(* ========================================================================= *) (* Boolean theory including (intuitionistic) defs of logical connectives. *) (* *) (* John Harrison, University of Cambridge Computer Laboratory *) (* *) (* (c) Copyright, University of Cambridge 1998 *) (* (c) Copyright, John Harrison 1998-2006 *) (* ========================================================================= *) (* ------------------------------------------------------------------------- *) (* Set up parse status of basic and derived logical constants. *) (* ------------------------------------------------------------------------- *) parse_as_prefix "~";; map parse_as_binder ["\\"; "!"; "?"; "?!"];; map parse_as_infix ["==>",(4,"right"); "\\/",(6,"right"); "/\\",(8,"right")];; (* ------------------------------------------------------------------------- *) (* Set up more orthodox notation for equations and equivalence. *) (* ------------------------------------------------------------------------- *) parse_as_infix("<=>",(2,"right"));; override_interface ("<=>",`(=):bool->bool->bool`);; parse_as_infix("=",(12,"right"));; (* ------------------------------------------------------------------------- *) (* Special syntax for Boolean equations (IFF). *) (* ------------------------------------------------------------------------- *) let is_iff tm = match tm with Comb(Comb(Const("=",Tyapp("fun",[Tyapp("bool",[]);_])),l),r) -> true | _ -> false;; let dest_iff tm = match tm with Comb(Comb(Const("=",Tyapp("fun",[Tyapp("bool",[]);_])),l),r) -> (l,r) | _ -> failwith "dest_iff";; let mk_iff = let eq_tm = `(<=>)` in fun (l,r) -> mk_comb(mk_comb(eq_tm,l),r);; (* ------------------------------------------------------------------------- *) (* Rule allowing easy instantiation of polymorphic proformas. *) (* ------------------------------------------------------------------------- *) let PINST tyin tmin = let iterm_fn = INST (map (I F_F (inst tyin)) tmin) and itype_fn = INST_TYPE tyin in fun th -> try iterm_fn (itype_fn th) with Failure _ -> failwith "PINST";; (* ------------------------------------------------------------------------- *) (* Useful derived deductive rule. *) (* ------------------------------------------------------------------------- *) let PROVE_HYP ath bth = if exists (aconv (concl ath)) (hyp bth) then EQ_MP (DEDUCT_ANTISYM_RULE ath bth) ath else bth;; (* ------------------------------------------------------------------------- *) (* Rules for T *) (* ------------------------------------------------------------------------- *) let T_DEF = new_basic_definition `T = ((\p:bool. p) = (\p:bool. p))`;; let TRUTH = EQ_MP (SYM T_DEF) (REFL `\p:bool. p`);; let EQT_ELIM th = try EQ_MP (SYM th) TRUTH with Failure _ -> failwith "EQT_ELIM";; let EQT_INTRO = let t = `t:bool` and T = `T` in let pth = let th1 = DEDUCT_ANTISYM_RULE (ASSUME t) TRUTH in let th2 = EQT_ELIM(ASSUME(concl th1)) in DEDUCT_ANTISYM_RULE th2 th1 in fun th -> EQ_MP (INST[concl th,t] pth) th;; (* ------------------------------------------------------------------------- *) (* Rules for /\ *) (* ------------------------------------------------------------------------- *) let AND_DEF = new_basic_definition `(/\) = \p q. (\f:bool->bool->bool. f p q) = (\f. f T T)`;; let mk_conj = mk_binary "/\\";; let list_mk_conj = end_itlist (curry mk_conj);; let CONJ = let f = `f:bool->bool->bool` and p = `p:bool` and q = `q:bool` in let pth = let pth = ASSUME p and qth = ASSUME q in let th1 = MK_COMB(AP_TERM f (EQT_INTRO pth),EQT_INTRO qth) in let th2 = ABS f th1 in let th3 = BETA_RULE (AP_THM (AP_THM AND_DEF p) q) in EQ_MP (SYM th3) th2 in fun th1 th2 -> substitute_proof ( let th = INST [concl th1,p; concl th2,q] pth in PROVE_HYP th2 (PROVE_HYP th1 th)) (proof_CONJ (proof_of th1) (proof_of th2));; let CONJUNCT1 = let P = `P:bool` and Q = `Q:bool` in let pth = let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM AND_DEF `P:bool`) in let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in let th3 = EQ_MP th2 (ASSUME `P /\ Q`) in EQT_ELIM(BETA_RULE (AP_THM th3 `\(p:bool) (q:bool). p`)) in fun th -> substitute_proof ( try let l,r = dest_conj(concl th) in PROVE_HYP th (INST [l,P; r,Q] pth) with Failure _ -> failwith "CONJUNCT1") (proof_CONJUNCT1 (proof_of th));; let CONJUNCT2 = let P = `P:bool` and Q = `Q:bool` in let pth = let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM AND_DEF `P:bool`) in let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in let th3 = EQ_MP th2 (ASSUME `P /\ Q`) in EQT_ELIM(BETA_RULE (AP_THM th3 `\(p:bool) (q:bool). q`)) in fun th -> substitute_proof ( try let l,r = dest_conj(concl th) in PROVE_HYP th (INST [l,P; r,Q] pth) with Failure _ -> failwith "CONJUNCT2") (proof_CONJUNCT2 (proof_of th));; let CONJ_PAIR th = try CONJUNCT1 th,CONJUNCT2 th with Failure _ -> failwith "CONJ_PAIR: Not a conjunction";; let CONJUNCTS = striplist CONJ_PAIR;; (* ------------------------------------------------------------------------- *) (* Rules for ==> *) (* ------------------------------------------------------------------------- *) let IMP_DEF = new_basic_definition `(==>) = \p q. p /\ q <=> p`;; let mk_imp = mk_binary "==>";; let MP = let p = `p:bool` and q = `q:bool` in let pth = let th1 = BETA_RULE (AP_THM (AP_THM IMP_DEF p) q) in let th2 = EQ_MP th1 (ASSUME `p ==> q`) in CONJUNCT2 (EQ_MP (SYM th2) (ASSUME `p:bool`)) in fun ith th -> let ant,con = dest_imp (concl ith) in if aconv ant (concl th) then PROVE_HYP th (PROVE_HYP ith (INST [ant,p; con,q] pth)) else failwith "MP: theorems do not agree";; let DISCH = let p = `p:bool` and q = `q:bool` in let pth = SYM(BETA_RULE (AP_THM (AP_THM IMP_DEF p) q)) in fun a th -> substitute_proof ( let th1 = CONJ (ASSUME a) th in let th2 = CONJUNCT1 (ASSUME (concl th1)) in let th3 = DEDUCT_ANTISYM_RULE th1 th2 in let th4 = INST [a,p; concl th,q] pth in EQ_MP th4 th3) (proof_DISCH (proof_of th) a);; let rec DISCH_ALL th = try DISCH_ALL (DISCH (hd (hyp th)) th) with Failure _ -> th;; let UNDISCH th = try MP th (ASSUME(rand(rator(concl th)))) with Failure _ -> failwith "UNDISCH";; let rec UNDISCH_ALL th = if is_imp (concl th) then UNDISCH_ALL (UNDISCH th) else th;; let IMP_ANTISYM_RULE th1 th2 = substitute_proof (DEDUCT_ANTISYM_RULE (UNDISCH th2) (UNDISCH th1)) (proof_IMPAS (proof_of th2) (proof_of th1));; let ADD_ASSUM tm th = MP (DISCH tm th) (ASSUME tm);; let EQ_IMP_RULE th = try let l,r = dest_eq(concl th) in DISCH l (EQ_MP th (ASSUME l)), DISCH r (EQ_MP(SYM th)(ASSUME r)) with Failure _ -> failwith "EQ_IMP_RULE";; let IMP_TRANS th1 th2 = try let ant = rand(rator(concl th1)) in DISCH ant (MP th2 (MP th1 (ASSUME ant))) with Failure _ -> failwith "IMP_TRANS";; (* ------------------------------------------------------------------------- *) (* Rules for ! *) (* ------------------------------------------------------------------------- *) let FORALL_DEF = new_basic_definition `(!) = \P:A->bool. P = \x. T`;; let mk_forall = mk_binder "!";; let list_mk_forall(vs,bod) = itlist (curry mk_forall) vs bod;; let SPEC = let P = `P:A->bool` and x = `x:A` in let pth = let th1 = EQ_MP(AP_THM FORALL_DEF `P:A->bool`) (ASSUME `(!)