(* ========================================================================= *) (* HOL Light Hilbert geometry axiomatic proofs *) (* *) (* (c) Copyright, Bill Richter 2013 *) (* Distributed under the same license as HOL Light *) (* *) (* High school students can learn rigorous axiomatic geometry proofs, as in *) (* http://www.math.northwestern.edu/~richter/hilbert.pdf, using Hilbert's *) (* axioms, and code up readable formal proofs like these here. Thanks to the *) (* Mizar folks for their influential language, Freek Wiedijk for his dialect *) (* miz3 of HOL Light, John Harrison for explaining how to port Mizar code to *) (* miz3 and writing the first 100+ lines of code here, the hol-info list for *) (* explaining features of HOL, and Benjamin Kordesh for carefully reading *) (* much of the paper and the code. Formal proofs are given for the first 7 *) (* sections of the paper, the results cited there from Greenberg's book, and *) (* most of Euclid's book I propositions up to Proposition I.29, following *) (* Hartshorne, whose book seems the most exciting axiomatic geometry text. *) (* A proof assistant is an invaluable tool to help read it, as Hartshorne's *) (* proofs are often sketchy and even have gaps. *) (* *) (* M. Greenberg, Euclidean and non-Euclidean geometries, Freeman, 1974. *) (* R. Hartshorne, Geometry, Euclid and Beyond, UTM series, Springer, 2000. *) (* ========================================================================= *) needs "RichterHilbertAxiomGeometry/readable.ml";; new_type("point", 0);; NewConstant("Between", `:point->point->point->bool`);; NewConstant("Line", `:(point->bool)->bool`);; NewConstant("≡", `:(point->bool)->(point->bool)->bool`);; ParseAsInfix("≅", (12, "right"));; ParseAsInfix("same_side", (12, "right"));; ParseAsInfix("≡", (12, "right"));; ParseAsInfix("<__", (12, "right"));; ParseAsInfix("<_ang", (12, "right"));; ParseAsInfix("suppl", (12, "right"));; ParseAsInfix("∉", (11, "right"));; ParseAsInfix("∥", (12, "right"));; let NOTIN = NewDefinition `; ∀a l. a ∉ l ⇔ ¬(a ∈ l)`;; let INTER_TENSOR = theorem `; ∀s s' t t'. s ⊂ s' ∧ t ⊂ t' ⇒ s ∩ t ⊂ s' ∩ t' by set`;; let Interval_DEF = NewDefinition `; ∀A B. Open (A, B) = {X | Between A X B}`;; let Collinear_DEF = NewDefinition `; Collinear A B C ⇔ ∃l. Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l`;; let SameSide_DEF = NewDefinition `; A,B same_side l ⇔ Line l ∧ ¬ ∃X. X ∈ l ∧ X ∈ Open (A, B)`;; let Ray_DEF = NewDefinition `; ∀A B. ray A B = {X | ¬(A = B) ∧ Collinear A B X ∧ A ∉ Open (X, B)}`;; let Ordered_DEF = NewDefinition `; ordered A B C D ⇔ B ∈ Open (A, C) ∧ B ∈ Open (A, D) ∧ C ∈ Open (A, D) ∧ C ∈ Open (B, D)`;; let InteriorAngle_DEF = NewDefinition `; ∀A O B. int_angle A O B = {P | ¬Collinear A O B ∧ ∃a b. Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ P ∉ a ∧ P ∉ b ∧ P,B same_side a ∧ P,A same_side b}`;; let InteriorTriangle_DEF = NewDefinition `; ∀A B C. int_triangle A B C = {P | P ∈ int_angle A B C ∧ P ∈ int_angle B C A ∧ P ∈ int_angle C A B}`;; let Tetralateral_DEF = NewDefinition `; Tetralateral A B C D ⇔ ¬(A = B) ∧ ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D) ∧ ¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B`;; let Quadrilateral_DEF = NewDefinition `; Quadrilateral A B C D ⇔ Tetralateral A B C D ∧ Open (A, B) ∩ Open (C, D) = ∅ ∧ Open (B, C) ∩ Open (D, A) = ∅`;; let ConvexQuad_DEF = NewDefinition `; ConvexQuadrilateral A B C D ⇔ Quadrilateral A B C D ∧ A ∈ int_angle B C D ∧ B ∈ int_angle C D A ∧ C ∈ int_angle D A B ∧ D ∈ int_angle A B C`;; let Segment_DEF = NewDefinition `; seg A B = {A, B} ∪ Open (A, B)`;; let SEGMENT = NewDefinition `; Segment s ⇔ ∃A B. s = seg A B ∧ ¬(A = B)`;; let SegmentOrdering_DEF = NewDefinition `; s <__ t ⇔ Segment s ∧ ∃C D X. t = seg C D ∧ X ∈ Open (C, D) ∧ s ≡ seg C X`;; let Angle_DEF = NewDefinition `; ∡ A O B = ray O A ∪ ray O B`;; let ANGLE = NewDefinition `; Angle α ⇔ ∃A O B. α = ∡ A O B ∧ ¬Collinear A O B`;; let AngleOrdering_DEF = NewDefinition `; α <_ang β ⇔ Angle α ∧ ∃A O B G. ¬Collinear A O B ∧ β = ∡ A O B ∧ G ∈ int_angle A O B ∧ α ≡ ∡ A O G`;; let RAY = NewDefinition `; Ray r ⇔ ∃O A. ¬(O = A) ∧ r = ray O A`;; let TriangleCong_DEF = NewDefinition `; ∀A B C A' B' C'. (A, B, C) ≅ (A', B', C') ⇔ ¬Collinear A B C ∧ ¬Collinear A' B' C' ∧ seg A B ≡ seg A' B' ∧ seg A C ≡ seg A' C' ∧ seg B C ≡ seg B' C' ∧ ∡ A B C ≡ ∡ A' B' C' ∧ ∡ B C A ≡ ∡ B' C' A' ∧ ∡ C A B ≡ ∡ C' A' B'`;; let SupplementaryAngles_DEF = NewDefinition `; ∀α β. α suppl β ⇔ ∃A O B A'. ¬Collinear A O B ∧ O ∈ Open (A, A') ∧ α = ∡ A O B ∧ β = ∡ B O A'`;; let RightAngle_DEF = NewDefinition `; ∀α. Right α ⇔ ∃β. α suppl β ∧ α ≡ β`;; let PlaneComplement_DEF = NewDefinition `; ∀α. complement α = {P | P ∉ α}`;; let CONVEX = NewDefinition `; Convex α ⇔ ∀A B. A ∈ α ∧ B ∈ α ⇒ Open (A, B) ⊂ α`;; let PARALLEL = NewDefinition `; ∀l k. l ∥ k ⇔ Line l ∧ Line k ∧ l ∩ k = ∅`;; let Parallelogram_DEF = NewDefinition `; ∀A B C D. Parallelogram A B C D ⇔ Quadrilateral A B C D ∧ ∃a b c d. Line a ∧ A ∈ a ∧ B ∈ a ∧ Line b ∧ B ∈ b ∧ C ∈ b ∧ Line c ∧ C ∈ c ∧ D ∈ d ∧ Line d ∧ D ∈ d ∧ A ∈ d ∧ a ∥ c ∧ b ∥ d`;; let InteriorCircle_DEF = NewDefinition `; ∀O R. int_circle O R = {P | ¬(O = R) ∧ (P = O ∨ seg O P <__ seg O R)} `;; (* ------------------------------------------------------------------------- *) (* Hilbert's geometry axioms, except the parallel axiom P, defined later. *) (* ------------------------------------------------------------------------- *) let I1 = NewAxiom `;∀A B. ¬(A = B) ⇒ ∃! l. Line l ∧ A ∈ l ∧ B ∈ l`;; let I2 = NewAxiom `;∀l. Line l ⇒ ∃A B. A ∈ l ∧ B ∈ l ∧ ¬(A = B)`;; let I3 = NewAxiom `;∃A B C. ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ ¬Collinear A B C`;; let B1 = NewAxiom `;∀A B C. Between A B C ⇒ ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Between C B A ∧ Collinear A B C`;; let B2 = NewAxiom `;∀A B. ¬(A = B) ⇒ ∃C. Between A B C`;; let B3 = NewAxiom `;∀A B C. ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Collinear A B C ⇒ (Between A B C ∨ Between B C A ∨ Between C A B) ∧ ¬(Between A B C ∧ Between B C A) ∧ ¬(Between A B C ∧ Between C A B) ∧ ¬(Between B C A ∧ Between C A B)`;; let B4 = NewAxiom `;∀l A B C. Line l ∧ ¬Collinear A B C ∧ A ∉ l ∧ B ∉ l ∧ C ∉ l ∧ (∃X. X ∈ l ∧ Between A X C) ⇒ (∃Y. Y ∈ l ∧ Between A Y B) ∨ (∃Y. Y ∈ l ∧ Between B Y C)`;; let C1 = NewAxiom `;∀s O Z. Segment s ∧ ¬(O = Z) ⇒ ∃! P. P ∈ ray O Z ━ {O} ∧ seg O P ≡ s`;; let C2Reflexive = NewAxiom `;Segment s ⇒ s ≡ s`;; let C2Symmetric = NewAxiom `;Segment s ∧ Segment t ∧ s ≡ t ⇒ t ≡ s`;; let C2Transitive = NewAxiom `;Segment s ∧ Segment t ∧ Segment u ∧ s ≡ t ∧ t ≡ u ⇒ s ≡ u`;; let C3 = NewAxiom `;∀A B C A' B' C'. B ∈ Open (A, C) ∧ B' ∈ Open (A', C') ∧ seg A B ≡ seg A' B' ∧ seg B C ≡ seg B' C' ⇒ seg A C ≡ seg A' C'`;; let C4 = NewAxiom `;∀α O A l Y. Angle α ∧ ¬(O = A) ∧ Line l ∧ O ∈ l ∧ A ∈ l ∧ Y ∉ l ⇒ ∃! r. Ray r ∧ ∃B. ¬(O = B) ∧ r = ray O B ∧ B ∉ l ∧ B,Y same_side l ∧ ∡ A O B ≡ α`;; let C5Reflexive = NewAxiom `;Angle α ⇒ α ≡ α`;; let C5Symmetric = NewAxiom `;Angle α ∧ Angle β ∧ α ≡ β ⇒ β ≡ α`;; let C5Transitive = NewAxiom `;Angle α ∧ Angle β ∧ Angle γ ∧ α ≡ β ∧ β ≡ γ ⇒ α ≡ γ`;; let C6 = NewAxiom `;∀A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C' ∧ seg B A ≡ seg B' A' ∧ seg B C ≡ seg B' C' ∧ ∡ A B C ≡ ∡ A' B' C' ⇒ ∡ B C A ≡ ∡ B' C' A'`;; (* ----------------------------------------------------------------- *) (* Theorems. *) (* ----------------------------------------------------------------- *) let IN_Interval = theorem `; ∀A B X. X ∈ Open (A, B) ⇔ Between A X B by rewrite Interval_DEF IN_ELIM_THM`;; let IN_Ray = theorem `; ∀A B X. X ∈ ray A B ⇔ ¬(A = B) ∧ Collinear A B X ∧ A ∉ Open (X, B) by rewrite Ray_DEF IN_ELIM_THM`;; let IN_InteriorAngle = theorem `; ∀A O B P. P ∈ int_angle A O B ⇔ ¬Collinear A O B ∧ ∃a b. Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ P ∉ a ∧ P ∉ b ∧ P,B same_side a ∧ P,A same_side b by rewrite InteriorAngle_DEF IN_ELIM_THM`;; let IN_InteriorTriangle = theorem `; ∀A B C P. P ∈ int_triangle A B C ⇔ P ∈ int_angle A B C ∧ P ∈ int_angle B C A ∧ P ∈ int_angle C A B by rewrite InteriorTriangle_DEF IN_ELIM_THM`;; let IN_PlaneComplement = theorem `; ∀α. ∀P. P ∈ complement α ⇔ P ∉ α by rewrite PlaneComplement_DEF IN_ELIM_THM`;; let IN_InteriorCircle = theorem `; ∀O R P. P ∈ int_circle O R ⇔ ¬(O = R) ∧ (P = O ∨ seg O P <__ seg O R) by rewrite InteriorCircle_DEF IN_ELIM_THM`;; let B1' = theorem `; ∀A B C. B ∈ Open (A, C) ⇒ ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ B ∈ Open (C, A) ∧ Collinear A B C by fol IN_Interval B1`;; let B2' = theorem `; ∀A B. ¬(A = B) ⇒ ∃C. B ∈ Open (A, C) by fol IN_Interval B2`;; let B3' = theorem `; ∀A B C. ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Collinear A B C ⇒ (B ∈ Open (A, C) ∨ C ∈ Open (B, A) ∨ A ∈ Open (C, B)) ∧ ¬(B ∈ Open (A, C) ∧ C ∈ Open (B, A)) ∧ ¬(B ∈ Open (A, C) ∧ A ∈ Open (C, B)) ∧ ¬(C ∈ Open (B, A) ∧ A ∈ Open (C, B)) by fol IN_Interval B3`;; let B4' = theorem `; ∀l A B C. Line l ∧ ¬Collinear A B C ∧ A ∉ l ∧ B ∉ l ∧ C ∉ l ∧ (∃X. X ∈ l ∧ X ∈ Open (A, C)) ⇒ (∃Y. Y ∈ l ∧ Y ∈ Open (A, B)) ∨ (∃Y. Y ∈ l ∧ Y ∈ Open (B, C)) by rewrite IN_Interval B4`;; let B4'' = theorem `; ∀l A B C. Line l ∧ ¬Collinear A B C ∧ A ∉ l ∧ B ∉ l ∧ C ∉ l ∧ A,B same_side l ∧ B,C same_side l ⇒ A,C same_side l proof rewrite SameSide_DEF; fol B4'; qed; `;; let DisjointOneNotOther = theorem `; ∀l m. (∀x:A. x ∈ m ⇒ x ∉ l) ⇔ l ∩ m = ∅ by fol ∉ IN_INTER MEMBER_NOT_EMPTY`;; let EquivIntersectionHelp = theorem `; ∀e x:A. ∀l m:A->bool. (l ∩ m = {x} ∨ m ∩ l = {x}) ∧ e ∈ m ━ {x} ⇒ e ∉ l by fol ∉ IN_INTER IN_SING IN_DIFF`;; let CollinearSymmetry = theorem `; ∀A B C. Collinear A B C ⇒ Collinear A C B ∧ Collinear B A C ∧ Collinear B C A ∧ Collinear C A B ∧ Collinear C B A proof intro_TAC ∀A B C, H1; consider l such that Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l [l_line] by fol H1 Collinear_DEF; fol - Collinear_DEF; qed; `;; let ExistsNewPointOnLine = theorem `; ∀P. Line l ∧ P ∈ l ⇒ ∃Q. Q ∈ l ∧ ¬(P = Q) proof intro_TAC ∀P, H1; consider