b ==> ~a) ==> b \/ a ==> b`) THEN DISCH_TAC THEN SUBGOAL_THEN `kle n a0 x` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `(x:num->num = a0) \/ (x = a2)` (fun th -> ASM_MESON_TAC[KLE_REFL; th]) THEN MATCH_MP_TAC KLE_ADJACENT THEN EXISTS_TAC `k:num` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `ksimplex p n (a3 INSERT (s DELETE a0))` ASSUME_TAC THENL [MP_TAC(ASSUME `ksimplex p n s`) THEN REWRITE_TAC[ksimplex] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [SIMP_TAC[HAS_SIZE; FINITE_INSERT; FINITE_DELETE; CARD_CLAUSES; CARD_DELETE] THEN ASM_REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [DISCH_TAC THEN REWRITE_TAC[IN_INSERT; IN_DELETE] THEN SUBGOAL_THEN `!j. (a3:num->num) j <= p` (fun th -> ASM_MESON_TAC[th]) THEN X_GEN_TAC `j:num` THEN ONCE_ASM_REWRITE_TAC[] THEN COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN UNDISCH_TAC `~(?j. 1 <= j /\ j <= n /\ (!x. x IN s DELETE a0 ==> (x j = (p:num))))` THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN REWRITE_TAC[ASSUME `1 <= k`; ASSUME `k:num <= n`; NOT_FORALL_THM] THEN DISCH_THEN(X_CHOOSE_THEN `a4:num->num` MP_TAC) THEN REWRITE_TAC[IN_DELETE; NOT_IMP] THEN STRIP_TAC THEN UNDISCH_TAC `!x. x IN s DELETE a0 ==> kle n a2 x` THEN DISCH_THEN(MP_TAC o SPEC `a4:num->num`) THEN ASM_REWRITE_TAC[IN_DELETE] THEN DISCH_THEN(MP_TAC o MATCH_MP KLE_IMP_POINTWISE) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~((a4:num->num) k = p)` THEN SUBGOAL_THEN `(a4:num->num) k <= p` MP_TAC THENL [ASM_MESON_TAC[ksimplex]; ARITH_TAC]; ALL_TAC] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [REWRITE_TAC[IN_INSERT; IN_DELETE] THEN REPEAT STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN ONCE_ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_TAC THEN REWRITE_TAC[IN_INSERT; IN_DELETE] THEN SUBGOAL_THEN `!x. x IN s /\ ~(x = a0) ==> kle n x a3` (fun th -> ASM_MESON_TAC[th; KLE_REFL]) THEN X_GEN_TAC `x:num->num` THEN STRIP_TAC THEN SUBGOAL_THEN `kle n a2 x /\ kle n x a1` MP_TAC THENL [ASM_MESON_TAC[IN_DELETE]; ALL_TAC] THEN REWRITE_TAC[IMP_CONJ] THEN DISCH_THEN(MP_TAC o SPEC `k:num` o MATCH_MP KLE_IMP_POINTWISE) THEN DISCH_TAC THEN REWRITE_TAC[kle] THEN DISCH_THEN(X_CHOOSE_THEN `kk:num->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(k:num) INSERT kk` THEN REWRITE_TAC[INSERT_SUBSET; IN_NUMSEG] THEN CONJ_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN X_GEN_TAC `j:num` THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN REWRITE_TAC[IN_INSERT] THEN ASM_CASES_TAC `j:num = k` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE `a2 <= x ==> !a0. x <= a1 /\ (a1 = a0 + 1) /\ (a2 = a0 + 1) ==> (a1 + 1 = x + 1)`)) THEN EXISTS_TAC `(a0:num->num) k` THEN ASM_MESON_TAC[KLE_IMP_POINTWISE]; ALL_TAC] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN X_GEN_TAC `s':(num->num)->bool` THEN EQ_TAC THENL [ALL_TAC; DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `a3:num->num` THEN REWRITE_TAC[IN_INSERT; DELETE_INSERT] THEN UNDISCH_TAC `~((a3:num->num) IN s)` THEN SET_TAC[]] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `a':num->num` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`p:num`; `n:num`; `s':(num->num)->bool`] KSIMPLEX_EXTREMA_STRONG) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `a_min:num->num` (X_CHOOSE_THEN `a_max:num->num` STRIP_ASSUME_TAC)) THEN SUBGOAL_THEN `(a':num->num = a_min) \/ (a' = a_max)` MP_TAC THENL [MATCH_MP_TAC KSIMPLEX_FIX_PLANE THEN MAP_EVERY EXISTS_TAC [`p:num`; `(a2:num->num) k`; `n:num`; `k:num`; `s':(num->num)->bool`] THEN REPEAT CONJ_TAC THEN TRY(FIRST_ASSUM MATCH_ACCEPT_TAC) THEN X_GEN_TAC `x:num->num` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `kle n a2 x /\ kle n x a1` MP_TAC THENL [ASM_MESON_TAC[IN_DELETE]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN (MP_TAC o SPEC `k:num` o MATCH_MP KLE_IMP_POINTWISE)) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THENL [DISJ1_TAC THEN MATCH_MP_TAC lemma THEN MAP_EVERY EXISTS_TAC [`a0:num->num`; `a_min:num->num`] THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `a_max:num->num = a1` MP_TAC THENL [SUBGOAL_THEN `a1:num->num IN (s' DELETE a_min) /\ a_max:num->num IN (s DELETE a0)` MP_TAC THENL [ASM_MESON_TAC[IN_DELETE]; ASM_MESON_TAC[KLE_ANTISYM; IN_DELETE]]; ALL_TAC] THEN ASM_REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC MONO_FORALL THEN MESON_TAC[EQ_ADD_RCANCEL]; DISJ2_TAC THEN MATCH_MP_TAC lemma THEN MAP_EVERY EXISTS_TAC [`a3:num->num`; `a_max:num->num`] THEN ASM_REWRITE_TAC[IN_INSERT] THEN CONJ_TAC THENL [UNDISCH_TAC `~(a3:num->num IN s)` THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `a_min:num->num = a2` MP_TAC THENL [SUBGOAL_THEN `a2:num->num IN (s' DELETE a_max) /\ a_min:num->num IN (s DELETE a0)` MP_TAC THENL [ASM_MESON_TAC[IN_DELETE]; ASM_MESON_TAC[KLE_ANTISYM; IN_DELETE]]; ALL_TAC] THEN ASM_REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC MONO_FORALL THEN MESON_TAC[EQ_ADD_RCANCEL]]; ALL_TAC] THEN ASM_CASES_TAC `a:num->num = a1` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN MP_TAC(SPECL [`a1:num->num`; `p:num`; `n:num`; `s:(num->num)->bool`] KSIMPLEX_PREDECESSOR) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `~a /\ (b ==> c) ==> a \/ b ==> c`) THEN CONJ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `a0:num->num`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `1` o MATCH_MP KLE_IMP_POINTWISE) THEN ASM_REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; ARITH] THEN ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `a2:num->num` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `!x. x IN (s DELETE a1) ==> kle n x a2` ASSUME_TAC THENL [GEN_TAC THEN REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN SUBGOAL_THEN `kle n a2 x \/ kle n x a2` MP_TAC THENL [ASM_MESON_TAC[ksimplex]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `(~b ==> ~a) ==> a \/ b ==> b`) THEN DISCH_TAC THEN SUBGOAL_THEN `kle n x a1` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `(x:num->num = a2) \/ (x = a1)` (fun th -> ASM_MESON_TAC[KLE_REFL; th]) THEN MATCH_MP_TAC KLE_ADJACENT THEN EXISTS_TAC `k:num` THEN REPEAT CONJ_TAC THEN FIRST_X_ASSUM MATCH_ACCEPT_TAC; ALL_TAC] THEN SUBGOAL_THEN `~(a2:num->num = a1)` ASSUME_TAC THENL [REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[ARITH_RULE `~(x + 1 = x)`]; ALL_TAC] THEN ABBREV_TAC `a3 = \j:num. if j = k then a0 j - 1 else a0 j` THEN SUBGOAL_THEN `!j:num. a0(j) = if j = k then a3(j) + 1 else a3 j` ASSUME_TAC THENL [X_GEN_TAC `j:num` THEN EXPAND_TAC "a3" THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH_RULE `(a = a - 1 + 1) <=> ~(a = 0)`] THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN DISCH_TAC THEN UNDISCH_TAC `!j:num. a1 j = (if j = k then a2 j + 1 else a2 j)` THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ARITH_RULE `(0 + 1 = x + 1) <=> (x = 0)`] THEN DISCH_TAC THEN UNDISCH_TAC `~(?j. 1 <= j /\ j <= n /\ (!x. x IN s DELETE a1 ==> (x j = 0)))` THEN REWRITE_TAC[NOT_EXISTS_THM] THEN EXISTS_TAC `k:num` THEN ASM_MESON_TAC[KLE_IMP_POINTWISE; LE]; ALL_TAC] THEN SUBGOAL_THEN `~(kle n a0 a3)` ASSUME_TAC THENL [ASM_MESON_TAC[KLE_IMP_POINTWISE; ARITH_RULE `~(a + 1 <= a)`]; ALL_TAC] THEN SUBGOAL_THEN `~(a3:num->num IN s)` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `kle n a3 a2` ASSUME_TAC THENL [SUBGOAL_THEN `kle n a0 a1` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[kle] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN ONCE_REWRITE_TAC[ ASSUME `!j:num. a0 j = (if j = k then a3 j + 1 else a3 j)`; ASSUME `!j:num. a1 j = (if j = k then a2 j + 1 else a2 j)`] THEN REPEAT(COND_CASES_TAC THEN REWRITE_TAC[]) THEN ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `kle n a3 a0` ASSUME_TAC THENL [REWRITE_TAC[kle] THEN EXISTS_TAC `{k:num}` THEN ASM_REWRITE_TAC[SUBSET; IN_SING; IN_NUMSEG] THEN ASM_MESON_TAC[ADD_CLAUSES]; ALL_TAC] THEN MATCH_MP_TAC HAS_SIZE_CARD THEN CONV_TAC HAS_SIZE_CONV THEN MAP_EVERY EXISTS_TAC [`s:(num->num)->bool`; `a3 INSERT (s DELETE (a1:num->num))`] THEN SUBGOAL_THEN `~(a3:num->num = a1) /\ ~(a3 = a0)` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [MATCH_MP_TAC lemma_1 THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `ksimplex p n (a3 INSERT (s DELETE a1))` ASSUME_TAC THENL [MP_TAC(ASSUME `ksimplex p n s`) THEN REWRITE_TAC[ksimplex] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [SIMP_TAC[HAS_SIZE; FINITE_INSERT; FINITE_DELETE; CARD_CLAUSES; CARD_DELETE] THEN ASM_REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [DISCH_TAC THEN REWRITE_TAC[IN_INSERT; IN_DELETE] THEN SUBGOAL_THEN `!j. (a3:num->num) j <= p` (fun th -> ASM_MESON_TAC[th]) THEN X_GEN_TAC `j:num` THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a0:num->num`; `j:num`]) THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [REWRITE_TAC[IN_INSERT; IN_DELETE] THEN REPEAT STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN EXPAND_TAC "a3" THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_TAC THEN REWRITE_TAC[IN_INSERT; IN_DELETE] THEN SUBGOAL_THEN `!x. x IN s /\ ~(x = a1) ==> kle n a3 x` (fun th -> ASM_MESON_TAC[th; KLE_REFL]) THEN X_GEN_TAC `x:num->num` THEN STRIP_TAC THEN MATCH_MP_TAC KLE_BETWEEN_L THEN MAP_EVERY EXISTS_TAC [`a0:num->num`; `a2:num->num`] THEN ASM_MESON_TAC[IN_DELETE]; ALL_TAC] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN X_GEN_TAC `s':(num->num)->bool` THEN EQ_TAC THENL [ALL_TAC; DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `a3:num->num` THEN REWRITE_TAC[IN_INSERT; DELETE_INSERT] THEN UNDISCH_TAC `~((a3:num->num) IN s)` THEN SET_TAC[]] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `a':num->num` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`p:num`; `n:num`; `s':(num->num)->bool`] KSIMPLEX_EXTREMA_STRONG) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `a_min:num->num` (X_CHOOSE_THEN `a_max:num->num` STRIP_ASSUME_TAC)) THEN SUBGOAL_THEN `(a':num->num = a_min) \/ (a' = a_max)` MP_TAC THENL [MATCH_MP_TAC KSIMPLEX_FIX_PLANE THEN MAP_EVERY EXISTS_TAC [`p:num`; `(a2:num->num) k`; `n:num`; `k:num`; `s':(num->num)->bool`] THEN REPEAT CONJ_TAC THEN TRY(FIRST_ASSUM MATCH_ACCEPT_TAC) THEN X_GEN_TAC `x:num->num` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `kle n a0 x /\ kle n x a2` MP_TAC THENL [ASM_MESON_TAC[IN_DELETE]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN (MP_TAC o SPEC `k:num` o MATCH_MP KLE_IMP_POINTWISE)) THEN SUBGOAL_THEN `(a2:num->num) k <= a0 k` (fun th -> MP_TAC th THEN ARITH_TAC) THEN UNDISCH_TAC `!j:num. a1 j = (if j = k then a2 j + 1 else a2 j)` THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THENL [DISJ2_TAC THEN MATCH_MP_TAC lemma THEN MAP_EVERY EXISTS_TAC [`a3:num->num`; `a_min:num->num`] THEN ASM_REWRITE_TAC[IN_INSERT] THEN CONJ_TAC THENL [UNDISCH_TAC `~(a3:num->num IN s)` THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `a_max:num->num = a2` MP_TAC THENL [SUBGOAL_THEN `a2:num->num IN (s' DELETE a_min) /\ a_max:num->num IN (s DELETE a1)` MP_TAC THENL [ASM_MESON_TAC[IN_DELETE]; ASM_MESON_TAC[KLE_ANTISYM; IN_DELETE]]; ALL_TAC] THEN SUBGOAL_THEN `!j. a2 j = if 1 <= j /\ j <= n then a3 j + 1 else a3 j` (fun th -> ASM_REWRITE_TAC[th; FUN_EQ_THM]) THENL [ALL_TAC; MATCH_MP_TAC MONO_FORALL THEN MESON_TAC[EQ_ADD_RCANCEL]] THEN UNDISCH_TAC `!j:num. a1 j = (if j = k then a2 j + 1 else a2 j)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN MESON_TAC[EQ_ADD_RCANCEL]; DISJ1_TAC THEN MATCH_MP_TAC lemma THEN MAP_EVERY EXISTS_TAC [`a1:num->num`; `a_max:num->num`] THEN REPEAT CONJ_TAC THEN TRY(FIRST_ASSUM ACCEPT_TAC) THEN SUBGOAL_THEN `a_min:num->num = a0` MP_TAC THENL [SUBGOAL_THEN `a0:num->num IN (s' DELETE a_max) /\ a_min:num->num IN (s DELETE a1)` MP_TAC THENL [ASM_MESON_TAC[IN_DELETE]; ASM_MESON_TAC[KLE_ANTISYM; IN_DELETE]]; ALL_TAC] THEN UNDISCH_THEN `!j:num. a1 j = (if j = k then a2 j + 1 else a2 j)` (K ALL_TAC) THEN ASM_REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC MONO_FORALL THEN MESON_TAC[EQ_ADD_RCANCEL]]; ALL_TAC] THEN MP_TAC(SPECL [`a:num->num`; `p:num`; `n:num`; `s:(num->num)->bool`] KSIMPLEX_PREDECESSOR) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `~a /\ (b ==> c) ==> a \/ b ==> c`) THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_ANTISYM]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `u:num->num` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`a:num->num`; `p:num`; `n:num`; `s:(num->num)->bool`] KSIMPLEX_SUCCESSOR) THEN REWRITE_TAC[ASSUME `ksimplex p n s`; ASSUME `a:num->num IN s`] THEN MATCH_MP_TAC(TAUT `~a /\ (b ==> c) ==> a \/ b ==> c`) THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_ANTISYM]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `v:num->num` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `l:num` STRIP_ASSUME_TAC) THEN ABBREV_TAC `a' = \j:num. if j = l then u(j) + 1 else u(j)` THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM]) THEN REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o GSYM) THEN SUBGOAL_THEN `~(k:num = l)` ASSUME_TAC THENL [DISCH_TAC THEN UNDISCH_TAC `!j:num. v j = (if j = l then a j + 1 else a j)` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `l:num`) THEN REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ksimplex]) THEN DISCH_THEN(MP_TAC o last o CONJUNCTS) THEN DISCH_THEN(MP_TAC o SPECL [`u:num->num`; `v:num->num`]) THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[kle] THEN DISCH_THEN(DISJ_CASES_THEN (CHOOSE_THEN (MP_TAC o SPEC `l:num` o CONJUNCT2))) THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `~(a':num->num = a)` ASSUME_TAC THENL [ASM_REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `~((a':num->num) IN s)` ASSUME_TAC THENL [DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ksimplex]) THEN DISCH_THEN(MP_TAC o SPECL [`a:num->num`; `a':num->num`] o last o CONJUNCTS) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(DISJ_CASES_THEN (MP_TAC o MATCH_MP KLE_IMP_POINTWISE)) THENL [DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC; DISCH_THEN(MP_TAC o SPEC `l:num`) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC]; ALL_TAC] THEN SUBGOAL_THEN `kle n u a /\ kle n u a' /\ kle n a v /\ kle n a' v` STRIP_ASSUME_TAC THENL [REWRITE_TAC[kle] THEN REPEAT CONJ_TAC THENL [EXISTS_TAC `{k:num}`; EXISTS_TAC `{l:num}`; EXISTS_TAC `{l:num}`; EXISTS_TAC `{k:num}`] THEN ASM_REWRITE_TAC[IN_SING; SUBSET; IN_NUMSEG] THEN ASM_MESON_TAC[ADD_CLAUSES]; ALL_TAC] THEN SUBGOAL_THEN `!x. kle n u x /\ kle n x v ==> ((x = u) \/ (x = a) \/ (x = a') \/ (x = v))` ASSUME_TAC THENL [X_GEN_TAC `x:num->num` THEN DISCH_THEN(CONJUNCTS_THEN (MP_TAC o MATCH_MP KLE_IMP_POINTWISE)) THEN ASM_REWRITE_TAC[FUN_EQ_THM; IMP_IMP; AND_FORALL_THM] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ASM_CASES_TAC `(x:num->num) k = u k` THEN ASM_CASES_TAC `(x:num->num) l = u l` THENL [DISCH_THEN(fun th -> DISJ1_TAC THEN MP_TAC th); DISCH_THEN(fun th -> DISJ2_TAC THEN DISJ2_TAC THEN DISJ1_TAC THEN MP_TAC th); DISCH_THEN(fun th -> DISJ2_TAC THEN DISJ1_TAC THEN MP_TAC th); DISCH_THEN(fun th -> REPEAT DISJ2_TAC THEN MP_TAC th)] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `j:num` THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[LE_ANTISYM; ARITH_RULE `x <= u + 1 /\ u <= x <=> (x = u) \/ (x = u + 1)`]); ALL_TAC] THEN SUBGOAL_THEN `kle n u v` ASSUME_TAC THENL [ASM_MESON_TAC[KLE_TRANS; ksimplex]; ALL_TAC] THEN SUBGOAL_THEN `ksimplex p n (a' INSERT (s DELETE a))` ASSUME_TAC THENL [MP_TAC(ASSUME `ksimplex p n s`) THEN REWRITE_TAC[ksimplex] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [SIMP_TAC[HAS_SIZE; FINITE_INSERT; FINITE_DELETE; CARD_CLAUSES; CARD_DELETE; IN_DELETE] THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [REWRITE_TAC[IN_INSERT; IN_DELETE] THEN SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> X_GEN_TAC `j:num` THEN MP_TAC th) THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `v:num->num`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `l:num`) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [REWRITE_TAC[IN_INSERT; IN_DELETE] THEN REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[EXISTS_REFL; LEFT_FORALL_IMP_THM] THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_INSERT; IN_DELETE] THEN SUBGOAL_THEN `!x. x IN s /\ kle n v x ==> kle n a' x` ASSUME_TAC THENL [X_GEN_TAC `x:num->num` THEN STRIP_TAC THEN MATCH_MP_TAC KLE_BETWEEN_R THEN MAP_EVERY EXISTS_TAC [`u:num->num`; `v:num->num`] THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[ksimplex; KLE_TRANS]; ALL_TAC] THEN SUBGOAL_THEN `!x. x IN s /\ kle n x u ==> kle n x a'` ASSUME_TAC THENL [X_GEN_TAC `x:num->num` THEN STRIP_TAC THEN MATCH_MP_TAC KLE_BETWEEN_L THEN MAP_EVERY EXISTS_TAC [`u:num->num`; `v:num->num`] THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[ksimplex; KLE_TRANS]; ALL_TAC] THEN SUBGOAL_THEN `!x. x IN s /\ ~(x = a) ==> kle n a' x \/ kle n x a'` (fun th -> MESON_TAC[th; KLE_REFL; ASSUME `(a:num->num) IN s`]) THEN X_GEN_TAC `x:num->num` THEN STRIP_TAC THEN ASM_CASES_TAC `kle n v x` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `kle n x u` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(x:num->num = u) \/ (x = a) \/ (x = a') \/ (x = v)` (fun th -> ASM_MESON_TAC[th; KLE_REFL]) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[ksimplex]; ALL_TAC] THEN MATCH_MP_TAC HAS_SIZE_CARD THEN CONV_TAC HAS_SIZE_CONV THEN MAP_EVERY EXISTS_TAC [`s:(num->num)->bool`; `a' INSERT (s DELETE (a:num->num))`] THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; IN_DELETE; IN_INSERT] THEN ASM_MESON_TAC[]; ALL_TAC] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `s':(num->num)->bool` THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN EQ_TAC THENL [ALL_TAC; DISCH_THEN(DISJ_CASES_THEN SUBST1_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `a':num->num` THEN REWRITE_TAC[EXTENSION; IN_INSERT; IN_DELETE] THEN ASM_MESON_TAC[]] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `a'':num->num` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(a:num->num) IN s' \/ a' IN s'` MP_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_OR THEN CONJ_TAC THEN DISCH_TAC THEN MP_TAC(ASSUME `s' DELETE a'' = s DELETE (a:num->num)`) THEN REWRITE_TAC[EXTENSION] THEN DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC th) THENL [DISCH_THEN(MP_TAC o SPEC `a:num->num`); DISCH_THEN(MP_TAC o SPEC `a':num->num`)] THEN REWRITE_TAC[IN_DELETE] THEN ASM_REWRITE_TAC[IN_INSERT; IN_DELETE] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM_MESON_TAC[]] THEN SUBGOAL_THEN `~(u:num->num = v)` ASSUME_TAC THENL [ASM_REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `l:num`) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `~(kle n v u)` ASSUME_TAC THENL [ASM_MESON_TAC[KLE_ANTISYM]; ALL_TAC] THEN SUBGOAL_THEN `~(u:num->num = a)` ASSUME_TAC THENL [ASM_REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `~(v:num->num = a)` ASSUME_TAC THENL [ASM_REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `l:num`) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `u:num->num IN s' /\ v IN s'` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[EXTENSION; IN_DELETE]; ALL_TAC] THEN ASM_CASES_TAC `!x. x IN s' ==> kle n x u \/ kle n v x` THENL [ALL_TAC; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN DISCH_THEN(X_CHOOSE_THEN `w:num->num` MP_TAC) THEN REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN STRIP_TAC THEN SUBGOAL_THEN `(w:num->num = u) \/ (w = a) \/ (w = a') \/ (w = v)` (fun th -> ASM_MESON_TAC[KLE_REFL; th]) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[ksimplex]] THEN MP_TAC(SPECL [`u:num->num`; `p:num`; `n:num`; `s':(num->num)->bool`] KSIMPLEX_SUCCESSOR) THEN ANTS_TAC THENL [ASM_MESON_TAC[EXTENSION; IN_DELETE]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN2 (MP_TAC o SPEC `v:num->num`) MP_TAC) THENL [ASM_MESON_TAC[EXTENSION; IN_DELETE]; ALL_TAC] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN UNDISCH_TAC `!x. x IN s' ==> kle n x u \/ kle n v x` THEN REWRITE_TAC[NOT_EXISTS_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `w:num->num` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(DISJ_CASES_THEN(MP_TAC o MATCH_MP KLE_IMP_POINTWISE)) THEN ASM_REWRITE_TAC[] THENL [MESON_TAC[ARITH_RULE `~(i + 1 <= i)`]; ALL_TAC] THEN DISCH_THEN(fun th -> MP_TAC(SPEC `k:num` th) THEN MP_TAC(SPEC `l:num` th)) THEN ASM_REWRITE_TAC[] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN TRY ARITH_TAC THEN UNDISCH_TAC `~(k:num = l)` THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Hence another step towards concreteness. *) (* ------------------------------------------------------------------------- *) let KUHN_SIMPLEX_LEMMA = prove (`!p n. (!s. ksimplex p (n + 1) s ==> (IMAGE rl s SUBSET 0..n+1)) /\ ODD(CARD{f | (?s a. ksimplex p (n + 1) s /\ a IN s /\ (f = s DELETE a)) /\ (IMAGE rl f = 0 .. n) /\ ((?j. 1 <= j /\ j <= n + 1 /\ !x. x IN f ==> (x j = 0)) \/ (?j. 1 <= j /\ j <= n + 1 /\ !x. x IN f ==> (x j = p)))}) ==> ODD(CARD {s | s IN {s | ksimplex p (n + 1) s} /\ (IMAGE rl s = 0..n+1)})`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `ODD(CARD {f | f IN {f | ?s. s IN {s | ksimplex p (n + 1) s} /\ (?a. a IN s /\ (f = s DELETE a))} /\ (IMAGE rl f = 0..n) /\ ((?j. 1 <= j /\ j <= n + 1 /\ !x. x IN f ==> (x j = 0)) \/ (?j. 1 <= j /\ j <= n + 1 /\ !x. x IN f ==> (x j = p)))})` MP_TAC THENL [ASM_REWRITE_TAC[IN_ELIM_THM; RIGHT_AND_EXISTS_THM]; ALL_TAC] THEN MATCH_MP_TAC KUHN_COMPLETE_LEMMA THEN REWRITE_TAC[FINITE_SIMPLICES] THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[ksimplex; ARITH_RULE `(n + 1) + 1 = n + 2`]; ASM_SIMP_TAC[]; MATCH_MP_TAC KSIMPLEX_REPLACE_0; MATCH_MP_TAC KSIMPLEX_REPLACE_1; MATCH_MP_TAC KSIMPLEX_REPLACE_2] THEN ASM_MESON_TAC[ARITH_RULE `~(n + 1 = 0)`]);; (* ------------------------------------------------------------------------- *) (* Reduced labelling. *) (* ------------------------------------------------------------------------- *) let reduced = new_definition `reduced label n (x:num->num) = @k. k <= n /\ (!i. 1 <= i /\ i < k + 1 ==> (label x i = 0)) /\ ((k = n) \/ ~(label x (k + 1) = 0))`;; let REDUCED_LABELLING = prove (`!label x n. reduced label n x <= n /\ (!i. 1 <= i /\ i < reduced label n x + 1 ==> (label x i = 0)) /\ ((reduced label n x = n) \/ ~(label x (reduced label n x + 1) = 0))`, REPEAT GEN_TAC THEN REWRITE_TAC[reduced] THEN CONV_TAC SELECT_CONV THEN MP_TAC(SPEC `\j. j <= n /\ ~(label (x:num->num) (j + 1) = 0) \/ (n = j)` num_WOP) THEN REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `a /\ (b ==> c) ==> (a <=> b) ==> c`) THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN ASM_CASES_TAC `k = n:num` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[LE_REFL] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `i - 1`) THEN SIMP_TAC[LT_IMP_LE] THEN ASM_SIMP_TAC[ARITH_RULE `1 <= i /\ i < n + 1 ==> i - 1 < n`] THEN ASM_SIMP_TAC[ARITH_RULE `1 <= i /\ i < n + 1 ==> ~(n = i - 1)`] THEN ASM_SIMP_TAC[SUB_ADD] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC);; let REDUCED_LABELLING_UNIQUE = prove (`!label x n. r <= n /\ (!i. 1 <= i /\ i < r + 1 ==> (label x i = 0)) /\ ((r = n) \/ ~(label x (r + 1) = 0)) ==> (reduced label n x = r)`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC(SPECL [`label:(num->num)->(num->num)`; `x:num->num`; `n:num`] REDUCED_LABELLING) THEN MATCH_MP_TAC(ARITH_RULE `~(a < b) /\ ~(b < a:num) ==> (a = b)`) THEN ASM_MESON_TAC[ARITH_RULE `s < r:num /\ r <= n ==> ~(s = n)`; ARITH_RULE `s < r ==> 1 <= s + 1 /\ s + 1 < r + 1`]);; let REDUCED_LABELLING_0 = prove (`!label n x j. 1 <= j /\ j <= n /\ (label x j = 0) ==> ~(reduced label n x = j - 1)`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`label:(num->num)->num->num`; `x:num->num`; `n:num`] REDUCED_LABELLING) THEN ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `1 <= j /\ j <= n ==> ~(j - 1 = n)`]);; let REDUCED_LABELLING_1 = prove (`!label n x j. 1 <= j /\ j <= n /\ ~(label x j = 0) ==> reduced label n x < j`, REWRITE_TAC[GSYM NOT_LE] THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`label:(num->num)->num->num`; `x:num->num`; `n:num`] REDUCED_LABELLING) THEN DISCH_THEN(MP_TAC o SPEC `j:num` o CONJUNCT1 o CONJUNCT2) THEN ASM_REWRITE_TAC[ARITH_RULE `y < x + 1 <=> (y <= x)`]);; let REDUCED_LABELLING_SUC = prove (`!lab n x. ~(reduced lab (n + 1) x = n + 1) ==> (reduced lab (n + 1) x = reduced lab n x)`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REDUCED_LABELLING_UNIQUE THEN ASM_MESON_TAC[REDUCED_LABELLING; ARITH_RULE `x <= n + 1 /\ ~(x = n + 1) ==> x <= n`]);; let COMPLETE_FACE_TOP = prove (`!lab f n. (!x j. x IN f /\ 1 <= j /\ j <= n + 1 /\ (x j = 0) ==> (lab x j = 0)) /\ (!x j. x IN f /\ 1 <= j /\ j <= n + 1 /\ (x j = p) ==> (lab x j = 1)) ==> ((IMAGE (reduced lab (n + 1)) f = 0..n) /\ ((?j. 1 <= j /\ j <= n + 1 /\ !x. x IN f ==> (x j = 0)) \/ (?j. 1 <= j /\ j <= n + 1 /\ !x. x IN f ==> (x j = p))) <=> (IMAGE (reduced lab (n + 1)) f = 0..n) /\ (!x. x IN f ==> (x (n + 1) = p)))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[ARITH_RULE `1 <= n + 1`; LE_REFL]] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THENL [DISCH_THEN(MP_TAC o SPEC `j - 1`) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN ASM_SIMP_TAC[IN_IMAGE; IN_NUMSEG; LE_0; NOT_EXISTS_THM; ARITH_RULE `j <= n + 1 ==> j - 1 <= n`] THEN ASM_MESON_TAC[REDUCED_LABELLING_0]; DISCH_THEN(MP_TAC o SPEC `j:num`) THEN REWRITE_TAC[IN_IMAGE; IN_NUMSEG; LE_0; NOT_LE] THEN ASM_SIMP_TAC[ARITH_RULE `j <= n + 1 ==> ((j <= n) <=> ~(j = n + 1))`] THEN ASM_MESON_TAC[REDUCED_LABELLING_1; ARITH_RULE `~(1 = 0)`; LT_REFL]]);; (* ------------------------------------------------------------------------- *) (* Hence we get just about the nice induction. *) (* ------------------------------------------------------------------------- *) let KUHN_INDUCTION = prove (`!p n. 0 < p /\ (!x j. (!j. x(j) <= p) /\ 1 <= j /\ j <= n + 1 /\ (x j = 0) ==> (lab x j = 0)) /\ (!x j. (!j. x(j) <= p) /\ 1 <= j /\ j <= n + 1 /\ (x j = p) ==> (lab x j = 1)) ==> ODD(CARD {f | ksimplex p n f /\ (IMAGE (reduced lab n) f = 0..n)}) ==> ODD(CARD {s | ksimplex p (n + 1) s /\ (IMAGE (reduced lab (n + 1)) s = 0..n+1)})`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IN_ELIM_THM] KUHN_SIMPLEX_LEMMA) THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_NUMSEG; LE_0] THEN MESON_TAC[ARITH_RULE `x <= n ==> x <= n + 1`; REDUCED_LABELLING]; ALL_TAC] THEN FIRST_ASSUM(fun th -> MP_TAC th THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC) THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `f:(num->num)->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_CASES_TAC `(!x j. x IN f /\ 1 <= j /\ j <= n + 1 /\ (x j = 0) ==> (lab x j = 0)) /\ (!x j. x IN f /\ 1 <= j /\ j <= n + 1 /\ (x j = p) ==> (lab x j = 1))` THENL [ALL_TAC; MATCH_MP_TAC(TAUT `~a /\ ~b ==> (a /\ c <=> b /\ d)`) THEN CONJ_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_neg o concl)) THEN REWRITE_TAC[CONTRAPOS_THM] THEN REWRITE_TAC[ksimplex] THEN ASM_MESON_TAC[IN_DELETE]] THEN ASM_SIMP_TAC[COMPLETE_FACE_TOP] THEN ASM_CASES_TAC `!x. x IN f ==> (x(n + 1):num = p)` THENL [ALL_TAC; ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[ksimplex] THEN ASM_MESON_TAC[ARITH_RULE `~(n + 1 <= n)`]] THEN ASM_SIMP_TAC[SIMPLEX_TOP_FACE] THEN ASM_CASES_TAC `ksimplex p n f` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; IN_IMAGE] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `k:num` THEN REWRITE_TAC[] THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `x:num->num` THEN REWRITE_TAC[] THEN ASM_CASES_TAC `(x:num->num) IN f` THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REDUCED_LABELLING_SUC THEN MATCH_MP_TAC(ARITH_RULE `a:num < b ==> ~(a = b)`) THEN MATCH_MP_TAC REDUCED_LABELLING_1 THEN REWRITE_TAC[LE_REFL; ARITH_RULE `1 <= n + 1`] THEN MATCH_MP_TAC(ARITH_RULE `(n = 1) ==> ~(n = 0)`) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[LE_REFL; ARITH_RULE `1 <= n + 1`] THEN ASM_MESON_TAC[ksimplex]);; (* ------------------------------------------------------------------------- *) (* And so we get the final combinatorial result. *) (* ------------------------------------------------------------------------- *) let KSIMPLEX_0 = prove (`ksimplex p 0 s <=> (s = {(\x. p)})`, REWRITE_TAC[ksimplex; ADD_CLAUSES] THEN CONV_TAC(LAND_CONV(LAND_CONV HAS_SIZE_CONV)) THEN REWRITE_TAC[ARITH_RULE `1 <= j /\ j <= 0 <=> F`] THEN ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[IN_SING] THEN SIMP_TAC[RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[KLE_REFL] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN REWRITE_TAC[AND_FORALL_THM; ARITH_RULE `x <= y:num /\ (x = y) <=> (x = y)`] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN REWRITE_TAC[GSYM FUN_EQ_THM] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM2]);; let REDUCE_LABELLING_0 = prove (`!lab x. reduced lab 0 x = 0`, REPEAT GEN_TAC THEN MATCH_MP_TAC REDUCED_LABELLING_UNIQUE THEN REWRITE_TAC[LE_REFL] THEN ARITH_TAC);; let KUHN_COMBINATORIAL = prove (`!lab p n. 0 < p /\ (!x j. (!j. x(j) <= p) /\ 1 <= j /\ j <= n /\ (x j = 0) ==> (lab x j = 0)) /\ (!x j. (!j. x(j) <= p) /\ 1 <= j /\ j <= n /\ (x j = p) ==> (lab x j = 1)) ==> ODD(CARD {s | ksimplex p n s /\ (IMAGE (reduced lab n) s = 0..n)})`, GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN INDUCT_TAC THENL [DISCH_THEN(K ALL_TAC) THEN SUBGOAL_THEN `{s | ksimplex p 0 s /\ (IMAGE (reduced lab 0) s = 0 .. 0)} = {{(\x. p)}}` (fun th -> SIMP_TAC[CARD_CLAUSES; NOT_IN_EMPTY; FINITE_RULES; th; ARITH]) THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM; KSIMPLEX_0; IN_SING] THEN GEN_TAC THEN MATCH_MP_TAC(TAUT `(a ==> b) ==> (a /\ b <=> a)`) THEN DISCH_THEN SUBST_ALL_TAC THEN REWRITE_TAC[NUMSEG_SING; EXTENSION; IN_SING; IN_IMAGE] THEN REWRITE_TAC[REDUCE_LABELLING_0] THEN MESON_TAC[]; STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN ANTS_TAC THENL [ASM_MESON_TAC[ARITH_RULE `j <= n ==> j <= SUC n`]; ALL_TAC] THEN REWRITE_TAC[ADD1] THEN MATCH_MP_TAC KUHN_INDUCTION THEN ASM_REWRITE_TAC[GSYM ADD1]]);; let KUHN_LEMMA = prove (`!n p label. 