(* ========================================================================= *) (* Various convenient background stuff. *) (* *) (* (c) Copyright, John Harrison 1998-2008 *) (* ========================================================================= *) prioritize_real();; (* ------------------------------------------------------------------------- *) (* A couple of extra tactics used in some proofs below. *) (* ------------------------------------------------------------------------- *) let ASSERT_TAC tm = SUBGOAL_THEN tm STRIP_ASSUME_TAC;; let EQ_TRANS_TAC tm = MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC tm THEN CONJ_TAC;; (* ------------------------------------------------------------------------- *) (* Miscellaneous lemmas. *) (* ------------------------------------------------------------------------- *) let EXISTS_DIFF = prove (`(?s:A->bool. P(UNIV DIFF s)) <=> (?s. P s)`, MESON_TAC[prove(`UNIV DIFF (UNIV DIFF s) = s`,SET_TAC[])]);; let GE_REFL = prove (`!n:num. n >= n`, REWRITE_TAC[GE; LE_REFL]);; let FORALL_SUC = prove (`(!n. ~(n = 0) ==> P n) <=> (!n. P(SUC n))`, MESON_TAC[num_CASES; NOT_SUC]);; let SEQ_MONO_LEMMA = prove (`!d e. (!n. n >= m ==> d(n) < e(n)) /\ (!n. n >= m ==> e(n) <= e(m)) ==> !n:num. n >= m ==> d(n) < e(m)`, MESON_TAC[GE; REAL_LTE_TRANS]);; let REAL_HALF = prove (`(!e. &0 < e / &2 <=> &0 < e) /\ (!e. e / &2 + e / &2 = e) /\ (!e. &2 * (e / &2) = e)`, REAL_ARITH_TAC);; let UPPER_BOUND_FINITE_SET = prove (`!f:(A->num) s. FINITE(s) ==> ?a. !x. x IN s ==> f(x) <= a`, GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[LE_CASES; LE_REFL; LE_TRANS]);; let UPPER_BOUND_FINITE_SET_REAL = prove (`!f:(A->real) s. FINITE(s) ==> ?a. !x. x IN s ==> f(x) <= a`, GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[REAL_LE_TOTAL; REAL_LE_REFL; REAL_LE_TRANS]);; let LOWER_BOUND_FINITE_SET = prove (`!f:(A->num) s. FINITE(s) ==> ?a. !x. x IN s ==> a <= f(x)`, GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[LE_CASES; LE_REFL; LE_TRANS]);; let LOWER_BOUND_FINITE_SET_REAL = prove (`!f:(A->real) s. FINITE(s) ==> ?a. !x. x IN s ==> a <= f(x)`, GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[REAL_LE_TOTAL; REAL_LE_REFL; REAL_LE_TRANS]);; let REAL_CONVEX_BOUND2_LT = prove (`!x y a u v. x < a /\ y < b /\ &0 <= u /\ &0 <= v /\ u + v = &1 ==> u * x + v * y < u * a + v * b`, REPEAT GEN_TAC THEN ASM_CASES_TAC `u = &0` THENL [ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN REPEAT STRIP_TAC; REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LTE_ADD2 THEN ASM_SIMP_TAC[REAL_LE_LMUL; REAL_LT_IMP_LE]] THEN MATCH_MP_TAC REAL_LT_LMUL THEN ASM_REAL_ARITH_TAC);; let REAL_CONVEX_BOUND_LT = prove (`!x y a u v. x < a /\ y < a /\ &0 <= u /\ &0 <= v /\ (u + v = &1) ==> u * x + v * y < a`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `u * a + v * a:real` THEN CONJ_TAC THENL [ASM_SIMP_TAC[REAL_CONVEX_BOUND2_LT]; MATCH_MP_TAC REAL_EQ_IMP_LE THEN UNDISCH_TAC `u + v = &1` THEN CONV_TAC REAL_RING]);; let REAL_CONVEX_BOUND_LE = prove (`!x y a u v. x <= a /\ y <= a /\ &0 <= u /\ &0 <= v /\ (u + v = &1) ==> u * x + v * y <= a`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(u + v) * a` THEN CONJ_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[REAL_LE_REFL; REAL_MUL_LID]] THEN ASM_SIMP_TAC[REAL_ADD_RDISTRIB; REAL_LE_ADD2; REAL_LE_LMUL]);; let INFINITE_ENUMERATE_WEAK = prove (`!s:num->bool. INFINITE s ==> ?r:num->num. (!m n. m < n ==> r(m) < r(n)) /\ (!n. r n IN s)`, GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INFINITE_ENUMERATE) THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);; let APPROACHABLE_LT_LE = prove (`!P f. (?d. &0 < d /\ !x. f(x) < d ==> P x) = (?d. &0 < d /\ !x. f(x) <= d ==> P x)`, let lemma = prove (`&0 < d ==> x <= d / &2 ==> x < d`, SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN REAL_ARITH_TAC) in MESON_TAC[REAL_LT_IMP_LE; lemma; REAL_HALF]);; let REAL_LE_BETWEEN = prove (`!a b. a <= b <=> ?x. a <= x /\ x <= b`, MESON_TAC[REAL_LE_TRANS; REAL_LE_REFL]);; let REAL_LET_BETWEEN = prove (`!a b. a < b <=> (?x. a <= x /\ x < b)`, MESON_TAC[REAL_LE_REFL; REAL_LET_TRANS]);; let REAL_LTE_BETWEEN = prove (`!a b. a < b <=> (?x. a < x /\ x <= b)`, MESON_TAC[REAL_LE_REFL; REAL_LTE_TRANS]);; let REAL_LT_BETWEEN = prove (`!a b. a < b <=> ?x. a < x /\ x < b`, REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[REAL_LT_TRANS]] THEN DISCH_TAC THEN EXISTS_TAC `(a + b) / &2` THEN SIMP_TAC[REAL_LT_RDIV_EQ; REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);; let TRIANGLE_LEMMA = prove (`!x y z. &0 <= x /\ &0 <= y /\ &0 <= z /\ x pow 2 <= y pow 2 + z pow 2 ==> x <= y + z`, REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[REAL_NOT_LE] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `(y + z) pow 2` THEN ASM_SIMP_TAC[REAL_POW_LT2; REAL_LE_ADD; ARITH_EQ] THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_POW_2; REAL_ARITH `x * x + y * y <= (x + y) * (x + y) <=> &0 <= x * y`]);; let LAMBDA_SKOLEM = prove (`(!i. 1 <= i /\ i <= dimindex(:N) ==> ?x. P i x) = (?x:A^N. !i. 1 <= i /\ i <= dimindex(:N) ==> P i (x$i))`, REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_TAC `x:num->A`) THEN EXISTS_TAC `(lambda i. x i):A^N` THEN ASM_SIMP_TAC[LAMBDA_BETA]; DISCH_THEN(X_CHOOSE_TAC `x:A^N`) THEN EXISTS_TAC `\i. (x:A^N)$i` THEN ASM_REWRITE_TAC[]]);; let LAMBDA_PAIR = prove (`(\(x,y). P x y) = (\p. P (FST p) (SND p))`, REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[]);; let EPSILON_DELTA_MINIMAL = prove (`!P:real->A->bool Q. FINITE {x | Q x} /\ (!d e x. Q x /\ &0 < e /\ e < d ==> P d x ==> P e x) /\ (!x. Q x ==> ?d. &0 < d /\ P d x) ==> ?d. &0 < d /\ !x. Q x ==> P d x`, REWRITE_TAC[IMP_IMP] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `{x:A | Q x} = {}` THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN REWRITE_TAC[NOT_IN_EMPTY; IN_ELIM_THM] THEN DISCH_TAC THEN EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[REAL_LT_01]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_EXISTS_THM]) THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:A->real` THEN