A B such that A ∈ l ∧ B ∈ l ∧ ¬(A = B) [l_line] by fol H1 I2; fol - l_line; qed; `;; let ExistsPointOffLine = theorem `; ∀l. Line l ⇒ ∃Q. Q ∉ l proof intro_TAC ∀l, H1; consider A B C such that ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ ¬Collinear A B C [Distinct] by fol I3; assume (A ∈ l) ∧ (B ∈ l) ∧ (C ∈ l) [all_on] by fol ∉; Collinear A B C [] by fol H1 - Collinear_DEF; fol - Distinct; qed; `;; let BetweenLinear = theorem `; ∀A B C m. Line m ∧ A ∈ m ∧ C ∈ m ∧ (B ∈ Open (A, C) ∨ C ∈ Open (B, A) ∨ A ∈ Open (C, B)) ⇒ B ∈ m proof intro_TAC ∀A B C m, H1m H1A H1C H2; ¬(A = C) ∧ (Collinear A B C ∨ Collinear B C A ∨ Collinear C A B) [X1] by fol H2 B1'; consider l such that Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l [X2] by fol - Collinear_DEF; l = m [] by fol X1 - H2 H1m H1A H1C I1; fol - X2; qed; `;; let CollinearLinear = theorem `; ∀A B C m. Line m ∧ A ∈ m ∧ C ∈ m ∧ (Collinear A B C ∨ Collinear B C A ∨ Collinear C A B) ∧ ¬(A = C) ⇒ B ∈ m proof intro_TAC ∀A B C m, H1m H1A H1C H2 H3; consider l such that Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l [X1] by fol H2 Collinear_DEF; l = m [] by fol H3 - H1m H1A H1C I1; fol - X1; qed; `;; let NonCollinearImpliesDistinct = theorem `; ∀A B C. ¬Collinear A B C ⇒ ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) proof intro_TAC ∀A B C, H1; assume A = B ∧ B = C [equal] by fol H1 I1 Collinear_DEF; consider Q such that ¬(Q = A) [notQA] by fol I3; fol - equal H1 I1 Collinear_DEF; qed; `;; let NonCollinearRaa = theorem `; ∀A B C l. ¬(A = C) ⇒ Line l ∧ A ∈ l ∧ C ∈ l ⇒ B ∉ l ⇒ ¬Collinear A B C proof intro_TAC ∀A B C l, Distinct, l_line, notBl; assume Collinear A B C [ANCcol] by fol; consider m such that Line m ∧ A ∈ m ∧ B ∈ m ∧ C ∈ m [m_line] by fol - Collinear_DEF; m = l [] by fol - l_line Distinct I1; B ∈ l [] by fol m_line -; fol - notBl ∉; qed; `;; let TwoSidesTriangle1Intersection = theorem `; ∀A B C Y. ¬Collinear A B C ∧ Collinear B C Y ∧ Collinear A C Y ⇒ Y = C proof intro_TAC ∀A B C Y, ABCcol BCYcol ACYcol; assume ¬(C = Y) [notCY] by fol; consider l such that Line l ∧ C ∈ l ∧ Y ∈ l [l_line] by fol - I1; B ∈ l ∧ A ∈ l [] by fol - BCYcol ACYcol Collinear_DEF notCY I1; fol - l_line Collinear_DEF ABCcol; qed; `;; let OriginInRay = theorem `; ∀O Q. ¬(Q = O) ⇒ O ∈ ray O Q proof intro_TAC ∀O Q, H1; O ∉ Open (O, Q) [OOQ] by fol B1' ∉; Collinear O Q O [] by fol H1 I1 Collinear_DEF; fol H1 - OOQ IN_Ray; qed; `;; let EndpointInRay = theorem `; ∀O Q. ¬(Q = O) ⇒ Q ∈ ray O Q proof intro_TAC ∀O