0 < p /\ 0 < n /\ (!x. (!i. 1 <= i /\ i <= n ==> x(i) <= p) ==> !i. 1 <= i /\ i <= n ==> (label x i = 0) \/ (label x i = 1)) /\ (!x. (!i. 1 <= i /\ i <= n ==> x(i) <= p) ==> !i. 1 <= i /\ i <= n /\ (x i = 0) ==> (label x i = 0)) /\ (!x. (!i. 1 <= i /\ i <= n ==> x(i) <= p) ==> !i. 1 <= i /\ i <= n /\ (x i = p) ==> (label x i = 1)) ==> ?q. (!i. 1 <= i /\ i <= n ==> q(i) < p) /\ (!i. 1 <= i /\ i <= n ==> ?r s. (!j. 1 <= j /\ j <= n ==> q(j) <= r(j) /\ r(j) <= q(j) + 1) /\ (!j. 1 <= j /\ j <= n ==> q(j) <= s(j) /\ s(j) <= q(j) + 1) /\ ~(label r i = label s i))`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`label:(num->num)->num->num`; `p:num`; `n:num`] KUHN_COMBINATORIAL) THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `{s | ksimplex p n s /\ (IMAGE (reduced label n) s = 0 .. n)} = {}` THENL [ASM_REWRITE_TAC[CARD_CLAUSES; ARITH]; ALL_TAC] THEN DISCH_THEN(K ALL_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `s:(num->num)->bool` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`p:num`; `n:num`; `s:(num->num)->bool`] KSIMPLEX_EXTREMA_STRONG) THEN ASM_REWRITE_TAC[GSYM LT_NZ] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:num->num` THEN DISCH_THEN(X_CHOOSE_THEN `b:num->num` STRIP_ASSUME_TAC) THEN CONJ_TAC THEN X_GEN_TAC `i:num` THEN STRIP_TAC THENL [MATCH_MP_TAC(ARITH_RULE `x + 1 <= y ==> x < y`) THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `(b:num->num) i` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[LE_REFL]; ALL_TAC] THEN ASM_MESON_TAC[ksimplex]; ALL_TAC] THEN UNDISCH_TAC `IMAGE (reduced label n) s = 0 .. n` THEN REWRITE_TAC[EXTENSION; IN_IMAGE] THEN DISCH_THEN(fun th -> MP_TAC(SPEC `i - 1` th) THEN MP_TAC(SPEC `i:num` th)) THEN ASM_REWRITE_TAC[IN_NUMSEG; LE_0] THEN DISCH_THEN(X_CHOOSE_THEN `u:num->num` (STRIP_ASSUME_TAC o GSYM)) THEN ASM_SIMP_TAC[ARITH_RULE `1 <= i /\ i <= n ==> i - 1 <= n`] THEN DISCH_THEN(X_CHOOSE_THEN `v:num->num` (STRIP_ASSUME_TAC o GSYM)) THEN MAP_EVERY EXISTS_TAC [`u:num->num`; `v:num->num`] THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [ASM_MESON_TAC[KLE_IMP_POINTWISE]; ALL_TAC] THEN MP_TAC(SPECL [`label:(num->num)->num->num`; `u:num->num`; `n:num`] REDUCED_LABELLING) THEN MP_TAC(SPECL [`label:(num->num)->num->num`; `v:num->num`; `n:num`] REDUCED_LABELLING) THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[ARITH_RULE `1 <= i /\ i <= n ==> ~(i - 1 = n)`] THEN ASM_SIMP_TAC[SUB_ADD] THEN ASM_MESON_TAC[ARITH_RULE `i < i + 1`]);; (* ------------------------------------------------------------------------- *) (* The main result for the unit cube. *) (* ------------------------------------------------------------------------- *) let BROUWER_CUBE = prove (`!f:real^N->real^N. f continuous_on (interval [vec 0,vec 1]) /\ IMAGE f (interval [vec 0,vec 1]) SUBSET (interval [vec 0,vec 1]) ==> ?x. x IN interval[vec 0,vec 1] /\ (f x = x)`, REPEAT STRIP_TAC THEN ABBREV_TAC `n = dimindex(:N)` THEN SUBGOAL_THEN `1 <= n /\ 0 < n /\ ~(n = 0)` STRIP_ASSUME_TAC THENL [EXPAND_TAC "n" THEN REWRITE_TAC[DIMINDEX_NONZERO; DIMINDEX_GE_1] THEN ASM_MESON_TAC[LT_NZ; DIMINDEX_NONZERO]; ALL_TAC] THEN GEN_REWRITE_TAC I [TAUT `p <=> ~ ~ p`] THEN PURE_REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(a /\ b) <=> a ==> ~b`] THEN DISCH_TAC THEN SUBGOAL_THEN `?d. &0 < d /\ !x:real^N. x IN interval[vec 0,vec 1] ==> d <= norm(f x - x)` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC BROUWER_COMPACTNESS_LEMMA THEN ASM_SIMP_TAC[COMPACT_INTERVAL; CONTINUOUS_ON_SUB; CONTINUOUS_ON_CONST; CONTINUOUS_ON_ID] THEN ASM_MESON_TAC[VECTOR_SUB_EQ]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN FREEZE_THEN(fun th -> DISCH_THEN(MP_TAC o MATCH_MP th)) (SPEC `f:real^N->real^N` KUHN_LABELLING_LEMMA) THEN DISCH_THEN(MP_TAC o SPEC `\i. 1 <= i /\ i <= n`) THEN ANTS_TAC THENL [ASM_SIMP_TAC[IN_INTERVAL; VEC_COMPONENT]; ALL_TAC] THEN REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `label:real^N->num->num` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `!x y i. x IN interval[vec 0,vec 1] /\ y IN interval[vec 0,vec 1] /\ 1 <= i /\ i <= n /\ ~(label (x:real^N) i :num = label y i) ==> abs((f(x) - x)$i) <= norm(f(y) - f(x)) + norm(y - x)` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(((f:real^N->real^N)(y) - f(x))$i) + abs((y - x)$i)` THEN ASM_SIMP_TAC[REAL_LE_ADD2; COMPONENT_LE_NORM] THEN ASM_SIMP_TAC[VECTOR_SUB_COMPONENT] THEN MATCH_MP_TAC(REAL_ARITH `!x y fx fy d. (x <= fx /\ fy <= y \/ fx <= x /\ y <= fy) ==> abs(fx - x) <= abs(fy - fx) + abs(y - x)`) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `~(a = b) ==> a <= 1 /\ b <= 1 ==> (a = 0) /\ (b = 1) \/ (a = 1) /\ (b = 0)`)) THEN ASM_SIMP_TAC[] THEN STRIP_TAC THEN ASM_SIMP_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?e. &0 < e /\ !x y z i. x IN interval[vec 0,vec 1] /\ y IN interval[vec 0,vec 1] /\ z IN interval[vec 0,vec 1] /\ 1 <= i /\ i <= n /\ norm(x - z) < e /\ norm(y - z) < e /\ ~(label (x:real^N) i :num = label y i) ==> abs((f(z) - z)$i) < d / &n` MP_TAC THENL [SUBGOAL_THEN `(f:real^N->real^N) uniformly_continuous_on interval[vec 0,vec 1]` MP_TAC THENL [ASM_SIMP_TAC[COMPACT_UNIFORMLY_CONTINUOUS; COMPACT_INTERVAL]; ALL_TAC] THEN REWRITE_TAC[uniformly_continuous_on] THEN DISCH_THEN(MP_TAC o SPEC `d / &n / &8`) THEN SUBGOAL_THEN `&0 < d / &n / &8` ASSUME_TAC THENL [ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; LT_MULT; ARITH]; ALL_TAC] THEN ASM_REWRITE_TAC[dist] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min (e / &2) (d / &n / &8)` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_LT_MIN; REAL_HALF] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `z:real^N`; `i:num`] THEN STRIP_TAC THEN ASM_SIMP_TAC[VECTOR_SUB_COMPONENT] THEN MATCH_MP_TAC(REAL_ARITH `!x fx n1 n2 n3 n4 d4. abs(fx - x) <= n1 + n2 /\ abs(fx - fz) <= n3 /\ abs(x - z) <= n4 /\ n1 < d4 /\ n2 < &2 * d4 /\ n3 < d4 /\ n4 < d4 /\ (&8 * d4 = d) ==> abs(fz - z) < d`) THEN MAP_EVERY EXISTS_TAC [`(x:real^N)$i`; `(f:real^N->real^N)(x)$i`; `norm((f:real^N->real^N) y - f x)`; `norm(y - x:real^N)`; `norm((f:real^N->real^N) x - f z)`; `norm(x - z:real^N)`; `d / &n / &8`] THEN ASM_SIMP_TAC[GSYM VECTOR_SUB_COMPONENT; COMPONENT_LE_NORM] THEN SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH] THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `norm(x - z:real^N) + norm(y - z)` THEN ASM_SIMP_TAC[REAL_ARITH `a < e / &2 /\ b < e / &2 /\ (&2 * (e / &2) = e) ==> a + b < e`; REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH_EQ] THEN REWRITE_TAC[GSYM dist] THEN MESON_TAC[DIST_TRIANGLE; DIST_SYM]; MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `norm(x - z:real^N) + norm(y - z)` THEN ASM_SIMP_TAC[REAL_ARITH `a < e /\ b < e ==> a + b < &2 * e`] THEN REWRITE_TAC[GSYM dist] THEN MESON_TAC[DIST_TRIANGLE; DIST_SYM]; FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `a < e / &2 /\ &0 < e /\ (&2 * (e / &2) = e) ==> a < e`) THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH_EQ]]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN X_CHOOSE_THEN `p:num` MP_TAC (SPEC `&1 + &n / e` REAL_ARCH_SIMPLE) THEN DISJ_CASES_TAC(ARITH_RULE `(p = 0) \/ 0 < p`) THENL [DISCH_THEN(fun th -> DISCH_THEN(K ALL_TAC) THEN MP_TAC th) THEN ASM_REWRITE_TAC[LT_REFL; REAL_NOT_LE] THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; REAL_ARITH `&0 < x ==> &0 < &1 + x`]; ALL_TAC] THEN DISCH_TAC THEN ASM_REWRITE_TAC[NOT_FORALL_THM] THEN MP_TAC(SPECL [`n:num`; `p:num`; `\v:(num->num). label((lambda i. &(v i) / &p):real^N):num->num`] KUHN_LEMMA) THEN ASM_REWRITE_TAC[ARITH_RULE `(x = 0) \/ (x = 1) <=> x <= 1`] THEN ANTS_TAC THENL [REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA; IN_INTERVAL; VEC_COMPONENT] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT] THEN ASM_SIMP_TAC[REAL_DIV_REFL; REAL_MUL_LZERO; REAL_MUL_LID; REAL_LT_IMP_NZ; REAL_OF_NUM_LT] THEN ASM_REWRITE_TAC[LE_0; REAL_OF_NUM_LE] THEN REWRITE_TAC[real_div; REAL_MUL_LZERO]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `q:num->num` STRIP_ASSUME_TAC) THEN GEN_REWRITE_TAC BINDER_CONV [SWAP_EXISTS_THM] THEN GEN_REWRITE_TAC I [SWAP_EXISTS_THM] THEN ABBREV_TAC `z:real^N = lambda i. &(q i) / &p` THEN EXISTS_TAC `z:real^N` THEN REWRITE_TAC[TAUT `~(a ==> b) <=> ~b /\ a`] THEN GEN_REWRITE_TAC BINDER_CONV [SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN GEN_REWRITE_TAC I [SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN SUBGOAL_THEN `z:real^N IN interval[vec 0,vec 1]` ASSUME_TAC THENL [EXPAND_TAC "z" THEN SIMP_TAC[IN_INTERVAL; LAMBDA_BETA; VEC_COMPONENT] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT] THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID; REAL_OF_NUM_LE] THEN ASM_SIMP_TAC[LE_0; LT_IMP_LE]; ALL_TAC] THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= n /\ d / &n <= abs((f z - z:real^N)$i)` MP_TAC THENL [SUBGOAL_THEN `d <= norm(f z - z:real^N)` MP_TAC THENL [ASM_SIMP_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN REWRITE_TAC[REAL_NOT_LE] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `sum(1..dimindex(:N)) (\i. abs((f z - z:real^N)$i))` THEN REWRITE_TAC[NORM_LE_L1] THEN MATCH_MP_TAC SUM_BOUND_LT_GEN THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; NUMSEG_EMPTY; CARD_NUMSEG] THEN ASM_REWRITE_TAC[NOT_LT; ADD_SUB]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[REAL_NOT_LT] THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `r:num->num` (X_CHOOSE_THEN `s:num->num` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `(lambda i. &(r i) / &p) :real^N` THEN EXISTS_TAC `(lambda i. &(s i) / &p) :real^N` THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [SIMP_TAC[IN_INTERVAL; LAMBDA_BETA; VEC_COMPONENT] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT] THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID; REAL_OF_NUM_LE] THEN ASM_MESON_TAC[LE_0; ARITH_RULE `r <= q + 1 /\ q < p ==> r <= p`]; SIMP_TAC[IN_INTERVAL; LAMBDA_BETA; VEC_COMPONENT] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT] THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID; REAL_OF_NUM_LE] THEN ASM_MESON_TAC[LE_0; ARITH_RULE `r <= q + 1 /\ q < p ==> r <= p`]; ALL_TAC; ALL_TAC] THEN MATCH_MP_TAC(MATCH_MP (REAL_ARITH `a <= b ==> b < e ==> a < e`) (SPEC_ALL NORM_LE_L1)) THEN MATCH_MP_TAC SUM_BOUND_LT_GEN THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; NUMSEG_EMPTY; CARD_NUMSEG] THEN ASM_REWRITE_TAC[NOT_LT; ADD_SUB] THEN EXPAND_TAC "z" THEN EXPAND_TAC "n" THEN SIMP_TAC[VECTOR_SUB_COMPONENT; LAMBDA_BETA] THEN ASM_REWRITE_TAC[real_div; GSYM REAL_SUB_RDISTRIB] THEN REWRITE_TAC[GSYM real_div; REAL_ABS_DIV; REAL_ABS_NUM] THEN ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_OF_NUM_LT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `&1` THEN ASM_SIMP_TAC[REAL_ARITH `q <= r /\ r <= q + &1 ==> abs(r - q) <= &1`; REAL_OF_NUM_LE; REAL_OF_NUM_ADD] THEN GEN_REWRITE_TAC BINOP_CONV [GSYM REAL_INV_INV] THEN MATCH_MP_TAC REAL_LT_INV2 THEN REWRITE_TAC[REAL_INV_DIV; REAL_INV_MUL] THEN ASM_SIMP_TAC[GSYM real_div; REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_OF_NUM_LT] THEN REWRITE_TAC[REAL_INV_1; REAL_MUL_LID] THEN ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; REAL_ARITH `&1 + x <= y ==> x < y`]);; (* ------------------------------------------------------------------------- *) (* Retractions. *) (* ------------------------------------------------------------------------- *) parse_as_infix("retract_of",(12,"right"));; let retraction = new_definition `retraction (s,t) (r:real^N->real^N) <=> t SUBSET s /\ r continuous_on s /\ (IMAGE r s SUBSET t) /\ (!x. x IN t ==> (r x = x))`;; let retract_of = new_definition `t retract_of s <=> ?r. retraction (s,t) r`;; let RETRACTION = prove (`!s t r. retraction (s,t) r <=> t SUBSET s /\ r continuous_on s /\ IMAGE r s = t /\ (!x. x IN t ==> r x = x)`, REWRITE_TAC[retraction] THEN SET_TAC[]);; let RETRACT_OF_IMP_EXTENSIBLE = prove (`!f:real^M->real^N u s t. s retract_of t /\ f continuous_on s /\ IMAGE f s SUBSET u ==> ?g. g continuous_on t /\ IMAGE g t SUBSET u /\ (!x. x IN s ==> g x = f x)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[RETRACTION; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real^M->real^M` THEN STRIP_TAC THEN EXISTS_TAC `(f:real^M->real^N) o (r:real^M->real^M)` THEN REWRITE_TAC[IMAGE_o; o_THM] THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE; ASM SET_TAC[]] THEN ASM_MESON_TAC[]);; let RETRACTION_IDEMPOTENT = prove (`!r s t. retraction (s,t) r ==> !x. x IN s ==> (r(r(x)) = r(x))`, REWRITE_TAC[retraction; SUBSET; FORALL_IN_IMAGE] THEN MESON_TAC[]);; let IDEMPOTENT_IMP_RETRACTION = prove (`!f:real^N->real^N s. f continuous_on s /\ IMAGE f s SUBSET s /\ (!x. x IN s ==> f(f x) = f x) ==> retraction (s,IMAGE f s) f`, REWRITE_TAC[retraction] THEN SET_TAC[]);; let RETRACTION_SUBSET = prove (`!r s s' t. retraction (s,t) r /\ t SUBSET s' /\ s' SUBSET s ==> retraction (s',t) r`, SIMP_TAC[retraction] THEN MESON_TAC[IMAGE_SUBSET; SUBSET_TRANS; CONTINUOUS_ON_SUBSET]);; let RETRACT_OF_SUBSET = prove (`!s s' t. t retract_of s /\ t SUBSET s' /\ s' SUBSET s ==> t retract_of s'`, REPEAT GEN_TAC THEN REWRITE_TAC[retract_of; LEFT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[RETRACTION_SUBSET]);; let RETRACT_OF_TRANSLATION = prove (`!a t s:real^N->bool. t retract_of s ==> (IMAGE (\x. a + x) t) retract_of (IMAGE (\x. a + x) s)`, REPEAT GEN_TAC THEN REWRITE_TAC[retract_of; retraction] THEN DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(\x:real^N. a + x) o r o (\x:real^N. --a + x)` THEN ASM_SIMP_TAC[IMAGE_SUBSET; FORALL_IN_IMAGE] THEN REPEAT CONJ_TAC THENL [REPEAT(MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[CONTINUOUS_ON_ADD; CONTINUOUS_ON_CONST; CONTINUOUS_ON_ID]) THEN ASM_REWRITE_TAC[GSYM IMAGE_o; o_DEF; VECTOR_ARITH `--a + a + x:real^N = x`; IMAGE_ID]; REWRITE_TAC[IMAGE_o] THEN MATCH_MP_TAC IMAGE_SUBSET THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV) [GSYM IMAGE_o] THEN ASM_REWRITE_TAC[o_DEF; VECTOR_ARITH `--a + a + x:real^N = x`; IMAGE_ID]; ASM_SIMP_TAC[o_DEF; VECTOR_ARITH `--a + a + x:real^N = x`]]);; let RETRACT_OF_TRANSLATION_EQ = prove (`!a t s:real^N->bool. (IMAGE (\x. a + x) t) retract_of (IMAGE (\x. a + x) s) <=> t retract_of s`, REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[RETRACT_OF_TRANSLATION] THEN DISCH_THEN(MP_TAC o SPEC `--a:real^N` o MATCH_MP RETRACT_OF_TRANSLATION) THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; IMAGE_ID; VECTOR_ARITH `--a + a + x:real^N = x`]);; add_translation_invariants [RETRACT_OF_TRANSLATION_EQ];; let RETRACT_OF_INJECTIVE_LINEAR_IMAGE = prove (`!f:real^M->real^N s t. linear f /\ (!x y. f x = f y ==> x = y) /\ t retract_of s ==> (IMAGE f t) retract_of (IMAGE f s)`, REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[retract_of; retraction] THEN DISCH_THEN(X_CHOOSE_THEN `r:real^M->real^M` STRIP_ASSUME_TAC) THEN MP_TAC(ISPEC `f:real^M->real^N` LINEAR_INJECTIVE_LEFT_INVERSE) THEN ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^M` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(f:real^M->real^N) o r o (g:real^N->real^M)` THEN UNDISCH_THEN `!x y. (f:real^M->real^N) x = f y ==> x = y` (K ALL_TAC) THEN ASM_SIMP_TAC[IMAGE_SUBSET; FORALL_IN_IMAGE] THEN REPEAT CONJ_TAC THENL [REPEAT(MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_SIMP_TAC[LINEAR_CONTINUOUS_ON]) THEN ASM_REWRITE_TAC[GSYM IMAGE_o; o_DEF; IMAGE_ID]; REWRITE_TAC[IMAGE_o] THEN MATCH_MP_TAC IMAGE_SUBSET THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV) [GSYM IMAGE_o] THEN ASM_REWRITE_TAC[o_DEF; IMAGE_ID]; ASM_SIMP_TAC[o_DEF]]);; let RETRACT_OF_LINEAR_IMAGE_EQ = prove (`!f:real^M->real^N s t. linear f /\ (!x y. f x = f y ==> x = y) /\ (!y. ?x. f x = y) ==> ((IMAGE f t) retract_of (IMAGE f s) <=> t retract_of s)`, REPEAT GEN_TAC THEN DISCH_TAC THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[RETRACT_OF_INJECTIVE_LINEAR_IMAGE]] THEN FIRST_ASSUM(X_CHOOSE_THEN `h:real^N->real^M` STRIP_ASSUME_TAC o MATCH_MP LINEAR_BIJECTIVE_LEFT_RIGHT_INVERSE) THEN SUBGOAL_THEN `!s. s = IMAGE (h:real^N->real^M) (IMAGE (f:real^M->real^N) s)` (fun th -> ONCE_REWRITE_TAC[th]) THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC RETRACT_OF_INJECTIVE_LINEAR_IMAGE THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);; add_linear_invariants [RETRACT_OF_LINEAR_IMAGE_EQ];; let RETRACTION_REFL = prove (`!s. retraction (s,s) (\x. x)`, REWRITE_TAC[retraction; IMAGE_ID; SUBSET_REFL; CONTINUOUS_ON_ID]);; let RETRACT_OF_REFL = prove (`!s. s retract_of s`, REWRITE_TAC[retract_of] THEN MESON_TAC[RETRACTION_REFL]);; let RETRACT_OF_IMP_SUBSET = prove (`!s t. s retract_of t ==> s SUBSET t`, SIMP_TAC[retract_of; retraction] THEN MESON_TAC[]);; let RETRACT_OF_EMPTY = prove (`(!s:real^N->bool. {} retract_of s <=> s = {}) /\ (!s:real^N->bool. s retract_of {} <=> s = {})`, REWRITE_TAC[retract_of; retraction; SUBSET_EMPTY; IMAGE_CLAUSES] THEN CONJ_TAC THEN X_GEN_TAC `s:real^N->bool` THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; IMAGE_EQ_EMPTY; CONTINUOUS_ON_EMPTY; SUBSET_REFL]);; let RETRACT_OF_SING = prove (`!s x:real^N. {x} retract_of s <=> x IN s`, REPEAT GEN_TAC THEN REWRITE_TAC[retract_of; RETRACTION] THEN EQ_TAC THENL [SET_TAC[]; ALL_TAC] THEN DISCH_TAC THEN EXISTS_TAC `(\y. x):real^N->real^N` THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN ASM SET_TAC[]);; let RETRACTION_o = prove (`!f g s t u:real^N->bool. retraction (s,t) f /\ retraction (t,u) g ==> retraction (s,u) (g o f)`, REPEAT GEN_TAC THEN REWRITE_TAC[retraction] THEN REPEAT STRIP_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]; REWRITE_TAC[IMAGE_o] THEN ASM SET_TAC[]; REWRITE_TAC[o_THM] THEN ASM SET_TAC[]]);; let RETRACT_OF_TRANS = prove (`!s t u:real^N->bool. s retract_of t /\ t retract_of u ==> s retract_of u`, REWRITE_TAC[retract_of] THEN MESON_TAC[RETRACTION_o]);; let CLOSED_IN_RETRACT = prove (`!s t:real^N->bool. s retract_of t ==> closed_in (subtopology euclidean t) s`, REPEAT GEN_TAC THEN REWRITE_TAC[retract_of; retraction] THEN DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `s = {x:real^N | x IN t /\ lift(norm(r x - x)) = vec 0}` SUBST1_TAC THENL [REWRITE_TAC[GSYM DROP_EQ; DROP_VEC; LIFT_DROP; NORM_EQ_0] THEN REWRITE_TAC[VECTOR_SUB_EQ] THEN ASM SET_TAC[]; MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE_CONSTANT THEN MATCH_MP_TAC CONTINUOUS_ON_LIFT_NORM_COMPOSE THEN MATCH_MP_TAC CONTINUOUS_ON_SUB THEN ASM_SIMP_TAC[CONTINUOUS_ON_ID]]);; let RETRACT_OF_CONTRACTIBLE = prove (`!s t:real^N->bool. contractible t /\ s retract_of t ==> contractible s`, REPEAT GEN_TAC THEN REWRITE_TAC[contractible; retract_of] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (X_CHOOSE_TAC `r:real^N->real^N`)) THEN SIMP_TAC[HOMOTOPIC_WITH; PCROSS; LEFT_IMP_EXISTS_THM] THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [retraction]) THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `h:real^(1,N)finite_sum->real^N`] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_IN_IMAGE]) THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`(r:real^N->real^N) a`; `(r:real^N->real^N) o (h:real^(1,N)finite_sum->real^N)`] THEN ASM_SIMP_TAC[o_THM; IMAGE_o; SUBSET] THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]; ASM SET_TAC[]]);; let RETRACT_OF_COMPACT = prove (`!s t:real^N->bool. compact t /\ s retract_of t ==> compact s`, REWRITE_TAC[retract_of; RETRACTION] THEN MESON_TAC[COMPACT_CONTINUOUS_IMAGE]);; let RETRACT_OF_CLOSED = prove (`!s t. closed t /\ s retract_of t ==> closed s`, MESON_TAC[CLOSED_IN_CLOSED_EQ; CLOSED_IN_RETRACT]);; let RETRACT_OF_CONNECTED = prove (`!s t:real^N->bool. connected t /\ s retract_of t ==> connected s`, REWRITE_TAC[retract_of; RETRACTION] THEN MESON_TAC[CONNECTED_CONTINUOUS_IMAGE]);; let RETRACT_OF_PATH_CONNECTED = prove (`!s t:real^N->bool. path_connected t /\ s retract_of t ==> path_connected s`, REWRITE_TAC[retract_of; RETRACTION] THEN MESON_TAC[PATH_CONNECTED_CONTINUOUS_IMAGE]);; let RETRACT_OF_SIMPLY_CONNECTED = prove (`!s t:real^N->bool. simply_connected t /\ s retract_of t ==> simply_connected s`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] (REWRITE_RULE[CONJ_ASSOC] SIMPLY_CONNECTED_RETRACTION_GEN)) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:real^N->real^N` THEN REWRITE_TAC[RETRACTION] THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. x` THEN ASM_REWRITE_TAC[IMAGE_ID; CONTINUOUS_ON_ID]);; let RETRACT_OF_HOMOTOPICALLY_TRIVIAL = prove (`!s t:real^N->bool u:real^M->bool. t retract_of s /\ (!f g. f continuous_on u /\ IMAGE f u SUBSET s /\ g continuous_on u /\ IMAGE g u SUBSET s ==> homotopic_with (\x. T) (u,s) f g) ==> (!f g. f continuous_on u /\ IMAGE f u SUBSET t /\ g continuous_on u /\ IMAGE g u SUBSET t ==> homotopic_with (\x. T) (u,t) f g)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r /\ s <=> p /\ q /\ T /\ r /\ s /\ T`] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] HOMOTOPICALLY_TRIVIAL_RETRACTION_GEN) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:real^N->real^N` THEN REWRITE_TAC[RETRACTION] THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. x` THEN ASM_REWRITE_TAC[CONTINUOUS_ON_ID; IMAGE_ID]);; let RETRACT_OF_HOMOTOPICALLY_TRIVIAL_NULL = prove (`!s t:real^N->bool u:real^M->bool. t retract_of s /\ (!f. f continuous_on u /\ IMAGE f u SUBSET s ==> ?c. homotopic_with (\x. T) (u,s) f (\x. c)) ==> (!f. f continuous_on u /\ IMAGE f u SUBSET t ==> ?c. homotopic_with (\x. T) (u,t) f (\x. c))`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[TAUT `p /\ q <=> p /\ q /\ T`] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] HOMOTOPICALLY_TRIVIAL_RETRACTION_NULL_GEN) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:real^N->real^N` THEN REWRITE_TAC[RETRACTION] THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. x` THEN ASM_REWRITE_TAC[CONTINUOUS_ON_ID; IMAGE_ID]);; let RETRACT_OF_COHOMOTOPICALLY_TRIVIAL = prove (`!s t:real^N->bool u:real^M->bool. t retract_of s /\ (!f g. f continuous_on s /\ IMAGE f s SUBSET u /\ g continuous_on s /\ IMAGE g s SUBSET u ==> homotopic_with (\x. T) (s,u) f g) ==> (!f g. f continuous_on t /\ IMAGE f t SUBSET u /\ g continuous_on t /\ IMAGE g t SUBSET u ==> homotopic_with (\x. T) (t,u) f g)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r /\ s <=> p /\ q /\ T /\ r /\ s /\ T`] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] COHOMOTOPICALLY_TRIVIAL_RETRACTION_GEN) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:real^N->real^N` THEN REWRITE_TAC[RETRACTION] THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. x` THEN ASM_REWRITE_TAC[CONTINUOUS_ON_ID; IMAGE_ID]);; let RETRACT_OF_COHOMOTOPICALLY_TRIVIAL_NULL = prove (`!s t:real^N->bool u:real^M->bool. t retract_of s /\ (!f. f continuous_on s /\ IMAGE f s SUBSET u ==> ?c. homotopic_with (\x. T) (s,u) f (\x. c)) ==> (!f. f continuous_on t /\ IMAGE f t SUBSET u ==> ?c. homotopic_with (\x. T) (t,u) f (\x. c))`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[TAUT `p /\ q <=> p /\ q /\ T`] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] COHOMOTOPICALLY_TRIVIAL_RETRACTION_NULL_GEN) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:real^N->real^N` THEN REWRITE_TAC[RETRACTION] THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. x` THEN ASM_REWRITE_TAC[CONTINUOUS_ON_ID; IMAGE_ID]);; let RETRACTION_IMP_QUOTIENT_MAP = prove (`!r s t:real^N->bool. retraction (s,t) r ==> !u. u SUBSET t ==> (open_in (subtopology euclidean s) {x | x IN s /\ r x IN u} <=> open_in (subtopology euclidean t) u)`, REPEAT GEN_TAC THEN REWRITE_TAC[RETRACTION] THEN STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_RIGHT_INVERSE_IMP_QUOTIENT_MAP THEN EXISTS_TAC `\x:real^N. x` THEN ASM_REWRITE_TAC[CONTINUOUS_ON_ID; SUBSET_REFL; IMAGE_ID]);; let RETRACT_OF_LOCALLY_CONNECTED = prove (`!s t:real^N->bool. s retract_of t /\ locally connected t ==> locally connected s`, REPEAT GEN_TAC THEN REWRITE_TAC[retract_of] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN FIRST_ASSUM(SUBST1_TAC o SYM o el 2 o CONJUNCTS o GEN_REWRITE_RULE I [RETRACTION]) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LOCALLY_CONNECTED_QUOTIENT_IMAGE) THEN MATCH_MP_TAC RETRACTION_IMP_QUOTIENT_MAP THEN ASM_MESON_TAC[RETRACTION]);; let RETRACT_OF_LOCALLY_PATH_CONNECTED = prove (`!s t:real^N->bool. s retract_of t /\ locally path_connected t ==> locally path_connected s`, REPEAT GEN_TAC THEN REWRITE_TAC[retract_of] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN FIRST_ASSUM(SUBST1_TAC o SYM o el 2 o CONJUNCTS o GEN_REWRITE_RULE I [RETRACTION]) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LOCALLY_PATH_CONNECTED_QUOTIENT_IMAGE) THEN MATCH_MP_TAC RETRACTION_IMP_QUOTIENT_MAP THEN ASM_MESON_TAC[RETRACTION]);; let RETRACT_OF_LOCALLY_COMPACT = prove (`!s t:real^N->bool. locally compact s /\ t retract_of s ==> locally compact t`, MESON_TAC[CLOSED_IN_RETRACT; LOCALLY_COMPACT_CLOSED_IN]);; let RETRACT_OF_PCROSS = prove (`!s:real^M->bool s' t:real^N->bool t'. s retract_of s' /\ t retract_of t' ==> (s PCROSS t) retract_of (s' PCROSS t')`, REPEAT GEN_TAC THEN REWRITE_TAC[PCROSS] THEN REWRITE_TAC[retract_of; retraction; SUBSET; FORALL_IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `f:real^M->real^M` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `g:real^N->real^N` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `\z. pastecart ((f:real^M->real^M) (fstcart z)) ((g:real^N->real^N) (sndcart z))` THEN REWRITE_TAC[FORALL_PASTECART; IN_ELIM_PASTECART_THM] THEN ASM_SIMP_TAC[FSTCART_PASTECART; SNDCART_PASTECART] THEN MATCH_MP_TAC CONTINUOUS_ON_PASTECART THEN CONJ_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[LINEAR_CONTINUOUS_ON; LINEAR_FSTCART; LINEAR_SNDCART] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN SIMP_TAC[FSTCART_PASTECART; SNDCART_PASTECART]);; let RETRACT_OF_PCROSS_EQ = prove (`!s s':real^M->bool t t':real^N->bool. s PCROSS t retract_of s' PCROSS t' <=> (s = {} \/ t = {}) /\ (s' = {} \/ t' = {}) \/ s retract_of s' /\ t retract_of t'`, REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`s:real^M->bool = {}`; `s':real^M->bool = {}`; `t:real^N->bool = {}`; `t':real^N->bool = {}`] THEN ASM_REWRITE_TAC[PCROSS_EMPTY; RETRACT_OF_EMPTY; PCROSS_EQ_EMPTY] THEN EQ_TAC THEN REWRITE_TAC[RETRACT_OF_PCROSS] THEN REWRITE_TAC[retract_of; retraction; SUBSET; FORALL_IN_PCROSS; FORALL_IN_IMAGE; PASTECART_IN_PCROSS] THEN DISCH_THEN(X_CHOOSE_THEN `r:real^(M,N)finite_sum->real^(M,N)finite_sum` STRIP_ASSUME_TAC) THEN CONJ_TAC THENL [SUBGOAL_THEN `?b:real^N. b IN t` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN EXISTS_TAC `\x. fstcart((r:real^(M,N)finite_sum->real^(M,N)finite_sum) (pastecart x b))` THEN ASM_SIMP_TAC[FSTCART_PASTECART] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[]; GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[LINEAR_FSTCART; LINEAR_CONTINUOUS_ON] THEN GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[CONTINUOUS_ON_PASTECART; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; PASTECART_IN_PCROSS] THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY]; ASM_MESON_TAC[PASTECART_FST_SND; PASTECART_IN_PCROSS; MEMBER_NOT_EMPTY]]; SUBGOAL_THEN `?a:real^M. a IN s` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN EXISTS_TAC `\x. sndcart((r:real^(M,N)finite_sum->real^(M,N)finite_sum) (pastecart a x))` THEN ASM_SIMP_TAC[SNDCART_PASTECART] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[]; GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[LINEAR_SNDCART; LINEAR_CONTINUOUS_ON] THEN GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[CONTINUOUS_ON_PASTECART; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; PASTECART_IN_PCROSS] THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY]; ASM_MESON_TAC[PASTECART_FST_SND; PASTECART_IN_PCROSS; MEMBER_NOT_EMPTY]]]);; let HOMOTOPIC_INTO_RETRACT = prove (`!f:real^M->real^N g s t u. IMAGE f s SUBSET t /\ IMAGE g s SUBSET t /\ t retract_of u /\ homotopic_with (\x. T) (s,u) f g ==> homotopic_with (\x. T) (s,t) f g`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homotopic_with]) THEN SIMP_TAC[HOMOTOPIC_WITH; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `h:real^(1,M)finite_sum->real^N` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[retraction; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real^N->real^N` THEN STRIP_TAC THEN EXISTS_TAC `(r:real^N->real^N) o (h:real^(1,M)finite_sum->real^N)` THEN ASM_SIMP_TAC[o_THM; IMAGE_o] THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE; ASM SET_TAC[]] THEN CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Absolute retracts (AR), absolute neighbourhood retracts (ANR) and also *) (* Euclidean neighbourhood retracts (ENR). We define AR and ANR by *) (* specializing the standard definitions for a set in R^n to embedding in *) (* spaces inside R^{n+1}. This turns out to be sufficient (since any set in *) (* R^n can be embedded as a closed subset of a convex subset of R^{n+1}) to *) (* derive the usual definitions, but we need to split them into two *) (* implications because of the lack of type quantifiers. Then ENR turns out *) (* to be equivalent to ANR plus local compactness. *) (* ------------------------------------------------------------------------- *) let AR = new_definition `AR(s:real^N->bool) <=> !u s':real^(N,1)finite_sum->bool. s homeomorphic s' /\ closed_in (subtopology euclidean u) s' ==> s' retract_of u`;; let ANR = new_definition `ANR(s:real^N->bool) <=> !u