DISCH_TAC THEN EXISTS_TAC `inf(IMAGE d {x:A | Q x})` THEN ASM_SIMP_TAC[REAL_LT_INF_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN SUBGOAL_THEN `&0 < inf(IMAGE d {x:A | Q x}) /\ inf(IMAGE d {x | Q x}) <= d a` MP_TAC THENL [ASM_SIMP_TAC[REAL_LT_INF_FINITE; REAL_INF_LE_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[EXISTS_IN_IMAGE; FORALL_IN_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[REAL_LE_REFL]; REWRITE_TAC[REAL_LE_LT] THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `(d:A->real) a` THEN ASM_SIMP_TAC[]]]);; (* ------------------------------------------------------------------------- *) (* A generic notion of "hull" (convex, affine, conic hull and closure). *) (* ------------------------------------------------------------------------- *) parse_as_infix("hull",(21,"left"));; let hull = new_definition `P hull s = INTERS {t | P t /\ s SUBSET t}`;; let HULL_P = prove (`!P s. P s ==> (P hull s = s)`, REWRITE_TAC[hull; EXTENSION; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[SUBSET]);; let P_HULL = prove (`!P s. (!f. (!s. s IN f ==> P s) ==> P(INTERS f)) ==> P(P hull s)`, REWRITE_TAC[hull] THEN SIMP_TAC[IN_ELIM_THM]);; let HULL_EQ = prove (`!P s. (!f. (!s. s IN f ==> P s) ==> P(INTERS f)) ==> ((P hull s = s) <=> P s)`, MESON_TAC[P_HULL; HULL_P]);; let HULL_HULL = prove (`!P s. P hull (P hull s) = P hull s`, REWRITE_TAC[hull; EXTENSION; IN_INTERS; IN_ELIM_THM; SUBSET] THEN MESON_TAC[]);; let HULL_SUBSET = prove (`!P s. s SUBSET (P hull s)`, REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);; let HULL_MONO = prove (`!P s t. s SUBSET t ==> (P hull s) SUBSET (P hull t)`, REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);; let HULL_ANTIMONO = prove (`!P Q s. P SUBSET Q ==> (Q hull s) SUBSET (P hull s)`, REWRITE_TAC[SUBSET; hull; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[IN]);; let HULL_MINIMAL = prove (`!P s t. s SUBSET t /\ P t ==> (P hull s) SUBSET t`, REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);; let SUBSET_HULL = prove (`!P s t. P t ==> ((P hull s) SUBSET t <=> s SUBSET t)`, REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);; let HULL_UNIQUE = prove (`!P s t. s SUBSET t /\ P t /\ (!t'. s SUBSET t' /\ P t' ==> t SUBSET t') ==> (P hull s = t)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET_HULL; SUBSET]);; let HULL_UNION_SUBSET = prove (`!P s t. (P hull s) UNION (P hull t) SUBSET (P hull (s UNION t))`, SIMP_TAC[UNION_SUBSET; HULL_MONO; SUBSET_UNION]);; let HULL_UNION = prove (`!P s t. P hull (s UNION t) = P hull (P hull s UNION P hull t)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[hull] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; UNION_SUBSET] THEN MESON_TAC[SUBSET_HULL]);; let HULL_UNION_LEFT = prove (`!P s t:A->bool. P hull (s UNION t) = P hull (P hull s UNION t)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[hull] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; UNION_SUBSET] THEN