Q, H1; O ∉ Open (Q, Q) [notOQQ] by fol B1' ∉; Collinear O Q Q [] by fol H1 I1 Collinear_DEF; fol H1 - notOQQ IN_Ray; qed; `;; let I1Uniqueness = theorem `; ∀X l m. Line l ∧ Line m ∧ ¬(l = m) ∧ X ∈ l ∧ X ∈ m ⇒ l ∩ m = {X} proof intro_TAC ∀X l m, H0l H0m H1 H2l H2m; assume ¬(l ∩ m = {X}) [H3] by fol; consider A such that A ∈ l ∩ m ∧ ¬(A = X) [X1] by fol H2l H2m IN_INTER H3 EXTENSION IN_SING; fol H0l H0m H2l H2m IN_INTER X1 I1 H1; qed; `;; let DisjointLinesImplySameSide = theorem `; ∀l m A B. Line l ∧ Line m ∧ A ∈ m ∧ B ∈ m ∧ l ∩ m = ∅ ⇒ A,B same_side l proof intro_TAC ∀l m A B, l_line m_line Am Bm lm0; l ∩ Open (A,B) = ∅ [] by fol Am Bm m_line BetweenLinear SUBSET lm0 SUBSET_REFL INTER_TENSOR SUBSET_EMPTY; fol l_line - SameSide_DEF SUBSET IN_INTER MEMBER_NOT_EMPTY; qed; `;; let EquivIntersection = theorem `; ∀A B X l m. Line l ∧ Line m ∧ l ∩ m = {X} ∧ A ∈ m ━ {X} ∧ B ∈ m ━ {X} ∧ X ∉ Open (A, B) ⇒ A,B same_side l proof intro_TAC ∀A B X l m, l_line m_line H1 H2l H2m H3; Open (A, B) ⊂ m [] by fol l_line m_line SUBSET_DIFF IN_DIFF IN_SING H2l H2m BetweenLinear SUBSET; l ∩ Open (A, B) ⊂ {X} [] by fol - H1 SUBSET_REFL INTER_TENSOR; l ∩ Open (A, B) ⊂ ∅ [] by fol - SUBSET IN_SING IN_INTER H3 ∉; fol l_line - SameSide_DEF SUBSET IN_INTER NOT_IN_EMPTY; qed; `;; let RayLine = theorem `; ∀O P l. Line l ∧ O ∈ l ∧ P ∈ l ⇒ ray O P ⊂ l by fol IN_Ray CollinearLinear SUBSET`;; let RaySameSide = theorem `; ∀l O A P. Line l ∧ O ∈ l ∧ A ∉ l ∧ P ∈ ray O A ━ {O} ⇒ P ∉ l ∧ P,A same_side l proof intro_TAC ∀l O A P, l_line Ol notAl PrOA; ¬(O = A) [notOA] by fol l_line Ol notAl ∉; consider d such that Line d ∧ O ∈ d ∧ A ∈ d [d_line] by fol notOA I1; ¬(l = d) [] by fol - notAl ∉; l ∩ d = {O} [ldO] by fol l_line Ol d_line - I1Uniqueness; A ∈ d ━ {O} [Ad_O] by fol d_line notOA IN_DIFF IN_SING; ray O A ⊂ d [] by fol d_line RayLine; P ∈ d ━ {O} [Pd_O] by fol PrOA - SUBSET IN_DIFF IN_SING; P ∉ l [notPl] by fol ldO - EquivIntersectionHelp; O ∉ Open (P, A) [] by fol PrOA IN_DIFF IN_SING IN_Ray; P,A same_side l [] by fol l_line Ol d_line ldO Ad_O Pd_O - EquivIntersection; fol notPl -; qed; `;; let IntervalRayEZ = theorem `; ∀A B C. B ∈ Open (A, C) ⇒ B ∈ ray A C ━ {A} ∧ C ∈ ray A B ━ {A} proof intro_TAC ∀A B C, H1; ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Collinear A B C [ABC] by fol H1 B1'; A ∉ Open (B, C) ∧ A ∉ Open (C, B) [] by fol - H1 B3' B1' ∉; fol ABC - CollinearSymmetry IN_Ray ∉ IN_DIFF IN_SING; qed; `;; let NoncollinearityExtendsToLine = theorem `; ∀A O B X. ¬Collinear A O