s':real^(N,1)finite_sum->bool. s homeomorphic s' /\ closed_in (subtopology euclidean u) s' ==> ?t. open_in (subtopology euclidean u) t /\ s' retract_of t`;; let ENR = new_definition `ENR s <=> ?u. open u /\ s retract_of u`;; (* ------------------------------------------------------------------------- *) (* First, show that we do indeed get the "usual" properties of ARs and ANRs. *) (* ------------------------------------------------------------------------- *) let AR_IMP_ABSOLUTE_EXTENSOR = prove (`!f:real^M->real^N u t s. AR s /\ f continuous_on t /\ IMAGE f t SUBSET s /\ closed_in (subtopology euclidean u) t ==> ?g. g continuous_on u /\ IMAGE g u SUBSET s /\ !x. x IN t ==> g x = f x`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?c s':real^(N,1)finite_sum->bool. convex c /\ ~(c = {}) /\ closed_in (subtopology euclidean c) s' /\ (s:real^N->bool) homeomorphic s'` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_CLOSED_IN_CONVEX THEN REWRITE_TAC[DIMINDEX_FINITE_SUM; DIMINDEX_1; GSYM INT_OF_NUM_ADD] THEN REWRITE_TAC[INT_ARITH `x:int < y + &1 <=> x <= y`; AFF_DIM_LE_UNIV]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [AR]) THEN DISCH_THEN(MP_TAC o SPECL [`c:real^(N,1)finite_sum->bool`; `s':real^(N,1)finite_sum->bool`]) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN REWRITE_TAC[homeomorphism; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`g:real^N->real^(N,1)finite_sum`; `h:real^(N,1)finite_sum->real^N`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`(g:real^N->real^(N,1)finite_sum) o (f:real^M->real^N)`; `c:real^(N,1)finite_sum->bool`; `u:real^M->bool`; `t:real^M->bool`] DUGUNDJI) THEN ASM_REWRITE_TAC[IMAGE_o; o_THM] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RETRACT_OF_IMP_SUBSET) THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `f':real^M->real^(N,1)finite_sum` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[retraction; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real^(N,1)finite_sum->real^(N,1)finite_sum` THEN STRIP_TAC THEN EXISTS_TAC `(h:real^(N,1)finite_sum->real^N) o r o (f':real^M->real^(N,1)finite_sum)` THEN ASM_REWRITE_TAC[IMAGE_o; o_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REWRITE_TAC[o_ASSOC] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; let AR_IMP_ABSOLUTE_RETRACT = prove (`!s:real^N->bool u s':real^M->bool. AR s /\ s homeomorphic s' /\ closed_in (subtopology euclidean u) s' ==> s' retract_of u`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN REWRITE_TAC[homeomorphism; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`g:real^N->real^M`; `h:real^M->real^N`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`h:real^M->real^N`; `u:real^M->bool`; `s':real^M->bool`; `s:real^N->bool`] AR_IMP_ABSOLUTE_EXTENSOR) THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN DISCH_THEN(X_CHOOSE_THEN `h':real^M->real^N` STRIP_ASSUME_TAC) THEN REWRITE_TAC[retract_of; retraction] THEN EXISTS_TAC `(g:real^N->real^M) o (h':real^M->real^N)` THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN ASM_SIMP_TAC[o_THM; IMAGE_o] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; let AR_IMP_ABSOLUTE_RETRACT_UNIV = prove (`!s:real^N->bool s':real^M->bool. AR s /\ s homeomorphic s' /\ closed s' ==> s' retract_of (:real^M)`, MESON_TAC[AR_IMP_ABSOLUTE_RETRACT; TOPSPACE_EUCLIDEAN; SUBTOPOLOGY_UNIV; OPEN_IN; CLOSED_IN]);; let ABSOLUTE_EXTENSOR_IMP_AR = prove (`!s:real^N->bool. (!f:real^(N,1)finite_sum->real^N u t. f continuous_on t /\ IMAGE f t SUBSET s /\ closed_in (subtopology euclidean u) t ==> ?g. g continuous_on u /\ IMAGE g u SUBSET s /\ !x. x IN t ==> g x = f x) ==> AR s`, REPEAT STRIP_TAC THEN REWRITE_TAC[AR] THEN MAP_EVERY X_GEN_TAC [`u:real^(N,1)finite_sum->bool`; `t:real^(N,1)finite_sum->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN REWRITE_TAC[homeomorphism; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`g:real^N->real^(N,1)finite_sum`; `h:real^(N,1)finite_sum->real^N`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o ISPECL [`h:real^(N,1)finite_sum->real^N`; `u:real^(N,1)finite_sum->bool`; `t:real^(N,1)finite_sum->bool`]) THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN DISCH_THEN(X_CHOOSE_THEN `h':real^(N,1)finite_sum->real^N` STRIP_ASSUME_TAC) THEN REWRITE_TAC[retract_of; retraction] THEN EXISTS_TAC `(g:real^N->real^(N,1)finite_sum) o (h':real^(N,1)finite_sum->real^N)` THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN ASM_SIMP_TAC[o_THM; IMAGE_o] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; let AR_EQ_ABSOLUTE_EXTENSOR = prove (`!s:real^N->bool. AR s <=> (!f:real^(N,1)finite_sum->real^N u t. f continuous_on t /\ IMAGE f t SUBSET s /\ closed_in (subtopology euclidean u) t ==> ?g. g continuous_on u /\ IMAGE g u SUBSET s /\ !x. x IN t ==> g x = f x)`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[AR_IMP_ABSOLUTE_EXTENSOR; ABSOLUTE_EXTENSOR_IMP_AR]);; let AR_IMP_RETRACT = prove (`!s u:real^N->bool. AR s /\ closed_in (subtopology euclidean u) s ==> s retract_of u`, MESON_TAC[AR_IMP_ABSOLUTE_RETRACT; HOMEOMORPHIC_REFL]);; let HOMEOMORPHIC_ARNESS = prove (`!s:real^M->bool t:real^N->bool. s homeomorphic t ==> (AR s <=> AR t)`, let lemma = prove (`!s:real^M->bool t:real^N->bool. s homeomorphic t /\ AR t ==> AR s`, REPEAT STRIP_TAC THEN REWRITE_TAC[AR] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP(ONCE_REWRITE_RULE[IMP_CONJ] AR_IMP_ABSOLUTE_RETRACT)) THEN ASM_REWRITE_TAC[] THEN TRANS_TAC HOMEOMORPHIC_TRANS `s:real^M->bool` THEN ASM_MESON_TAC[HOMEOMORPHIC_SYM]) in REPEAT STRIP_TAC THEN EQ_TAC THEN POP_ASSUM MP_TAC THENL [ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM]; ALL_TAC] THEN ASM_MESON_TAC[lemma]);; let AR_TRANSLATION = prove (`!a:real^N s. AR(IMAGE (\x. a + x) s) <=> AR s`, REPEAT GEN_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_ARNESS THEN REWRITE_TAC[HOMEOMORPHIC_TRANSLATION_SELF]);; add_translation_invariants [AR_TRANSLATION];; let AR_LINEAR_IMAGE_EQ = prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> (AR(IMAGE f s) <=> AR s)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_ARNESS THEN ASM_MESON_TAC[HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_SELF]);; add_linear_invariants [AR_LINEAR_IMAGE_EQ];; let ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR = prove (`!f:real^M->real^N u t s. ANR s /\ f continuous_on t /\ IMAGE f t SUBSET s /\ closed_in (subtopology euclidean u) t ==> ?v g. t SUBSET v /\ open_in (subtopology euclidean u) v /\ g continuous_on v /\ IMAGE g v SUBSET s /\ !x. x IN t ==> g x = f x`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?c s':real^(N,1)finite_sum->bool. convex c /\ ~(c = {}) /\ closed_in (subtopology euclidean c) s' /\ (s:real^N->bool) homeomorphic s'` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_CLOSED_IN_CONVEX THEN REWRITE_TAC[DIMINDEX_FINITE_SUM; DIMINDEX_1; GSYM INT_OF_NUM_ADD] THEN REWRITE_TAC[INT_ARITH `x:int < y + &1 <=> x <= y`; AFF_DIM_LE_UNIV]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ANR]) THEN DISCH_THEN(MP_TAC o SPECL [`c:real^(N,1)finite_sum->bool`; `s':real^(N,1)finite_sum->bool`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d:real^(N,1)finite_sum->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN REWRITE_TAC[homeomorphism; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`g:real^N->real^(N,1)finite_sum`; `h:real^(N,1)finite_sum->real^N`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`(g:real^N->real^(N,1)finite_sum) o (f:real^M->real^N)`; `c:real^(N,1)finite_sum->bool`; `u:real^M->bool`; `t:real^M->bool`] DUGUNDJI) THEN ASM_REWRITE_TAC[IMAGE_o; o_THM] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RETRACT_OF_IMP_SUBSET) THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `f':real^M->real^(N,1)finite_sum` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[retraction; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real^(N,1)finite_sum->real^(N,1)finite_sum` THEN STRIP_TAC THEN EXISTS_TAC `{x | x IN u /\ (f':real^M->real^(N,1)finite_sum) x IN d}` THEN EXISTS_TAC `(h:real^(N,1)finite_sum->real^N) o r o (f':real^M->real^(N,1)finite_sum)` THEN ASM_REWRITE_TAC[IMAGE_o; o_THM] THEN REPEAT CONJ_TAC THENL [REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET)) THEN ASM SET_TAC[]; MATCH_MP_TAC CONTINUOUS_OPEN_IN_PREIMAGE_GEN THEN ASM_MESON_TAC[]; REPEAT(MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC) THEN REWRITE_TAC[IMAGE_o] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]; ASM SET_TAC[]; ASM SET_TAC[]]);; let ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT = prove (`!s:real^N->bool u s':real^M->bool. ANR s /\ s homeomorphic s' /\ closed_in (subtopology euclidean u) s' ==> ?v. open_in (subtopology euclidean u) v /\ s' retract_of v`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN REWRITE_TAC[homeomorphism; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`g:real^N->real^M`; `h:real^M->real^N`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`h:real^M->real^N`; `u:real^M->bool`; `s':real^M->bool`; `s:real^N->bool`] ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR) THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `v:real^M->bool` THEN DISCH_THEN(X_CHOOSE_THEN `h':real^M->real^N` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[retract_of; retraction] THEN EXISTS_TAC `(g:real^N->real^M) o (h':real^M->real^N)` THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN ASM_SIMP_TAC[o_THM; IMAGE_o] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; let ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT_UNIV = prove (`!s:real^N->bool s':real^M->bool. ANR s /\ s homeomorphic s' /\ closed s' ==> ?v. open v /\ s' retract_of v`, MESON_TAC[ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT; TOPSPACE_EUCLIDEAN; SUBTOPOLOGY_UNIV; OPEN_IN; CLOSED_IN]);; let ABSOLUTE_NEIGHBOURHOOD_EXTENSOR_IMP_ANR = prove (`!s:real^N->bool. (!f:real^(N,1)finite_sum->real^N u t. f continuous_on t /\ IMAGE f t SUBSET s /\ closed_in (subtopology euclidean u) t ==> ?v g. t SUBSET v /\ open_in (subtopology euclidean u) v /\ g continuous_on v /\ IMAGE g v SUBSET s /\ !x. x IN t ==> g x = f x) ==> ANR s`, REPEAT STRIP_TAC THEN REWRITE_TAC[ANR] THEN MAP_EVERY X_GEN_TAC [`u:real^(N,1)finite_sum->bool`; `t:real^(N,1)finite_sum->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN REWRITE_TAC[homeomorphism; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`g:real^N->real^(N,1)finite_sum`; `h:real^(N,1)finite_sum->real^N`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o ISPECL [`h:real^(N,1)finite_sum->real^N`; `u:real^(N,1)finite_sum->bool`; `t:real^(N,1)finite_sum->bool`]) THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `v:real^(N,1)finite_sum->bool` THEN DISCH_THEN(X_CHOOSE_THEN `h':real^(N,1)finite_sum->real^N` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[retract_of; retraction] THEN EXISTS_TAC `(g:real^N->real^(N,1)finite_sum) o (h':real^(N,1)finite_sum->real^N)` THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN ASM_SIMP_TAC[o_THM; IMAGE_o] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; let ANR_EQ_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR = prove (`!s:real^N->bool. ANR s <=> (!f:real^(N,1)finite_sum->real^N u t. f continuous_on t /\ IMAGE f t SUBSET s /\ closed_in (subtopology euclidean u) t ==> ?v g. t SUBSET v /\ open_in (subtopology euclidean u) v /\ g continuous_on v /\ IMAGE g v SUBSET s /\ !x. x IN t ==> g x = f x)`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR; ABSOLUTE_NEIGHBOURHOOD_EXTENSOR_IMP_ANR]);; let ANR_IMP_ABSOLUTE_CLOSED_NEIGHBOURHOOD_RETRACT = prove (`!s:real^N->bool u s':real^M->bool. ANR s /\ s homeomorphic s' /\ closed_in (subtopology euclidean u) s' ==> ?v w. open_in (subtopology euclidean u) v /\ closed_in (subtopology euclidean u) w /\ s' SUBSET v /\ v SUBSET w /\ s' retract_of w`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?z. open_in (subtopology euclidean u) z /\ (s':real^M->bool) retract_of z` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT THEN ASM_MESON_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`s':real^M->bool`; `u DIFF z:real^M->bool`; `u:real^M->bool`] SEPARATION_NORMAL_LOCAL) THEN ASM_SIMP_TAC[CLOSED_IN_INTER; CLOSED_IN_REFL; CLOSED_IN_DIFF] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RETRACT_OF_IMP_SUBSET) THEN ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `v:real^M->bool` THEN DISCH_THEN(X_CHOOSE_THEN `w:real^M->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `u DIFF w:real^M->bool` THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_REFL] THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] RETRACT_OF_SUBSET)) THEN ASM SET_TAC[]);; let ANR_IMP_ABSOLUTE_CLOSED_NEIGHBOURHOOD_EXTENSOR = prove (`!f:real^M->real^N u t s. ANR s /\ f continuous_on t /\ IMAGE f t SUBSET s /\ closed_in (subtopology euclidean u) t ==> ?v w g. open_in (subtopology euclidean u) v /\ closed_in (subtopology euclidean u) w /\ t SUBSET v /\ v SUBSET w /\ g continuous_on w /\ IMAGE g w SUBSET s /\ !x. x IN t ==> g x = f x`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?v g. t SUBSET v /\ open_in (subtopology euclidean u) v /\ g continuous_on v /\ IMAGE g v SUBSET s /\ !x. x IN t ==> g x = (f:real^M->real^N) x` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR THEN ASM_MESON_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`t:real^M->bool`; `u DIFF v:real^M->bool`; `u:real^M->bool`] SEPARATION_NORMAL_LOCAL) THEN ASM_SIMP_TAC[CLOSED_IN_INTER; CLOSED_IN_REFL; CLOSED_IN_DIFF] THEN ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `w:real^M->bool` THEN DISCH_THEN(X_CHOOSE_THEN `z:real^M->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `u DIFF z:real^M->bool` THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_REFL] THEN EXISTS_TAC `g:real^M->real^N` THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; let ANR_IMP_NEIGHBOURHOOD_RETRACT = prove (`!s:real^N->bool u. ANR s /\ closed_in (subtopology euclidean u) s ==> ?v. open_in (subtopology euclidean u) v /\ s retract_of v`, MESON_TAC[ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT; HOMEOMORPHIC_REFL]);; let ANR_IMP_CLOSED_NEIGHBOURHOOD_RETRACT = prove (`!s:real^N->bool u. ANR s /\ closed_in (subtopology euclidean u) s ==> ?v w. open_in (subtopology euclidean u) v /\ closed_in (subtopology euclidean u) w /\ s SUBSET v /\ v SUBSET w /\ s retract_of w`, MESON_TAC[ANR_IMP_ABSOLUTE_CLOSED_NEIGHBOURHOOD_RETRACT; HOMEOMORPHIC_REFL]);; let HOMEOMORPHIC_ANRNESS = prove (`!s:real^M->bool t:real^N->bool. s homeomorphic t ==> (ANR s <=> ANR t)`, let lemma = prove (`!s:real^M->bool t:real^N->bool. s homeomorphic t /\ ANR t ==> ANR s`, REPEAT STRIP_TAC THEN REWRITE_TAC[ANR] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP(ONCE_REWRITE_RULE[IMP_CONJ] ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT)) THEN ASM_REWRITE_TAC[] THEN TRANS_TAC HOMEOMORPHIC_TRANS `s:real^M->bool` THEN ASM_MESON_TAC[HOMEOMORPHIC_SYM]) in REPEAT STRIP_TAC THEN EQ_TAC THEN POP_ASSUM MP_TAC THENL [ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM]; ALL_TAC] THEN ASM_MESON_TAC[lemma]);; let ANR_TRANSLATION = prove (`!a:real^N s. ANR(IMAGE (\x. a + x) s) <=> ANR s`, REPEAT GEN_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_ANRNESS THEN REWRITE_TAC[HOMEOMORPHIC_TRANSLATION_SELF]);; add_translation_invariants [ANR_TRANSLATION];; let ANR_LINEAR_IMAGE_EQ = prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> (ANR(IMAGE f s) <=> ANR s)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_ANRNESS THEN ASM_MESON_TAC[HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_SELF]);; add_linear_invariants [ANR_LINEAR_IMAGE_EQ];; (* ------------------------------------------------------------------------- *) (* Analogous properties of ENRs. *) (* ------------------------------------------------------------------------- *) let ENR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT = prove (`!s:real^M->bool s':real^N->bool u. ENR s /\ s homeomorphic s' /\ s' SUBSET u ==> ?t'. open_in (subtopology euclidean u) t' /\ s' retract_of t'`, REWRITE_TAC[ENR; LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`X:real^M->bool`; `Y:real^N->bool`; `K:real^N->bool`; `U:real^M->bool`] THEN STRIP_TAC THEN SUBGOAL_THEN `locally compact (Y:real^N->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[RETRACT_OF_LOCALLY_COMPACT; OPEN_IMP_LOCALLY_COMPACT; HOMEOMORPHIC_LOCAL_COMPACTNESS]; ALL_TAC] THEN SUBGOAL_THEN `?W:real^N->bool. open_in (subtopology euclidean K) W /\ closed_in (subtopology euclidean W) Y` STRIP_ASSUME_TAC THENL [FIRST_ASSUM(X_CHOOSE_THEN `W:real^N->bool` STRIP_ASSUME_TAC o MATCH_MP LOCALLY_COMPACT_CLOSED_IN_OPEN) THEN EXISTS_TAC `K INTER W:real^N->bool` THEN ASM_SIMP_TAC[OPEN_IN_OPEN_INTER; CLOSED_IN_CLOSED] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CLOSED_IN_CLOSED]) THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:real^M->real^N`; `g:real^N->real^M`] THEN REWRITE_TAC[homeomorphism] THEN STRIP_TAC THEN MP_TAC(ISPECL [`g:real^N->real^M`; `W:real^N->bool`; `Y:real^N->bool`] TIETZE_UNBOUNDED) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `h:real^N->real^M` STRIP_ASSUME_TAC) THEN EXISTS_TAC `{x | x IN W /\ (h:real^N->real^M) x IN U}` THEN CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_TRANS THEN EXISTS_TAC `W:real^N->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_OPEN_IN_PREIMAGE_GEN THEN EXISTS_TAC `(:real^M)` THEN ASM_REWRITE_TAC[SUBTOPOLOGY_UNIV; GSYM OPEN_IN; SUBSET_UNIV]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[retraction; retract_of; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real^M->real^M` THEN STRIP_TAC THEN EXISTS_TAC `(f:real^M->real^N) o r o (h:real^N->real^M)` THEN SUBGOAL_THEN `(W:real^N->bool) SUBSET K /\ Y SUBSET W` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[OPEN_IN_IMP_SUBSET; CLOSED_IN_IMP_SUBSET]; ALL_TAC] THEN REWRITE_TAC[IMAGE_o; o_THM] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REPEAT(MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC) THEN REWRITE_TAC[IMAGE_o] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; let ENR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT_UNIV = prove (`!s:real^M->bool s':real^N->bool. ENR s /\ s homeomorphic s' ==> ?t'. open t' /\ s' retract_of t'`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[OPEN_IN] THEN ONCE_REWRITE_TAC[GSYM SUBTOPOLOGY_UNIV] THEN MATCH_MP_TAC ENR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT THEN ASM_MESON_TAC[SUBSET_UNIV]);; let HOMEOMORPHIC_ENRNESS = prove (`!s:real^M->bool t:real^N->bool. s homeomorphic t ==> (ENR s <=> ENR t)`, REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THEN REWRITE_TAC[ENR] THENL [MP_TAC(ISPECL [`s:real^M->bool`; `t:real^N->bool`] ENR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT_UNIV); MP_TAC(ISPECL [`t:real^N->bool`; `s:real^M->bool`] ENR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT_UNIV)] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_MESON_TAC[HOMEOMORPHIC_SYM]);; let ENR_TRANSLATION = prove (`!a:real^N s. ENR(IMAGE (\x. a + x) s) <=> ENR s`, REPEAT GEN_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_ENRNESS THEN REWRITE_TAC[HOMEOMORPHIC_TRANSLATION_SELF]);; add_translation_invariants [ENR_TRANSLATION];; let ENR_LINEAR_IMAGE_EQ = prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> (ENR(IMAGE f s) <=> ENR s)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_ENRNESS THEN ASM_MESON_TAC[HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_SELF]);; add_linear_invariants [ENR_LINEAR_IMAGE_EQ];; (* ------------------------------------------------------------------------- *) (* Some relations among the concepts. We also relate AR to being a retract *) (* of UNIV, which is often a more convenient proxy in the closed case. *) (* ------------------------------------------------------------------------- *) let AR_IMP_ANR = prove (`!s:real^N->bool. AR s ==> ANR s`, REWRITE_TAC[AR; ANR] THEN MESON_TAC[OPEN_IN_REFL; CLOSED_IN_IMP_SUBSET]);; let ENR_IMP_ANR = prove (`!s:real^N->bool. ENR s ==> ANR s`, REWRITE_TAC[ANR] THEN MESON_TAC[ENR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT; CLOSED_IN_IMP_SUBSET]);; let ENR_ANR = prove (`!s:real^N->bool. ENR s <=> ANR s /\ locally compact s`, REPEAT(STRIP_TAC ORELSE EQ_TAC) THEN ASM_SIMP_TAC[ENR_IMP_ANR] THENL [ASM_MESON_TAC[ENR; RETRACT_OF_LOCALLY_COMPACT; OPEN_IMP_LOCALLY_COMPACT]; SUBGOAL_THEN `?t. closed t /\ (s:real^N->bool) homeomorphic (t:real^(N,1)finite_sum->bool)` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC LOCALLY_COMPACT_HOMEOMORPHIC_CLOSED THEN ASM_REWRITE_TAC[DIMINDEX_FINITE_SUM; DIMINDEX_1] THEN ARITH_TAC; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ANR]) THEN DISCH_THEN(MP_TAC o SPECL [`(:real^(N,1)finite_sum)`; `t:real^(N,1)finite_sum->bool`]) THEN ASM_REWRITE_TAC[SUBTOPOLOGY_UNIV; GSYM CLOSED_IN; GSYM OPEN_IN] THEN REWRITE_TAC[GSYM ENR] THEN ASM_MESON_TAC[HOMEOMORPHIC_ENRNESS]]]);; let AR_ANR = prove (`!s:real^N->bool. AR s <=> ANR s /\ contractible s /\ ~(s = {})`, GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[AR_IMP_ANR] THENL [CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[AR; HOMEOMORPHIC_EMPTY; RETRACT_OF_EMPTY; FORALL_UNWIND_THM2; CLOSED_IN_EMPTY; UNIV_NOT_EMPTY]] THEN SUBGOAL_THEN `?c s':real^(N,1)finite_sum->bool. convex c /\ ~(c = {}) /\ closed_in (subtopology euclidean c) s' /\ (s:real^N->bool) homeomorphic s'` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_CLOSED_IN_CONVEX THEN REWRITE_TAC[DIMINDEX_FINITE_SUM; DIMINDEX_1; GSYM INT_OF_NUM_ADD] THEN REWRITE_TAC[INT_ARITH `x:int < y + &1 <=> x <= y`; AFF_DIM_LE_UNIV]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [AR]) THEN DISCH_THEN(MP_TAC o SPECL [`c:real^(N,1)finite_sum->bool`; `s':real^(N,1)finite_sum->bool`]) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[HOMEOMORPHIC_SYM; HOMEOMORPHIC_CONTRACTIBLE; RETRACT_OF_CONTRACTIBLE; CONVEX_IMP_CONTRACTIBLE]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [contractible]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; homotopic_with] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `h:real^(1,N)finite_sum->real^N`] THEN STRIP_TAC THEN REWRITE_TAC[AR_EQ_ABSOLUTE_EXTENSOR] THEN MAP_EVERY X_GEN_TAC [`f:real^(N,1)finite_sum->real^N`; `w:real^(N,1)finite_sum->bool`; `t:real^(N,1)finite_sum->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o ISPECL [`f:real^(N,1)finite_sum->real^N`; `w:real^(N,1)finite_sum->bool`; `t:real^(N,1)finite_sum->bool`] o REWRITE_RULE[ANR_EQ_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:real^(N,1)finite_sum->bool`; `g:real^(N,1)finite_sum->real^N`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`t:real^(N,1)finite_sum->bool`; `w DIFF u:real^(N,1)finite_sum->bool`; `w:real^(N,1)finite_sum->bool`] SEPARATION_NORMAL_LOCAL) THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_REFL] THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`v:real^(N,1)finite_sum->bool`; `v':real^(N,1)finite_sum->bool`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`t:real^(N,1)finite_sum->bool`; `w DIFF v:real^(N,1)finite_sum->bool`; `w:real^(N,1)finite_sum->bool`; `vec 0:real^1`; `vec 1:real^1`] URYSOHN_LOCAL) THEN ASM_SIMP_TAC[SEGMENT_1; CLOSED_IN_DIFF; CLOSED_IN_REFL] THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN REWRITE_TAC[DROP_VEC; REAL_POS] THEN X_GEN_TAC `e:real^(N,1)finite_sum->real^1` THEN STRIP_TAC THEN EXISTS_TAC `\x. if (x:real^(N,1)finite_sum) IN w DIFF v then a else (h:real^(1,N)finite_sum->real^N) (pastecart (e x) (g x))` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [SUBGOAL_THEN `w:real^(N,1)finite_sum->bool = (w DIFF v) UNION (w DIFF v')` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(fun th -> GEN_REWRITE_TAC RAND_CONV [th] THEN MATCH_MP_TAC CONTINUOUS_ON_CASES_LOCAL THEN REWRITE_TAC[GSYM th]) THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_REFL; CONTINUOUS_ON_CONST] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_PASTECART THEN CONJ_TAC; ALL_TAC] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; PASTECART_IN_PCROSS] THEN ASM SET_TAC[]; ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE] THEN RULE_ASSUM_TAC (REWRITE_RULE[SUBSET; FORALL_IN_IMAGE; FORALL_IN_PCROSS]) THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[IN_DIFF] THEN COND_CASES_TAC THEN ASM SET_TAC[]]);; let ANR_RETRACT_OF_ANR = prove (`!s t:real^N->bool. ANR t /\ s retract_of t ==> ANR s`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[ANR_EQ_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR] THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[retraction; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real^N->real^N` THEN STRIP_TAC THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_THEN(X_CHOOSE_THEN `g:real^(N,1)finite_sum->real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(r:real^N->real^N) o (g:real^(N,1)finite_sum->real^N)` THEN ASM_SIMP_TAC[IMAGE_o; o_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; let AR_RETRACT_OF_AR = prove (`!s t:real^N->bool. AR t /\ s retract_of t ==> AR s`, REWRITE_TAC[AR_ANR] THEN MESON_TAC[ANR_RETRACT_OF_ANR; RETRACT_OF_CONTRACTIBLE; RETRACT_OF_EMPTY]);; let ENR_RETRACT_OF_ENR = prove (`!s t:real^N->bool. ENR t /\ s retract_of t ==> ENR s`, REWRITE_TAC[ENR] THEN MESON_TAC[RETRACT_OF_TRANS]);; let RETRACT_OF_UNIV = prove (`!s:real^N->bool. s retract_of (:real^N) <=> AR s /\ closed s`, GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC AR_RETRACT_OF_AR THEN EXISTS_TAC `(:real^N)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC ABSOLUTE_EXTENSOR_IMP_AR THEN MESON_TAC[DUGUNDJI; CONVEX_UNIV; UNIV_NOT_EMPTY]; MATCH_MP_TAC RETRACT_OF_CLOSED THEN ASM_MESON_TAC[CLOSED_UNIV]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] AR_IMP_ABSOLUTE_RETRACT)) THEN ASM_REWRITE_TAC[SUBTOPOLOGY_UNIV; GSYM CLOSED_IN; HOMEOMORPHIC_REFL]]);; let COMPACT_AR = prove (`!s. compact s /\ AR s <=> compact s /\ s retract_of (:real^N)`, REWRITE_TAC[RETRACT_OF_UNIV] THEN MESON_TAC[COMPACT_IMP_CLOSED]);; (* ------------------------------------------------------------------------- *) (* More properties of ARs, ANRs and ENRs. *) (* ------------------------------------------------------------------------- *) let NOT_AR_EMPTY = prove (`~(AR({}:real^N->bool))`, REWRITE_TAC[AR_ANR]);; let ENR_EMPTY = prove (`ENR {}`, REWRITE_TAC[ENR; RETRACT_OF_EMPTY] THEN MESON_TAC[OPEN_EMPTY]);; let ANR_EMPTY = prove (`ANR {}`, SIMP_TAC[ENR_EMPTY; ENR_IMP_ANR]);; let CONVEX_IMP_AR = prove (`!s:real^N->bool. convex s /\ ~(s = {}) ==> AR s`, REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSOLUTE_EXTENSOR_IMP_AR THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC DUGUNDJI THEN ASM_REWRITE_TAC[]);; let CONVEX_IMP_ANR = prove (`!s:real^N->bool. convex s ==> ANR s`, MESON_TAC[ANR_EMPTY; CONVEX_IMP_AR; AR_IMP_ANR]);; let ENR_CONVEX_CLOSED = prove (`!s:real^N->bool. closed s /\ convex s ==> ENR s`, MESON_TAC[CONVEX_IMP_ANR; ENR_ANR; CLOSED_IMP_LOCALLY_COMPACT]);; let AR_UNIV = prove (`AR(:real^N)`, MESON_TAC[CONVEX_IMP_AR; CONVEX_UNIV; UNIV_NOT_EMPTY]);; let ANR_UNIV = prove (`ANR(:real^N)`, MESON_TAC[CONVEX_IMP_ANR; CONVEX_UNIV]);; let ENR_UNIV = prove (`ENR(:real^N)`, MESON_TAC[ENR_CONVEX_CLOSED; CONVEX_UNIV; CLOSED_UNIV]);; let AR_SING = prove (`!a:real^N. AR {a}`, SIMP_TAC[CONVEX_IMP_AR; CONVEX_SING; NOT_INSERT_EMPTY]);; let ANR_SING = prove (`!a:real^N. ANR {a}`, SIMP_TAC[AR_IMP_ANR; AR_SING]);; let ENR_SING = prove (`!a:real^N. ENR {a}`, SIMP_TAC[ENR_ANR; ANR_SING; CLOSED_IMP_LOCALLY_COMPACT; CLOSED_SING]);; let ANR_OPEN_IN = prove (`!s t:real^N->bool. open_in (subtopology euclidean t) s /\ ANR t ==> ANR s`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[ANR_EQ_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR] THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^(N,1)finite_sum->real^N` THEN DISCH_THEN(X_CHOOSE_THEN `w:real^(N,1)finite_sum->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `{x | x IN w /\ (g:real^(N,1)finite_sum->real^N) x IN s}` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_TRANS THEN EXISTS_TAC `w:real^(N,1)finite_sum->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_OPEN_IN_PREIMAGE_GEN THEN ASM_MESON_TAC[]; CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]]);; let ENR_OPEN_IN = prove (`!s t:real^N->bool. open_in (subtopology euclidean t) s /\ ENR t ==> ENR s`, REWRITE_TAC[ENR_ANR] THEN MESON_TAC[ANR_OPEN_IN; LOCALLY_OPEN_SUBSET]);; let ANR_NEIGHBORHOOD_RETRACT = prove (`!s t u:real^N->bool. s retract_of t /\ open_in (subtopology euclidean u) t /\ ANR u ==> ANR s`, MESON_TAC[ANR_OPEN_IN; ANR_RETRACT_OF_ANR]);; let ENR_NEIGHBORHOOD_RETRACT = prove (`!s t u:real^N->bool. s retract_of t /\ open_in (subtopology euclidean u) t /\ ENR u ==> ENR s`, MESON_TAC[ENR_OPEN_IN; ENR_RETRACT_OF_ENR]);; let ANR_RELATIVE_INTERIOR = prove (`!s. ANR(s) ==> ANR(relative_interior s)`, MESON_TAC[OPEN_IN_SET_RELATIVE_INTERIOR; ANR_OPEN_IN]);; let ANR_DELETE = prove (`!s a:real^N. ANR(s) ==> ANR(s DELETE a)`, MESON_TAC[ANR_OPEN_IN; OPEN_IN_DELETE; OPEN_IN_REFL]);; let ENR_RELATIVE_INTERIOR = prove (`!s. ENR(s) ==> ENR(relative_interior s)`, MESON_TAC[OPEN_IN_SET_RELATIVE_INTERIOR; ENR_OPEN_IN]);; let ENR_DELETE = prove (`!s a:real^N. ENR(s) ==> ENR(s DELETE a)`, MESON_TAC[ENR_OPEN_IN; OPEN_IN_DELETE; OPEN_IN_REFL]);; let OPEN_IMP_ENR = prove (`!s:real^N->bool. open s ==> ENR s`, REWRITE_TAC[OPEN_IN] THEN ONCE_REWRITE_TAC[GSYM SUBTOPOLOGY_UNIV] THEN MESON_TAC[ENR_UNIV; ENR_OPEN_IN]);; let OPEN_IMP_ANR = prove (`!s:real^N->bool. open s ==> ANR s`, SIMP_TAC[OPEN_IMP_ENR; ENR_IMP_ANR]);; let ANR_BALL = prove (`!a:real^N r. ANR(ball(a,r))`, MESON_TAC[CONVEX_IMP_ANR; CONVEX_BALL]);; let