MESON_TAC[SUBSET_HULL]);; let HULL_UNION_RIGHT = prove (`!P s t:A->bool. P hull (s UNION t) = P hull (s UNION P hull t)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[hull] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; UNION_SUBSET] THEN MESON_TAC[SUBSET_HULL]);; let HULL_REDUNDANT_EQ = prove (`!P a s. a IN (P hull s) <=> (P hull (a INSERT s) = P hull s)`, REWRITE_TAC[hull] THEN SET_TAC[]);; let HULL_REDUNDANT = prove (`!P a s. a IN (P hull s) ==> (P hull (a INSERT s) = P hull s)`, REWRITE_TAC[HULL_REDUNDANT_EQ]);; let HULL_INDUCT = prove (`!P p s. (!x:A. x IN s ==> p x) /\ P {x | p x} ==> !x. x IN P hull s ==> p x`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`P:(A->bool)->bool`; `s:A->bool`; `{x:A | p x}`] HULL_MINIMAL) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM]);; let HULL_INC = prove (`!P s x. x IN s ==> x IN P hull s`, MESON_TAC[REWRITE_RULE[SUBSET] HULL_SUBSET]);; let HULL_IMAGE_SUBSET = prove (`!P f s. P(P hull s) /\ (!s. P s ==> P(IMAGE f s)) ==> P hull (IMAGE f s) SUBSET (IMAGE f (P hull s))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HULL_MINIMAL THEN ASM_SIMP_TAC[IMAGE_SUBSET; HULL_SUBSET]);; let HULL_IMAGE_GALOIS = prove (`!P f g s. (!s. P(P hull s)) /\ (!s. P s ==> P(IMAGE f s)) /\ (!s. P s ==> P(IMAGE g s)) /\ (!s t. s SUBSET IMAGE g t <=> IMAGE f s SUBSET t) ==> P hull (IMAGE f s) = IMAGE f (P hull s)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[HULL_IMAGE_SUBSET] THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN MATCH_MP_TAC HULL_MINIMAL THEN ASM_SIMP_TAC[HULL_SUBSET]);; let HULL_IMAGE = prove (`!P f s. (!s. P(P hull s)) /\ (!s. P(IMAGE f s) <=> P s) /\ (!x y:A. f x = f y ==> x = y) /\ (!y. ?x. f x = y) ==> P hull (IMAGE f s) = IMAGE f (P hull s)`, REPEAT GEN_TAC THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[BIJECTIVE_LEFT_RIGHT_INVERSE] THEN DISCH_THEN(X_CHOOSE_THEN `g:A->A` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC HULL_IMAGE_GALOIS THEN EXISTS_TAC `g:A->A` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN X_GEN_TAC `s:A->bool` THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let IS_HULL = prove (`!P s. (!f. (!s. s IN f ==> P s) ==> P(INTERS f)) ==> (P s <=> ?t. s = P hull t)`, MESON_TAC[HULL_P; P_HULL]);; let HULLS_EQ = prove (`!P s t. (!f. (!s. s IN f ==> P s) ==> P (INTERS f)) /\ s SUBSET P hull t /\ t SUBSET P hull s ==> P hull s = P hull t`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THEN MATCH_MP_TAC HULL_MINIMAL THEN ASM_SIMP_TAC[P_HULL]);; let HULL_P_AND_Q = prove (`!P Q. (!f. (!s. s IN f ==> P s) ==> P(INTERS f)) /\ (!f. (!s. s IN f ==> Q s) ==> Q(INTERS f)) /\ (!s. Q s ==> Q(P hull s)) ==> (\x. P x /\ Q x) hull s = P hull (Q hull s)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HULL_UNIQUE THEN ASM_SIMP_TAC[HULL_INC; SUBSET_HULL] THEN ASM_MESON_TAC[P_HULL; HULL_SUBSET; SUBSET_TRANS]);; (* ------------------------------------------------------------------------- *) (* More variants of the Archimedian property and useful