B ⇒ Collinear O B X ∧ ¬(X = O) ⇒ ¬Collinear A O X proof intro_TAC ∀A O B X, H1, H2; ¬(A = O) ∧ ¬(A = B) ∧ ¬(O = B) [Distinct] by fol H1 NonCollinearImpliesDistinct; consider b such that Line b ∧ O ∈ b ∧ B ∈ b [b_line] by fol Distinct I1; A ∉ b [notAb] by fol b_line H1 Collinear_DEF ∉; X ∈ b [] by fol H2 b_line Distinct I1 Collinear_DEF; fol b_line - H2 notAb I1 Collinear_DEF ∉; qed; `;; let SameSideReflexive = theorem `; ∀l A. Line l ∧ A ∉ l ⇒ A,A same_side l by fol B1' SameSide_DEF`;; let SameSideSymmetric = theorem `; ∀l A B. Line l ∧ A ∉ l ∧ B ∉ l ⇒ A,B same_side l ⇒ B,A same_side l by fol SameSide_DEF B1'`;; let SameSideTransitive = theorem `; ∀l A B C. Line l ⇒ A ∉ l ∧ B ∉ l ∧ C ∉ l ⇒ A,B same_side l ⇒ B,C same_side l ⇒ A,C same_side l proof intro_TAC ∀l A B C, l_line, notABCl, Asim_lB, Bsim_lC; assume Collinear A B C ∧ ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) [Distinct] by fol l_line notABCl Asim_lB Bsim_lC B4'' SameSideReflexive; consider m such that Line m ∧ A ∈ m ∧ C ∈ m [m_line] by fol Distinct I1; B ∈ m [Bm] by fol - Distinct CollinearLinear; assume ¬(m ∩ l = ∅) [Intersect] by fol m_line l_line BetweenLinear SameSide_DEF IN_INTER NOT_IN_EMPTY; consider X such that X ∈ l ∧ X ∈ m [Xlm] by fol - MEMBER_NOT_EMPTY IN_INTER; Collinear A X B ∧ Collinear B A C ∧ Collinear A B C [ABXcol] by fol m_line Bm - Collinear_DEF; consider E such that E ∈ l ∧ ¬(E = X) [El_X] by fol l_line Xlm ExistsNewPointOnLine; ¬Collinear E A X [EAXncol] by fol l_line El_X Xlm notABCl I1 Collinear_DEF ∉; consider B' such that ¬(B = E) ∧ B ∈ Open (E, B') [EBB'] by fol notABCl El_X ∉ B2'; ¬(B' = E) ∧ ¬(B' = B) ∧ Collinear B E B' [EBB'col] by fol - B1' CollinearSymmetry; ¬Collinear A B B' ∧ ¬Collinear B' B A ∧ ¬Collinear B' A B [ABB'ncol] by fol EAXncol ABXcol Distinct - NoncollinearityExtendsToLine CollinearSymmetry; ¬Collinear B' B C ∧ ¬Collinear B' A C ∧ ¬Collinear A B' C [AB'Cncol] by fol ABB'ncol ABXcol Distinct NoncollinearityExtendsToLine CollinearSymmetry; B' ∈ ray E B ━ {E} ∧ B ∈ ray E B' ━ {E} [] by fol EBB' IntervalRayEZ; B' ∉ l ∧ B',B same_side l ∧ B,B' same_side l [notB'l] by fol l_line El_X notABCl - RaySameSide; A,B' same_side l ∧ B',C same_side l [] by fol l_line ABB'ncol notABCl notB'l Asim_lB - AB'Cncol Bsim_lC B4''; fol l_line AB'Cncol notABCl notB'l - B4''; qed; `;; let ConverseCrossbar = theorem `; ∀O A B G. ¬Collinear A O B ∧ G ∈ Open (A, B) ⇒ G ∈ int_angle A O B proof intro_TAC ∀O A B G, H1 H2; ¬(A = O) ∧ ¬(A = B) ∧ ¬(O = B) [Distinct] by fol