ENR_BALL = prove (`!a:real^N r. ENR(ball(a,r))`, SIMP_TAC[ENR_ANR; ANR_BALL; OPEN_IMP_LOCALLY_COMPACT; OPEN_BALL]);; let AR_BALL = prove (`!a:real^N r. AR(ball(a,r)) <=> &0 < r`, SIMP_TAC[AR_ANR; BALL_EQ_EMPTY; ANR_BALL; CONVEX_BALL; CONVEX_IMP_CONTRACTIBLE; REAL_NOT_LE]);; let ANR_CBALL = prove (`!a:real^N r. ANR(cball(a,r))`, MESON_TAC[CONVEX_IMP_ANR; CONVEX_CBALL]);; let ENR_CBALL = prove (`!a:real^N r. ENR(cball(a,r))`, SIMP_TAC[ENR_ANR; ANR_CBALL; CLOSED_IMP_LOCALLY_COMPACT; CLOSED_CBALL]);; let AR_CBALL = prove (`!a:real^N r. AR(cball(a,r)) <=> &0 <= r`, SIMP_TAC[AR_ANR; CBALL_EQ_EMPTY; ANR_CBALL; CONVEX_CBALL; CONVEX_IMP_CONTRACTIBLE; REAL_NOT_LT]);; let ANR_INTERVAL = prove (`(!a b:real^N. ANR(interval[a,b])) /\ (!a b:real^N. ANR(interval(a,b)))`, SIMP_TAC[CONVEX_IMP_ANR; CONVEX_INTERVAL; CLOSED_INTERVAL; OPEN_IMP_ANR; OPEN_INTERVAL]);; let ENR_INTERVAL = prove (`(!a b:real^N. ENR(interval[a,b])) /\ (!a b:real^N. ENR(interval(a,b)))`, SIMP_TAC[ENR_CONVEX_CLOSED; CONVEX_INTERVAL; CLOSED_INTERVAL; OPEN_IMP_ENR; OPEN_INTERVAL]);; let AR_INTERVAL = prove (`(!a b:real^N. AR(interval[a,b]) <=> ~(interval[a,b] = {})) /\ (!a b:real^N. AR(interval(a,b)) <=> ~(interval(a,b) = {}))`, SIMP_TAC[AR_ANR; ANR_INTERVAL; CONVEX_IMP_CONTRACTIBLE; CONVEX_INTERVAL]);; let ANR_INTERIOR = prove (`!s. ANR(interior s)`, SIMP_TAC[OPEN_INTERIOR; OPEN_IMP_ANR]);; let ENR_INTERIOR = prove (`!s. ENR(interior s)`, SIMP_TAC[OPEN_INTERIOR; OPEN_IMP_ENR]);; let AR_IMP_CONTRACTIBLE = prove (`!s:real^N->bool. AR s ==> contractible s`, SIMP_TAC[AR_ANR]);; let ENR_IMP_LOCALLY_COMPACT = prove (`!s:real^N->bool. ENR s ==> locally compact s`, SIMP_TAC[ENR_ANR]);; let ANR_IMP_LOCALLY_PATH_CONNECTED = prove (`!s:real^N->bool. ANR s ==> locally path_connected s`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?c s':real^(N,1)finite_sum->bool. convex c /\ ~(c = {}) /\ closed_in (subtopology euclidean c) s' /\ (s:real^N->bool) homeomorphic s'` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_CLOSED_IN_CONVEX THEN REWRITE_TAC[DIMINDEX_FINITE_SUM; DIMINDEX_1; GSYM INT_OF_NUM_ADD] THEN REWRITE_TAC[INT_ARITH `x:int < y + &1 <=> x <= y`; AFF_DIM_LE_UNIV]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ANR]) THEN DISCH_THEN(MP_TAC o SPECL [`c:real^(N,1)finite_sum->bool`; `s':real^(N,1)finite_sum->bool`]) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[HOMEOMORPHIC_SYM; HOMEOMORPHIC_LOCAL_PATH_CONNECTEDNESS; RETRACT_OF_LOCALLY_PATH_CONNECTED; CONVEX_IMP_LOCALLY_PATH_CONNECTED; LOCALLY_OPEN_SUBSET]);; let ANR_IMP_LOCALLY_CONNECTED = prove (`!s:real^N->bool. ANR s ==> locally connected s`, SIMP_TAC[ANR_IMP_LOCALLY_PATH_CONNECTED; LOCALLY_PATH_CONNECTED_IMP_LOCALLY_CONNECTED]);; let AR_IMP_LOCALLY_PATH_CONNECTED = prove (`!s:real^N->bool. AR s ==> locally path_connected s`, SIMP_TAC[AR_IMP_ANR; ANR_IMP_LOCALLY_PATH_CONNECTED]);; let AR_IMP_LOCALLY_CONNECTED = prove (`!s:real^N->bool. AR s ==> locally connected s`, SIMP_TAC[AR_IMP_LOCALLY_PATH_CONNECTED; LOCALLY_PATH_CONNECTED_IMP_LOCALLY_CONNECTED]);; let ENR_IMP_LOCALLY_PATH_CONNECTED = prove (`!s:real^N->bool. ENR s ==> locally path_connected s`, SIMP_TAC[ANR_IMP_LOCALLY_PATH_CONNECTED; ENR_IMP_ANR]);; let ENR_IMP_LOCALLY_CONNECTED = prove (`!s:real^N->bool. ENR s ==> locally connected s`, SIMP_TAC[ANR_IMP_LOCALLY_CONNECTED; ENR_IMP_ANR]);; let COUNTABLE_ANR_COMPONENTS = prove (`!s:real^N->bool. ANR s ==> COUNTABLE(components s)`, SIMP_TAC[ANR_IMP_LOCALLY_CONNECTED; COUNTABLE_COMPONENTS]);; let COUNTABLE_ANR_CONNECTED_COMPONENTS = prove (`!s:real^N->bool t. ANR s ==> COUNTABLE {connected_component s x | x IN t}`, SIMP_TAC[ANR_IMP_LOCALLY_CONNECTED; COUNTABLE_CONNECTED_COMPONENTS]);; let COUNTABLE_ANR_PATH_COMPONENTS = prove (`!s:real^N->bool t. ANR s ==> COUNTABLE {path_component s x | x IN t}`, SIMP_TAC[ANR_IMP_LOCALLY_PATH_CONNECTED; COUNTABLE_PATH_COMPONENTS]);; let FINITE_ANR_COMPONENTS = prove (`!s:real^N->bool. ANR s /\ compact s ==> FINITE(components s)`, SIMP_TAC[FINITE_COMPONENTS; ANR_IMP_LOCALLY_CONNECTED]);; let FINITE_ENR_COMPONENTS = prove (`!s:real^N->bool. ENR s /\ compact s ==> FINITE(components s)`, SIMP_TAC[FINITE_COMPONENTS; ENR_IMP_LOCALLY_CONNECTED]);; let ANR_PCROSS = prove (`!s:real^M->bool t:real^N->bool. ANR s /\ ANR t ==> ANR(s PCROSS t)`, REPEAT STRIP_TAC THEN SIMP_TAC[ANR_EQ_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR] THEN MAP_EVERY X_GEN_TAC [`f:real^((M,N)finite_sum,1)finite_sum->real^(M,N)finite_sum`; `u:real^((M,N)finite_sum,1)finite_sum->bool`; `c:real^((M,N)finite_sum,1)finite_sum->bool`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`fstcart o (f:real^((M,N)finite_sum,1)finite_sum->real^(M,N)finite_sum)`; `u:real^((M,N)finite_sum,1)finite_sum->bool`; `c:real^((M,N)finite_sum,1)finite_sum->bool`; `s:real^M->bool`] ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR) THEN MP_TAC(ISPECL [`sndcart o (f:real^((M,N)finite_sum,1)finite_sum->real^(M,N)finite_sum)`; `u:real^((M,N)finite_sum,1)finite_sum->bool`; `c:real^((M,N)finite_sum,1)finite_sum->bool`; `t:real^N->bool`] ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR) THEN ASM_SIMP_TAC[CONTINUOUS_ON_COMPOSE; LINEAR_CONTINUOUS_ON; LINEAR_FSTCART; LINEAR_SNDCART; IMAGE_o] THEN RULE_ASSUM_TAC (REWRITE_RULE[SUBSET; FORALL_IN_IMAGE; PCROSS; IN_ELIM_THM]) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ANTS_TAC THENL [ASM_MESON_TAC[SNDCART_PASTECART]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`w2:real^((M,N)finite_sum,1)finite_sum->bool`; `h:real^((M,N)finite_sum,1)finite_sum->real^N`] THEN STRIP_TAC THEN ANTS_TAC THENL [ASM_MESON_TAC[FSTCART_PASTECART]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`w1:real^((M,N)finite_sum,1)finite_sum->bool`; `g:real^((M,N)finite_sum,1)finite_sum->real^M`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`w1 INTER w2:real^((M,N)finite_sum,1)finite_sum->bool`; `\x:real^((M,N)finite_sum,1)finite_sum. pastecart (g x:real^M) (h x:real^N)`] THEN ASM_SIMP_TAC[OPEN_IN_INTER; IN_INTER; o_DEF; PASTECART_IN_PCROSS; PASTECART_FST_SND] THEN MATCH_MP_TAC CONTINUOUS_ON_PASTECART THEN ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; INTER_SUBSET]);; let ANR_PCROSS_EQ = prove (`!s:real^M->bool t:real^N->bool. ANR(s PCROSS t) <=> s = {} \/ t = {} \/ ANR s /\ ANR t`, REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_REWRITE_TAC[PCROSS_EMPTY; ANR_EMPTY] THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[PCROSS_EMPTY; ANR_EMPTY] THEN EQ_TAC THEN REWRITE_TAC[ANR_PCROSS] THEN REPEAT STRIP_TAC THENL [UNDISCH_TAC `~(t:real^N->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `ANR ((s:real^M->bool) PCROSS {b:real^N})` MP_TAC THENL [ALL_TAC; MESON_TAC[HOMEOMORPHIC_PCROSS_SING; HOMEOMORPHIC_ANRNESS]]; UNDISCH_TAC `~(s:real^M->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:real^M` THEN DISCH_TAC THEN SUBGOAL_THEN `ANR ({a:real^M} PCROSS (t:real^N->bool))` MP_TAC THENL [ALL_TAC; MESON_TAC[HOMEOMORPHIC_PCROSS_SING; HOMEOMORPHIC_ANRNESS]]] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] ANR_RETRACT_OF_ANR)) THEN REWRITE_TAC[retract_of; retraction] THENL [EXISTS_TAC`\x:real^(M,N)finite_sum. pastecart (fstcart x) (b:real^N)`; EXISTS_TAC`\x:real^(M,N)finite_sum. pastecart (a:real^M) (sndcart x)`] THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_PCROSS; FORALL_IN_IMAGE; IN_SING; FSTCART_PASTECART; SNDCART_PASTECART; PASTECART_IN_PCROSS; CONTINUOUS_ON_PASTECART; LINEAR_FSTCART; LINEAR_SNDCART; LINEAR_CONTINUOUS_ON; CONTINUOUS_ON_CONST]);; let AR_PCROSS = prove (`!s:real^M->bool t:real^N->bool. AR s /\ AR t ==> AR(s PCROSS t)`, SIMP_TAC[AR_ANR; ANR_PCROSS; CONTRACTIBLE_PCROSS; PCROSS_EQ_EMPTY]);; let ENR_PCROSS = prove (`!s:real^M->bool t:real^N->bool. ENR s /\ ENR t ==> ENR(s PCROSS t)`, SIMP_TAC[ENR_ANR; ANR_PCROSS; LOCALLY_COMPACT_PCROSS]);; let ENR_PCROSS_EQ = prove (`!s:real^M->bool t:real^N->bool. ENR(s PCROSS t) <=> s = {} \/ t = {} \/ ENR s /\ ENR t`, REWRITE_TAC[ENR_ANR; ANR_PCROSS_EQ; LOCALLY_COMPACT_PCROSS_EQ] THEN CONV_TAC TAUT);; let AR_PCROSS_EQ = prove (`!s:real^M->bool t:real^N->bool. AR(s PCROSS t) <=> AR s /\ AR t /\ ~(s = {}) /\ ~(t = {})`, SIMP_TAC[AR_ANR; ANR_PCROSS_EQ; CONTRACTIBLE_PCROSS_EQ; PCROSS_EQ_EMPTY] THEN CONV_TAC TAUT);; let AR_CLOSED_UNION_LOCAL = prove (`!s t:real^N->bool. closed_in (subtopology euclidean (s UNION t)) s /\ closed_in (subtopology euclidean (s UNION t)) t /\ AR(s) /\ AR(t) /\ AR(s INTER t) ==> AR(s UNION t)`, let lemma = prove (`!s t u:real^N->bool. closed_in (subtopology euclidean u) s /\ closed_in (subtopology euclidean u) t /\ AR s /\ AR t /\ AR(s INTER t) ==> (s UNION t) retract_of u`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `s INTER t:real^N->bool = {}` THENL [ASM_MESON_TAC[NOT_AR_EMPTY]; ALL_TAC] THEN SUBGOAL_THEN `(s:real^N->bool) SUBSET u /\ t SUBSET u` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[CLOSED_IN_IMP_SUBSET]; ALL_TAC] THEN MAP_EVERY ABBREV_TAC [`s' = {x:real^N | x IN u /\ setdist({x},s) <= setdist({x},t)}`; `t' = {x:real^N | x IN u /\ setdist({x},t) <= setdist({x},s)}`; `w = {x:real^N | x IN u /\ setdist({x},s) = setdist({x},t)}`] THEN SUBGOAL_THEN `closed_in (subtopology euclidean u) (s':real^N->bool) /\ closed_in (subtopology euclidean u) (t':real^N->bool)` STRIP_ASSUME_TAC THENL [MAP_EVERY EXPAND_TAC ["s'"; "t'"] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM LIFT_DROP] THEN REWRITE_TAC[SET_RULE `a <= drop(lift x) <=> lift x IN {x | a <= drop x}`] THEN REWRITE_TAC[LIFT_DROP; LIFT_SUB] THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE THEN SIMP_TAC[CLOSED_SING; CONTINUOUS_ON_SUB; CONTINUOUS_ON_LIFT_SETDIST; drop; CLOSED_HALFSPACE_COMPONENT_LE; REWRITE_RULE[real_ge] CLOSED_HALFSPACE_COMPONENT_GE]; ALL_TAC] THEN SUBGOAL_THEN `(s:real^N->bool) SUBSET s' /\ (t:real^N->bool) SUBSET t'` STRIP_ASSUME_TAC THENL [MAP_EVERY EXPAND_TAC ["s'"; "t'"] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; SETDIST_SING_IN_SET; SETDIST_POS_LE] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(s INTER t:real^N->bool) retract_of w` MP_TAC THENL [MATCH_MP_TAC AR_IMP_ABSOLUTE_RETRACT THEN EXISTS_TAC `s INTER t:real^N->bool` THEN ASM_REWRITE_TAC[HOMEOMORPHIC_REFL] THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TRANS THEN EXISTS_TAC `u:real^N->bool` THEN ASM_SIMP_TAC[CLOSED_IN_INTER] THEN CONJ_TAC THENL [EXPAND_TAC "w"; ASM SET_TAC[]] THEN SIMP_TAC[SUBSET; IN_INTER; IN_ELIM_THM; SETDIST_SING_IN_SET] THEN ASM SET_TAC[]; GEN_REWRITE_TAC LAND_CONV [retract_of] THEN REWRITE_TAC[retraction; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r0:real^N->real^N` THEN STRIP_TAC] THEN SUBGOAL_THEN `!x:real^N. x IN w ==> (x IN s <=> x IN t)` ASSUME_TAC THENL [EXPAND_TAC "w" THEN REWRITE_TAC[IN_ELIM_THM] THEN GEN_TAC THEN DISCH_THEN(fun th -> EQ_TAC THEN DISCH_TAC THEN MP_TAC th) THEN ASM_SIMP_TAC[SETDIST_SING_IN_SET] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_ARITH `&0 = setdist p <=> setdist p = &0`] THEN MATCH_MP_TAC(SET_RULE `~(s = {}) /\ (p <=> s = {} \/ x IN s) ==> p ==> x IN s`) THEN (CONJ_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC SETDIST_EQ_0_CLOSED_IN]) THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `s' INTER t':real^N->bool = w` ASSUME_TAC THENL [ASM SET_TAC[REAL_LE_ANTISYM]; ALL_TAC] THEN SUBGOAL_THEN `closed_in (subtopology euclidean u) (w:real^N->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[CLOSED_IN_INTER]; ALL_TAC] THEN ABBREV_TAC `r = \x:real^N. if x IN w then r0 x else x` THEN SUBGOAL_THEN `IMAGE (r:real^N->real^N) (w UNION s) SUBSET s /\ IMAGE (r:real^N->real^N) (w UNION t) SUBSET t` STRIP_ASSUME_TAC THENL [EXPAND_TAC "r" THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(r:real^N->real^N) continuous_on (w UNION s UNION t)` ASSUME_TAC THENL [EXPAND_TAC "r" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES_LOCAL THEN ASM_REWRITE_TAC[CONTINUOUS_ON_ID] THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TRANS THEN EXISTS_TAC `u:real^N->bool` THEN ASM_SIMP_TAC[CLOSED_IN_UNION] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?g:real^N->real^N. g continuous_on u /\ IMAGE g u SUBSET s /\ !x. x IN w UNION s ==> g x = r x` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC AR_IMP_ABSOLUTE_EXTENSOR THEN ASM_SIMP_TAC[CLOSED_IN_UNION] THEN ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET; IN_UNION]; ALL_TAC] THEN SUBGOAL_THEN `?h:real^N->real^N. h continuous_on u /\ IMAGE h u SUBSET t /\ !x. x IN w UNION t ==> h x = r x` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC AR_IMP_ABSOLUTE_EXTENSOR THEN ASM_SIMP_TAC[CLOSED_IN_UNION] THEN ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET; IN_UNION]; ALL_TAC] THEN REWRITE_TAC[retract_of; retraction] THEN EXISTS_TAC `\x. if x IN s' then (g:real^N->real^N) x else h x` THEN REPEAT CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNION] THEN ASM SET_TAC[]; X_GEN_TAC `x:real^N` THEN REWRITE_TAC[IN_UNION] THEN STRIP_TAC THEN ASM_SIMP_TAC[IN_UNION; COND_ID] THENL [COND_CASES_TAC THENL [EXPAND_TAC "r"; ASM SET_TAC[]]; COND_CASES_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN TRANS_TAC EQ_TRANS `(r:real^N->real^N) x` THEN CONJ_TAC THENL [ASM SET_TAC[]; EXPAND_TAC "r"]] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]] THEN SUBGOAL_THEN `u:real^N->bool = s' UNION t'` (fun th -> ONCE_REWRITE_TAC[th] THEN MATCH_MP_TAC CONTINUOUS_ON_CASES_LOCAL THEN REWRITE_TAC[GSYM th]) THENL [ASM SET_TAC[REAL_LE_TOTAL]; ASM_SIMP_TAC[]] THEN REPEAT CONJ_TAC THEN TRY(FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]) THEN REWRITE_TAC[TAUT `p /\ ~p \/ q /\ p <=> p /\ q`] THEN ASM_SIMP_TAC[GSYM IN_INTER; IN_UNION]) in REPEAT STRIP_TAC THEN REWRITE_TAC[AR] THEN MAP_EVERY X_GEN_TAC [`u:real^(N,1)finite_sum->bool`; `c:real^(N,1)finite_sum->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN REWRITE_TAC[homeomorphism; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:real^N->real^(N,1)finite_sum`; `g:real^(N,1)finite_sum->real^N`] THEN STRIP_TAC THEN SUBGOAL_THEN `closed_in (subtopology euclidean u) {x | x IN c /\ (g:real^(N,1)finite_sum->real^N) x IN s} /\ closed_in (subtopology euclidean u) {x | x IN c /\ (g:real^(N,1)finite_sum->real^N) x IN t}` STRIP_ASSUME_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_TRANS THEN EXISTS_TAC `c:real^(N,1)finite_sum->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE_GEN THEN EXISTS_TAC `s UNION t:real^N->bool` THEN ASM_REWRITE_TAC[SUBSET_REFL]; ALL_TAC] THEN SUBGOAL_THEN `{x | x IN c /\ (g:real^(N,1)finite_sum->real^N) x IN s} UNION {x | x IN c /\ (g:real^(N,1)finite_sum->real^N) x IN t} = c` (fun th -> SUBST1_TAC(SYM th)) THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC lemma THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [UNDISCH_TAC `AR(s:real^N->bool)`; UNDISCH_TAC `AR(t:real^N->bool)`; UNDISCH_TAC `AR(s INTER t:real^N->bool)`] THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOMEOMORPHIC_ARNESS THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN MAP_EVERY EXISTS_TAC [`f:real^N->real^(N,1)finite_sum`; `g:real^(N,1)finite_sum->real^N`] THEN REPEAT CONJ_TAC THEN TRY(FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET))) THEN ASM SET_TAC[]);; let ANR_CLOSED_UNION_LOCAL = prove (`!s t:real^N->bool. closed_in (subtopology euclidean (s UNION t)) s /\ closed_in (subtopology euclidean (s UNION t)) t /\ ANR(s) /\ ANR(t) /\ ANR(s INTER t) ==> ANR(s UNION t)`, let lemma = prove (`!s t u:real^N->bool. closed_in (subtopology euclidean u) s /\ closed_in (subtopology euclidean u) t /\ ANR s /\ ANR t /\ ANR(s INTER t) ==> ?v. open_in (subtopology euclidean u) v /\ (s UNION t) retract_of v`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[UNION_EMPTY] THENL [ASM_MESON_TAC[ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT; HOMEOMORPHIC_REFL]; ALL_TAC] THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[UNION_EMPTY] THENL [ASM_MESON_TAC[ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_RETRACT; HOMEOMORPHIC_REFL]; ALL_TAC] THEN SUBGOAL_THEN `(s:real^N->bool) SUBSET u /\ t SUBSET u` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[CLOSED_IN_IMP_SUBSET]; ALL_TAC] THEN MAP_EVERY ABBREV_TAC [`s' = {x:real^N | x IN u /\ setdist({x},s) <= setdist({x},t)}`; `t' = {x:real^N | x IN u /\ setdist({x},t) <= setdist({x},s)}`; `w = {x:real^N | x IN u /\ setdist({x},s) = setdist({x},t)}`] THEN SUBGOAL_THEN `closed_in (subtopology euclidean u) (s':real^N->bool) /\ closed_in (subtopology euclidean u) (t':real^N->bool)` STRIP_ASSUME_TAC THENL [MAP_EVERY EXPAND_TAC ["s'"; "t'"] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM LIFT_DROP] THEN REWRITE_TAC[SET_RULE `a <= drop(lift x) <=> lift x IN {x | a <= drop x}`] THEN REWRITE_TAC[LIFT_DROP; LIFT_SUB] THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE THEN SIMP_TAC[CLOSED_SING; CONTINUOUS_ON_SUB; CONTINUOUS_ON_LIFT_SETDIST; drop; CLOSED_HALFSPACE_COMPONENT_LE; REWRITE_RULE[real_ge] CLOSED_HALFSPACE_COMPONENT_GE]; ALL_TAC] THEN SUBGOAL_THEN `(s:real^N->bool) SUBSET s' /\ (t:real^N->bool) SUBSET t'` STRIP_ASSUME_TAC THENL [MAP_EVERY EXPAND_TAC ["s'"; "t'"] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; SETDIST_SING_IN_SET; SETDIST_POS_LE] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `s' UNION t':real^N->bool = u` ASSUME_TAC THENL [ASM SET_TAC[REAL_LE_TOTAL]; ALL_TAC] THEN SUBGOAL_THEN `w SUBSET s' /\ (w:real^N->bool) SUBSET t'` STRIP_ASSUME_TAC THENL [ASM SET_TAC[REAL_LE_REFL]; ALL_TAC] THEN SUBGOAL_THEN `?w' w0. open_in (subtopology euclidean w) w' /\ closed_in (subtopology euclidean w) w0 /\ s INTER t SUBSET w' /\ w' SUBSET w0 /\ (s INTER t:real^N->bool) retract_of w0` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC ANR_IMP_CLOSED_NEIGHBOURHOOD_RETRACT THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TRANS THEN EXISTS_TAC `u:real^N->bool` THEN ASM_SIMP_TAC[CLOSED_IN_INTER] THEN CONJ_TAC THENL [EXPAND_TAC "w"; ASM SET_TAC[]] THEN SIMP_TAC[SUBSET; IN_INTER; IN_ELIM_THM; SETDIST_SING_IN_SET] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `closed_in (subtopology euclidean u) (w:real^N->bool)` ASSUME_TAC THENL [SUBGOAL_THEN `w = s' INTER t':real^N->bool` SUBST1_TAC THENL [ASM SET_TAC[REAL_LE_ANTISYM]; ASM_SIMP_TAC[CLOSED_IN_INTER]]; ALL_TAC] THEN SUBGOAL_THEN `closed_in (subtopology euclidean u) (w0:real^N->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[CLOSED_IN_TRANS]; ALL_TAC] THEN SUBGOAL_THEN `?u0. open_in (subtopology euclidean u) (u0:real^N->bool) /\ s INTER t SUBSET u0 /\ u0 INTER w SUBSET w0` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_OPEN]) THEN REWRITE_TAC[OPEN_IN_OPEN; LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:real^N->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN EXISTS_TAC `u INTER z:real^N->bool` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[retraction; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r0:real^N->real^N` THEN STRIP_TAC THEN SUBGOAL_THEN `w0 SUBSET (w:real^N->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[CLOSED_IN_IMP_SUBSET]; ALL_TAC] THEN SUBGOAL_THEN `!x:real^N. x IN w ==> (x IN s <=> x IN t)` ASSUME_TAC THENL [EXPAND_TAC "w" THEN REWRITE_TAC[IN_ELIM_THM] THEN GEN_TAC THEN DISCH_THEN(fun th -> EQ_TAC THEN DISCH_TAC THEN MP_TAC th) THEN ASM_SIMP_TAC[SETDIST_SING_IN_SET] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_ARITH `&0 = setdist p <=> setdist p = &0`] THEN MATCH_MP_TAC(SET_RULE `~(s = {}) /\ (p <=> s = {} \/ x IN s) ==> p ==> x IN s`) THEN (CONJ_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC SETDIST_EQ_0_CLOSED_IN]) THEN ASM SET_TAC[]; ALL_TAC] THEN ABBREV_TAC `r = \x:real^N. if x IN w0 then r0 x else x` THEN SUBGOAL_THEN `IMAGE (r:real^N->real^N) (w0 UNION s) SUBSET s /\ IMAGE (r:real^N->real^N) (w0 UNION t) SUBSET t` STRIP_ASSUME_TAC THENL [EXPAND_TAC "r" THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(r:real^N->real^N) continuous_on (w0 UNION s UNION t)` ASSUME_TAC THENL [EXPAND_TAC "r" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES_LOCAL THEN ASM_REWRITE_TAC[CONTINUOUS_ON_ID] THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TRANS THEN EXISTS_TAC `u:real^N->bool` THEN ASM_SIMP_TAC[CLOSED_IN_UNION] THEN ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`r:real^N->real^N`; `s':real^N->bool`; `w0 UNION s:real^N->bool`; `s:real^N->bool`] ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_SUBSET_TRANS THEN EXISTS_TAC `u:real^N->bool` THEN ASM_SIMP_TAC[CLOSED_IN_UNION] THEN ASM SET_TAC[]]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`w1:real^N->bool`; `g:real^N->real^N`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`r:real^N->real^N`; `t':real^N->bool`; `w0 UNION t:real^N->bool`; `t:real^N->bool`] ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_SUBSET_TRANS THEN EXISTS_TAC `u:real^N->bool` THEN ASM_SIMP_TAC[CLOSED_IN_UNION] THEN ASM SET_TAC[]]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`w2:real^N->bool`; `h:real^N->real^N`] THEN STRIP_TAC THEN SUBGOAL_THEN `s' INTER t':real^N->bool = w` ASSUME_TAC THENL [ASM SET_TAC[REAL_LE_ANTISYM]; ALL_TAC] THEN EXISTS_TAC `(w1 DIFF (w DIFF u0)) UNION (w2 DIFF (w DIFF u0)):real^N->bool` THEN CONJ_TAC THENL [UNDISCH_TAC `open_in (subtopology euclidean t') (w2:real^N->bool)` THEN UNDISCH_TAC `open_in (subtopology euclidean s') (w1:real^N->bool)` THEN REWRITE_TAC[OPEN_IN_OPEN; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `o1:real^N->bool` THEN STRIP_TAC THEN X_GEN_TAC `o2:real^N->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[GSYM OPEN_IN_OPEN] THEN SUBGOAL_THEN `s' INTER o1 DIFF (w DIFF u0) UNION t' INTER o2 DIFF (w DIFF u0) :real^N->bool = ((u DIFF t') INTER o1 UNION (u DIFF s') INTER o2 UNION u INTER o1 INTER o2) DIFF (w DIFF u0)` SUBST1_TAC THENL [REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET)) THEN ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC OPEN_IN_DIFF THEN ASM_SIMP_TAC[CLOSED_IN_DIFF] THEN REPEAT(MATCH_MP_TAC OPEN_IN_UNION THEN CONJ_TAC) THEN MATCH_MP_TAC OPEN_IN_INTER_OPEN THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_REFL; OPEN_INTER]; ALL_TAC] THEN REWRITE_TAC[retract_of; retraction] THEN EXISTS_TAC `\x. if x IN s' then g x else (h:real^N->real^N) x` THEN REPEAT CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC; REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET)) THEN ASM SET_TAC[]; X_GEN_TAC `x:real^N` THEN REWRITE_TAC[IN_UNION] THEN STRIP_TAC THEN ASM_SIMP_TAC[IN_UNION; COND_ID] THENL [COND_CASES_TAC THENL [EXPAND_TAC "r"; ASM SET_TAC[]]; COND_CASES_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN TRANS_TAC EQ_TRANS `(r:real^N->real^N) x` THEN CONJ_TAC THENL [ASM SET_TAC[]; EXPAND_TAC "r"]] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_ON_CASES_LOCAL THEN REPEAT CONJ_TAC THENL [UNDISCH_TAC `closed_in (subtopology euclidean u) (s':real^N->bool)` THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET)) THEN ASM SET_TAC[]; UNDISCH_TAC `closed_in (subtopology euclidean u) (t':real^N->bool)` THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET)) THEN ASM SET_TAC[]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]; X_GEN_TAC `x:real^N` THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`)) THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET)) THEN ASM SET_TAC[]]) in REPEAT STRIP_TAC THEN REWRITE_TAC[ANR] THEN MAP_EVERY X_GEN_TAC [`u:real^(N,1)finite_sum->bool`; `c:real^(N,1)finite_sum->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN REWRITE_TAC[homeomorphism; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:real^N->real^(N,1)finite_sum`; `g:real^(N,1)finite_sum->real^N`] THEN STRIP_TAC THEN SUBGOAL_THEN `closed_in (subtopology euclidean u) {x | x IN c /\ (g:real^(N,1)finite_sum->real^N) x IN s} /\ closed_in (subtopology euclidean u) {x | x IN c /\ (g:real^(N,1)finite_sum->real^N) x IN t}` STRIP_ASSUME_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_TRANS THEN EXISTS_TAC `c:real^(N,1)finite_sum->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE_GEN THEN EXISTS_TAC `s UNION t:real^N->bool` THEN ASM_REWRITE_TAC[SUBSET_REFL]; ALL_TAC] THEN SUBGOAL_THEN `{x | x IN c /\ (g:real^(N,1)finite_sum->real^N) x IN s} UNION {x | x IN c /\ (g:real^(N,1)finite_sum->real^N) x IN t} = c` (fun th -> SUBST1_TAC(SYM th)) THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC lemma THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [UNDISCH_TAC `ANR(s:real^N->bool)`; UNDISCH_TAC `ANR(t:real^N->bool)`; UNDISCH_TAC `ANR(s INTER t:real^N->bool)`] THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOMEOMORPHIC_ANRNESS THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN MAP_EVERY EXISTS_TAC [`f:real^N->real^(N,1)finite_sum`; `g:real^(N,1)finite_sum->real^N`] THEN REPEAT CONJ_TAC THEN TRY(FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET))) THEN ASM SET_TAC[]);; let AR_CLOSED_UNION = prove (`!s t:real^N->bool. closed s /\ closed t /\ AR(s) /\ AR(t) /\ AR(s INTER t) ==> AR(s UNION t)`, MESON_TAC[AR_CLOSED_UNION_LOCAL; CLOSED_SUBSET; SUBSET_UNION]);; let ANR_CLOSED_UNION = prove (`!s t:real^N->bool. closed s /\ closed t /\ ANR(s) /\ ANR(t) /\ ANR(s INTER t) ==> ANR(s UNION t)`, MESON_TAC[ANR_CLOSED_UNION_LOCAL; CLOSED_SUBSET; SUBSET_UNION]);; let ENR_CLOSED_UNION_LOCAL = prove (`!s t:real^N->bool. closed_in (subtopology euclidean (s UNION t)) s /\ closed_in (subtopology euclidean (s UNION t)) t /\ ENR(s) /\ ENR(t) /\ ENR(s INTER t) ==> ENR(s UNION t)`, SIMP_TAC[ENR_ANR; ANR_CLOSED_UNION_LOCAL; LOCALLY_COMPACT_CLOSED_UNION]);; let ENR_CLOSED_UNION = prove (`!s t:real^N->bool. closed s /\ closed t /\ ENR(s) /\ ENR(t) /\ ENR(s INTER t) ==> ENR(s UNION t)`, MESON_TAC[ENR_CLOSED_UNION_LOCAL; CLOSED_SUBSET; SUBSET_UNION]);; let ABSOLUTE_RETRACT_UNION = prove (`!s t. s retract_of (:real^N) /\ t retract_of (:real^N) /\ (s INTER t) retract_of (:real^N) ==> (s UNION t) retract_of (:real^N)`, SIMP_TAC[RETRACT_OF_UNIV; AR_CLOSED_UNION; CLOSED_UNION]);; let RETRACT_FROM_UNION_AND_INTER = prove (`!s t:real^N->bool. closed_in (subtopology euclidean (s UNION t)) s /\ closed_in (subtopology euclidean (s UNION t)) t /\ (s UNION t) retract_of u /\ (s INTER t) retract_of t ==> s retract_of u`, REPEAT STRIP_TAC THEN UNDISCH_TAC `(s UNION t) retract_of (u:real^N->bool)` THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] RETRACT_OF_TRANS) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[retraction; retract_of] THEN DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\x:real^N. if x IN s then x else r x` THEN SIMP_TAC[] THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_ON_CASES_LOCAL THEN ASM_REWRITE_TAC[CONTINUOUS_ON_ID] THEN ASM SET_TAC[]);; let AR_FROM_UNION_AND_INTER_LOCAL = prove (`!s t:real^N->bool. closed_in (subtopology euclidean (s UNION t)) s /\ closed_in (subtopology euclidean (s UNION t)) t /\ AR(s UNION t) /\ AR(s INTER t) ==> AR(s) /\ AR(t)`, SUBGOAL_THEN `!s t:real^N->bool. closed_in (subtopology euclidean (s UNION t)) s /\ closed_in (subtopology euclidean (s UNION t)) t /\ AR(s UNION t) /\ AR(s INTER t) ==> AR(s)` MP_TAC THENL [ALL_TAC; MESON_TAC[UNION_COMM; INTER_COMM]] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC AR_RETRACT_OF_AR THEN EXISTS_TAC `s UNION t:real^N->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC RETRACT_FROM_UNION_AND_INTER THEN EXISTS_TAC `t:real^N->bool` THEN ASM_REWRITE_TAC[RETRACT_OF_REFL] THEN MATCH_MP_TAC RETRACT_OF_SUBSET THEN EXISTS_TAC `s UNION t:real^N->bool` THEN REWRITE_TAC[INTER_SUBSET; SUBSET_UNION] THEN MATCH_MP_TAC AR_IMP_RETRACT THEN ASM_SIMP_TAC[CLOSED_IN_INTER]);; let AR_FROM_UNION_AND_INTER = prove (`!s t:real^N->bool. closed s /\ closed t /\ AR(s UNION t) /\ AR(s INTER t) ==> AR(s) /\ AR(t)`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC AR_FROM_UNION_AND_INTER_LOCAL THEN ASM_MESON_TAC[CLOSED_SUBSET; SUBSET_UNION]);; let ANR_FROM_UNION_AND_INTER_LOCAL = prove (`!s t:real^N->bool. closed_in (subtopology euclidean (s UNION t)) s /\ closed_in (subtopology euclidean (s UNION t)) t /\ ANR(s UNION t) /\ ANR(s INTER t) ==> ANR(s) /\ ANR(t)`, SUBGOAL_THEN `!s t:real^N->bool. closed_in (subtopology euclidean (s UNION t)) s /\ closed_in (subtopology euclidean (s UNION t)) t /\ ANR(s UNION t) /\ ANR(s INTER t) ==> ANR(s)` MP_TAC THENL [ALL_TAC; MESON_TAC[UNION_COMM; INTER_COMM]] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC ANR_NEIGHBORHOOD_RETRACT THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN EXISTS_TAC `s UNION t:real^N->bool` THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`s INTER t:real^N->bool`; `s UNION t:real^N->bool`] ANR_IMP_NEIGHBOURHOOD_RETRACT) THEN ASM_SIMP_TAC[CLOSED_IN_INTER] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RETRACT_OF_IMP_SUBSET) THEN EXISTS_TAC `s UNION u:real^N->bool` THEN CONJ_TAC THENL [ALL_TAC; SUBGOAL_THEN `s UNION u:real^N->bool = ((s UNION t) DIFF t) UNION u` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[OPEN_IN_UNION; OPEN_IN_DIFF; OPEN_IN_REFL]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[retract_of; retraction; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real^N->real^N` THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. if x IN s then x else r x` THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN SUBGOAL_THEN `s UNION u:real^N->bool = s UNION (u INTER t)` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_ON_CASES_LOCAL THEN ASM_REWRITE_TAC[CONTINUOUS_ON_ID; CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; INTER_SUBSET]] THEN CONJ_TAC THENL [UNDISCH_TAC `closed_in(subtopology euclidean (s UNION t)) (s:real^N->bool)`; UNDISCH_TAC `closed_in(subtopology euclidean (s UNION t)) (t:real^N->bool)`] THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]);; let