consequences. *) (* ------------------------------------------------------------------------- *) let REAL_ARCH_INV = prove (`!e. &0 < e <=> ?n. ~(n = 0) /\ &0 < inv(&n) /\ inv(&n) < e`, GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[REAL_LT_TRANS]] THEN DISCH_TAC THEN MP_TAC(SPEC `inv(e)` REAL_ARCH_LT) THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[REAL_LT_INV2; REAL_INV_INV; REAL_LT_INV_EQ; REAL_LT_TRANS; REAL_LT_ANTISYM]);; let REAL_POW_LBOUND = prove (`!x n. &0 <= x ==> &1 + &n * x <= (&1 + x) pow n`, GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_ADD_RID; REAL_LE_REFL] THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(&1 + x) * (&1 + &n * x)` THEN ASM_SIMP_TAC[REAL_LE_LMUL; REAL_ARITH `&0 <= x ==> &0 <= &1 + x`] THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_POS; REAL_ARITH `&1 + (n + &1) * x <= (&1 + x) * (&1 + n * x) <=> &0 <= n * x * x`]);; let REAL_ARCH_POW = prove (`!x y. &1 < x ==> ?n. y < x pow n`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `x - &1` REAL_ARCH) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN DISCH_THEN(MP_TAC o SPEC `y:real`) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&1 + &n * (x - &1)` THEN ASM_SIMP_TAC[REAL_ARITH `x < y ==> x < &1 + y`] THEN ASM_MESON_TAC[REAL_POW_LBOUND; REAL_SUB_ADD2; REAL_ARITH `&1 < x ==> &0 <= x - &1`]);; let REAL_ARCH_POW2 = prove (`!x. ?n. x < &2 pow n`, SIMP_TAC[REAL_ARCH_POW; REAL_OF_NUM_LT; ARITH]);; let REAL_ARCH_POW_INV = prove (`!x y. &0 < y /\ x < &1 ==> ?n. x pow n < y`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `&0 < x` THENL [ALL_TAC; ASM_MESON_TAC[REAL_POW_1; REAL_LET_TRANS; REAL_NOT_LT]] THEN SUBGOAL_THEN `inv(&1) < inv(x)` MP_TAC THENL [ASM_SIMP_TAC[REAL_LT_INV2]; REWRITE_TAC[REAL_INV_1]] THEN DISCH_THEN(MP_TAC o SPEC `inv(y)` o MATCH_MP REAL_ARCH_POW) THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_TAC THEN GEN_REWRITE_TAC BINOP_CONV [GSYM REAL_INV_INV] THEN ASM_SIMP_TAC[GSYM REAL_POW_INV; REAL_LT_INV; REAL_LT_INV2]);; let FORALL_POS_MONO = prove (`!P. (!d e. d < e /\ P d ==> P e) /\ (!n. ~(n = 0) ==> P(inv(&n))) ==> !e. &0 < e ==> P e`, MESON_TAC[REAL_ARCH_INV; REAL_LT_TRANS]);; let FORALL_POS_MONO_1 = prove (`!P. (!d e. d < e /\ P d ==> P e) /\ (!n. P(inv(&n + &1))) ==> !e. &0 < e ==> P e`, REWRITE_TAC[REAL_OF_NUM_SUC; GSYM FORALL_SUC; FORALL_POS_MONO]);; let REAL_ARCH_RDIV_EQ_0 = prove (`!x c. &0 <= x /\ &0 <= c /\ (!m. 0 < m ==> &m * x <= c) ==> x = &0`, SIMP_TAC [GSYM REAL_LE_ANTISYM; GSYM REAL_NOT_LT] THEN REPEAT STRIP_TAC THEN POP_ASSUM (STRIP_ASSUME_TAC o SPEC `c:real` o MATCH_MP REAL_ARCH) THEN ASM_CASES_TAC `n=0` THENL [POP_ASSUM SUBST_ALL_TAC THEN RULE_ASSUM_TAC (REWRITE_RULE [REAL_MUL_LZERO]) THEN ASM_MESON_TAC [REAL_LET_ANTISYM]; ASM_MESON_TAC [REAL_LET_ANTISYM; REAL_MUL_SYM; LT_NZ]]);; (* ------------------------------------------------------------------------- *) (* Relate max and min to sup and inf. *) (* ------------------------------------------------------------------------- *) let