(P:A->bool)`) in let th2 = AP_THM (CONV_RULE BETA_CONV th1) `x:A` in let th3 = CONV_RULE (RAND_CONV BETA_CONV) th2 in DISCH_ALL (EQT_ELIM th3) in fun tm th -> (substitute_proof (try let abs = rand(concl th) in CONV_RULE BETA_CONV (MP (PINST [snd(dest_var(bndvar abs)),aty] [abs,P; tm,x] pth) th) with Failure _ -> failwith "SPEC") (proof_SPEC tm (proof_of th)));; let SPECL tms th = try rev_itlist SPEC tms th with Failure _ -> failwith "SPECL";; let SPEC_VAR th = let bv = variant (thm_frees th) (bndvar(rand(concl th))) in bv,SPEC bv th;; let rec SPEC_ALL th = if is_forall(concl th) then SPEC_ALL(snd(SPEC_VAR th)) else th;; let ISPEC t th = let x,_ = try dest_forall(concl th) with Failure _ -> failwith "ISPEC: input theorem not universally quantified" in let tyins = try type_match (snd(dest_var x)) (type_of t) [] with Failure _ -> failwith "ISPEC can't type-instantiate input theorem" in try SPEC t (INST_TYPE tyins th) with Failure _ -> failwith "ISPEC: type variable(s) free in assumptions";; let ISPECL tms th = try if tms = [] then th else let avs = fst (chop_list (length tms) (fst(strip_forall(concl th)))) in let tyins = itlist2 type_match (map (snd o dest_var) avs) (map type_of tms) [] in SPECL tms (INST_TYPE tyins th) with Failure _ -> failwith "ISPECL";; let GEN = let P = `P:A->bool` and true_tm = `T` in let pth = let th1 = ASSUME `P = \x:A. T` in let th2 = AP_THM FORALL_DEF `P:A->bool` in DISCH_ALL (EQ_MP (SYM(CONV_RULE(RAND_CONV BETA_CONV) th2)) th1) in fun x th -> substitute_proof ( try let th1 = ABS x (EQT_INTRO th) in let tm1 = mk_abs(mk_var("x",type_of x),true_tm) in let th2 = TRANS th1 (REFL tm1) in let th3 = PINST [snd(dest_var x),aty] [rand(rator(concl th1)),P] pth in MP th3 th2 with Failure _ -> failwith "GEN") (proof_GEN (proof_of th) x);; let GENL = itlist GEN;; let GEN_ALL th = let asl,c = dest_thm th in let vars = subtract (frees c) (freesl asl) in GENL vars th;; (* ------------------------------------------------------------------------- *) (* Rules for ? *) (* ------------------------------------------------------------------------- *) let EXISTS_DEF = new_basic_definition `(?) = \P:A->bool. !q. (!x. P x ==> q) ==> q`;; let mk_exists = mk_binder "?";; let list_mk_exists(vs,bod) = itlist (curry mk_exists) vs bod;; let EXISTS = let P = `P:A->bool` and x = `x:A` and PX = `(P:A->bool) x` in let pth = let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM EXISTS_DEF P) in let th2 = SPEC `x:A` (ASSUME `!x:A. P x ==> Q`) in let th3 = DISCH `!x:A. P x ==> Q` (MP th2 (ASSUME `(P:A->bool) x`)) in DISCH_ALL (EQ_MP (SYM th1) (GEN `Q:bool` th3)) in fun (etm,stm) th -> substitute_proof ( try let qf,abs = dest_comb etm in let bth = BETA_CONV(mk_comb(abs,stm)) in let cth = PINST [type_of stm,aty] [abs,P; stm,x] pth in MP cth (EQ_MP (SYM bth) th) with Failure _ -> failwith "EXISTS") (proof_EXISTS etm stm (proof_of th));; let SIMPLE_EXISTS v th = EXISTS (mk_exists(v,concl th),v) th;; let CHOOSE = let P = `P:A->bool` and Q = `Q:bool` in let pth = let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM EXISTS_DEF P) in let th2 = SPEC `Q:bool` (UNDISCH(fst(EQ_IMP_RULE th1))) in DISCH_ALL (DISCH `(?) (P:A->bool)` (UNDISCH th2)) in fun (v,th1) th2 -> substitute_proof ( try let abs = rand(concl th1) in let bv,bod = dest_abs abs in let cmb = mk_comb(abs,v) in let pat = vsubst[v,bv] bod in let th3 = CONV_RULE BETA_CONV (ASSUME cmb) in let th4 = GEN v (DISCH cmb (MP (DISCH pat th2) th3)) in let th5 = PINST [snd(dest_var v),aty] [abs,P; concl th2,Q] pth in MP (MP th5 th4) th1 with Failure _ -> failwith "CHOOSE") (proof_CHOOSE v (proof_of th1) (proof_of th2));; let SIMPLE_CHOOSE v th = CHOOSE(v,ASSUME (mk_exists(v,hd(hyp th)))) th;; (* ------------------------------------------------------------------------- *) (* Rules for \/ *) (* ------------------------------------------------------------------------- *) let OR_DEF = new_basic_definition `(\/) = \p q. !r. (p ==> r) ==> (q ==> r) ==> r`;; let mk_disj = mk_binary "\\/";; let list_mk_disj = end_itlist (curry mk_disj);; let DISJ1 = let P = `P:bool` and Q = `Q:bool` in let pth = let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM OR_DEF `P:bool`) in let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in let th3 = MP (ASSUME `P ==> t`) (ASSUME `P:bool`) in let th4 = GEN `t:bool` (DISCH `P ==> t` (DISCH `Q ==> t` th3)) in