ANR_FROM_UNION_AND_INTER = prove (`!s t:real^N->bool. closed s /\ closed t /\ ANR(s UNION t) /\ ANR(s INTER t) ==> ANR(s) /\ ANR(t)`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC ANR_FROM_UNION_AND_INTER_LOCAL THEN ASM_MESON_TAC[CLOSED_SUBSET; SUBSET_UNION]);; let ANR_FINITE_UNIONS_CONVEX_CLOSED = prove (`!t:(real^N->bool)->bool. FINITE t /\ (!c. c IN t ==> closed c /\ convex c) ==> ANR(UNIONS t)`, GEN_TAC THEN WF_INDUCT_TAC `CARD(t:(real^N->bool)->bool)` THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[TAUT `p ==> q /\ r ==> s <=> q ==> p ==> r ==> s`] THEN SPEC_TAC(`t:(real^N->bool)->bool`,`t:(real^N->bool)->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_0; UNIONS_INSERT; FORALL_IN_INSERT] THEN REWRITE_TAC[ANR_EMPTY] THEN MAP_EVERY X_GEN_TAC [`c:real^N->bool`; `t:(real^N->bool)->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 (K ALL_TAC) STRIP_ASSUME_TAC) THEN REWRITE_TAC[IMP_IMP] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC ANR_CLOSED_UNION THEN ASM_SIMP_TAC[CLOSED_UNIONS] THEN ASM_SIMP_TAC[CONVEX_IMP_ANR] THEN REWRITE_TAC[INTER_UNIONS] THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[CARD_CLAUSES] THEN REWRITE_TAC[FORALL_IN_GSPEC; LT_SUC_LE; LE_REFL] THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE; CLOSED_INTER; CONVEX_INTER] THEN ASM_SIMP_TAC[CARD_IMAGE_LE]);; let FINITE_IMP_ANR = prove (`!s:real^N->bool. FINITE s ==> ANR s`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `s = UNIONS {{a:real^N} | a IN s}` SUBST1_TAC THENL [REWRITE_TAC[UNIONS_GSPEC] THEN SET_TAC[]; MATCH_MP_TAC ANR_FINITE_UNIONS_CONVEX_CLOSED THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; SIMPLE_IMAGE; FINITE_IMAGE] THEN REWRITE_TAC[CLOSED_SING; CONVEX_SING]]);; let ANR_INSERT = prove (`!s a:real^N. closed s /\ ANR s ==> ANR(a INSERT s)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SET_RULE `a INSERT s = {a} UNION s`] THEN MATCH_MP_TAC ANR_CLOSED_UNION THEN ASM_MESON_TAC[CLOSED_SING; ANR_SING; ANR_EMPTY; SET_RULE `{a} INTER s = {a} \/ {a} INTER s = {}`]);; let ANR_TRIANGULATION = prove (`!tr. triangulation tr ==> ANR(UNIONS tr)`, REWRITE_TAC[triangulation] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC ANR_FINITE_UNIONS_CONVEX_CLOSED THEN ASM_MESON_TAC[CLOSED_SIMPLEX; CONVEX_SIMPLEX]);; let ANR_SIMPLICIAL_COMPLEX = prove (`!c. simplicial_complex c ==> ANR(UNIONS c)`, MESON_TAC[ANR_TRIANGULATION; SIMPLICIAL_COMPLEX_IMP_TRIANGULATION]);; let ANR_PATH_COMPONENT_ANR = prove (`!s x:real^N. ANR(s) ==> ANR(path_component s x)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] ANR_OPEN_IN)) THEN MATCH_MP_TAC OPEN_IN_PATH_COMPONENT_LOCALLY_PATH_CONNECTED THEN ASM_SIMP_TAC[ANR_IMP_LOCALLY_PATH_CONNECTED]);; let ANR_CONNECTED_COMPONENT_ANR = prove (`!s x:real^N. ANR(s) ==> ANR(connected_component s x)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] ANR_OPEN_IN)) THEN MATCH_MP_TAC OPEN_IN_CONNECTED_COMPONENT_LOCALLY_CONNECTED THEN ASM_SIMP_TAC[ANR_IMP_LOCALLY_CONNECTED]);; let ANR_COMPONENT_ANR = prove (`!s:real^N->bool. ANR s /\ c IN components s ==> ANR c`, REWRITE_TAC[IN_COMPONENTS] THEN MESON_TAC[ANR_CONNECTED_COMPONENT_ANR]);; (* ------------------------------------------------------------------------- *) (* Original ANR material, now for ENRs. Eventually more of this will be *) (* updated and generalized for AR and ANR as well. *) (* ------------------------------------------------------------------------- *) let ENR_BOUNDED = prove (`!s:real^N->bool. bounded s ==> (ENR s <=> ?u. open u /\ bounded u /\ s retract_of u)`, REPEAT STRIP_TAC THEN REWRITE_TAC[ENR] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN FIRST_ASSUM(MP_TAC o SPEC `vec 0:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `ball(vec 0:real^N,r) INTER u` THEN ASM_SIMP_TAC[BOUNDED_INTER; OPEN_INTER; OPEN_BALL; BOUNDED_BALL] THEN MATCH_MP_TAC RETRACT_OF_SUBSET THEN EXISTS_TAC `u:real^N->bool` THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RETRACT_OF_IMP_SUBSET) THEN ASM SET_TAC[]);; let ABSOLUTE_RETRACT_IMP_AR_GEN = prove (`!s:real^M->bool s':real^N->bool t u. s retract_of t /\ convex t /\ ~(t = {}) /\ s homeomorphic s' /\ closed_in (subtopology euclidean u) s' ==> s' retract_of u`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`s:real^M->bool`; `t:real^M->bool`] AR_RETRACT_OF_AR) THEN ASM_SIMP_TAC[CONVEX_IMP_AR] THEN ASM_MESON_TAC[AR_IMP_ABSOLUTE_RETRACT]);; let ABSOLUTE_RETRACT_IMP_AR = prove (`!s s'. s retract_of (:real^M) /\ s homeomorphic s' /\ closed s' ==> s' retract_of (:real^N)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSOLUTE_RETRACT_IMP_AR_GEN THEN MAP_EVERY EXISTS_TAC [`s:real^M->bool`; `(:real^M)`] THEN ASM_REWRITE_TAC[SUBTOPOLOGY_UNIV; GSYM CLOSED_IN] THEN REWRITE_TAC[CONVEX_UNIV; CLOSED_UNIV; UNIV_NOT_EMPTY]);; let HOMEOMORPHIC_COMPACT_ARNESS = prove (`!s s'. s homeomorphic s' ==> (compact s /\ s retract_of (:real^M) <=> compact s' /\ s' retract_of (:real^N))`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `compact(s:real^M->bool) /\ compact(s':real^N->bool)` THENL [ALL_TAC; ASM_MESON_TAC[HOMEOMORPHIC_COMPACTNESS]] THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ_ALT] ABSOLUTE_RETRACT_IMP_AR) THEN ASM_MESON_TAC[HOMEOMORPHIC_SYM; COMPACT_IMP_CLOSED]);; let EXTENSION_INTO_AR_LOCAL = prove (`!f:real^M->real^N c s t. f continuous_on c /\ IMAGE f c SUBSET t /\ t retract_of (:real^N) /\ closed_in (subtopology euclidean s) c ==> ?g. g continuous_on s /\ IMAGE g (:real^M) SUBSET t /\ !x. x IN c ==> g x = f x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real^M->real^N`; `s:real^M->bool`; `c:real^M->bool`] TIETZE_UNBOUNDED) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:real^M->real^N` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[retraction] THEN DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(r:real^N->real^N) o (g:real^M->real^N)` THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]; REWRITE_TAC[IMAGE_o] THEN ASM SET_TAC[]; REWRITE_TAC[o_THM] THEN ASM SET_TAC[]]);; let EXTENSION_INTO_AR = prove (`!f:real^M->real^N s t. f continuous_on s /\ IMAGE f s SUBSET t /\ t retract_of (:real^N) /\ closed s ==> ?g. g continuous_on (:real^M) /\ IMAGE g (:real^M) SUBSET t /\ !x. x IN s ==> g x = f x`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`f:real^M->real^N`; `s:real^M->bool`; `(:real^M)`; `t:real^N->bool`] EXTENSION_INTO_AR_LOCAL) THEN REWRITE_TAC[GSYM OPEN_IN; GSYM CLOSED_IN; SUBTOPOLOGY_UNIV]);; let NEIGHBOURHOOD_EXTENSION_INTO_ANR = prove (`!f:real^M->real^N s t. f continuous_on s /\ IMAGE f s SUBSET t /\ ANR t /\ closed s ==> ?v g. s SUBSET v /\ open v /\ g continuous_on v /\ IMAGE g v SUBSET t /\ !x. x IN s ==> g x = f x`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`f:real^M->real^N`; `(:real^M)`; `s:real^M->bool`; `t:real^N->bool`] ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR) THEN REWRITE_TAC[GSYM OPEN_IN; GSYM CLOSED_IN; SUBTOPOLOGY_UNIV] THEN CONV_TAC TAUT);; let EXTENSION_FROM_COMPONENT = prove (`!f:real^M->real^N s c u. (locally connected s \/ compact s /\ ANR u) /\ c IN components s /\ f continuous_on c /\ IMAGE f c SUBSET u ==> ?g. g continuous_on s /\ IMAGE g s SUBSET u /\ !x. x IN c ==> g x = f x`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN SUBGOAL_THEN `?t g. open_in (subtopology euclidean s) t /\ closed_in (subtopology euclidean s) t /\ c SUBSET t /\ (g:real^M->real^N) continuous_on t /\ IMAGE g t SUBSET u /\ !x. x IN c ==> g x = f x` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(DISJ_CASES_THEN STRIP_ASSUME_TAC) THENL [MAP_EVERY EXISTS_TAC [`c:real^M->bool`; `f:real^M->real^N`] THEN ASM_SIMP_TAC[SUBSET_REFL; CLOSED_IN_COMPONENT; OPEN_IN_COMPONENTS_LOCALLY_CONNECTED]; MP_TAC(ISPECL [`f:real^M->real^N`; `s:real^M->bool`; `c:real^M->bool`; `u:real^N->bool`] ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR) THEN ASM_SIMP_TAC[CLOSED_IN_COMPONENT; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`w:real^M->bool`; `g:real^M->real^N`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_OPEN]) THEN DISCH_THEN(X_CHOOSE_THEN `v:real^M->bool` (STRIP_ASSUME_TAC o GSYM)) THEN MP_TAC(ISPECL [`s:real^M->bool`; `c:real^M->bool`; `v:real^M->bool`] SURA_BURA_CLOPEN_SUBSET) THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED; CLOSED_IMP_LOCALLY_COMPACT] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[COMPACT_COMPONENTS]; ASM SET_TAC[]]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `k:real^M->bool` THEN STRIP_TAC THEN EXISTS_TAC `g:real^M->real^N` THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CLOSED_SUBSET THEN ASM_MESON_TAC[COMPACT_IMP_CLOSED; OPEN_IN_IMP_SUBSET]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN ASM SET_TAC[]; FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN ASM SET_TAC[]]]; MP_TAC(ISPECL [`g:real^M->real^N`; `s:real^M->bool`; `t:real^M->bool`; `u:real^N->bool`] EXTENSION_FROM_CLOPEN) THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP IN_COMPONENTS_NONEMPTY) THEN ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN ASM SET_TAC[]]);; let ABSOLUTE_RETRACT_FROM_UNION_AND_INTER = prove (`!s t. (s UNION t) retract_of (:real^N) /\ (s INTER t) retract_of (:real^N) /\ closed s /\ closed t ==> s retract_of (:real^N)`, MESON_TAC[RETRACT_OF_UNIV; AR_FROM_UNION_AND_INTER]);; let COUNTABLE_ENR_COMPONENTS = prove (`!s:real^N->bool. ENR s ==> COUNTABLE(components s)`, SIMP_TAC[ENR_IMP_ANR; COUNTABLE_ANR_COMPONENTS]);; let COUNTABLE_ENR_CONNECTED_COMPONENTS = prove (`!s:real^N->bool t. ENR s ==> COUNTABLE {connected_component s x | x | x IN t}`, SIMP_TAC[ENR_IMP_ANR; COUNTABLE_ANR_CONNECTED_COMPONENTS]);; let COUNTABLE_ENR_PATH_COMPONENTS = prove (`!s:real^N->bool. ENR s ==> COUNTABLE {path_component s x | x | x IN s}`, SIMP_TAC[ENR_IMP_ANR; COUNTABLE_ANR_PATH_COMPONENTS]);; let ENR_FROM_UNION_AND_INTER_GEN = prove (`!s t:real^N->bool. closed_in (subtopology euclidean (s UNION t)) s /\ closed_in (subtopology euclidean (s UNION t)) t /\ ENR(s UNION t) /\ ENR(s INTER t) ==> ENR s`, REWRITE_TAC[ENR_ANR] THEN MESON_TAC[LOCALLY_COMPACT_CLOSED_IN; ANR_FROM_UNION_AND_INTER_LOCAL]);; let ENR_FROM_UNION_AND_INTER = prove (`!s t:real^N->bool. closed s /\ closed t /\ ENR(s UNION t) /\ ENR(s INTER t) ==> ENR s`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC ENR_FROM_UNION_AND_INTER_GEN THEN ASM_MESON_TAC[CLOSED_SUBSET; SUBSET_UNION]);; let ENR_FINITE_UNIONS_CONVEX_CLOSED = prove (`!t:(real^N->bool)->bool. FINITE t /\ (!c. c IN t ==> closed c /\ convex c) ==> ENR(UNIONS t)`, SIMP_TAC[ENR_ANR; ANR_FINITE_UNIONS_CONVEX_CLOSED] THEN SIMP_TAC[CLOSED_IMP_LOCALLY_COMPACT; CLOSED_UNIONS]);; let FINITE_IMP_ENR = prove (`!s:real^N->bool. FINITE s ==> ENR s`, SIMP_TAC[FINITE_IMP_ANR; FINITE_IMP_CLOSED; ENR_ANR; CLOSED_IMP_LOCALLY_COMPACT]);; let ENR_INSERT = prove (`!s a:real^N. closed s /\ ENR s ==> ENR(a INSERT s)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SET_RULE `a INSERT s = {a} UNION s`] THEN MATCH_MP_TAC ENR_CLOSED_UNION THEN ASM_MESON_TAC[CLOSED_SING; ENR_SING; ENR_EMPTY; SET_RULE `{a} INTER s = {a} \/ {a} INTER s = {}`]);; let ENR_TRIANGULATION = prove (`!tr. triangulation tr ==> ENR(UNIONS tr)`, REWRITE_TAC[triangulation] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC ENR_FINITE_UNIONS_CONVEX_CLOSED THEN ASM_MESON_TAC[CLOSED_SIMPLEX; CONVEX_SIMPLEX]);; let ENR_SIMPLICIAL_COMPLEX = prove (`!c. simplicial_complex c ==> ENR(UNIONS c)`, MESON_TAC[ENR_TRIANGULATION; SIMPLICIAL_COMPLEX_IMP_TRIANGULATION]);; let ENR_PATH_COMPONENT_ENR = prove (`!s x:real^N. ENR(s) ==> ENR(path_component s x)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] ENR_OPEN_IN)) THEN MATCH_MP_TAC OPEN_IN_PATH_COMPONENT_LOCALLY_PATH_CONNECTED THEN MATCH_MP_TAC RETRACT_OF_LOCALLY_PATH_CONNECTED THEN ASM_MESON_TAC[ENR; OPEN_IMP_LOCALLY_PATH_CONNECTED]);; let ENR_CONNECTED_COMPONENT_ENR = prove (`!s x:real^N. ENR(s) ==> ENR(connected_component s x)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] ENR_OPEN_IN)) THEN MATCH_MP_TAC OPEN_IN_CONNECTED_COMPONENT_LOCALLY_CONNECTED THEN MATCH_MP_TAC RETRACT_OF_LOCALLY_CONNECTED THEN ASM_MESON_TAC[ENR; OPEN_IMP_LOCALLY_CONNECTED]);; let ENR_COMPONENT_ENR = prove (`!s:real^N->bool. ENR s /\ c IN components s ==> ENR c`, REWRITE_TAC[IN_COMPONENTS] THEN MESON_TAC[ENR_CONNECTED_COMPONENT_ENR]);; let ABSOLUTE_RETRACT_HOMEOMORPHIC_CONVEX_COMPACT = prove (`!s:real^N->bool t u:real^M->bool. s homeomorphic u /\ ~(s = {}) /\ s SUBSET t /\ convex u /\ compact u ==> s retract_of t`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`u:real^M->bool`; `t:real^N->bool`; `s:real^N->bool`] AR_IMP_ABSOLUTE_RETRACT) THEN DISCH_THEN MATCH_MP_TAC THEN ASM_MESON_TAC[CONVEX_IMP_AR; HOMEOMORPHIC_EMPTY; HOMEOMORPHIC_SYM; CLOSED_SUBSET; COMPACT_IMP_CLOSED; HOMEOMORPHIC_COMPACTNESS]);; let ABSOLUTE_RETRACT_PATH_IMAGE_ARC = prove (`!g s:real^N->bool. arc g /\ path_image g SUBSET s ==> (path_image g) retract_of s`, REPEAT STRIP_TAC THEN MP_TAC (ISPECL [`path_image g:real^N->bool`; `s:real^N->bool`; `interval[vec 0:real^1,vec 1:real^1]`] ABSOLUTE_RETRACT_HOMEOMORPHIC_CONVEX_COMPACT) THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[PATH_IMAGE_NONEMPTY] THEN REWRITE_TAC[COMPACT_INTERVAL; CONVEX_INTERVAL] THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN EXISTS_TAC `g:real^1->real^N` THEN RULE_ASSUM_TAC(REWRITE_RULE[arc; path; path_image]) THEN ASM_REWRITE_TAC[COMPACT_INTERVAL; path_image]);; let RELATIVE_FRONTIER_DEFORMATION_RETRACT_OF_PUNCTURED_CONVEX = prove (`!s t a:real^N. convex s /\ convex t /\ bounded s /\ a IN relative_interior s /\ relative_frontier s SUBSET t /\ t SUBSET affine hull s ==> ?r. homotopic_with (\x. T) (t DELETE a,t DELETE a) (\x. x) r /\ retraction (t DELETE a,relative_frontier s) r`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`] RAY_TO_RELATIVE_FRONTIER) THEN ASM_SIMP_TAC[relative_frontier; VECTOR_ADD_LID] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`] THEN REWRITE_TAC[FORALL_AND_THM; retraction] THEN X_GEN_TAC `dd:real^N->real` THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. a + dd(x - a) % (x - a)` THEN SUBGOAL_THEN `((\x:real^N. a + dd x % x) o (\x. x - a)) continuous_on t DELETE a` MP_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `affine hull s DELETE (a:real^N)` THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN SIMP_TAC[VECTOR_ARITH `x - a:real^N = y - a <=> x = y`; VECTOR_SUB_REFL; SET_RULE `(!x y. f x = f y <=> x = y) ==> IMAGE f (s DELETE a) = IMAGE f s DELETE f a`] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPACT_SURFACE_PROJECTION THEN EXISTS_TAC `relative_frontier (IMAGE (\x:real^N. x - a) s)` THEN ASM_SIMP_TAC[COMPACT_RELATIVE_FRONTIER_BOUNDED; VECTOR_ARITH `x - a:real^N = --a + x`; RELATIVE_FRONTIER_TRANSLATION; COMPACT_TRANSLATION_EQ] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC(SET_RULE `s SUBSET t /\ ~(a IN IMAGE f s) ==> IMAGE f s SUBSET IMAGE f t DELETE a`) THEN REWRITE_TAC[IN_IMAGE; UNWIND_THM2; VECTOR_ARITH `vec 0:real^N = --a + x <=> x = a`] THEN ASM_REWRITE_TAC[relative_frontier; IN_DIFF] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> s DIFF u SUBSET t`) THEN REWRITE_TAC[CLOSURE_SUBSET_AFFINE_HULL]; MATCH_MP_TAC SUBSPACE_IMP_CONIC THEN MATCH_MP_TAC AFFINE_IMP_SUBSPACE THEN SIMP_TAC[AFFINE_TRANSLATION; AFFINE_AFFINE_HULL; IN_IMAGE] THEN REWRITE_TAC[UNWIND_THM2; VECTOR_ARITH `vec 0:real^N = --a + x <=> x = a`] THEN ASM_MESON_TAC[SUBSET; HULL_SUBSET; RELATIVE_INTERIOR_SUBSET]; ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[IN_DELETE; IMP_CONJ; FORALL_IN_IMAGE] THEN REWRITE_TAC[VECTOR_ARITH `--a + x:real^N = vec 0 <=> x = a`] THEN MAP_EVERY X_GEN_TAC [`k:real`; `x:real^N`] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[IN_IMAGE; UNWIND_THM2; relative_frontier; VECTOR_ARITH `y:real^N = --a + x <=> x = a + y`] THEN EQ_TAC THENL [STRIP_TAC; DISCH_THEN(SUBST1_TAC o SYM) THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `a + --a + x:real^N = x`; VECTOR_ARITH `--a + x:real^N = vec 0 <=> x = a`]] THEN MATCH_MP_TAC(REAL_ARITH `~(a < b) /\ ~(b < a) ==> a = b`) THEN CONJ_TAC THEN DISCH_TAC THENL [ALL_TAC; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `x IN c DIFF i ==> x IN i ==> F`)) THEN RULE_ASSUM_TAC(REWRITE_RULE[IMP_IMP; RIGHT_IMP_FORALL_THM]) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; VECTOR_ARITH `a + --a + x:real^N = x`; VECTOR_ARITH `--a + x:real^N = vec 0 <=> x = a`]] THEN MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`; `a + k % (--a + x):real^N`] IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SEGMENT) THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_DIFF]) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; IN_SEGMENT; NOT_FORALL_THM] THEN EXISTS_TAC `a + dd(--a + x) % (--a + x):real^N` THEN ASM_REWRITE_TAC[VECTOR_ARITH `a:real^N = a + k % (--a + x) <=> k % (x - a) = vec 0`] THEN ASM_SIMP_TAC[VECTOR_SUB_EQ; VECTOR_MUL_EQ_0; REAL_LT_IMP_NZ] THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [EXISTS_TAC `(dd:real^N->real) (--a + x) / k` THEN ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_MUL_LID] THEN REWRITE_TAC[VECTOR_ARITH `a + b:real^N = (&1 - u) % a + u % c <=> b = u % (c - a)`] THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; VECTOR_ADD_SUB; REAL_DIV_RMUL; REAL_LT_IMP_NZ] THEN MATCH_MP_TAC REAL_LT_DIV THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC(SET_RULE `a IN closure s /\ ~(a IN relative_interior s) ==> ~(a IN relative_interior s)`)] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `a + --a + x:real^N = x`; VECTOR_ARITH `--a + x:real^N = vec 0 <=> x = a`]]; REWRITE_TAC[o_DEF] THEN STRIP_TAC] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC HOMOTOPIC_WITH_LINEAR THEN ASM_REWRITE_TAC[CONTINUOUS_ON_ID] THEN REWRITE_TAC[segment; SUBSET; FORALL_IN_GSPEC; IN_DELETE] THEN REPEAT(GEN_TAC THEN STRIP_TAC) THEN CONJ_TAC THENL [FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [convex]) THEN ASM_REWRITE_TAC[REAL_ARITH `&1 - u + u = &1`; REAL_SUB_LE] THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[relative_frontier] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `a + x - a:real^N = x`; VECTOR_SUB_EQ] THEN ASM_MESON_TAC[HULL_SUBSET; RELATIVE_INTERIOR_SUBSET; SUBSET]; ASM_SIMP_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ; VECTOR_ARITH `(&1 - u) % x + u % (a + d % (x - a)):real^N = a <=> (&1 - u + u * d) % (x - a) = vec 0`] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ &0 <= u /\ u <= &1 /\ ~(x = &0 /\ u = &1) ==> ~(&1 - u + x = &0)`) THEN ASM_SIMP_TAC[REAL_ENTIRE; REAL_ARITH `(u = &0 \/ d = &0) /\ u = &1 <=> d = &0 /\ u = &1`] THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_IMP_LE; MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(x = &0 /\ u = &1)`)] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[VECTOR_SUB_EQ; VECTOR_ARITH `a + x - a:real^N = x`] THEN ASM SET_TAC[]]; RULE_ASSUM_TAC(REWRITE_RULE[relative_frontier]) THEN ASM SET_TAC[]; ASM_REWRITE_TAC[]; MATCH_MP_TAC(SET_RULE `!s t. s SUBSET t /\ IMAGE f (t DELETE a) SUBSET u ==> IMAGE f (s DELETE a) SUBSET u`) THEN EXISTS_TAC `affine hull s:real^N->bool` THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_DELETE] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[VECTOR_SUB_EQ; VECTOR_ARITH `a + x - a:real^N = x`]; X_GEN_TAC `x:real^N` THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN ASM_CASES_TAC `x:real^N = a` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `dd(x - a:real^N) = &1` (fun th -> REWRITE_TAC[th] THEN CONV_TAC VECTOR_ARITH) THEN MATCH_MP_TAC(REAL_ARITH `~(d < &1) /\ ~(&1 < d) ==> d = &1`) THEN CONJ_TAC THEN DISCH_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`] IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SEGMENT) THENL [DISCH_THEN(MP_TAC o SPEC `x:real^N`); DISCH_THEN(MP_TAC o SPEC `a + dd(x - a) % (x - a):real^N`)] THEN ASM_REWRITE_TAC[SUBSET; NOT_IMP; IN_SEGMENT; NOT_FORALL_THM] THENL [EXISTS_TAC `a + dd(x - a) % (x - a):real^N` THEN ASM_REWRITE_TAC[VECTOR_SUB_EQ; VECTOR_MUL_EQ_0; REAL_SUB_0; VECTOR_ARITH `a + d % (x - a):real^N = (&1 - u) % a + u % x <=> (u - d) % (x - a) = vec 0`] THEN CONJ_TAC THENL [EXISTS_TAC `(dd:real^N->real)(x - a)` THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC(SET_RULE `x IN closure s DIFF relative_interior s ==> ~(x IN relative_interior s)`)] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[VECTOR_SUB_EQ; VECTOR_ARITH `a + x - a:real^N = x`] THEN ASM_MESON_TAC[CLOSURE_SUBSET_AFFINE_HULL; SUBSET]; CONJ_TAC THENL [MATCH_MP_TAC(SET_RULE `x IN closure s DIFF relative_interior s ==> x IN closure s`) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[VECTOR_SUB_EQ; VECTOR_ARITH `a + x - a:real^N = x`] THEN ASM_MESON_TAC[CLOSURE_SUBSET_AFFINE_HULL; SUBSET]; EXISTS_TAC `x:real^N` THEN ASM_SIMP_TAC[VECTOR_SUB_EQ; VECTOR_MUL_EQ_0; VECTOR_ARITH `a = a + d <=> d:real^N = vec 0`; VECTOR_ARITH `x:real^N = (&1 - u) % a + u % (a + d % (x - a)) <=> (u * d - &1) % (x - a) = vec 0`] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; DISCH_TAC] THEN EXISTS_TAC `inv((dd:real^N->real)(x - a))` THEN ASM_SIMP_TAC[REAL_MUL_LINV; REAL_SUB_REFL; REAL_LT_INV_EQ] THEN ASM_SIMP_TAC[REAL_INV_LT_1] THEN ASM_REAL_ARITH_TAC]]]);; let RELATIVE_FRONTIER_RETRACT_OF_PUNCTURED_AFFINE_HULL = prove (`!s a:real^N. convex s /\ bounded s /\ a IN relative_interior s ==> relative_frontier s retract_of (affine hull s DELETE a)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `affine hull s:real^N->bool`; `a:real^N`] RELATIVE_FRONTIER_DEFORMATION_RETRACT_OF_PUNCTURED_CONVEX) THEN ASM_SIMP_TAC[AFFINE_IMP_CONVEX; AFFINE_AFFINE_HULL; SUBSET_REFL] THEN REWRITE_TAC[retract_of] THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN REWRITE_TAC[relative_frontier] THEN MATCH_MP_TAC(SET_RULE `s SUBSET u ==> s DIFF t SUBSET u`) THEN REWRITE_TAC[CLOSURE_SUBSET_AFFINE_HULL]);; let RELATIVE_BOUNDARY_RETRACT_OF_PUNCTURED_AFFINE_HULL = prove (`!s a:real^N. convex s /\ compact s /\ a IN relative_interior s ==> (s DIFF relative_interior s) retract_of (affine hull s DELETE a)`, MP_TAC RELATIVE_FRONTIER_RETRACT_OF_PUNCTURED_AFFINE_HULL THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_SIMP_TAC[relative_frontier; COMPACT_IMP_BOUNDED; COMPACT_IMP_CLOSED; CLOSURE_CLOSED]);; let PATH_CONNECTED_SPHERE_GEN = prove (`!s:real^N->bool. convex s /\ bounded s /\ ~(aff_dim s = &1) ==> path_connected(relative_frontier s)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `relative_interior s:real^N->bool = {}` THENL [ASM_MESON_TAC[RELATIVE_INTERIOR_EQ_EMPTY; PATH_CONNECTED_EMPTY; RELATIVE_FRONTIER_EMPTY]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC RETRACT_OF_PATH_CONNECTED THEN EXISTS_TAC `affine hull s DELETE (a:real^N)` THEN ASM_SIMP_TAC[PATH_CONNECTED_PUNCTURED_CONVEX; AFFINE_AFFINE_HULL; AFFINE_IMP_CONVEX; AFF_DIM_AFFINE_HULL; RELATIVE_FRONTIER_RETRACT_OF_PUNCTURED_AFFINE_HULL]]);; let CONNECTED_SPHERE_GEN = prove (`!s:real^N->bool. convex s /\ bounded s /\ ~(aff_dim s = &1) ==> connected(relative_frontier s)`, SIMP_TAC[PATH_CONNECTED_SPHERE_GEN; PATH_CONNECTED_IMP_CONNECTED]);; let ENR_RELATIVE_FRONTIER_CONVEX = prove (`!s:real^N->bool. bounded s /\ convex s ==> ENR(relative_frontier s)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[ENR; RELATIVE_FRONTIER_EMPTY] THENL [ASM_MESON_TAC[RETRACT_OF_REFL; OPEN_EMPTY]; ALL_TAC] THEN SUBGOAL_THEN `~(relative_interior s:real^N->bool = {})` MP_TAC THENL [ASM_SIMP_TAC[RELATIVE_INTERIOR_EQ_EMPTY]; ALL_TAC] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN EXISTS_TAC `{x | x IN (:real^N) /\ closest_point (affine hull s) x IN ((:real^N) DELETE a)}` THEN CONJ_TAC THENL [REWRITE_TAC[OPEN_IN] THEN ONCE_REWRITE_TAC[GSYM SUBTOPOLOGY_UNIV] THEN MATCH_MP_TAC CONTINUOUS_OPEN_IN_PREIMAGE_GEN THEN EXISTS_TAC `(:real^N)` THEN SIMP_TAC[OPEN_IN_DELETE; OPEN_IN_REFL; SUBSET_UNIV; ETA_AX]; MATCH_MP_TAC RETRACT_OF_TRANS THEN EXISTS_TAC `(affine hull s) DELETE (a:real^N)` THEN CONJ_TAC THENL [MATCH_MP_TAC RELATIVE_FRONTIER_RETRACT_OF_PUNCTURED_AFFINE_HULL THEN ASM_REWRITE_TAC[]; REWRITE_TAC[retract_of; retraction] THEN EXISTS_TAC `closest_point (affine hull s:real^N->bool)` THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_DELETE] THEN ASM_SIMP_TAC[IN_ELIM_THM; IN_UNIV; CLOSEST_POINT_SELF; CLOSEST_POINT_IN_SET; AFFINE_HULL_EQ_EMPTY; CLOSED_AFFINE_HULL]]] THEN MATCH_MP_TAC CONTINUOUS_ON_CLOSEST_POINT THEN ASM_SIMP_TAC[AFFINE_IMP_CONVEX; AFFINE_AFFINE_HULL; CLOSED_AFFINE_HULL; AFFINE_HULL_EQ_EMPTY]);; let ANR_RELATIVE_FRONTIER_CONVEX = prove (`!s:real^N->bool. bounded s /\ convex s ==> ANR(relative_frontier s)`, SIMP_TAC[ENR_IMP_ANR; ENR_RELATIVE_FRONTIER_CONVEX]);; let FRONTIER_RETRACT_OF_PUNCTURED_UNIVERSE = prove (`!s a. convex s /\ bounded s /\ a IN interior s ==> (frontier s) retract_of ((:real^N) DELETE a)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (SET_RULE `a IN s ==> ~(s = {})`)) THEN MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`] RELATIVE_FRONTIER_RETRACT_OF_PUNCTURED_AFFINE_HULL) THEN ASM_SIMP_TAC[RELATIVE_FRONTIER_NONEMPTY_INTERIOR; RELATIVE_INTERIOR_NONEMPTY_INTERIOR; AFFINE_HULL_NONEMPTY_INTERIOR]);; let SPHERE_RETRACT_OF_PUNCTURED_UNIVERSE_GEN = prove (`!a r b:real^N. b IN ball(a,r) ==> sphere(a,r) retract_of ((:real^N) DELETE b)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM FRONTIER_CBALL] THEN MATCH_MP_TAC FRONTIER_RETRACT_OF_PUNCTURED_UNIVERSE THEN ASM_REWRITE_TAC[CONVEX_CBALL; BOUNDED_CBALL; INTERIOR_CBALL]);; let SPHERE_RETRACT_OF_PUNCTURED_UNIVERSE = prove (`!a r. &0 < r ==> sphere(a,r) retract_of ((:real^N) DELETE a)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SPHERE_RETRACT_OF_PUNCTURED_UNIVERSE_GEN THEN ASM_REWRITE_TAC[CENTRE_IN_BALL]);; let ENR_SPHERE = prove (`!a:real^N r. ENR(sphere(a,r))`, REPEAT GEN_TAC THEN ASM_CASES_TAC `&0 < r` THENL [REWRITE_TAC[ENR] THEN EXISTS_TAC `(:real^N) DELETE a` THEN ASM_SIMP_TAC[SPHERE_RETRACT_OF_PUNCTURED_UNIVERSE; OPEN_DELETE; OPEN_UNIV]; ASM_MESON_TAC[FINITE_IMP_ENR; REAL_NOT_LE; FINITE_SPHERE]]);; let ANR_SPHERE = prove (`!a:real^N r. ANR(sphere(a,r))`, SIMP_TAC[ENR_SPHERE; ENR_IMP_ANR]);; let LOCALLY_PATH_CONNECTED_SPHERE_GEN = prove (`!s:real^N->bool. bounded s /\ convex s ==> locally path_connected (relative_frontier s)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `relative_interior(s:real^N->bool) = {}` THENL [UNDISCH_TAC `relative_interior(s:real^N->bool) = {}` THEN ASM_SIMP_TAC[RELATIVE_INTERIOR_EQ_EMPTY] THEN REWRITE_TAC[LOCALLY_EMPTY; RELATIVE_FRONTIER_EMPTY]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN MATCH_MP_TAC RETRACT_OF_LOCALLY_PATH_CONNECTED THEN EXISTS_TAC `(affine hull s) DELETE (a:real^N)` THEN ASM_SIMP_TAC[RELATIVE_FRONTIER_RETRACT_OF_PUNCTURED_AFFINE_HULL] THEN MATCH_MP_TAC LOCALLY_OPEN_SUBSET THEN EXISTS_TAC `affine hull s:real^N->bool` THEN SIMP_TAC[OPEN_IN_DELETE; OPEN_IN_REFL] THEN SIMP_TAC[CONVEX_IMP_LOCALLY_PATH_CONNECTED; AFFINE_IMP_CONVEX; AFFINE_AFFINE_HULL]]);; let LOCALLY_CONNECTED_SPHERE_GEN = prove (`!s:real^N->bool. bounded s /\ convex s ==> locally connected (relative_frontier s)`, SIMP_TAC[LOCALLY_PATH_CONNECTED_SPHERE_GEN; LOCALLY_PATH_CONNECTED_IMP_LOCALLY_CONNECTED]);; let LOCALLY_PATH_CONNECTED_SPHERE = prove (`!a:real^N r. locally path_connected (sphere(a,r))`, REPEAT GEN_TAC THEN MP_TAC(ISPEC `cball(a:real^N,r)` LOCALLY_PATH_CONNECTED_SPHERE_GEN) THEN MP_TAC(ISPECL [`a:real^N`; `r:real`] RELATIVE_FRONTIER_CBALL) THEN COND_CASES_TAC THEN ASM_SIMP_TAC[SPHERE_SING; LOCALLY_SING; PATH_CONNECTED_SING; BOUNDED_CBALL; CONVEX_CBALL]);; let LOCALLY_CONNECTED_SPHERE = prove (`!a:real^N r. locally connected(sphere(a,r))`, SIMP_TAC[LOCALLY_PATH_CONNECTED_SPHERE; LOCALLY_PATH_CONNECTED_IMP_LOCALLY_CONNECTED]);; let ABSOLUTE_RETRACTION_CONVEX_CLOSED_RELATIVE = prove (`!s:real^N->bool t. convex s /\ closed s /\ ~(s = {}) /\ s SUBSET t ==> ?r. retraction (t,s) r /\ !x. x IN (affine hull s) DIFF (relative_interior s) ==> r(x) IN relative_frontier s`, REPEAT STRIP_TAC THEN REWRITE_TAC[retraction] THEN EXISTS_TAC `closest_point(s:real^N->bool)` THEN ASM_SIMP_TAC[CONTINUOUS_ON_CLOSEST_POINT; CLOSEST_POINT_SELF] THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; CLOSEST_POINT_IN_SET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSEST_POINT_IN_RELATIVE_FRONTIER THEN ASM_MESON_TAC[SUBSET; RELATIVE_INTERIOR_SUBSET]);; let ABSOLUTE_RETRACTION_CONVEX_CLOSED = prove (`!s:real^N->bool t. convex s /\ closed s /\ ~(s = {}) /\ s SUBSET t ==> ?r. retraction (t,s) r /\ (!x. ~(x IN s) ==> r(x) IN frontier s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[retraction] THEN EXISTS_TAC `closest_point(s:real^N->bool)` THEN ASM_SIMP_TAC[CONTINUOUS_ON_CLOSEST_POINT; CLOSEST_POINT_SELF] THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; CLOSEST_POINT_IN_SET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSEST_POINT_IN_FRONTIER THEN ASM_MESON_TAC[SUBSET; INTERIOR_SUBSET]);; let ABSOLUTE_RETRACT_CONVEX_CLOSED = prove (`!s:real^N->bool t. convex s /\ closed s /\ ~(s = {}) /\ s SUBSET t ==> s retract_of t`, REWRITE_TAC[retract_of] THEN MESON_TAC[ABSOLUTE_RETRACTION_CONVEX_CLOSED]);; let ABSOLUTE_RETRACT_CONVEX = prove (`!s u:real^N->bool. convex s /\ ~(s = {}) /\ closed_in (subtopology euclidean u) s ==> s retract_of u`, REPEAT STRIP_TAC THEN REWRITE_TAC[retract_of; retraction] THEN MP_TAC(ISPECL [`\x:real^N. x`; `s:real^N->bool`; `u:real^N->bool`; `s:real^N->bool`] DUGUNDJI) THEN ASM_MESON_TAC[CONTINUOUS_ON_ID; IMAGE_ID; SUBSET_REFL; CLOSED_IN_IMP_SUBSET]);; (* ------------------------------------------------------------------------- *) (* Borsuk homotopy extension thorem. It's only this late so we can use the *) (* concept of retraction, saying that the domain sets or range set