REAL_MAX_SUP = prove (`!x y. max x y = sup {x,y}`, SIMP_TAC[GSYM REAL_LE_ANTISYM; REAL_SUP_LE_FINITE; REAL_LE_SUP_FINITE; FINITE_RULES; NOT_INSERT_EMPTY; REAL_MAX_LE; REAL_LE_MAX] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[REAL_LE_TOTAL]);; let REAL_MIN_INF = prove (`!x y. min x y = inf {x,y}`, SIMP_TAC[GSYM REAL_LE_ANTISYM; REAL_INF_LE_FINITE; REAL_LE_INF_FINITE; FINITE_RULES; NOT_INSERT_EMPTY; REAL_MIN_LE; REAL_LE_MIN] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[REAL_LE_TOTAL]);; (* ------------------------------------------------------------------------- *) (* Define square root here to decouple it from the existing analysis theory. *) (* We totalize by making sqrt(-x) = -sqrt(x), which looks rather unnatural *) (* but allows many convenient properties to be used without sideconditions. *) (* ------------------------------------------------------------------------- *) let sqrt = new_definition `sqrt(x) = @y. real_sgn y = real_sgn x /\ y pow 2 = abs x`;; let SQRT_UNIQUE = prove (`!x y. &0 <= y /\ y pow 2 = x ==> sqrt(x) = y`, REPEAT STRIP_TAC THEN REWRITE_TAC[sqrt] THEN MATCH_MP_TAC SELECT_UNIQUE THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[REAL_SGN_POW_2; REAL_ABS_POW] THEN X_GEN_TAC `z:real` THEN ASM_REWRITE_TAC[real_abs] THEN REWRITE_TAC[REAL_RING `x pow 2 = y pow 2 <=> x:real = y \/ x = --y`] THEN REWRITE_TAC[real_sgn] THEN ASM_REAL_ARITH_TAC);; let POW_2_SQRT = prove (`!x. &0 <= x ==> sqrt(x pow 2) = x`, MESON_TAC[SQRT_UNIQUE]);; let SQRT_0 = prove (`sqrt(&0) = &0`, MESON_TAC[SQRT_UNIQUE; REAL_POW_2; REAL_MUL_LZERO; REAL_POS]);; let SQRT_1 = prove (`sqrt(&1) = &1`, MESON_TAC[SQRT_UNIQUE; REAL_POW_2; REAL_MUL_LID; REAL_POS]);; let POW_2_SQRT_ABS = prove (`!x. sqrt(x pow 2) = abs(x)`, GEN_TAC THEN MATCH_MP_TAC SQRT_UNIQUE THEN REWRITE_TAC[REAL_ABS_POS; REAL_POW_2; GSYM REAL_ABS_MUL] THEN REWRITE_TAC[real_abs; REAL_LE_SQUARE]);; (* ------------------------------------------------------------------------- *) (* Geometric progression. *) (* ------------------------------------------------------------------------- *) let SUM_GP_BASIC = prove (`!x n. (&1 - x) * sum(0..n) (\i. x pow i) = &1 - x pow (SUC n)`, GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[real_pow; REAL_MUL_RID; LE_0] THEN ASM_REWRITE_TAC[REAL_ADD_LDISTRIB; real_pow] THEN REAL_ARITH_TAC);; let SUM_GP_MULTIPLIED = prove (`!x m n. m <= n ==> ((&1 - x) * sum(m..n) (\i. x pow i) = x pow m - x pow (SUC n))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC [SUM_OFFSET_0; REAL_POW_ADD; REAL_MUL_ASSOC; SUM_GP_BASIC; SUM_RMUL] THEN REWRITE_TAC[REAL_SUB_RDISTRIB; GSYM REAL_POW_ADD; REAL_MUL_LID] THEN ASM_SIMP_TAC[ARITH_RULE `m <= n ==> (SUC(n - m) + m = SUC n)`]);; let SUM_GP = prove (`!x m n. sum(m..n) (\i. x pow i) = if n < m then &0 else if x = &1 then &((n + 1) - m) else (x pow m - x pow (SUC n)) / (&1 - x)`, REPEAT GEN_TAC THEN DISJ_CASES_TAC(ARITH_RULE `n < m \/ ~(n < m) /\ m <= n:num`) THEN ASM_SIMP_TAC[SUM_TRIV_NUMSEG] THEN COND_CASES_TAC