DISCH_ALL (EQ_MP (SYM th2) th4) in fun th tm -> substitute_proof ( try MP (INST [concl th,P; tm,Q] pth) th with Failure _ -> failwith "DISJ1") (proof_DISJ1 (proof_of th) tm);; let DISJ2 = let P = `P:bool` and Q = `Q:bool` in let pth = let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM OR_DEF `P:bool`) in let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in let th3 = MP (ASSUME `Q ==> t`) (ASSUME `Q:bool`) in let th4 = GEN `t:bool` (DISCH `P ==> t` (DISCH `Q ==> t` th3)) in DISCH_ALL (EQ_MP (SYM th2) th4) in fun tm th -> substitute_proof ( try MP (INST [tm,P; concl th,Q] pth) th with Failure _ -> failwith "DISJ2") (proof_DISJ2 (proof_of th) tm);; let DISJ_CASES = let P = `P:bool` and Q = `Q:bool` and R = `R:bool` in let pth = let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM OR_DEF `P:bool`) in let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in let th3 = SPEC `R:bool` (EQ_MP th2 (ASSUME `P \/ Q`)) in UNDISCH (UNDISCH th3) in fun th0 th1 th2 -> substitute_proof ( try let c1 = concl th1 and c2 = concl th2 in if not (aconv c1 c2) then failwith "DISJ_CASES" else let l,r = dest_disj (concl th0) in let th = INST [l,P; r,Q; c1,R] pth in PROVE_HYP (DISCH r th2) (PROVE_HYP (DISCH l th1) (PROVE_HYP th0 th)) with Failure _ -> failwith "DISJ_CASES") (proof_DISJCASES (proof_of th0) (proof_of th1) (proof_of th2));; let SIMPLE_DISJ_CASES th1 th2 = DISJ_CASES (ASSUME(mk_disj(hd(hyp th1),hd(hyp th2)))) th1 th2;; (* ------------------------------------------------------------------------- *) (* Rules for negation and falsity. *) (* ------------------------------------------------------------------------- *) let F_DEF = new_basic_definition `F = !p:bool. p`;; let NOT_DEF = new_basic_definition `(~) = \p. p ==> F`;; let mk_neg = let neg_tm = `(~)` in fun tm -> try mk_comb(neg_tm,tm) with Failure _ -> failwith "mk_neg";; let NOT_ELIM = let P = `P:bool` in let pth = CONV_RULE(RAND_CONV BETA_CONV) (AP_THM NOT_DEF P) in fun th -> substitute_proof ( try EQ_MP (INST [rand(concl th),P] pth) th with Failure _ -> failwith "NOT_ELIM") (proof_NOTE (proof_of th));; let NOT_INTRO = let P = `P:bool` in let pth = SYM(CONV_RULE(RAND_CONV BETA_CONV) (AP_THM NOT_DEF P)) in fun th -> substitute_proof ( try EQ_MP (INST [rand(rator(concl th)),P] pth) th with Failure _ -> failwith "NOT_ELIM") (proof_NOTI (proof_of th));; let EQF_INTRO = let P = `P:bool` in let pth = let th1 = NOT_ELIM (ASSUME `~ P`) and th2 = DISCH `F` (SPEC P (EQ_MP F_DEF (ASSUME `F`))) in DISCH_ALL (IMP_ANTISYM_RULE th1 th2) in fun th -> try MP (INST [rand(concl th),P] pth) th with Failure _ -> failwith "EQF_INTRO";; let EQF_ELIM = let P = `P:bool` in let pth = let th1 = EQ_MP (ASSUME `P = F`) (ASSUME `P:bool`) in let th2 = DISCH P (SPEC `F` (EQ_MP F_DEF th1)) in DISCH_ALL (NOT_INTRO th2) in fun th -> try MP (INST [rand(rator(concl th)),P] pth) th with Failure _ -> failwith "EQF_ELIM";; let CONTR = let P = `P:bool` and f_tm = `F` in let pth = SPEC P (EQ_MP F_DEF (ASSUME `F`)) in fun tm th -> substitute_proof ( if concl th <> f_tm then failwith "CONTR" else PROVE_HYP th (INST [tm,P] pth)) (proof_CONTR (proof_of th) tm);; (* ------------------------------------------------------------------------- *) (* Rules for unique existence. *) (* ------------------------------------------------------------------------- *) let EXISTS_UNIQUE_DEF = new_basic_definition `(?!) = \P:A->bool. ((?) P) /\ (!x y. P x /\ P y ==> x = y)`;; let mk_uexists = mk_binder "?!";; let EXISTENCE = let P = `P:A->bool` in let pth = let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM EXISTS_UNIQUE_DEF P) in let th2 = UNDISCH (fst(EQ_IMP_RULE th1)) in DISCH_ALL (CONJUNCT1 th2) in fun th -> try let abs = rand(concl th) in let ty = snd(dest_var(bndvar abs)) in MP (PINST [ty,aty] [abs,P] pth) th with Failure _ -> failwith "EXISTENCE";;