are ENRs. *) (* ------------------------------------------------------------------------- *) let BORSUK_HOMOTOPY_EXTENSION_HOMOTOPIC = prove (`!f:real^M->real^N g s t u. closed_in (subtopology euclidean t) s /\ (ANR s /\ ANR t \/ ANR u) /\ f continuous_on t /\ IMAGE f t SUBSET u /\ homotopic_with (\x. T) (s,u) f g ==> ?g'. homotopic_with (\x. T) (t,u) f g' /\ g' continuous_on t /\ IMAGE g' t SUBSET u /\ !x. x IN s ==> g'(x) = g(x)`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homotopic_with]) THEN REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `h:real^(1,M)finite_sum->real^N` STRIP_ASSUME_TAC) THEN MAP_EVERY ABBREV_TAC [`h' = \z. if sndcart z IN s then (h:real^(1,M)finite_sum->real^N) z else f(sndcart z)`; `B:real^(1,M)finite_sum->bool = {vec 0} PCROSS t UNION interval[vec 0,vec 1] PCROSS s`] THEN SUBGOAL_THEN `closed_in (subtopology euclidean (interval[vec 0:real^1,vec 1] PCROSS t)) ({vec 0} PCROSS (t:real^M->bool)) /\ closed_in (subtopology euclidean (interval[vec 0:real^1,vec 1] PCROSS t)) (interval[vec 0,vec 1] PCROSS s)` STRIP_ASSUME_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_PCROSS THEN ASM_REWRITE_TAC[CLOSED_IN_SING; CLOSED_IN_REFL; ENDS_IN_UNIT_INTERVAL]; ALL_TAC] THEN SUBGOAL_THEN `(h':real^(1,M)finite_sum->real^N) continuous_on B` ASSUME_TAC THENL [MAP_EVERY EXPAND_TAC ["h'"; "B"] THEN ONCE_REWRITE_TAC[UNION_COMM] THEN MATCH_MP_TAC CONTINUOUS_ON_CASES_LOCAL THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] CLOSED_IN_SUBSET_TRANS)) THEN REWRITE_TAC[SUBSET_UNION; UNION_SUBSET; SUBSET_PCROSS] THEN ASM_REWRITE_TAC[SING_SUBSET; SUBSET_REFL; ENDS_IN_UNIT_INTERVAL]; ASM_SIMP_TAC[FORALL_PASTECART; PASTECART_IN_PCROSS; IN_SING; SNDCART_PASTECART; TAUT `(p /\ q) /\ ~q <=> F`] THEN GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_SIMP_TAC[LINEAR_SNDCART; LINEAR_CONTINUOUS_ON; IMAGE_SNDCART_PCROSS; NOT_INSERT_EMPTY]]; ALL_TAC] THEN SUBGOAL_THEN `IMAGE (h':real^(1,M)finite_sum->real^N) B SUBSET u` ASSUME_TAC THENL [MAP_EVERY EXPAND_TAC ["h'"; "B"] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_PASTECART; SNDCART_PASTECART; PASTECART_IN_PCROSS; IN_UNION; IN_SING] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[COND_ID] THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MATCH_MP_TAC o SIMP_RULE[SUBSET; FORALL_IN_IMAGE]) THEN ASM_REWRITE_TAC[PASTECART_IN_PCROSS; ENDS_IN_UNIT_INTERVAL]; ALL_TAC] THEN SUBGOAL_THEN `?V k:real^(1,M)finite_sum->real^N. B SUBSET V /\ open_in (subtopology euclidean (interval [vec 0,vec 1] PCROSS t)) V /\ k continuous_on V /\ IMAGE k V SUBSET u /\ (!x. x IN B ==> k x = h' x)` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(DISJ_CASES_THEN STRIP_ASSUME_TAC) THENL [SUBGOAL_THEN `ANR(B:real^(1,M)finite_sum->bool)` MP_TAC THENL [EXPAND_TAC "B" THEN MATCH_MP_TAC ANR_CLOSED_UNION_LOCAL THEN ONCE_REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] CLOSED_IN_SUBSET_TRANS)) THEN REWRITE_TAC[SUBSET_UNION; UNION_SUBSET; SUBSET_PCROSS] THEN ASM_REWRITE_TAC[SING_SUBSET; SUBSET_REFL; ENDS_IN_UNIT_INTERVAL]; ASM_SIMP_TAC[INTER_PCROSS; SET_RULE `s SUBSET t ==> t INTER s = s`; ENDS_IN_UNIT_INTERVAL; SET_RULE `a IN s ==> {a} INTER s = {a}`] THEN REPEAT CONJ_TAC THEN MATCH_MP_TAC ANR_PCROSS THEN ASM_REWRITE_TAC[ANR_INTERVAL; ANR_SING]]; DISCH_THEN(MP_TAC o SPEC `interval[vec 0:real^1,vec 1] PCROSS (t:real^M->bool)` o MATCH_MP(ONCE_REWRITE_RULE[IMP_CONJ] ANR_IMP_NEIGHBOURHOOD_RETRACT)) THEN ANTS_TAC THENL [EXPAND_TAC "B" THEN MATCH_MP_TAC CLOSED_IN_UNION THEN CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_PCROSS THEN ASM_REWRITE_TAC[CLOSED_IN_REFL; CLOSED_IN_SING; ENDS_IN_UNIT_INTERVAL]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `V:real^(1,M)finite_sum->bool` THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RETRACT_OF_IMP_SUBSET) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[retraction; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real^(1,M)finite_sum->real^(1,M)finite_sum` THEN STRIP_TAC THEN EXISTS_TAC `(h':real^(1,M)finite_sum->real^N) o (r:real^(1,M)finite_sum->real^(1,M)finite_sum)` THEN ASM_REWRITE_TAC[IMAGE_o; o_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]]; MATCH_MP_TAC ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR THEN ASM_SIMP_TAC[] THEN EXPAND_TAC "B" THEN ASM_SIMP_TAC[CLOSED_IN_UNION]]; ABBREV_TAC `s' = {x | ?u. u IN interval[vec 0,vec 1] /\ pastecart (u:real^1) (x:real^M) IN interval [vec 0,vec 1] PCROSS t DIFF V}` THEN SUBGOAL_THEN `closed_in (subtopology euclidean t) (s':real^M->bool)` ASSUME_TAC THENL [EXPAND_TAC "s'" THEN MATCH_MP_TAC CLOSED_IN_COMPACT_PROJECTION THEN REWRITE_TAC[COMPACT_INTERVAL] THEN MATCH_MP_TAC CLOSED_IN_DIFF THEN ASM_REWRITE_TAC[CLOSED_IN_REFL]; ALL_TAC] THEN MP_TAC(ISPECL [`s:real^M->bool`; `s':real^M->bool`; `t:real^M->bool`; `vec 1:real^1`; `vec 0:real^1`] URYSOHN_LOCAL) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [EXPAND_TAC "s'" THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_ELIM_THM] THEN REWRITE_TAC[NOT_IN_EMPTY; IN_DIFF; PASTECART_IN_PCROSS] THEN X_GEN_TAC `x:real^M` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `p:real^1` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN EXPAND_TAC "B" THEN REWRITE_TAC[IN_UNION; PASTECART_IN_PCROSS] THEN ASM SET_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[SEGMENT_SYM] THEN REWRITE_TAC[SEGMENT_1; DROP_VEC; REAL_POS] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^M->real^1` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(\x. (k:real^(1,M)finite_sum->real^N) (pastecart (a x) x))` THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE] THEN REPEAT CONJ_TAC THENL [SIMP_TAC[HOMOTOPIC_WITH] THEN EXISTS_TAC `(k:real^(1,M)finite_sum->real^N) o (\z. pastecart (drop(fstcart z) % a(sndcart z)) (sndcart z))` THEN REWRITE_TAC[o_THM; FSTCART_PASTECART; SNDCART_PASTECART] THEN REWRITE_TAC[DROP_VEC; VECTOR_MUL_LZERO; VECTOR_MUL_LID] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_PASTECART THEN SIMP_TAC[LINEAR_SNDCART; LINEAR_CONTINUOUS_ON] THEN MATCH_MP_TAC CONTINUOUS_ON_MUL THEN SIMP_TAC[o_DEF; LIFT_DROP; LINEAR_FSTCART; LINEAR_CONTINUOUS_ON; ETA_AX] THEN GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[LINEAR_SNDCART; LINEAR_CONTINUOUS_ON] THEN ASM_SIMP_TAC[IMAGE_SNDCART_PCROSS; UNIT_INTERVAL_NONEMPTY]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET))]; REWRITE_TAC[IMAGE_o] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `IMAGE k t SUBSET u ==> s SUBSET t ==> IMAGE k s SUBSET u`)); X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN SUBGOAL_THEN `pastecart (vec 0:real^1) (x:real^M) IN B` MP_TAC THENL [EXPAND_TAC "B" THEN ASM_REWRITE_TAC[IN_UNION; PASTECART_IN_PCROSS; IN_SING]; DISCH_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `(h':real^(1,M)finite_sum->real^N) (pastecart (vec 0) x)` THEN CONJ_TAC THENL [ASM_MESON_TAC[]; EXPAND_TAC "h'"] THEN ASM_REWRITE_TAC[SNDCART_PASTECART; COND_ID]]] THEN (REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_IN_PCROSS] THEN MAP_EVERY X_GEN_TAC [`p:real^1`; `x:real^M`] THEN STRIP_TAC THEN REWRITE_TAC[FSTCART_PASTECART; SNDCART_PASTECART] THEN ASM_CASES_TAC `(x:real^M) IN s'` THENL [ASM_SIMP_TAC[VECTOR_MUL_RZERO] THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN EXPAND_TAC "B" THEN REWRITE_TAC[IN_UNION; PASTECART_IN_PCROSS] THEN ASM_REWRITE_TAC[IN_SING]; UNDISCH_TAC `~((x:real^M) IN s')` THEN EXPAND_TAC "s'" THEN REWRITE_TAC[IN_ELIM_THM; NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `drop p % (a:real^M->real^1) x`) THEN REWRITE_TAC[PASTECART_IN_PCROSS; IN_DIFF] THEN ASM_REWRITE_TAC[CONJ_ASSOC] THEN MATCH_MP_TAC(TAUT `p ==> ~(p /\ ~q) ==> q`) THEN REWRITE_TAC[IN_INTERVAL_1; DROP_CMUL; DROP_VEC] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_INTERVAL_1; DROP_VEC]) THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_LE_LMUL; REAL_ARITH `p * a <= p * &1 /\ p <= &1 ==> p * a <= &1`]]); GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_SIMP_TAC[CONTINUOUS_ON_PASTECART; CONTINUOUS_ON_ID] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC; X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET; FORALL_IN_IMAGE]); X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `(h':real^(1,M)finite_sum->real^N) (pastecart (vec 1) x)` THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC; EXPAND_TAC "h'"] THEN ASM_REWRITE_TAC[SNDCART_PASTECART] THEN EXPAND_TAC "B" THEN REWRITE_TAC[IN_UNION; PASTECART_IN_PCROSS] THEN ASM_REWRITE_TAC[ENDS_IN_UNIT_INTERVAL]] THEN (ASM_CASES_TAC `(x:real^M) IN s'` THEN ASM_SIMP_TAC[] THENL [FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN EXPAND_TAC "B" THEN REWRITE_TAC[IN_UNION; PASTECART_IN_PCROSS] THEN ASM SET_TAC[]; UNDISCH_TAC `~((x:real^M) IN s')` THEN EXPAND_TAC "s'" THEN REWRITE_TAC[IN_ELIM_THM; NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `(a:real^M->real^1) x`) THEN ASM_SIMP_TAC[PASTECART_IN_PCROSS; IN_DIFF] THEN ASM SET_TAC[]])]);; let BORSUK_HOMOTOPY_EXTENSION = prove (`!f:real^M->real^N g s t u. closed_in (subtopology euclidean t) s /\ (ANR s /\ ANR t \/ ANR u) /\ f continuous_on t /\ IMAGE f t SUBSET u /\ homotopic_with (\x. T) (s,u) f g ==> ?g'. g' continuous_on t /\ IMAGE g' t SUBSET u /\ !x. x IN s ==> g'(x) = g(x)`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP BORSUK_HOMOTOPY_EXTENSION_HOMOTOPIC) THEN MESON_TAC[]);; let NULLHOMOTOPIC_INTO_ANR_EXTENSION = prove (`!f:real^M->real^N s t. closed s /\ f continuous_on s /\ ~(s = {}) /\ IMAGE f s SUBSET t /\ ANR t ==> ((?c. homotopic_with (\x. T) (s,t) f (\x. c)) <=> (?g. g continuous_on (:real^M) /\ IMAGE g (:real^M) SUBSET t /\ !x. x IN s ==> g x = f x))`, REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THENL [MATCH_MP_TAC BORSUK_HOMOTOPY_EXTENSION THEN ASM_REWRITE_TAC[SUBTOPOLOGY_UNIV; GSYM CLOSED_IN] THEN ONCE_REWRITE_TAC[HOMOTOPIC_WITH_SYM] THEN EXISTS_TAC `(\x. c):real^M->real^N` THEN ASM_REWRITE_TAC[CLOSED_UNIV; CONTINUOUS_ON_CONST] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP HOMOTOPIC_WITH_IMP_SUBSET) THEN ASM SET_TAC[]; MP_TAC(ISPECL [`g:real^M->real^N`; `(:real^M)`; `t:real^N->bool`] NULLHOMOTOPIC_FROM_CONTRACTIBLE) THEN ASM_REWRITE_TAC[CONTRACTIBLE_UNIV] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real^N` THEN DISCH_TAC THEN MATCH_MP_TAC HOMOTOPIC_WITH_EQ THEN MAP_EVERY EXISTS_TAC [`g:real^M->real^N`; `(\x. c):real^M->real^N`] THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC HOMOTOPIC_WITH_SUBSET_LEFT THEN EXISTS_TAC `(:real^M)` THEN ASM_REWRITE_TAC[SUBSET_UNIV]]);; let NULLHOMOTOPIC_INTO_RELATIVE_FRONTIER_EXTENSION = prove (`!f:real^M->real^N s t. closed s /\ f continuous_on s /\ ~(s = {}) /\ IMAGE f s SUBSET relative_frontier t /\ convex t /\ bounded t ==> ((?c. homotopic_with (\x. T) (s,relative_frontier t) f (\x. c)) <=> (?g. g continuous_on (:real^M) /\ IMAGE g (:real^M) SUBSET relative_frontier t /\ !x. x IN s ==> g x = f x))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC NULLHOMOTOPIC_INTO_ANR_EXTENSION THEN MP_TAC(ISPEC `t:real^N->bool` ANR_RELATIVE_FRONTIER_CONVEX) THEN ASM_REWRITE_TAC[]);; let NULLHOMOTOPIC_INTO_SPHERE_EXTENSION = prove (`!f:real^M->real^N s a r. closed s /\ f continuous_on s /\ ~(s = {}) /\ IMAGE f s SUBSET sphere(a,r) ==> ((?c. homotopic_with (\x. T) (s,sphere(a,r)) f (\x. c)) <=> (?g. g continuous_on (:real^M) /\ IMAGE g (:real^M) SUBSET sphere(a,r) /\ !x. x IN s ==> g x = f x))`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`a:real^N`; `r:real`] RELATIVE_FRONTIER_CBALL) THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_SIMP_TAC[SPHERE_SING] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(TAUT `p /\ q ==> (p <=> q)`) THEN CONJ_TAC THENL [EXISTS_TAC `a:real^N` THEN SIMP_TAC[HOMOTOPIC_WITH; PCROSS] THEN EXISTS_TAC `\y:real^(1,M)finite_sum. (a:real^N)`; EXISTS_TAC `(\x. a):real^M->real^N`] THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM) THEN STRIP_TAC THEN MATCH_MP_TAC NULLHOMOTOPIC_INTO_RELATIVE_FRONTIER_EXTENSION THEN ASM_REWRITE_TAC[CONVEX_CBALL; BOUNDED_CBALL]]);; let ABSOLUTE_RETRACT_CONTRACTIBLE_ANR = prove (`!s u:real^N->bool. closed_in (subtopology euclidean u) s /\ contractible s /\ ~(s = {}) /\ ANR s ==> s retract_of u`, REPEAT STRIP_TAC THEN MATCH_MP_TAC AR_IMP_RETRACT THEN ASM_SIMP_TAC[AR_ANR]);; (* ------------------------------------------------------------------------- *) (* More homotopy extension results and relations to components. *) (* ------------------------------------------------------------------------- *) let HOMOTOPIC_ON_COMPONENTS = prove (`!s t f g:real^M->real^N. locally connected s /\ (!c. c IN components s ==> homotopic_with (\x. T) (c,t) f g) ==> homotopic_with (\x. T) (s,t) f g`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV o LAND_CONV) [UNIONS_COMPONENTS] THEN MATCH_MP_TAC HOMOTOPIC_ON_CLOPEN_UNIONS THEN X_GEN_TAC `c:real^M->bool` THEN DISCH_TAC THEN ASM_SIMP_TAC[GSYM UNIONS_COMPONENTS] THEN ASM_MESON_TAC[CLOSED_IN_COMPONENT; OPEN_IN_COMPONENTS_LOCALLY_CONNECTED]);; let INESSENTIAL_ON_COMPONENTS = prove (`!f:real^M->real^N s t. locally connected s /\ path_connected t /\ (!c. c IN components s ==> ?a. homotopic_with (\x. T) (c,t) f (\x. a)) ==> ?a. homotopic_with (\x. T) (s,t) f (\x. a)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `components(s:real^M->bool) = {}` THENL [RULE_ASSUM_TAC(REWRITE_RULE[COMPONENTS_EQ_EMPTY]) THEN ASM_REWRITE_TAC[HOMOTOPIC_ON_EMPTY]; ALL_TAC] THEN SUBGOAL_THEN `?a:real^N. a IN t` MP_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `c:real^M->bool`) THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:real^M->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP HOMOTOPIC_WITH_IMP_SUBSET) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP IN_COMPONENTS_NONEMPTY) THEN SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `a:real^N` THEN STRIP_TAC THEN MATCH_MP_TAC HOMOTOPIC_ON_COMPONENTS THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `c:real^M->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:real^M->bool`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:real^N` THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP HOMOTOPIC_WITH_IMP_SUBSET) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HOMOTOPIC_WITH_TRANS) THEN REWRITE_TAC[HOMOTOPIC_CONSTANT_MAPS] THEN DISJ2_TAC THEN FIRST_X_ASSUM (MATCH_MP_TAC o REWRITE_RULE[PATH_CONNECTED_IFF_PATH_COMPONENT]) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP IN_COMPONENTS_NONEMPTY) THEN ASM SET_TAC[]);; let HOMOTOPIC_NEIGHBOURHOOD_EXTENSION = prove (`!f g:real^M->real^N s t u. f continuous_on s /\ IMAGE f s SUBSET u /\ g continuous_on s /\ IMAGE g s SUBSET u /\ closed_in (subtopology euclidean s) t /\ ANR u /\ homotopic_with (\x. T) (t,u) f g ==> ?v. t SUBSET v /\ open_in (subtopology euclidean s) v /\ homotopic_with (\x. T) (v,u) f g`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homotopic_with]) THEN DISCH_THEN(X_CHOOSE_THEN `h:real^(1,M)finite_sum->real^N` STRIP_ASSUME_TAC) THEN ABBREV_TAC `h' = \z. if fstcart z IN {vec 0} then f(sndcart z) else if fstcart z IN {vec 1} then g(sndcart z) else (h:real^(1,M)finite_sum->real^N) z` THEN MP_TAC(ISPECL [`h':real^(1,M)finite_sum->real^N`; `interval[vec 0:real^1,vec 1] PCROSS (s:real^M->bool)`; `{vec 0:real^1,vec 1} PCROSS (s:real^M->bool) UNION interval[vec 0,vec 1] PCROSS t`; `u:real^N->bool`] ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR) THEN ASM_SIMP_TAC[ENR_IMP_ANR] THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [REWRITE_TAC[SET_RULE `{a,b} = {a} UNION {b}`] THEN REWRITE_TAC[PCROSS_UNION; UNION_ASSOC] THEN EXPAND_TAC "h'" THEN REPLICATE_TAC 2 (MATCH_MP_TAC CONTINUOUS_ON_CASES_LOCAL THEN REPLICATE_TAC 2 (CONJ_TAC THENL [MATCH_MP_TAC CLOSED_IN_SUBSET_TRANS THEN EXISTS_TAC `interval[vec 0:real^1,vec 1] PCROSS (s:real^M->bool)` THEN REWRITE_TAC[SET_RULE `t UNION u SUBSET s UNION t UNION u`] THEN REWRITE_TAC[SUBSET_UNION; UNION_SUBSET; SUBSET_PCROSS] THEN REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; ENDS_IN_UNIT_INTERVAL] THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN TRY(MATCH_MP_TAC CLOSED_IN_UNION THEN CONJ_TAC) THEN MATCH_MP_TAC CLOSED_IN_PCROSS THEN ASM_REWRITE_TAC[CLOSED_IN_REFL] THEN MATCH_MP_TAC CLOSED_SUBSET THEN REWRITE_TAC[SING_SUBSET; ENDS_IN_UNIT_INTERVAL; CLOSED_SING]; ALL_TAC]) THEN REPEAT CONJ_TAC THENL [GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[LINEAR_SNDCART; LINEAR_CONTINUOUS_ON] THEN ASM_REWRITE_TAC[IMAGE_SNDCART_PCROSS; NOT_INSERT_EMPTY]; ASM_REWRITE_TAC[]; REWRITE_TAC[FORALL_PASTECART; IN_UNION; PASTECART_IN_PCROSS] THEN REWRITE_TAC[FSTCART_PASTECART; IN_SING; SNDCART_PASTECART] THEN MAP_EVERY X_GEN_TAC [`x:real^1`; `y:real^M`] THEN ASM_CASES_TAC `x:real^1 = vec 0` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[VEC_EQ; ARITH_EQ; ENDS_IN_UNIT_INTERVAL] THEN ASM_CASES_TAC `x:real^1 = vec 1` THEN ASM_REWRITE_TAC[]]); REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_PASTECART] THEN REWRITE_TAC[IN_UNION; PASTECART_IN_PCROSS; IN_SING; NOT_IN_EMPTY] THEN MAP_EVERY X_GEN_TAC [`x:real^1`; `y:real^M`] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN EXPAND_TAC "h'" THEN REWRITE_TAC[FSTCART_PASTECART; SNDCART_PASTECART; IN_SING] THEN REPEAT(COND_CASES_TAC THENL [ASM SET_TAC[]; ASM_REWRITE_TAC[]]) THEN STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `IMAGE f s SUBSET u ==> b IN s ==> f b IN u`)) THEN ASM_REWRITE_TAC[PASTECART_IN_PCROSS]; MATCH_MP_TAC CLOSED_IN_UNION THEN CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_PCROSS THEN ASM_REWRITE_TAC[CLOSED_IN_REFL] THEN MATCH_MP_TAC CLOSED_SUBSET THEN REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; ENDS_IN_UNIT_INTERVAL] THEN SIMP_TAC[CLOSED_INSERT; CLOSED_EMPTY]]; REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`w:real^(1,M)finite_sum->bool`; `k:real^(1,M)finite_sum->real^N`] THEN STRIP_TAC] THEN MP_TAC(ISPECL [`interval[vec 0:real^1,vec 1]`; `t:real^M->bool`; `s:real^M->bool`; `w:real^(1,M)finite_sum->bool`] TUBE_LEMMA_GEN) THEN ASM_REWRITE_TAC[COMPACT_INTERVAL; UNIT_INTERVAL_NONEMPTY] THEN ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `t':real^M->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[HOMOTOPIC_WITH] THEN EXISTS_TAC `k:real^(1,M)finite_sum->real^N` THEN CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]; ALL_TAC] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN CONJ_TAC THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH (lhs o snd o dest_imp) th o lhs o snd)) THEN REWRITE_TAC[IN_UNION; PASTECART_IN_PCROSS; IN_INSERT] THEN (ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC]) THEN EXPAND_TAC "h'" THEN REWRITE_TAC[FSTCART_PASTECART; SNDCART_PASTECART; IN_SING] THEN REWRITE_TAC[VEC_EQ; ARITH_EQ]);; let HOMOTOPIC_ON_COMPONENTS_EQ = prove (`!s t f g:real^M->real^N. (locally connected s \/ compact s /\ ANR t) ==> (homotopic_with (\x. T) (s,t) f g <=> f continuous_on s /\ IMAGE f s SUBSET t /\ g continuous_on s /\ IMAGE g s SUBSET t /\ !c. c IN components s ==> homotopic_with (\x. T) (c,t) f g)`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN MATCH_MP_TAC(TAUT `(q ==> r) /\ (r ==> (q <=> s)) ==> (q <=> r /\ s)`) THEN CONJ_TAC THENL [MESON_TAC[HOMOTOPIC_WITH_IMP_CONTINUOUS; HOMOTOPIC_WITH_IMP_SUBSET]; ALL_TAC] THEN STRIP_TAC THEN EQ_TAC THENL [MESON_TAC[HOMOTOPIC_WITH_SUBSET_LEFT; IN_COMPONENTS_SUBSET]; ALL_TAC] THEN DISCH_TAC THEN SUBGOAL_THEN `!c. c IN components s ==> ?u. c SUBSET u /\ closed_in (subtopology euclidean s) u /\ open_in (subtopology euclidean s) u /\ homotopic_with (\x. T) (u,t) (f:real^M->real^N) g` MP_TAC THENL [X_GEN_TAC `c:real^M->bool` THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP IN_COMPONENTS_SUBSET) THEN FIRST_X_ASSUM DISJ_CASES_TAC THENL [EXISTS_TAC `c:real^M->bool` THEN ASM_SIMP_TAC[CLOSED_IN_COMPONENT; SUBSET_REFL; OPEN_IN_COMPONENTS_LOCALLY_CONNECTED]; FIRST_X_ASSUM(MP_TAC o SPEC `c:real^M->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MP_TAC(ISPECL [`f:real^M->real^N`; `g:real^M->real^N`; `s:real^M->bool`; `c:real^M->bool`; `t:real^N->bool`] HOMOTOPIC_NEIGHBOURHOOD_EXTENSION) THEN ASM_SIMP_TAC[CLOSED_IN_COMPONENT] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^M->bool` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_OPEN]) THEN DISCH_THEN(X_CHOOSE_THEN `v:real^M->bool` (STRIP_ASSUME_TAC o GSYM)) THEN MP_TAC(ISPECL [`s:real^M->bool`; `c:real^M->bool`; `v:real^M->bool`] SURA_BURA_CLOPEN_SUBSET) THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED; CLOSED_IMP_LOCALLY_COMPACT] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[COMPACT_COMPONENTS]; ASM SET_TAC[]]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `k:real^M->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN CONJ_TAC THENL [MATCH_MP_TAC CLOSED_SUBSET THEN ASM_MESON_TAC[COMPACT_IMP_CLOSED; OPEN_IN_IMP_SUBSET]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] HOMOTOPIC_WITH_SUBSET_LEFT)) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN ASM SET_TAC[]]]; GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `k:(real^M->bool)->(real^M->bool)` THEN DISCH_TAC THEN SUBGOAL_THEN `s = UNIONS (IMAGE k (components(s:real^M->bool)))` (fun th -> SUBST1_TAC th THEN ASSUME_TAC(SYM th)) THENL [MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [GEN_REWRITE_TAC LAND_CONV [UNIONS_COMPONENTS] THEN MATCH_MP_TAC UNIONS_MONO THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN ASM_MESON_TAC[]; REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_IMAGE] THEN ASM_MESON_TAC[CLOSED_IN_IMP_SUBSET]]; MATCH_MP_TAC HOMOTOPIC_ON_CLOPEN_UNIONS THEN ASM_SIMP_TAC[FORALL_IN_IMAGE]]]);; let INESSENTIAL_ON_COMPONENTS_EQ = prove (`!s t f:real^M->real^N. (locally connected s \/ compact s /\ ANR t) /\ path_connected t ==> ((?a. homotopic_with (\x. T) (s,t) f (\x. a)) <=> f continuous_on s /\ IMAGE f s SUBSET t /\ !c. c IN components s ==> ?a. homotopic_with (\x. T) (c,t) f (\x. a))`, REPEAT GEN_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MATCH_MP_TAC(TAUT `(q ==> r) /\ (r ==> (q <=> s)) ==> (q <=> r /\ s)`) THEN CONJ_TAC THENL [MESON_TAC[HOMOTOPIC_WITH_IMP_CONTINUOUS; HOMOTOPIC_WITH_IMP_SUBSET]; STRIP_TAC] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP HOMOTOPIC_ON_COMPONENTS_EQ th]) THEN ASM_REWRITE_TAC[CONTINUOUS_ON_CONST] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_SIMP_TAC[COMPONENTS_EMPTY; IMAGE_CLAUSES; NOT_IN_EMPTY; EMPTY_SUBSET] THEN DISCH_TAC THEN SUBGOAL_THEN `?c:real^M->bool. c IN components s` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[MEMBER_NOT_EMPTY; COMPONENTS_EQ_EMPTY]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o SPEC `c:real^M->bool`) THEN ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `a:real^N` THEN DISCH_THEN(ASSUME_TAC o MATCH_MP HOMOTOPIC_WITH_IMP_SUBSET) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP IN_COMPONENTS_NONEMPTY) THEN CONJ_TAC THENL [ASM SET_TAC[]; X_GEN_TAC `d:real^M->bool`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `d:real^M->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N` MP_TAC) THEN DISCH_THEN(fun th -> ASSUME_TAC(MATCH_MP HOMOTOPIC_WITH_IMP_SUBSET th) THEN MP_TAC th) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HOMOTOPIC_WITH_TRANS) THEN REWRITE_TAC[HOMOTOPIC_CONSTANT_MAPS] THEN DISJ2_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[PATH_CONNECTED_IFF_PATH_COMPONENT]) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP IN_COMPONENTS_NONEMPTY)) THEN ASM SET_TAC[]);; let COHOMOTOPICALLY_TRIVIAL_ON_COMPONENTS = prove (`!s:real^M->bool t:real^N->bool. (locally connected s \/ compact s /\ ANR t) ==> ((!f g. f continuous_on s /\ IMAGE f s SUBSET t /\ g continuous_on s /\ IMAGE g s SUBSET t ==> homotopic_with (\x. T) (s,t) f g) <=> (!c. c IN components s ==> (!f g. f continuous_on c /\ IMAGE f c SUBSET t /\ g continuous_on c /\ IMAGE g c SUBSET t ==> homotopic_with (\x. T) (c,t) f g)))`, REPEAT GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`g:real^M->real^N`; `s:real^M->bool`; `c:real^M->bool`; `t:real^N->bool`] EXTENSION_FROM_COMPONENT) THEN MP_TAC(ISPECL [`f:real^M->real^N`; `s:real^M->bool`; `c:real^M->bool`; `t:real^N->bool`] EXTENSION_FROM_COMPONENT) THEN ANTS_TAC THENL [ASM_MESON_TAC[ENR_IMP_ANR]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `f':real^M->real^N` STRIP_ASSUME_TAC) THEN ANTS_TAC THENL [ASM_MESON_TAC[ENR_IMP_ANR]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `g':real^M->real^N` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`f':real^M->real^N`; `g':real^M->real^N`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `c:real^M->bool` o MATCH_MP (REWRITE_RULE[IMP_CONJ] HOMOTOPIC_WITH_SUBSET_LEFT)) THEN ASM_SIMP_TAC[IN_COMPONENTS_SUBSET] THEN MATCH_MP_TAC (ONCE_REWRITE_RULE[IMP_CONJ_ALT] HOMOTOPIC_WITH_EQ) THEN ASM_SIMP_TAC[]; FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP HOMOTOPIC_ON_COMPONENTS_EQ th]) THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `c:real^M->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:real^M->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP IN_COMPONENTS_SUBSET) THEN REPEAT CONJ_TAC THEN TRY(FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET))) THEN ASM SET_TAC[]]);; let COHOMOTOPICALLY_TRIVIAL_ON_COMPONENTS_NULL = prove (`!s:real^M->bool t:real^N->bool. (locally connected s \/ compact s /\ ANR t) /\ path_connected t ==> ((!f. f continuous_on s /\ IMAGE f s SUBSET t ==> ?a. homotopic_with (\x. T) (s,t) f (\x. a)) <=> (!c. c IN components s ==> (!f. f continuous_on c /\ IMAGE f c SUBSET t ==> ?a. homotopic_with (\x. T) (c,t) f (\x. a))))`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o MATCH_MP COHOMOTOPICALLY_TRIVIAL_ON_COMPONENTS) THEN ASM_SIMP_TAC[HOMOTOPIC_TRIVIALITY]);; (* ------------------------------------------------------------------------- *) (* A few simple lemmas about deformation retracts. *) (* ------------------------------------------------------------------------- *) let DEFORMATION_RETRACT_IMP_HOMOTOPY_EQUIVALENT = prove (`!s t:real^N->bool. (?r. homotopic_with (\x. T) (s,s) (\x. x) r /\ retraction(s,t) r) ==> s homotopy_equivalent t`, REPEAT GEN_TAC THEN REWRITE_TAC[homotopy_equivalent] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:real^N->real^N` THEN REWRITE_TAC[retraction] THEN STRIP_TAC THEN EXISTS_TAC `I:real^N->real^N` THEN REWRITE_TAC[I_O_ID] THEN ASM_REWRITE_TAC[I_DEF; CONTINUOUS_ON_ID; IMAGE_ID] THEN CONJ_TAC THENL [ASM_MESON_TAC[HOMOTOPIC_WITH_SYM]; ALL_TAC] THEN MATCH_MP_TAC HOMOTOPIC_WITH_EQUAL THEN ASM_SIMP_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]; ASM SET_TAC[]]);; let DEFORMATION_RETRACT = prove (`!s t:real^N->bool. (?r. homotopic_with (\x. T) (s,s) (\x. x) r /\ retraction(s,t) r) <=> t retract_of s /\ ?f. homotopic_with (\x. T) (s,s) (\x. x) f /\ IMAGE f s SUBSET t`, REPEAT GEN_TAC THEN REWRITE_TAC[retract_of; retraction] THEN EQ_TAC THENL [REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real^N->real^N` THEN REPEAT STRIP_TAC THEN EXISTS_TAC `r:real^N->real^N` THEN ASM_REWRITE_TAC[]; DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `r:real^N->real^N` STRIP_ASSUME_TAC) MP_TAC) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f:real^N->real^N` THEN STRIP_TAC THEN EXISTS_TAC `r:real^N->real^N` THEN ASM_REWRITE_TAC[] THEN TRANS_TAC HOMOTOPIC_WITH_TRANS `f:real^N->real^N` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HOMOTOPIC_WITH_EQ THEN MAP_EVERY EXISTS_TAC [`(r:real^N->real^N) o (f:real^N->real^N)`; `(r:real^N->real^N) o (\x. x)`] THEN ASM_SIMP_TAC[o_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC HOMOTOPIC_WITH_COMPOSE_CONTINUOUS_LEFT THEN EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[HOMOTOPIC_WITH_SYM]; ASM SET_TAC[]]]);; let DEFORMATION_RETRACT_OF_CONTRACTIBLE_SING = prove (`!s a:real^N. contractible s /\ a IN s ==> ?r. homotopic_with (\x. T) (s,s) (\x. x) r /\ retraction(s,{a}) r`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[DEFORMATION_RETRACT; RETRACT_OF_SING] THEN EXISTS_TAC `(\x. a):real^N->real^N` THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [contractible]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HOMOTOPIC_WITH_TRANS) THEN REWRITE_TAC[HOMOTOPIC_CONSTANT_MAPS] THEN DISJ2_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CONTRACTIBLE_IMP_PATH_CONNECTED) THEN REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN DISCH_THEN MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP HOMOTOPIC_WITH_IMP_SUBSET) THEN ASM SET_TAC[]);; let HOMOTOPY_EQUIVALENT_RELATIVE_FRONTIER_PUNCTURED_CONVEX = prove (`!s t a:real^N. convex s /\ bounded s /\ a IN relative_interior s /\ convex t /\ relative_frontier s SUBSET t /\ t SUBSET affine hull s ==> (relative_frontier s) homotopy_equivalent (t DELETE a)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[HOMOTOPY_EQUIVALENT_SYM] THEN MATCH_MP_TAC DEFORMATION_RETRACT_IMP_HOMOTOPY_EQUIVALENT THEN ASM_SIMP_TAC [RELATIVE_FRONTIER_DEFORMATION_RETRACT_OF_PUNCTURED_CONVEX]);; let HOMOTOPY_EQUIVALENT_RELATIVE_FRONTIER_PUNCTURED_AFFINE_HULL = prove (`!s a:real^N. convex s /\ bounded s /\ a IN relative_interior s ==> (relative_frontier s) homotopy_equivalent (affine hull s DELETE a)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMOTOPY_EQUIVALENT_RELATIVE_FRONTIER_PUNCTURED_CONVEX THEN ASM_SIMP_TAC[AFFINE_IMP_CONVEX; AFFINE_AFFINE_HULL; SUBSET_REFL] THEN REWRITE_TAC[relative_frontier] THEN MATCH_MP_TAC(SET_RULE `s SUBSET u ==> s DIFF t SUBSET u`) THEN REWRITE_TAC[CLOSURE_SUBSET_AFFINE_HULL]);; (* ------------------------------------------------------------------------- *) (* Preservation of fixpoints under (more general notion of) retraction. *) (* ------------------------------------------------------------------------- *) let INVERTIBLE_FIXPOINT_PROPERTY = prove (`!s:real^M->bool t:real^N->bool i r. i continuous_on t /\ IMAGE i t SUBSET s /\ r continuous_on s /\ IMAGE r s SUBSET t /\ (!y. y IN t ==> (r(i(y)) = y)) ==> (!f. f continuous_on s /\ IMAGE f s SUBSET s ==> ?x. x IN s /\ (f x = x)) ==> !g. g continuous_on t /\ IMAGE g t SUBSET t ==> ?y. y IN t /\ (g y = y)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(i:real^N->real^M) o (g:real^N->real^N) o (r:real^M->real^N)`) THEN ANTS_TAC THENL [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; CONTINUOUS_ON_COMPOSE; IMAGE_SUBSET; SUBSET_TRANS; IMAGE_o]; RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_IN_IMAGE]) THEN REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[]]);; let HOMEOMORPHIC_FIXPOINT_PROPERTY = prove (`!s t. s homeomorphic t ==> ((!f. f continuous_on s /\ IMAGE f s SUBSET s ==> ?x. x IN s /\ (f x = x)) <=> (!g. g continuous_on t /\ IMAGE g t SUBSET t ==> ?y. y IN t /\ (g y = y)))`, REWRITE_TAC[homeomorphic; homeomorphism] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC INVERTIBLE_FIXPOINT_PROPERTY THEN ASM_MESON_TAC[SUBSET_REFL]);; let RETRACT_FIXPOINT_PROPERTY = prove (`!s t:real^N->bool. t retract_of s /\ (!f. f continuous_on s /\ IMAGE f s SUBSET s ==> ?x. x IN s /\ (f x = x)) ==> !g. g continuous_on t /\ IMAGE g t SUBSET t ==> ?y. y IN t /\ (g y = y)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC INVERTIBLE_FIXPOINT_PROPERTY THEN EXISTS_TAC `\x:real^N. x` THEN REWRITE_TAC[CONTINUOUS_ON_ID] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[retract_of] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN REWRITE_TAC[retraction] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE]);; (* ------------------------------------------------------------------------- *) (* So the Brouwer theorem for any set with nonempty interior. *) (* ------------------------------------------------------------------------- *) let BROUWER_WEAK = prove (`!f:real^N->real^N s. compact s /\ convex s /\ ~(interior s = {}) /\ f continuous_on s /\ IMAGE f s SUBSET s ==> ?x. x IN s /\ f x = x`, GEN_TAC THEN ONCE_REWRITE_TAC [TAUT `a /\ b /\ c /\ d ==> e <=> a /\ b /\ c ==> d ==> e`] THEN GEN_TAC THEN STRIP_TAC THEN MP_TAC(ISPECL [`interval[vec 0:real^N,vec 1]`; `s:real^N->bool`] HOMEOMORPHIC_CONVEX_COMPACT) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[CONVEX_INTERVAL; COMPACT_INTERVAL] THEN REWRITE_TAC[INTERIOR_CLOSED_INTERVAL; INTERVAL_EQ_EMPTY] THEN MESON_TAC[VEC_COMPONENT; REAL_ARITH `~(&1 <= &0)`]; DISCH_THEN(MP_TAC o MATCH_MP HOMEOMORPHIC_FIXPOINT_PROPERTY) THEN REWRITE_TAC[BROUWER_CUBE] THEN SIMP_TAC[]]);; (* ------------------------------------------------------------------------- *) (* And in particular for a closed ball. *) (* ------------------------------------------------------------------------- *) let BROUWER_BALL = prove (`!f:real^N->real^N a e. &0 < e /\ f continuous_on cball(a,e) /\ IMAGE f (cball(a,e)) SUBSET (cball(a,e)) ==> ?x. x IN cball(a,e) /\ (f x = x)`, ASM_SIMP_TAC[BROUWER_WEAK; CONVEX_CBALL; COMPACT_CBALL; INTERIOR_CBALL; REAL_LT_IMP_LE; REAL_NOT_LE; BALL_EQ_EMPTY]);; (* ------------------------------------------------------------------------- *) (* Still more general form; could derive this directly without using the *) (* rather involved HOMEOMORPHIC_CONVEX_COMPACT theorem, just using *) (* a scaling and translation to put the set inside the unit cube. *) (* ------------------------------------------------------------------------- *) let BROUWER = prove (`!f:real^N->real^N s. compact s /\ convex s /\ ~(s = {}) /\ f continuous_on s /\ IMAGE f s SUBSET s ==> ?x. x IN s /\ f x = x`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?e. &0 < e /\ s SUBSET cball(vec 0:real^N,e)` STRIP_ASSUME_TAC THENL [REWRITE_TAC[SUBSET; IN_CBALL; NORM_ARITH `dist(vec 0,x) = norm(x)`] THEN ASM_MESON_TAC[BOUNDED_POS; COMPACT_IMP_BOUNDED]; ALL_TAC] THEN SUBGOAL_THEN `?x:real^N. x IN cball(vec 0,e) /\ (f o closest_point s) x = x` MP_TAC THENL [MATCH_MP_TAC BROUWER_BALL THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [REWRITE_TAC[ETA_AX] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_SIMP_TAC[CONTINUOUS_ON_CLOSEST_POINT; COMPACT_IMP_CLOSED] THEN MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE]; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:real^N` THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET])) THEN REWRITE_TAC[o_THM; IN_IMAGE] THEN EXISTS_TAC `closest_point s x:real^N` THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED; CLOSEST_POINT_IN_SET]] THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED; CLOSEST_POINT_IN_SET]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^N` THEN REWRITE_TAC[o_THM] THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_IN_IMAGE]) THEN ASM_MESON_TAC[CLOSEST_POINT_SELF; CLOSEST_POINT_IN_SET; COMPACT_IMP_CLOSED]]);; (* ------------------------------------------------------------------------- *) (* So we get the no-retraction theorem, first for a ball, then more general. *) (* ------------------------------------------------------------------------- *) let NO_RETRACTION_CBALL = prove (`!a:real^N e. &0 < e ==> ~(sphere(a,e) retract_of cball(a,e))`, REPEAT GEN_TAC THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ] RETRACT_FIXPOINT_PROPERTY)) THEN ASM_SIMP_TAC[BROUWER_BALL] THEN REWRITE_TAC[NOT_FORALL_THM] THEN EXISTS_TAC `\x:real^N. &2 % a - x` THEN REWRITE_TAC[NOT_IMP] THEN SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_SPHERE] THEN SIMP_TAC[dist; VECTOR_ARITH `a - (&2 % a - x) = --(a - x)`; NORM_NEG] THEN REWRITE_TAC[VECTOR_ARITH `(&2 % a - y = y) <=> (a - y = vec 0)`] THEN ASM_MESON_TAC[NORM_0; REAL_LT_REFL]);; let FRONTIER_SUBSET_RETRACTION = prove (`!s:real^N->bool t r. bounded s /\ frontier s SUBSET t /\ r continuous_on (closure s) /\ IMAGE r s SUBSET t /\ (!x. x IN t ==> r x = x) ==> s SUBSET t`, ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[SET_RULE `~(s SUBSET t) <=> ?x. x IN s /\ ~(x IN t)`] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN REPLICATE_TAC 3 GEN_TAC THEN X_GEN_TAC `a:real^N` THEN REPEAT STRIP_TAC THEN ABBREV_TAC `q = \z:real^N. if z IN closure s then r(z) else z` THEN SUBGOAL_THEN `(q:real^N->real^N) continuous_on closure(s) UNION closure((:real^N) DIFF s)` MP_TAC THENL [EXPAND_TAC "q" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES THEN ASM_REWRITE_TAC[CLOSED_CLOSURE; CONTINUOUS_ON_ID] THEN REWRITE_TAC[TAUT `p /\ ~p <=> F`] THEN X_GEN_TAC `z:real^N` THEN REWRITE_TAC[CLOSURE_COMPLEMENT; IN_DIFF; IN_UNIV] THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; frontier; IN_DIFF]) THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `closure(s) UNION closure((:real^N) DIFF s) = (:real^N)` SUBST1_TAC THENL [MATCH_MP_TAC(SET_RULE `s SUBSET closure s /\ t SUBSET closure t /\ s UNION t = UNIV ==> closure s UNION closure t = UNIV`) THEN REWRITE_TAC[CLOSURE_SUBSET] THEN SET_TAC[]; DISCH_TAC] THEN FIRST_ASSUM(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC o SPEC `a:real^N` o MATCH_MP BOUNDED_SUBSET_BALL o MATCH_MP BOUNDED_CLOSURE) THEN SUBGOAL_THEN `!x. ~((q:real^N->real^N) x = a)` ASSUME_TAC THENL [GEN_TAC THEN EXPAND_TAC "q" THEN COND_CASES_TAC THENL [ASM_CASES_TAC `(x:real^N) IN s` THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(x:real^N) IN t` (fun th -> ASM_MESON_TAC[th]) THEN UNDISCH_TAC `frontier(s:real^N->bool) SUBSET t` THEN REWRITE_TAC[SUBSET; frontier; IN_DIFF] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_MESON_TAC[SUBSET; INTERIOR_SUBSET]; ASM_MESON_TAC[SUBSET; INTERIOR_SUBSET; CLOSURE_SUBSET]]; ALL_TAC] THEN MP_TAC(ISPECL [`a:real^N`; `B:real`] NO_RETRACTION_CBALL) THEN ASM_REWRITE_TAC[retract_of; GSYM FRONTIER_CBALL] THEN EXISTS_TAC `(\y. a + B / norm(y - a) % (y - a)) o (q:real^N->real^N)` THEN REWRITE_TAC[retraction; FRONTIER_SUBSET_EQ; CLOSED_CBALL] THEN REWRITE_TAC[FRONTIER_CBALL; SUBSET; FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_SPHERE; DIST_0] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN MATCH_MP_TAC CONTINUOUS_ON_MUL THEN SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN REWRITE_TAC[o_DEF; real_div; LIFT_CMUL] THEN MATCH_MP_TAC CONTINUOUS_ON_CMUL THEN MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; NORM_EQ_0; VECTOR_SUB_EQ] THEN SUBGOAL_THEN `(\x:real^N. lift(norm(x - a))) = (lift o norm) o (\x. x - a)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_THM]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN REWRITE_TAC[CONTINUOUS_ON_LIFT_NORM]; REWRITE_TAC[o_THM; NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM; NORM_ARITH `dist(a,a + b) = norm b`] THEN ASM_SIMP_TAC[REAL_DIV_RMUL; VECTOR_SUB_EQ; NORM_EQ_0] THEN ASM_REAL_ARITH_TAC; X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN REWRITE_TAC[o_THM] THEN EXPAND_TAC "q" THEN REWRITE_TAC[] THEN COND_CASES_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN_BALL]) THEN ASM_MESON_TAC[REAL_LT_REFL]; REWRITE_TAC[NORM_ARITH `norm(x - a) = dist(a,x)`] THEN ASM_SIMP_TAC[REAL_DIV_REFL; REAL_LT_IMP_NZ; VECTOR_MUL_LID] THEN VECTOR_ARITH_TAC]]);; let NO_RETRACTION_FRONTIER_BOUNDED = prove (`!s:real^N->bool. bounded s /\ ~(interior s = {}) ==> ~((frontier s) retract_of s)`, GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[retract_of; retraction] THEN REWRITE_TAC[FRONTIER_SUBSET_EQ] THEN DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`s:real^N->bool`; `frontier s:real^N->bool`; `r:real^N->real^N`] FRONTIER_SUBSET_RETRACTION) THEN ASM_SIMP_TAC[CLOSURE_CLOSED; SUBSET_REFL] THEN REWRITE_TAC[frontier] THEN MP_TAC(ISPEC `s:real^N->bool` INTERIOR_SUBSET) THEN ASM SET_TAC[]);; let COMPACT_SUBSET_FRONTIER_RETRACTION = prove (`!f:real^N->real^N s. compact s /\ f continuous_on s /\ (!x. x IN frontier s ==> f x = x) ==> s SUBSET IMAGE f s`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`s UNION (IMAGE f s):real^N->bool`; `vec 0:real^N`] BOUNDED_SUBSET_BALL) THEN ASM_SIMP_TAC[BOUNDED_UNION; COMPACT_IMP_BOUNDED; COMPACT_CONTINUOUS_IMAGE; UNION_SUBSET] THEN DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN ABBREV_TAC `g = \x:real^N. if x IN s then f(x) else x` THEN SUBGOAL_THEN `(g:real^N->real^N) continuous_on (:real^N)` ASSUME_TAC THENL [SUBGOAL_THEN `(:real^N) = s UNION closure((:real^N) DIFF s)` SUBST1_TAC THENL [MATCH_MP_TAC(SET_RULE `UNIV DIFF s SUBSET t ==> UNIV = s UNION t`) THEN REWRITE_TAC[CLOSURE_SUBSET]; ALL_TAC] THEN EXPAND_TAC "g" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES THEN ASM_SIMP_TAC[CLOSED_CLOSURE; CONTINUOUS_ON_ID; COMPACT_IMP_CLOSED] THEN REWRITE_TAC[CLOSURE_COMPLEMENT; IN_DIFF; IN_UNIV] THEN REWRITE_TAC[TAUT `p /\ ~p <=> F`] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[frontier; IN_DIFF] THEN ASM_SIMP_TAC[CLOSURE_CLOSED; COMPACT_IMP_CLOSED]; ALL_TAC] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `p:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `?h:real^N->real^N. retraction (UNIV DELETE p,sphere(vec 0,r)) h` STRIP_ASSUME_TAC THENL [REWRITE_TAC[GSYM retract_of] THEN MATCH_MP_TAC SPHERE_RETRACT_OF_PUNCTURED_UNIVERSE_GEN THEN ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`vec 0:real^N`; `r:real`] NO_RETRACTION_CBALL) THEN ASM_REWRITE_TAC[retract_of; NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `(h:real^N->real^N) o (g:real^N->real^N)`) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN REWRITE_TAC[] THEN REWRITE_TAC[retraction] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retraction]) THEN SIMP_TAC[SUBSET; IN_SPHERE; IN_CBALL; REAL_EQ_IMP_LE] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_DELETE; IN_UNIV; o_THM] THEN STRIP_TAC THEN SUBGOAL_THEN `!x. x IN cball (vec 0,r) ==> ~((g:real^N->real^N) x = p)` ASSUME_TAC THENL [X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN EXPAND_TAC "g" THEN COND_CASES_TAC THEN ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[] THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV; IN_DELETE]; SUBGOAL_THEN `(g:real^N->real^N) x = x` (fun th -> ASM_SIMP_TAC[th]) THEN EXPAND_TAC "g" THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[IN_BALL; REAL_LT_REFL; SUBSET]]);; let NOT_ABSOLUTE_RETRACT_COBOUNDED = prove (`!s. bounded s /\ ((:real^N) DIFF s) retract_of (:real^N) ==> s = {}`, GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> F) ==> s = {}`) THEN X_GEN_TAC `a:real^N` THEN POP_ASSUM MP_TAC THEN GEOM_ORIGIN_TAC `a:real^N` THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `vec 0:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o SPEC `vec 0:real^N` o MATCH_MP NO_RETRACTION_CBALL) THEN REWRITE_TAC[] THEN MATCH_MP_TAC RETRACT_OF_SUBSET THEN EXISTS_TAC `(:real^N)` THEN SIMP_TAC[SUBSET_UNIV; SPHERE_SUBSET_CBALL] THEN MATCH_MP_TAC RETRACT_OF_TRANS THEN EXISTS_TAC `(:real^N) DIFF s` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC RETRACT_OF_SUBSET THEN EXISTS_TAC `(:real^N) DELETE (vec 0)` THEN ASM_SIMP_TAC[SPHERE_RETRACT_OF_PUNCTURED_UNIVERSE] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[SUBSET; IN_BALL; IN_SPHERE; IN_DIFF; IN_UNIV] THEN MESON_TAC[REAL_LT_REFL]);; let CONTRACTIBLE_SPHERE = prove (`!a:real^N r. contractible(sphere(a,r)) <=> r <= &0`, REPEAT GEN_TAC THEN REWRITE_TAC[contractible; GSYM REAL_NOT_LT] THEN REWRITE_TAC[NULLHOMOTOPIC_FROM_SPHERE_EXTENSION] THEN ASM_CASES_TAC `&0 < r` THEN ASM_REWRITE_TAC[] THENL [FIRST_ASSUM(MP_TAC o ISPEC `a:real^N` o MATCH_MP NO_RETRACTION_CBALL) THEN SIMP_TAC[retract_of; retraction; SPHERE_SUBSET_CBALL]; RULE_ASSUM_TAC(REWRITE_RULE[REAL_NOT_LT]) THEN EXISTS_TAC `\x:real^N. x` THEN REWRITE_TAC[CONTINUOUS_ON_ID; IMAGE_ID] THEN REWRITE_TAC[SUBSET; IN_CBALL; IN_SPHERE; IN_ELIM_THM] THEN POP_ASSUM MP_TAC THEN NORM_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Some more theorems about connectivity of retract complements. *) (* ------------------------------------------------------------------------- *) let BOUNDED_COMPONENT_RETRACT_COMPLEMENT_MEETS = prove (`!s t c. closed s /\ s retract_of t /\ c IN components((:real^N) DIFF s) /\ bounded c ==> ~(c SUBSET t)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RETRACT_OF_IMP_SUBSET) THEN SUBGOAL_THEN `frontier(c:real^N->bool) SUBSET s` ASSUME_TAC THENL [TRANS_TAC SUBSET_TRANS `frontier((:real^N) DIFF s)` THEN ASM_SIMP_TAC[FRONTIER_OF_COMPONENTS_SUBSET] THEN REWRITE_TAC[FRONTIER_COMPLEMENT] THEN ASM_SIMP_TAC[frontier; CLOSURE_CLOSED] THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `closure(c:real^N->bool) SUBSET t` ASSUME_TAC THENL [REWRITE_TAC[CLOSURE_UNION_FRONTIER] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(c:real^N->bool) SUBSET s` ASSUME_TAC THENL [MATCH_MP_TAC FRONTIER_SUBSET_RETRACTION THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[retraction] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:real^N->real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]; ASM SET_TAC[]]; FIRST_ASSUM(MP_TAC o MATCH_MP IN_COMPONENTS_SUBSET) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP IN_COMPONENTS_NONEMPTY) THEN ASM SET_TAC[]]);; let COMPONENT_RETRACT_COMPLEMENT_MEETS = prove (`!s t c. closed s /\ s retract_of t /\ bounded t /\ c IN components((:real^N) DIFF s) ==> ~(c SUBSET t)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RETRACT_OF_IMP_SUBSET) THEN ASM_CASES_TAC `bounded(c:real^N->bool)` THENL [ASM_MESON_TAC[BOUNDED_COMPONENT_RETRACT_COMPLEMENT_MEETS]; ASM_MESON_TAC[BOUNDED_SUBSET]]);; let FINITE_COMPLEMENT_ENR_COMPONENTS = prove (`!s. compact s /\ ENR s ==> FINITE(components((:real^N) DIFF s))`, GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_SIMP_TAC[DIFF_EMPTY] THEN MESON_TAC[COMPONENTS_EQ_SING; CONNECTED_UNIV; UNIV_NOT_EMPTY; FINITE_SING]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[ENR_BOUNDED; COMPACT_IMP_BOUNDED] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `!c. c IN components((:real^N) DIFF s) ==> ~(c SUBSET u)` ASSUME_TAC THENL [GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC COMPONENT_RETRACT_COMPLEMENT_MEETS THEN ASM_MESON_TAC[COMPACT_IMP_CLOSED]; ALL_TAC] THEN MP_TAC(ISPECL [`u:real^N->bool`; `vec 0:real^N`] BOUNDED_SUBSET_CBALL) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPEC `cball(vec 0:real^N,r) DIFF u` COMPACT_EQ_HEINE_BOREL) THEN ASM_SIMP_TAC[COMPACT_DIFF; COMPACT_CBALL] THEN DISCH_THEN(MP_TAC o SPEC `components((:real^N) DIFF s)`) THEN REWRITE_TAC[GSYM UNIONS_COMPONENTS] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RETRACT_OF_IMP_SUBSET) THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN ASM_MESON_TAC[OPEN_COMPONENTS; closed; COMPACT_IMP_CLOSED]; DISCH_THEN(X_CHOOSE_THEN `cs:(real^N->bool)->bool` STRIP_ASSUME_TAC)] THEN SUBGOAL_THEN `components((:real^N) DIFF s) = cs` (fun th -> REWRITE_TAC[th]) THEN ASM_REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `c:real^N->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `~(c INTER (cball(vec 0:real^N,r) DIFF u) = {})` MP_TAC THENL [SUBGOAL_THEN `~(c INTER frontier(u:real^N->bool) = {})` MP_TAC THENL [MATCH_MP_TAC CONNECTED_INTER_FRONTIER THEN CONJ_TAC THENL [ASM_MESON_TAC[IN_COMPONENTS_CONNECTED]; ALL_TAC] THEN ASM_SIMP_TAC[SET_RULE `s DIFF t = {} <=> s SUBSET t`] THEN ONCE_REWRITE_TAC[INTER_COMM] THEN W(MP_TAC o PART_MATCH (rand o rand) OPEN_INTER_CLOSURE_EQ_EMPTY o rand o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[CLOSURE_UNION_FRONTIER] THEN MATCH_MP_TAC(SET_RULE `~(t = {}) /\ t SUBSET u ==> ~(u INTER (s UNION t) = {})`) THEN ASM_REWRITE_TAC[FRONTIER_EQ_EMPTY; DE_MORGAN_THM; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL [ASM_MESON_TAC[IN_COMPONENTS_NONEMPTY]; ALL_TAC] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP IN_COMPONENTS_SUBSET) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `frontier((:real^N) DIFF s)` THEN ASM_SIMP_TAC[FRONTIER_OF_COMPONENTS_SUBSET] THEN REWRITE_TAC[FRONTIER_COMPLEMENT] THEN ASM_SIMP_TAC[frontier; CLOSURE_CLOSED; COMPACT_IMP_CLOSED] THEN ASM SET_TAC[]; MATCH_MP_TAC(SET_RULE `s SUBSET t ==> ~(c INTER s = {}) ==> ~(c INTER t = {})`) THEN ASM_SIMP_TAC[frontier; INTERIOR_OPEN] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> s DIFF u SUBSET t DIFF u`) THEN MATCH_MP_TAC CLOSURE_MINIMAL THEN ASM_REWRITE_TAC[CLOSED_CBALL]]; REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `x:real^N` THEN STRIP_TAC THEN SUBGOAL_THEN `(x:real^N) IN UNIONS cs` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_UNIONS; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c':real^N->bool` THEN STRIP_TAC THEN MP_TAC(ISPECL [`(:real^N) DIFF s`; `c:real^N->bool`; `c':real^N->bool`] COMPONENTS_NONOVERLAP) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `c:real^N->bool = c'` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]);; let FINITE_COMPLEMENT_ANR_COMPONENTS = prove (`!s. compact s /\ ANR s ==> FINITE(components((:real^N) DIFF s))`, MESON_TAC[FINITE_COMPLEMENT_ENR_COMPONENTS; ENR_ANR; COMPACT_IMP_CLOSED; CLOSED_IMP_LOCALLY_COMPACT]);; let CARD_LE_RETRACT_COMPLEMENT_COMPONENTS = prove (`!s t. compact s /\ s retract_of t /\ bounded t ==> components((:real^N) DIFF s) <=_c components((:real^N) DIFF t)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP RETRACT_OF_IMP_SUBSET) THEN MATCH_MP_TAC(ISPEC `SUBSET` CARD_LE_RELATIONAL_FULL) THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; MAP_EVERY X_GEN_TAC [`d:real^N->bool`; `c:real^N->bool`; `c':real^N->bool`] THEN STRIP_TAC THEN MP_TAC(ISPEC `(:real^N) DIFF s` COMPONENTS_EQ) THEN ASM_SIMP_TAC[] THEN ASM_CASES_TAC `d:real^N->bool = {}` THENL [ALL_TAC; ASM SET_TAC[]] THEN ASM_MESON_TAC[IN_COMPONENTS_NONEMPTY]] THEN X_GEN_TAC `u:real^N->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `~((u:real^N->bool) SUBSET t)` MP_TAC THENL [MATCH_MP_TAC COMPONENT_RETRACT_COMPLEMENT_MEETS THEN ASM_MESON_TAC[COMPACT_EQ_BOUNDED_CLOSED]; ALL_TAC] THEN REWRITE_TAC[SET_RULE `~(s SUBSET t) <=> ?p. p IN s /\ ~(p IN t)`] THEN REWRITE_TAC[components; EXISTS_IN_GSPEC; IN_UNIV; IN_DIFF] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `p:real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `u = connected_component ((:real^N) DIFF s) p` SUBST_ALL_TAC THENL [MP_TAC(ISPECL [`(:real^N) DIFF s`; `u:real^N->bool`] COMPONENTS_EQ) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[components; FORALL_IN_GSPEC; IN_DIFF; IN_UNIV] THEN DISCH_THEN(MP_TAC o SPEC `p:real^N`) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `p:real^N` THEN ASM_REWRITE_TAC[IN_INTER] THEN REWRITE_TAC[IN] THEN REWRITE_TAC[CONNECTED_COMPONENT_REFL_EQ] THEN ASM SET_TAC[]; MATCH_MP_TAC CONNECTED_COMPONENT_MONO THEN ASM SET_TAC[]]);; let CONNECTED_RETRACT_COMPLEMENT = prove (`!s t. compact s /\ s retract_of t /\ bounded t /\ connected((:real^N) DIFF t) ==> connected((:real^N) DIFF s)`, REPEAT GEN_TAC THEN REWRITE_TAC[CONNECTED_EQ_COMPONENTS_SUBSET_SING_EXISTS] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_TAC `u:real^N->bool`) THEN SUBGOAL_THEN `FINITE(components((:real^N) DIFF t))` ASSUME_TAC THENL [ASM_MESON_TAC[FINITE_SUBSET; FINITE_SING]; ALL_TAC] THEN MP_TAC(ISPECL [`s:real^N->bool`; `t:real^N->bool`] CARD_LE_RETRACT_COMPLEMENT_COMPONENTS) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `FINITE(components((:real^N) DIFF s)) /\ CARD(components((:real^N) DIFF s)) <= CARD(components((:real^N) DIFF t))` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[CARD_LE_CARD_IMP; CARD_LE_FINITE]; ALL_TAC] THEN REWRITE_TAC[SET_RULE `s SUBSET {a} <=> s = {} \/ s = {a}`] THEN REWRITE_TAC[EXISTS_OR_THM] THEN REWRITE_TAC[GSYM HAS_SIZE_0; GSYM(HAS_SIZE_CONV `s HAS_SIZE 1`)] THEN ASM_REWRITE_TAC[HAS_SIZE; ARITH_RULE `n = 0 \/ n = 1 <=> n <= 1`] THEN TRANS_TAC LE_TRANS `CARD{u:real^N->bool}` THEN CONJ_TAC THENL [TRANS_TAC LE_TRANS `CARD(components((:real^N) DIFF t))` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[FINITE_SING]; SIMP_TAC[CARD_CLAUSES; FINITE_EMPTY; NOT_IN_EMPTY] THEN ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* We also get fixpoint properties for suitable ANRs. *) (* ------------------------------------------------------------------------- *) let BROUWER_INESSENTIAL_ANR = prove (`!f:real^N->real^N s. compact s /\ ~(s = {}) /\ ANR s /\ f continuous_on s /\ IMAGE f s SUBSET s /\ (?a. homotopic_with (\x. T) (s,s) f (\x. a)) ==> ?x. x IN s /\ f x = x`, ONCE_REWRITE_TAC[HOMOTOPIC_WITH_SYM] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(X_CHOOSE_TAC `r:real` o SPEC `vec 0:real^N` o MATCH_MP BOUNDED_SUBSET_CBALL o MATCH_MP COMPACT_IMP_BOUNDED) THEN MP_TAC(ISPECL [`(\x. a):real^N->real^N`; `f:real^N->real^N`; `s:real^N->bool`; `cball(vec 0:real^N,r)`; `s:real^N->bool`] BORSUK_HOMOTOPY_EXTENSION) THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED; CLOSED_SUBSET; CONTINUOUS_ON_CONST; CLOSED_CBALL] THEN FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP HOMOTOPIC_WITH_IMP_SUBSET) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^N` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`g:real^N->real^N`; `cball(vec 0:real^N,r)`] BROUWER) THEN ASM_SIMP_TAC[COMPACT_CBALL; CONVEX_CBALL; CBALL_EQ_EMPTY] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < r ==> ~(r < &0)`] THEN ASM SET_TAC[]);; let BROUWER_CONTRACTIBLE_ANR = prove (`!f:real^N->real^N s. compact s /\ contractible s /\ ~(s = {}) /\ ANR s /\ f continuous_on s /\ IMAGE f s SUBSET s ==> ?x. x IN s /\ f x = x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC BROUWER_INESSENTIAL_ANR THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC NULLHOMOTOPIC_FROM_CONTRACTIBLE THEN ASM_REWRITE_TAC[]);; let FIXED_POINT_INESSENTIAL_SPHERE_MAP = prove (`!f a:real^N r c. &0 < r /\ homotopic_with (\x. T) (sphere(a,r),sphere(a,r)) f (\x. c) ==> ?x. x IN sphere(a,r) /\ f x = x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC BROUWER_INESSENTIAL_ANR THEN REWRITE_TAC[ANR_SPHERE] THEN ASM_SIMP_TAC[SPHERE_EQ_EMPTY; COMPACT_SPHERE; OPEN_DELETE; OPEN_UNIV] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP HOMOTOPIC_WITH_IMP_CONTINUOUS) THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP HOMOTOPIC_WITH_IMP_SUBSET) THEN ASM_SIMP_TAC[REAL_NOT_LT; REAL_LT_IMP_LE] THEN ASM_MESON_TAC[]);; let BROUWER_AR = prove (`!f s:real^N->bool. compact s /\ AR s /\ f continuous_on s /\ IMAGE f s SUBSET s ==> ?x. x IN s /\ f x = x`, REWRITE_TAC[AR_ANR] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC BROUWER_CONTRACTIBLE_ANR THEN ASM_REWRITE_TAC[]);; let BROUWER_ABSOLUTE_RETRACT = prove (`!f s. compact s /\ s retract_of (:real^N) /\ f continuous_on s /\ IMAGE f s SUBSET s ==> ?x. x IN s /\ f x = x`, REWRITE_TAC[RETRACT_OF_UNIV; AR_ANR] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC BROUWER_CONTRACTIBLE_ANR THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* This interresting lemma is no longer used for Schauder but we keep it. *) (* ------------------------------------------------------------------------- *) let SCHAUDER_PROJECTION = prove (`!s:real^N->bool e. compact s /\ &0 < e ==> ?t f. FINITE t /\ t SUBSET s /\ f continuous_on s /\ IMAGE f s SUBSET (convex hull t) /\ (!x. x IN s ==> norm(f x - x) < e)`, REPEAT STRIP_TAC THEN FIRST_ASSUM (MP_TAC o SPEC `e:real` o MATCH_MP COMPACT_IMP_TOTALLY_BOUNDED) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:real^N->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ABBREV_TAC `g = \p x:real^N. max (&0) (e - norm(x - p))` THEN SUBGOAL_THEN `!x. x IN s ==> &0 < sum t (\p. (g:real^N->real^N->real) p x)` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_POS_LT THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "g" THEN REWRITE_TAC[REAL_ARITH `&0 <= max (&0) b`] THEN REWRITE_TAC[REAL_ARITH `&0 < max (&0) b <=> &0 < b`; REAL_SUB_LT] THEN UNDISCH_TAC `s SUBSET UNIONS (IMAGE (\x:real^N. ball(x,e)) t)` THEN REWRITE_TAC[SUBSET; UNIONS_IMAGE; IN_BALL; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[dist; NORM_SUB]; ALL_TAC] THEN EXISTS_TAC `(\x. inv(sum t (\p. g p x)) % vsum t (\p. g p x % p)):real^N->real^N` THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_MUL THEN REWRITE_TAC[o_DEF] THEN CONJ_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN ASM_SIMP_TAC[REAL_LT_IMP_NZ; LIFT_SUM; o_DEF]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_ON_VSUM THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THENL [ALL_TAC; MATCH_MP_TAC CONTINUOUS_ON_MUL] THEN REWRITE_TAC[o_DEF; CONTINUOUS_ON_CONST] THEN EXPAND_TAC "g" THEN (SUBGOAL_THEN `(\x. lift (max (&0) (e - norm (x - y:real^N)))) = (\x. (lambda i. max (lift(&0)$i) (lift(e - norm (x - y))$i)))` SUBST1_TAC THENL [SIMP_TAC[CART_EQ; LAMBDA_BETA; FUN_EQ_THM] THEN REWRITE_TAC[DIMINDEX_1; FORALL_1; GSYM drop; LIFT_DROP]; MATCH_MP_TAC CONTINUOUS_ON_MAX] THEN REWRITE_TAC[CONTINUOUS_ON_CONST; LIFT_SUB] THEN MATCH_MP_TAC CONTINUOUS_ON_SUB THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN REWRITE_TAC[ONCE_REWRITE_RULE[NORM_SUB] (GSYM dist)] THEN REWRITE_TAC[REWRITE_RULE[o_DEF] CONTINUOUS_ON_LIFT_DIST]); REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; GSYM VSUM_LMUL; VECTOR_MUL_ASSOC] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MATCH_MP_TAC CONVEX_VSUM THEN ASM_SIMP_TAC[HULL_INC; CONVEX_CONVEX_HULL; SUM_LMUL] THEN ASM_SIMP_TAC[REAL_LT_IMP_NZ; REAL_MUL_LINV] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_SIMP_TAC[REAL_LE_INV_EQ; REAL_LT_IMP_LE] THEN EXPAND_TAC "g" THEN REAL_ARITH_TAC; X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[NORM_SUB] THEN REWRITE_TAC[REWRITE_RULE[dist] (GSYM IN_BALL)] THEN REWRITE_TAC[GSYM VSUM_LMUL; VECTOR_MUL_ASSOC] THEN MATCH_MP_TAC CONVEX_VSUM_STRONG THEN ASM_REWRITE_TAC[CONVEX_BALL; SUM_LMUL; REAL_ENTIRE] THEN ASM_SIMP_TAC[REAL_LT_IMP_NZ; REAL_MUL_LINV; REAL_LT_INV_EQ; REAL_LE_MUL_EQ] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN EXPAND_TAC "g" THEN REWRITE_TAC[IN_BALL; dist; NORM_SUB] THEN REAL_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Some other related fixed-point theorems. *) (* ------------------------------------------------------------------------- *) let BROUWER_FACTOR_THROUGH_AR = prove (`!f:real^M->real^N g:real^N->real^M s t. f continuous_on s /\ IMAGE f s SUBSET t /\ g continuous_on t /\ IMAGE g t SUBSET s /\ compact s /\ AR t ==> ?x. x IN s /\ g(f x) = x`, REPEAT STRIP_TAC THEN FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [COMPACT_EQ_BOUNDED_CLOSED]) THEN FIRST_ASSUM(MP_TAC o SPEC `a:real^M` o MATCH_MP BOUNDED_SUBSET_CBALL) THEN DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`f:real^M->real^N`; `(:real^M)`; `s:real^M->bool`; `t:real^N->bool`] AR_IMP_ABSOLUTE_EXTENSOR) THEN ASM_REWRITE_TAC[SUBTOPOLOGY_UNIV; GSYM CLOSED_IN] THEN DISCH_THEN(X_CHOOSE_THEN `h:real^M->real^N` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`(g:real^N->real^M) o (h:real^M->real^N)`; `a:real^M`; `r:real`] BROUWER_BALL) THEN ASM_REWRITE_TAC[o_THM; IMAGE_o] THEN ANTS_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV; IMAGE_SUBSET]);; let BROUWER_ABSOLUTE_RETRACT_GEN = prove (`!f s:real^N->bool. s retract_of (:real^N) /\ f continuous_on s /\ IMAGE f s SUBSET s /\ bounded(IMAGE f s) ==> ?x. x IN s /\ f x = x`, REWRITE_TAC[RETRACT_OF_UNIV] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\x:real^N. x`; `f:real^N->real^N`; `closure(IMAGE (f:real^N->real^N) s)`; `s:real^N->bool`] BROUWER_FACTOR_THROUGH_AR) THEN ASM_REWRITE_TAC[CONTINUOUS_ON_ID; COMPACT_CLOSURE; IMAGE_ID] THEN REWRITE_TAC[CLOSURE_SUBSET] THEN MATCH_MP_TAC(TAUT `(p /\ q ==> r) /\ p ==> (p ==> q) ==> r`) THEN CONJ_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC CLOSURE_MINIMAL] THEN ASM_MESON_TAC[RETRACT_OF_CLOSED; CLOSED_UNIV]);; let SCHAUDER_GEN = prove (`!f s t:real^N->bool. AR s /\ f continuous_on s /\ IMAGE f s SUBSET t /\ t SUBSET s /\ compact t ==> ?x. x IN t /\ f x = x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\x:real^N. x`; `f:real^N->real^N`; `t:real^N->bool`; `s:real^N->bool`] BROUWER_FACTOR_THROUGH_AR) THEN