THENL [ASM_REWRITE_TAC[REAL_POW_ONE; SUM_CONST_NUMSEG; REAL_MUL_RID]; ALL_TAC] THEN MATCH_MP_TAC REAL_EQ_LCANCEL_IMP THEN EXISTS_TAC `&1 - x` THEN ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_SUB_0; SUM_GP_MULTIPLIED]);; let SUM_GP_OFFSET = prove (`!x m n. sum(m..m+n) (\i. x pow i) = if x = &1 then &n + &1 else x pow m * (&1 - x pow (SUC n)) / (&1 - x)`, REPEAT GEN_TAC THEN REWRITE_TAC[SUM_GP; ARITH_RULE `~(m + n < m:num)`] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [REWRITE_TAC[REAL_OF_NUM_ADD] THEN AP_TERM_TAC THEN ARITH_TAC; REWRITE_TAC[real_div; real_pow; REAL_POW_ADD] THEN REAL_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Segment of natural numbers starting at a specific number. *) (* ------------------------------------------------------------------------- *) let from = new_definition `from n = {m:num | n <= m}`;; let FROM_0 = prove (`from 0 = (:num)`, REWRITE_TAC[from; LE_0] THEN SET_TAC[]);; let IN_FROM = prove (`!m n. m IN from n <=> n <= m`, REWRITE_TAC[from; IN_ELIM_THM]);; let FROM_INTER_NUMSEG_GEN = prove (`!k m n. (from k) INTER (m..n) = (if m < k then k..n else m..n)`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[from; IN_ELIM_THM; IN_INTER; IN_NUMSEG; EXTENSION] THEN ARITH_TAC);; let FROM_INTER_NUMSEG_MAX = prove (`!m n p. from p INTER (m..n) = (MAX p m..n)`, REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG; IN_FROM] THEN ARITH_TAC);; let FROM_INTER_NUMSEG = prove (`!k n. (from k) INTER (0..n) = k..n`, REWRITE_TAC[from; IN_ELIM_THM; IN_INTER; IN_NUMSEG; EXTENSION] THEN ARITH_TAC);; let INFINITE_FROM = prove (`!n. INFINITE(from n)`, GEN_TAC THEN SUBGOAL_THEN `from n = (:num) DIFF {i | i < n}` (fun th -> SIMP_TAC[th; INFINITE_DIFF_FINITE; FINITE_NUMSEG_LT; num_INFINITE]) THEN REWRITE_TAC[EXTENSION; from; IN_DIFF; IN_UNIV; IN_ELIM_THM] THEN ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Make a Horner-style evaluation of sum(m..n) (\k. a(k) * x pow k). *) (* ------------------------------------------------------------------------- *) let HORNER_SUM_CONV = let horner_0,horner_s = (CONJ_PAIR o prove) (`(sum(0..0) (\i. c(i) * x pow i) = c 0) /\ (sum(0..SUC n) (\i. c(i) * x pow i) = c(0) + x * sum(0..n) (\i. c(i+1) * x pow i))`, REWRITE_TAC[CONJUNCT1 SUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[GSYM SUM_LMUL] THEN ONCE_REWRITE_TAC[REAL_ARITH `x * c * y:real = c * x * y`] THEN REWRITE_TAC[GSYM(CONJUNCT2 real_pow); ADD1] THEN REWRITE_TAC[GSYM(SPEC `1` SUM_OFFSET)] THEN SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; real_pow; REAL_MUL_RID]) in let conv_0 = GEN_REWRITE_CONV I [horner_0] THENC NUM_REDUCE_CONV and conv_s = LAND_CONV(RAND_CONV(num_CONV)) THENC GEN_REWRITE_CONV I [horner_s] THENC GEN_REWRITE_CONV ONCE_DEPTH_CONV [LEFT_ADD_DISTRIB] THENC GEN_REWRITE_CONV TOP_DEPTH_CONV [GSYM ADD_ASSOC] THENC NUM_REDUCE_CONV in let rec conv tm = try (conv_0 THENC REAL_RAT_REDUCE_CONV) tm with Failure _ -> (conv_s THENC RAND_CONV(RAND_CONV conv) THENC REAL_RAT_REDUCE_CONV) tm in conv;;