ASM_REWRITE_TAC[CONTINUOUS_ON_ID; IMAGE_ID]);; let SCHAUDER = prove (`!f s t:real^N->bool. convex s /\ ~(s = {}) /\ t SUBSET s /\ compact t /\ f continuous_on s /\ IMAGE f s SUBSET t ==> ?x. x IN s /\ f x = x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real^N->real^N`; `s:real^N->bool`; `t:real^N->bool`] SCHAUDER_GEN) THEN ASM_SIMP_TAC[CONVEX_IMP_AR] THEN ASM SET_TAC[]);; let SCHAUDER_UNIV = prove (`!f:real^N->real^N. f continuous_on (:real^N) /\ bounded (IMAGE f (:real^N)) ==> ?x. f x = x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real^N->real^N`; `(:real^N)`; `closure(IMAGE (f:real^N->real^N) (:real^N))`] SCHAUDER) THEN ASM_REWRITE_TAC[UNIV_NOT_EMPTY; CONVEX_UNIV; COMPACT_CLOSURE; IN_UNIV] THEN REWRITE_TAC[SUBSET_UNIV; CLOSURE_SUBSET]);; let ROTHE = prove (`!f s:real^N->bool. closed s /\ convex s /\ ~(s = {}) /\ f continuous_on s /\ bounded(IMAGE f s) /\ IMAGE f (frontier s) SUBSET s ==> ?x. x IN s /\ f x = x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `(:real^N)`] ABSOLUTE_RETRACTION_CONVEX_CLOSED) THEN ASM_REWRITE_TAC[retraction; SUBSET_UNIV] THEN DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`(r:real^N->real^N) o (f:real^N->real^N)`; `s:real^N->bool`; `IMAGE (r:real^N->real^N) (closure(IMAGE (f:real^N->real^N) s))`] SCHAUDER) THEN ANTS_TAC THENL [ASM_SIMP_TAC[CLOSURE_SUBSET; IMAGE_SUBSET; IMAGE_o] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN ASM_REWRITE_TAC[COMPACT_CLOSURE]; MATCH_MP_TAC CONTINUOUS_ON_COMPOSE] THEN ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[o_THM] THEN STRIP_TAC THEN ASM SET_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Bijections between intervals. *) (* ------------------------------------------------------------------------- *) let interval_bij = new_definition `interval_bij (a:real^N,b:real^N) (u:real^N,v:real^N) (x:real^N) = (lambda i. u$i + (x$i - a$i) / (b$i - a$i) * (v$i - u$i)):real^N`;; let INTERVAL_BIJ_AFFINE = prove (`interval_bij (a,b) (u,v) = \x. (lambda i. (v$i - u$i) / (b$i - a$i) * x$i) + (lambda i. u$i - (v$i - u$i) / (b$i - a$i) * a$i)`, SIMP_TAC[FUN_EQ_THM; CART_EQ; VECTOR_ADD_COMPONENT; LAMBDA_BETA; interval_bij] THEN REAL_ARITH_TAC);; let CONTINUOUS_INTERVAL_BIJ = prove (`!a b u v x. (interval_bij (a:real^N,b:real^N) (u:real^N,v:real^N)) continuous at x`, REPEAT GEN_TAC THEN REWRITE_TAC[INTERVAL_BIJ_AFFINE] THEN MATCH_MP_TAC CONTINUOUS_ADD THEN REWRITE_TAC[CONTINUOUS_CONST] THEN MATCH_MP_TAC LINEAR_CONTINUOUS_AT THEN SIMP_TAC[linear; CART_EQ; LAMBDA_BETA; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN REAL_ARITH_TAC);; let CONTINUOUS_ON_INTERVAL_BIJ = prove (`!a b u v s. interval_bij (a,b) (u,v) continuous_on s`, REPEAT GEN_TAC THEN MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN REWRITE_TAC[CONTINUOUS_INTERVAL_BIJ]);; let IN_INTERVAL_INTERVAL_BIJ = prove (`!a b u v x:real^N. x IN interval[a,b] /\ ~(interval[u,v] = {}) ==> (interval_bij (a,b) (u,v) x) IN interval[u,v]`, SIMP_TAC[IN_INTERVAL; interval_bij; LAMBDA_BETA; INTERVAL_NE_EMPTY] THEN REWRITE_TAC[REAL_ARITH `u <= u + x <=> &0 <= x`; REAL_ARITH `u + x <= v <=> x <= &1 * (v - u)`] THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THEN TRY(MATCH_MP_TAC REAL_LE_DIV) THEN ASM_SIMP_TAC[REAL_SUB_LE] THEN ASM_MESON_TAC[REAL_LE_TRANS]; MATCH_MP_TAC REAL_LE_RMUL THEN ASM_SIMP_TAC[REAL_SUB_LE] THEN SUBGOAL_THEN `(a:real^N)$i <= (b:real^N)$i` MP_TAC THENL [ASM_MESON_TAC[REAL_LE_TRANS]; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [REAL_LE_LT] THEN STRIP_TAC THENL [ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_SUB_LT] THEN ASM_SIMP_TAC[REAL_ARITH `a <= x /\ x <= b ==> x - a <= &1 * (b - a)`]; ASM_REWRITE_TAC[real_div; REAL_SUB_REFL; REAL_INV_0] THEN REAL_ARITH_TAC]]);; let INTERVAL_BIJ_BIJ = prove (`!a b u v x:real^N. (!i. 1 <= i /\ i <= dimindex(:N) ==> a$i < b$i /\ u$i < v$i) ==> interval_bij (a,b) (u,v) (interval_bij (u,v) (a,b) x) = x`, SIMP_TAC[interval_bij; CART_EQ; LAMBDA_BETA; REAL_ADD_SUB] THEN REPEAT GEN_TAC THEN REWRITE_TAC[AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN CONV_TAC REAL_FIELD);; (* ------------------------------------------------------------------------- *) (* Fashoda meet theorem. *) (* ------------------------------------------------------------------------- *) let INFNORM_2 = prove (`infnorm (x:real^2) = max (abs(x$1)) (abs(x$2))`, REWRITE_TAC[infnorm; INFNORM_SET_IMAGE; NUMSEG_CONV `1..2`; DIMINDEX_2] THEN REWRITE_TAC[IMAGE_CLAUSES; GSYM REAL_MAX_SUP]);; let INFNORM_EQ_1_2 = prove (`infnorm (x:real^2) = &1 <=> abs(x$1) <= &1 /\ abs(x$2) <= &1 /\ (x$1 = -- &1 \/ x$1 = &1 \/ x$2 = -- &1 \/ x$2 = &1)`, REWRITE_TAC[INFNORM_2] THEN REAL_ARITH_TAC);; let INFNORM_EQ_1_IMP = prove (`infnorm (x:real^2) = &1 ==> abs(x$1) <= &1 /\ abs(x$2) <= &1`, SIMP_TAC[INFNORM_EQ_1_2]);; let FASHODA_UNIT = prove (`!f:real^1->real^2 g:real^1->real^2. IMAGE f (interval[--vec 1,vec 1]) SUBSET interval[--vec 1,vec 1] /\ IMAGE g (interval[--vec 1,vec 1]) SUBSET interval[--vec 1,vec 1] /\ f continuous_on interval[--vec 1,vec 1] /\ g continuous_on interval[--vec 1,vec 1] /\ f(--vec 1)$1 = -- &1 /\ f(vec 1)$1 = &1 /\ g(--vec 1)$2 = -- &1 /\ g(vec 1)$2 = &1 ==> ?s t. s IN interval[--vec 1,vec 1] /\ t IN interval[--vec 1,vec 1] /\ f(s) = g(t)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [TAUT `p <=> ~ ~p`] THEN DISCH_THEN(MP_TAC o REWRITE_RULE[NOT_EXISTS_THM]) THEN REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN DISCH_TAC THEN ABBREV_TAC `sqprojection = \z:real^2. inv(infnorm z) % z` THEN ABBREV_TAC `(negatex:real^2->real^2) = \x. vector[--(x$1); x$2]` THEN SUBGOAL_THEN `!z:real^2. infnorm(negatex z:real^2) = infnorm z` ASSUME_TAC THENL [EXPAND_TAC "negatex" THEN SIMP_TAC[VECTOR_2; INFNORM_2] THEN REAL_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `!z. ~(z = vec 0) ==> infnorm((sqprojection:real^2->real^2) z) = &1` ASSUME_TAC THENL [EXPAND_TAC "sqprojection" THEN REWRITE_TAC[INFNORM_MUL; REAL_ABS_INFNORM; REAL_ABS_INV] THEN SIMP_TAC[REAL_MUL_LINV; INFNORM_EQ_0]; ALL_TAC] THEN MP_TAC(ISPECL [`(\w. (negatex:real^2->real^2) (sqprojection(f(lift(w$1)) - g(lift(w$2)):real^2))) :real^2->real^2`; `interval[--vec 1,vec 1]:real^2->bool`] BROUWER_WEAK) THEN REWRITE_TAC[NOT_IMP; COMPACT_INTERVAL; CONVEX_INTERVAL] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[INTERIOR_CLOSED_INTERVAL; INTERVAL_NE_EMPTY] THEN SIMP_TAC[VEC_COMPONENT; VECTOR_NEG_COMPONENT] THEN REAL_ARITH_TAC; MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_COMPOSE) THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC LINEAR_CONTINUOUS_ON THEN EXPAND_TAC "negatex" THEN SIMP_TAC[linear; VECTOR_2; CART_EQ; FORALL_2; DIMINDEX_2; VECTOR_MUL_COMPONENT; VECTOR_NEG_COMPONENT; VECTOR_ADD_COMPONENT; ARITH] THEN REAL_ARITH_TAC] THEN MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_COMPOSE) THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_SUB THEN CONJ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_COMPOSE) THEN SIMP_TAC[CONTINUOUS_ON_LIFT_COMPONENT; DIMINDEX_2; ARITH] THEN MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `interval[--vec 1:real^1,vec 1]`; MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN EXPAND_TAC "sqprojection" THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN X_GEN_TAC `x:real^2` THEN STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_MUL THEN REWRITE_TAC[CONTINUOUS_AT_ID] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_AT_INV THEN REWRITE_TAC[CONTINUOUS_AT_LIFT_INFNORM; INFNORM_EQ_0; VECTOR_SUB_EQ] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL])] THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_INTERVAL_1] THEN SIMP_TAC[IN_INTERVAL; DIMINDEX_2; FORALL_2; VEC_COMPONENT; ARITH; VECTOR_NEG_COMPONENT; DROP_NEG; DROP_VEC; LIFT_DROP]; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:real^2` THEN STRIP_TAC THEN SIMP_TAC[IN_INTERVAL; DIMINDEX_2; FORALL_2; REAL_BOUNDS_LE; VECTOR_NEG_COMPONENT; VEC_COMPONENT; ARITH] THEN MATCH_MP_TAC INFNORM_EQ_1_IMP THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[VECTOR_SUB_EQ] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL]) THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_INTERVAL_1] THEN SIMP_TAC[IN_INTERVAL; DIMINDEX_2; FORALL_2; VEC_COMPONENT; ARITH; VECTOR_NEG_COMPONENT; DROP_NEG; DROP_VEC; LIFT_DROP]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `x:real^2` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `infnorm(x:real^2) = &1` MP_TAC THENL [FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SYM th]) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[VECTOR_SUB_EQ] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_INTERVAL_1] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL]) THEN SIMP_TAC[IN_INTERVAL; DIMINDEX_2; FORALL_2; VEC_COMPONENT; ARITH; VECTOR_NEG_COMPONENT; DROP_NEG; DROP_VEC; LIFT_DROP]; ALL_TAC] THEN SUBGOAL_THEN `(!x i. 1 <= i /\ i <= 2 /\ ~(x = vec 0) ==> (&0 < ((sqprojection:real^2->real^2) x)$i <=> &0 < x$i)) /\ (!x i. 1 <= i /\ i <= 2 /\ ~(x = vec 0) ==> ((sqprojection x)$i < &0 <=> x$i < &0))` STRIP_ASSUME_TAC THENL [EXPAND_TAC "sqprojection" THEN SIMP_TAC[VECTOR_MUL_COMPONENT; DIMINDEX_2; ARITH] THEN REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[REAL_MUL_SYM] real_div)] THEN SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; INFNORM_POS_LT] THEN REWRITE_TAC[REAL_MUL_LZERO]; ALL_TAC] THEN REWRITE_TAC[INFNORM_EQ_1_2; CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (REPEAT_TCL DISJ_CASES_THEN (fun th -> ASSUME_TAC th THEN MP_TAC th))) THEN MAP_EVERY EXPAND_TAC ["x"; "negatex"] THEN REWRITE_TAC[VECTOR_2] THENL [DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH `--x = -- &1 ==> &0 < x`)); DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH `--x = &1 ==> x < &0`)); DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH `x = -- &1 ==> x < &0`)); DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH `x = &1 ==> &0 < x`))] THEN W(fun (_,w) -> FIRST_X_ASSUM(fun th -> MP_TAC(PART_MATCH (lhs o rand) th (lhand w)))) THEN (ANTS_TAC THENL [REWRITE_TAC[VECTOR_SUB_EQ; ARITH] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL]) THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_INTERVAL_1] THEN SIMP_TAC[IN_INTERVAL; DIMINDEX_2; FORALL_2; VEC_COMPONENT; ARITH; VECTOR_NEG_COMPONENT; DROP_NEG; DROP_VEC; LIFT_DROP] THEN REAL_ARITH_TAC; DISCH_THEN SUBST1_TAC]) THEN ASM_SIMP_TAC[VECTOR_SUB_COMPONENT; DIMINDEX_2; ARITH; LIFT_NEG; LIFT_NUM] THENL [MATCH_MP_TAC(REAL_ARITH `abs(x$1) <= &1 /\ abs(x$2) <= &1 ==> ~(&0 < -- &1 - x$1)`); MATCH_MP_TAC(REAL_ARITH `abs(x$1) <= &1 /\ abs(x$2) <= &1 ==> ~(&1 - x$1 < &0)`); MATCH_MP_TAC(REAL_ARITH `abs(x$1) <= &1 /\ abs(x$2) <= &1 ==> ~(x$2 - -- &1 < &0)`); MATCH_MP_TAC(REAL_ARITH `abs(x$1) <= &1 /\ abs(x$2) <= &1 ==> ~(&0 < x$2 - &1)`)] THEN (SUBGOAL_THEN `!z:real^2. abs(z$1) <= &1 /\ abs(z$2) <= &1 <=> z IN interval[--vec 1,vec 1]` (fun th -> REWRITE_TAC[th]) THENL [SIMP_TAC[IN_INTERVAL; DIMINDEX_2; FORALL_2; VEC_COMPONENT; ARITH; VECTOR_NEG_COMPONENT; DROP_NEG; DROP_VEC; LIFT_DROP] THEN REAL_ARITH_TAC; ALL_TAC]) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `IMAGE f s SUBSET t ==> x IN s ==> f x IN t`)) THEN REWRITE_TAC[IN_INTERVAL_1; DROP_NEG; DROP_VEC; LIFT_DROP] THEN ASM_REWRITE_TAC[REAL_BOUNDS_LE]);; let FASHODA_UNIT_PATH = prove (`!f:real^1->real^2 g:real^1->real^2. path f /\ path g /\ path_image f SUBSET interval[--vec 1,vec 1] /\ path_image g SUBSET interval[--vec 1,vec 1] /\ (pathstart f)$1 = -- &1 /\ (pathfinish f)$1 = &1 /\ (pathstart g)$2 = -- &1 /\ (pathfinish g)$2 = &1 ==> ?z. z IN path_image f /\ z IN path_image g`, SIMP_TAC[path; path_image; pathstart; pathfinish] THEN REPEAT STRIP_TAC THEN ABBREV_TAC `iscale = \z:real^1. inv(&2) % (z + vec 1)` THEN MP_TAC(ISPECL [`(f:real^1->real^2) o (iscale:real^1->real^1)`; `(g:real^1->real^2) o (iscale:real^1->real^1)`] FASHODA_UNIT) THEN SUBGOAL_THEN `IMAGE (iscale:real^1->real^1) (interval[--vec 1,vec 1]) SUBSET interval[vec 0,vec 1]` ASSUME_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN EXPAND_TAC "iscale" THEN REWRITE_TAC[IN_INTERVAL_1; DROP_NEG; DROP_VEC; DROP_CMUL; DROP_ADD] THEN REAL_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `(iscale:real^1->real^1) continuous_on interval [--vec 1,vec 1]` ASSUME_TAC THENL [EXPAND_TAC "iscale" THEN SIMP_TAC[CONTINUOUS_ON_CMUL; CONTINUOUS_ON_ID; CONTINUOUS_ON_ADD; CONTINUOUS_ON_CONST]; ALL_TAC] THEN ASM_REWRITE_TAC[IMAGE_o] THEN ANTS_TAC THENL [REPLICATE_TAC 2 (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN REPLICATE_TAC 2 (CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]; ALL_TAC]) THEN EXPAND_TAC "iscale" THEN REWRITE_TAC[o_THM] THEN ASM_REWRITE_TAC[VECTOR_ARITH `inv(&2) % (--x + x) = vec 0`; VECTOR_ARITH `inv(&2) % (x + x) = x`]; REWRITE_TAC[o_THM; LEFT_IMP_EXISTS_THM; IN_IMAGE] THEN ASM SET_TAC[]]);; let FASHODA = prove (`!f g a b:real^2. path f /\ path g /\ path_image f SUBSET interval[a,b] /\ path_image g SUBSET interval[a,b] /\ (pathstart f)$1 = a$1 /\ (pathfinish f)$1 = b$1 /\ (pathstart g)$2 = a$2 /\ (pathfinish g)$2 = b$2 ==> ?z. z IN path_image f /\ z IN path_image g`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `~(interval[a:real^2,b] = {})` MP_TAC THENL [FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `s SUBSET t ==> ~(s = {}) ==> ~(t = {})`)) THEN REWRITE_TAC[PATH_IMAGE_NONEMPTY]; ALL_TAC] THEN REWRITE_TAC[INTERVAL_NE_EMPTY; DIMINDEX_2; FORALL_2] THEN STRIP_TAC THEN MP_TAC(ASSUME `(a:real^2)$1 <= (b:real^2)$1`) THEN REWRITE_TAC[REAL_ARITH `a <= b <=> b = a \/ a < b`] THEN STRIP_TAC THENL [SUBGOAL_THEN `?z:real^2. z IN path_image g /\ z$2 = (pathstart f:real^2)$2` MP_TAC THENL [MATCH_MP_TAC CONNECTED_IVT_COMPONENT THEN MAP_EVERY EXISTS_TAC [`pathstart(g:real^1->real^2)`; `pathfinish(g:real^1->real^2)`] THEN ASM_SIMP_TAC[CONNECTED_PATH_IMAGE; PATHSTART_IN_PATH_IMAGE; REAL_LE_REFL; PATHFINISH_IN_PATH_IMAGE; DIMINDEX_2; ARITH] THEN UNDISCH_TAC `path_image f SUBSET interval[a:real^2,b]` THEN REWRITE_TAC[SUBSET; path_image; IN_INTERVAL_1; FORALL_IN_IMAGE] THEN DISCH_THEN(MP_TAC o SPEC `vec 0:real^1`) THEN SIMP_TAC[pathstart] THEN SIMP_TAC[DROP_VEC; REAL_POS; IN_INTERVAL; FORALL_2; DIMINDEX_2]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:real^2` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[path_image; IN_IMAGE] THEN EXISTS_TAC `vec 0:real^1` THEN REWRITE_TAC[IN_INTERVAL_1; DROP_VEC; REAL_POS] THEN ASM_REWRITE_TAC[CART_EQ; FORALL_2; DIMINDEX_2; pathstart] THEN SUBGOAL_THEN `(z:real^2) IN interval[a,b] /\ f(vec 0:real^1) IN interval[a,b]` MP_TAC THENL [ASM_MESON_TAC[SUBSET; path_image; IN_IMAGE; PATHSTART_IN_PATH_IMAGE; pathstart]; ASM_REWRITE_TAC[IN_INTERVAL; FORALL_2; DIMINDEX_2] THEN REAL_ARITH_TAC]; ALL_TAC] THEN MP_TAC(ASSUME `(a:real^2)$2 <= (b:real^2)$2`) THEN REWRITE_TAC[REAL_ARITH `a <= b <=> b = a \/ a < b`] THEN STRIP_TAC THENL [SUBGOAL_THEN `?z:real^2. z IN path_image f /\ z$1 = (pathstart g:real^2)$1` MP_TAC THENL [MATCH_MP_TAC CONNECTED_IVT_COMPONENT THEN MAP_EVERY EXISTS_TAC [`pathstart(f:real^1->real^2)`; `pathfinish(f:real^1->real^2)`] THEN ASM_SIMP_TAC[CONNECTED_PATH_IMAGE; PATHSTART_IN_PATH_IMAGE; REAL_LE_REFL; PATHFINISH_IN_PATH_IMAGE; DIMINDEX_2; ARITH] THEN UNDISCH_TAC `path_image g SUBSET interval[a:real^2,b]` THEN REWRITE_TAC[SUBSET; path_image; IN_INTERVAL_1; FORALL_IN_IMAGE] THEN DISCH_THEN(MP_TAC o SPEC `vec 0:real^1`) THEN SIMP_TAC[pathstart] THEN SIMP_TAC[DROP_VEC; REAL_POS; IN_INTERVAL; FORALL_2; DIMINDEX_2]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:real^2` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[path_image; IN_IMAGE] THEN EXISTS_TAC `vec 0:real^1` THEN REWRITE_TAC[IN_INTERVAL_1; DROP_VEC; REAL_POS] THEN ASM_REWRITE_TAC[CART_EQ; FORALL_2; DIMINDEX_2; pathstart] THEN SUBGOAL_THEN `(z:real^2) IN interval[a,b] /\ g(vec 0:real^1) IN interval[a,b]` MP_TAC THENL [ASM_MESON_TAC[SUBSET; path_image; IN_IMAGE; PATHSTART_IN_PATH_IMAGE; pathstart]; ASM_REWRITE_TAC[IN_INTERVAL; FORALL_2; DIMINDEX_2] THEN REAL_ARITH_TAC]; ALL_TAC] THEN MP_TAC(ISPECL [`interval_bij (a,b) (--vec 1,vec 1) o (f:real^1->real^2)`; `interval_bij (a,b) (--vec 1,vec 1) o (g:real^1->real^2)`] FASHODA_UNIT_PATH) THEN RULE_ASSUM_TAC(REWRITE_RULE[path; path_image; pathstart; pathfinish]) THEN ASM_REWRITE_TAC[path; path_image; pathstart; pathfinish; o_THM] THEN ANTS_TAC THENL [ASM_SIMP_TAC[CONTINUOUS_ON_COMPOSE; CONTINUOUS_ON_INTERVAL_BIJ] THEN REWRITE_TAC[IMAGE_o] THEN REPLICATE_TAC 2 (CONJ_TAC THENL [REWRITE_TAC[SUBSET] THEN ONCE_REWRITE_TAC[FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC IN_INTERVAL_INTERVAL_BIJ THEN SIMP_TAC[INTERVAL_NE_EMPTY; VECTOR_NEG_COMPONENT; VEC_COMPONENT] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM SET_TAC[]; ALL_TAC]) THEN ASM_SIMP_TAC[interval_bij; LAMBDA_BETA; DIMINDEX_2; ARITH] THEN ASM_SIMP_TAC[REAL_DIV_REFL; REAL_LT_IMP_NZ; REAL_SUB_LT] THEN REWRITE_TAC[real_div; REAL_SUB_REFL; REAL_MUL_LZERO] THEN SIMP_TAC[VECTOR_NEG_COMPONENT; VEC_COMPONENT; DIMINDEX_2; ARITH] THEN CONV_TAC REAL_RAT_REDUCE_CONV; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `z:real^2` (fun th -> EXISTS_TAC `interval_bij (--vec 1,vec 1) (a,b) (z:real^2)` THEN MP_TAC th)) THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN REWRITE_TAC[IMAGE_o] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> g(f(x)) = x) ==> x IN IMAGE f s ==> g x IN s`) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC INTERVAL_BIJ_BIJ THEN ASM_SIMP_TAC[FORALL_2; DIMINDEX_2; VECTOR_NEG_COMPONENT; VEC_COMPONENT; ARITH] THEN CONV_TAC REAL_RAT_REDUCE_CONV);; (* ------------------------------------------------------------------------- *) (* Some slightly ad hoc lemmas I use below *) (* ------------------------------------------------------------------------- *) let SEGMENT_VERTICAL = prove (`!a:real^2 b:real^2 x:real^2. a$1 = b$1 ==> (x IN segment[a,b] <=> x$1 = a$1 /\ x$1 = b$1 /\ (a$2 <= x$2 /\ x$2 <= b$2 \/ b$2 <= x$2 /\ x$2 <= a$2))`, GEOM_ORIGIN_TAC `a:real^2` THEN REWRITE_TAC[VECTOR_ADD_COMPONENT; VEC_COMPONENT; REAL_LE_LADD; REAL_EQ_ADD_LCANCEL] THEN REPEAT GEN_TAC THEN DISCH_THEN(ASSUME_TAC o SYM) THEN SUBST1_TAC(SYM(ISPEC `b:real^2` BASIS_EXPANSION)) THEN ASM_REWRITE_TAC[DIMINDEX_2; VSUM_2; VECTOR_MUL_LZERO; VECTOR_ADD_LID] THEN SUBST1_TAC(VECTOR_ARITH `vec 0:real^2 = &0 % basis 2`) THEN REWRITE_TAC[SEGMENT_SCALAR_MULTIPLE; IN_ELIM_THM; CART_EQ] THEN REWRITE_TAC[DIMINDEX_2; FORALL_2; VECTOR_MUL_COMPONENT] THEN SIMP_TAC[BASIS_COMPONENT; DIMINDEX_2; ARITH; REAL_MUL_RZERO; REAL_MUL_RID] THEN MESON_TAC[]);; let SEGMENT_HORIZONTAL = prove (`!a:real^2 b:real^2 x:real^2. a$2 = b$2 ==> (x IN segment[a,b] <=> x$2 = a$2 /\ x$2 = b$2 /\ (a$1 <= x$1 /\ x$1 <= b$1 \/ b$1 <= x$1 /\ x$1 <= a$1))`, GEOM_ORIGIN_TAC `a:real^2` THEN REWRITE_TAC[VECTOR_ADD_COMPONENT; VEC_COMPONENT; REAL_LE_LADD; REAL_EQ_ADD_LCANCEL] THEN REPEAT GEN_TAC THEN DISCH_THEN(ASSUME_TAC o SYM) THEN SUBST1_TAC(SYM(ISPEC `b:real^2` BASIS_EXPANSION)) THEN ASM_REWRITE_TAC[DIMINDEX_2; VSUM_2; VECTOR_MUL_LZERO; VECTOR_ADD_RID] THEN SUBST1_TAC(VECTOR_ARITH `vec 0:real^2 = &0 % basis 1`) THEN REWRITE_TAC[SEGMENT_SCALAR_MULTIPLE; IN_ELIM_THM; CART_EQ] THEN REWRITE_TAC[DIMINDEX_2; FORALL_2; VECTOR_MUL_COMPONENT] THEN SIMP_TAC[BASIS_COMPONENT; DIMINDEX_2; ARITH; REAL_MUL_RZERO; REAL_MUL_RID] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Useful Fashoda corollary pointed out to me by Tom Hales. *) (* ------------------------------------------------------------------------- *) let FASHODA_INTERLACE = prove (`!f g a b:real^2. path f /\ path g /\ path_image f SUBSET interval[a,b] /\ path_image g SUBSET interval[a,b] /\ (pathstart f)$2 = a$2 /\ (pathfinish f)$2 = a$2 /\ (pathstart g)$2 = a$2 /\ (pathfinish g)$2 = a$2 /\ (pathstart f)$1 < (pathstart g)$1 /\ (pathstart g)$1 < (pathfinish f)$1 /\ (pathfinish f)$1 < (pathfinish g)$1 ==> ?z. z IN path_image f /\ z IN path_image g`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `~(interval[a:real^2,b] = {})` MP_TAC THENL [FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `s SUBSET t ==> ~(s = {}) ==> ~(t = {})`)) THEN REWRITE_TAC[PATH_IMAGE_NONEMPTY]; ALL_TAC] THEN SUBGOAL_THEN `pathstart (f:real^1->real^2) IN interval[a,b] /\ pathfinish f IN interval[a,b] /\ pathstart g IN interval[a,b] /\ pathfinish g IN interval[a,b]` MP_TAC THENL [ASM_MESON_TAC[SUBSET; PATHSTART_IN_PATH_IMAGE; PATHFINISH_IN_PATH_IMAGE]; ALL_TAC] THEN REWRITE_TAC[INTERVAL_NE_EMPTY; IN_INTERVAL; FORALL_2; DIMINDEX_2] THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`linepath(vector[a$1 - &2;a$2 - &2],vector[(pathstart f)$1;a$2 - &2]) ++ linepath(vector[(pathstart f)$1;(a:real^2)$2 - &2],pathstart f) ++ (f:real^1->real^2) ++ linepath(pathfinish f,vector[(pathfinish f)$1;a$2 - &2]) ++ linepath(vector[(pathfinish f)$1;a$2 - &2], vector[(b:real^2)$1 + &2;a$2 - &2])`; `linepath(vector[(pathstart g)$1; (pathstart g)$2 - &3],pathstart g) ++ (g:real^1->real^2) ++ linepath(pathfinish g,vector[(pathfinish g)$1;(a:real^2)$2 - &1]) ++ linepath(vector[(pathfinish g)$1;a$2 - &1],vector[b$1 + &1;a$2 - &1]) ++ linepath(vector[b$1 + &1;a$2 - &1],vector[(b:real^2)$1 + &1;b$2 + &3])`; `vector[(a:real^2)$1 - &2; a$2 - &3]:real^2`; `vector[(b:real^2)$1 + &2; b$2 + &3]:real^2`] FASHODA) THEN ASM_SIMP_TAC[PATH_JOIN; PATHSTART_JOIN; PATHFINISH_JOIN; PATH_IMAGE_JOIN; PATHSTART_LINEPATH; PATHFINISH_LINEPATH; PATH_LINEPATH] THEN REWRITE_TAC[VECTOR_2] THEN ANTS_TAC THENL [CONJ_TAC THEN REPEAT(MATCH_MP_TAC (SET_RULE `s SUBSET u /\ t SUBSET u ==> (s UNION t) SUBSET u`) THEN CONJ_TAC) THEN TRY(REWRITE_TAC[PATH_IMAGE_LINEPATH] THEN MATCH_MP_TAC(REWRITE_RULE[CONVEX_CONTAINS_SEGMENT] (CONJUNCT1 (SPEC_ALL CONVEX_INTERVAL))) THEN ASM_REWRITE_TAC[IN_INTERVAL; FORALL_2; DIMINDEX_2; VECTOR_2] THEN ASM_REAL_ARITH_TAC) THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `interval[a:real^2,b:real^2]` THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN REWRITE_TAC[SUBSET_INTERVAL; FORALL_2; DIMINDEX_2; VECTOR_2] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:real^2` THEN REWRITE_TAC[PATH_IMAGE_LINEPATH] THEN SUBGOAL_THEN `!f s:real^2->bool. path_image f UNION s = path_image f UNION (s DIFF {pathstart f,pathfinish f})` (fun th -> ONCE_REWRITE_TAC[th] THEN REWRITE_TAC[GSYM UNION_ASSOC] THEN ONCE_REWRITE_TAC[SET_RULE `(s UNION t) UNION u = u UNION t UNION s`] THEN ONCE_REWRITE_TAC[th]) THENL [REWRITE_TAC[EXTENSION; IN_UNION; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN ASM_MESON_TAC[PATHSTART_IN_PATH_IMAGE; PATHFINISH_IN_PATH_IMAGE]; ALL_TAC] THEN REWRITE_TAC[IN_UNION; IN_DIFF; GSYM DISJ_ASSOC; LEFT_OR_DISTRIB; RIGHT_OR_DISTRIB; GSYM CONJ_ASSOC; SET_RULE `~(z IN {x,y}) <=> ~(z = x) /\ ~(z = y)`] THEN DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN MP_TAC) THEN ASM_SIMP_TAC[SEGMENT_VERTICAL; SEGMENT_HORIZONTAL; VECTOR_2] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `path_image (f:real^1->real^2) SUBSET interval [a,b]` THEN REWRITE_TAC[SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `z:real^2`) THEN UNDISCH_TAC `path_image (g:real^1->real^2) SUBSET interval [a,b]` THEN REWRITE_TAC[SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `z:real^2`) THEN ASM_REWRITE_TAC[IN_INTERVAL; FORALL_2; DIMINDEX_2] THEN REPEAT(DISCH_THEN(fun th -> if is_imp(concl th) then ALL_TAC else ASSUME_TAC th)) THEN REPEAT(POP_ASSUM MP_TAC) THEN TRY REAL_ARITH_TAC THEN REWRITE_TAC[CART_EQ; FORALL_2; DIMINDEX_2] THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Complement in dimension N >= 2 of set homeomorphic to any interval in *) (* any dimension is (path-)connected. This naively generalizes the argument *) (* in Ryuji Maehara's paper "The Jordan curve theorem via the Brouwer *) (* fixed point theorem", American Mathematical Monthly 1984. *) (* ------------------------------------------------------------------------- *) let UNBOUNDED_COMPONENTS_COMPLEMENT_ABSOLUTE_RETRACT = prove (`!s c. compact s /\ AR s /\ c IN components((:real^N) DIFF s) ==> ~bounded c`, REWRITE_TAC[CONJ_ASSOC; COMPACT_AR] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; components; FORALL_IN_GSPEC] THEN GEN_TAC THEN DISCH_TAC THEN DISCH_TAC THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[IN_DIFF; IN_UNIV] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `open((:real^N) DIFF s)` ASSUME_TAC THENL [ASM_SIMP_TAC[GSYM closed; COMPACT_IMP_CLOSED]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retract_of]) THEN REWRITE_TAC[retraction; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real^N->real^N` THEN STRIP_TAC THEN MP_TAC(ISPECL [`connected_component ((:real^N) DIFF s) y`; `s:real^N->bool`; `r:real^N->real^N`] FRONTIER_SUBSET_RETRACTION) THEN ASM_SIMP_TAC[NOT_IMP; INTERIOR_OPEN; OPEN_CONNECTED_COMPONENT] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[frontier] THEN ASM_SIMP_TAC[INTERIOR_OPEN; OPEN_CONNECTED_COMPONENT] THEN REWRITE_TAC[SUBSET; IN_DIFF] THEN X_GEN_TAC `z:real^N` THEN ASM_CASES_TAC `(z:real^N) IN s` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[IN_CLOSURE_CONNECTED_COMPONENT; IN_UNIV; IN_DIFF] THEN CONV_TAC TAUT; ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; ASM SET_TAC[]; MATCH_MP_TAC(SET_RULE `~(c = {}) /\ c SUBSET (:real^N) DIFF s ==> ~(c SUBSET s)`) THEN REWRITE_TAC[CONNECTED_COMPONENT_SUBSET; CONNECTED_COMPONENT_EQ_EMPTY] THEN ASM_REWRITE_TAC[IN_UNIV; IN_DIFF]]);; let CONNECTED_COMPLEMENT_ABSOLUTE_RETRACT = prove (`!s. 2 <= dimindex(:N) /\ compact s /\ AR s ==> connected((:real^N) DIFF s)`, REWRITE_TAC[COMPACT_AR] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[CONNECTED_EQ_CONNECTED_COMPONENT_EQ] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC COBOUNDED_UNIQUE_UNBOUNDED_COMPONENT THEN ASM_SIMP_TAC[SET_RULE`UNIV DIFF (UNIV DIFF s) = s`; COMPACT_IMP_BOUNDED] THEN CONJ_TAC THEN MATCH_MP_TAC UNBOUNDED_COMPONENTS_COMPLEMENT_ABSOLUTE_RETRACT THEN EXISTS_TAC `s:real^N->bool` THEN REWRITE_TAC[CONJ_ASSOC; COMPACT_AR] THEN ASM_REWRITE_TAC[IN_COMPONENTS] THEN ASM_MESON_TAC[]);; let PATH_CONNECTED_COMPLEMENT_ABSOLUTE_RETRACT = prove (`!s:real^N->bool. 2 <= dimindex(:N) /\ compact s /\ AR s ==> path_connected((:real^N) DIFF s)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM (MP_TAC o MATCH_MP CONNECTED_COMPLEMENT_ABSOLUTE_RETRACT) THEN MATCH_MP_TAC EQ_IMP THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC PATH_CONNECTED_EQ_CONNECTED THEN REWRITE_TAC[GSYM closed] THEN ASM_MESON_TAC[HOMEOMORPHIC_COMPACTNESS; COMPACT_INTERVAL; COMPACT_IMP_CLOSED]);; let CONNECTED_COMPLEMENT_HOMEOMORPHIC_CONVEX_COMPACT = prove (`!s:real^N->bool t:real^M->bool. 2 <= dimindex(:N) /\ s homeomorphic t /\ convex t /\ compact t ==> connected((:real^N) DIFF s)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[DIFF_EMPTY; CONNECTED_UNIV] THEN MATCH_MP_TAC CONNECTED_COMPLEMENT_ABSOLUTE_RETRACT THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[HOMEOMORPHIC_COMPACTNESS]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_ARNESS) THEN ASM_MESON_TAC[CONVEX_IMP_AR; HOMEOMORPHIC_EMPTY]);; let PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_CONVEX_COMPACT = prove (`!s:real^N->bool t:real^M->bool. 2 <= dimindex(:N) /\ s homeomorphic t /\ convex t /\ compact t ==> path_connected((:real^N) DIFF s)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM (MP_TAC o MATCH_MP CONNECTED_COMPLEMENT_HOMEOMORPHIC_CONVEX_COMPACT) THEN MATCH_MP_TAC EQ_IMP THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC PATH_CONNECTED_EQ_CONNECTED THEN REWRITE_TAC[GSYM closed] THEN ASM_MESON_TAC[HOMEOMORPHIC_COMPACTNESS; COMPACT_INTERVAL; COMPACT_IMP_CLOSED]);; (* ------------------------------------------------------------------------- *) (* In particular, apply all these to the special case of an arc. *) (* ------------------------------------------------------------------------- *) let RETRACTION_ARC = prove (`!p. arc p ==> ?f. f continuous_on (:real^N) /\ IMAGE f (:real^N) SUBSET path_image p /\ (!x. x IN path_image p ==> f x = x)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(:real^N)` o MATCH_MP (REWRITE_RULE[IMP_CONJ] ABSOLUTE_RETRACT_PATH_IMAGE_ARC)) THEN REWRITE_TAC[SUBSET_UNIV; retract_of; retraction]);; let PATH_CONNECTED_ARC_COMPLEMENT = prove (`!p. 2 <= dimindex(:N) /\ arc p ==> path_connected((:real^N) DIFF path_image p)`, REWRITE_TAC[arc; path] THEN REPEAT STRIP_TAC THEN SIMP_TAC[path_image] THEN MP_TAC(ISPECL [`path_image p:real^N->bool`; `interval[vec 0:real^1,vec 1]`] PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_CONVEX_COMPACT) THEN ASM_REWRITE_TAC[CONVEX_INTERVAL; COMPACT_INTERVAL; path_image] THEN DISCH_THEN MATCH_MP_TAC THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN EXISTS_TAC `p:real^1->real^N` THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]);; let CONNECTED_ARC_COMPLEMENT = prove (`!p. 2 <= dimindex(:N) /\ arc p ==> connected((:real^N) DIFF path_image p)`, SIMP_TAC[PATH_CONNECTED_ARC_COMPLEMENT; PATH_CONNECTED_IMP_CONNECTED]);; let INSIDE_ARC_EMPTY = prove (`!p:real^1->real^N. arc p ==> inside(path_image p) = {}`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `dimindex(:N) = 1` THENL [MATCH_MP_TAC INSIDE_CONVEX THEN ASM_SIMP_TAC[CONVEX_CONNECTED_1_GEN; CONNECTED_PATH_IMAGE; ARC_IMP_PATH]; MATCH_MP_TAC INSIDE_BOUNDED_COMPLEMENT_CONNECTED_EMPTY THEN ASM_SIMP_TAC[BOUNDED_PATH_IMAGE; ARC_IMP_PATH] THEN MATCH_MP_TAC CONNECTED_ARC_COMPLEMENT THEN ASM_REWRITE_TAC[ARITH_RULE `2 <= n <=> 1 <= n /\ ~(n = 1)`] THEN REWRITE_TAC[DIMINDEX_GE_1]]);; let INSIDE_SIMPLE_CURVE_IMP_CLOSED = prove (`!g x:real^N. simple_path g /\ x IN inside(path_image g) ==> pathfinish g = pathstart g`, MESON_TAC[ARC_SIMPLE_PATH; INSIDE_ARC_EMPTY; NOT_IN_EMPTY]);;