H1 NonCollinearImpliesDistinct; consider a such that Line a ∧ O ∈ a ∧ A ∈ a [a_line] by fol - I1; consider b such that Line b ∧ O ∈ b ∧ B ∈ b [b_line] by fol Distinct I1; consider l such that Line l ∧ A ∈ l ∧ B ∈ l [l_line] by fol Distinct I1; B ∉ a ∧ A ∉ b [] by fol H1 a_line b_line Collinear_DEF ∉; ¬(a = l) ∧ ¬(b = l) [] by fol - l_line ∉; a ∩ l = {A} ∧ b ∩ l = {B} [alA] by fol - a_line l_line b_line I1Uniqueness; ¬(A = G) ∧ ¬(A = B) ∧ ¬(G = B) [AGB] by fol H2 B1'; A ∉ Open (G, B) ∧ B ∉ Open (G, A) [notGAB] by fol H2 B3' B1' ∉; G ∈ l [Gl] by fol l_line H2 BetweenLinear; G ∉ a ∧ G ∉ b [notGa] by fol alA Gl AGB IN_DIFF IN_SING EquivIntersectionHelp; G ∈ l ━ {A} ∧ B ∈ l ━ {A} ∧ G ∈ l ━ {B} ∧ A ∈ l ━ {B} [] by fol Gl l_line AGB IN_DIFF IN_SING; G,B same_side a ∧ G,A same_side b [] by fol a_line l_line alA - notGAB b_line EquivIntersection; fol H1 a_line b_line notGa - IN_InteriorAngle; qed; `;; let InteriorUse = theorem `; ∀A O B P a b. Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ⇒ P ∈ int_angle A O B ⇒ P ∉ a ∧ P ∉ b ∧ P,B same_side a ∧ P,A same_side b proof intro_TAC ∀A O B P a b, aOAbOB, P_AOB; consider α β such that ¬Collinear A O B ∧ Line α ∧ O ∈ α ∧ A ∈ α ∧ Line β ∧ O ∈ β ∧B ∈ β ∧ P ∉ α ∧ P ∉ β ∧ P,B same_side α ∧ P,A same_side β [exists] by fol P_AOB IN_InteriorAngle; ¬(A = O) ∧ ¬(A = B) ∧ ¬(O = B) [] by fol - NonCollinearImpliesDistinct; α = a ∧ β = b [] by fol - aOAbOB exists I1; fol - exists; qed; `;; let InteriorEZHelp = theorem `; ∀A O B P. P ∈ int_angle A O B ⇒ ¬(P = A) ∧ ¬(P = O) ∧ ¬(P = B) ∧ ¬Collinear A O P proof intro_TAC ∀A O B P, P_AOB; consider a b such that ¬Collinear A O B ∧ Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧B ∈ b ∧ P ∉ a ∧ P ∉ b [def_int] by fol P_AOB IN_InteriorAngle; ¬(P = A) ∧ ¬(P = O) ∧ ¬(P = B) [PnotAOB] by fol - ∉; ¬(A = O) [] by fol def_int NonCollinearImpliesDistinct; ¬Collinear A O P [] by fol def_int - NonCollinearRaa CollinearSymmetry; fol PnotAOB -; qed; `;; let InteriorAngleSymmetry = theorem `; ∀A O B P: point. P ∈ int_angle A O B ⇒ P ∈ int_angle B O A proof rewrite IN_InteriorAngle; fol CollinearSymmetry; qed; `;; let InteriorWellDefined = theorem `; ∀A O B X P. P ∈ int_angle A O B ∧ X ∈ ray O B ━ {O} ⇒ P ∈ int_angle A O X proof intro_TAC ∀A O B X P, H1 H2; consider a b such that ¬Collinear A O B ∧ Line a ∧ O ∈ a ∧ A ∈ a ∧ P ∉ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ P ∉ b ∧ P,B same_side a ∧ P,A same_side b [def_int] by fol H1 IN_InteriorAngle; ¬(X = O) ∧ ¬(O = B) ∧ Collinear O B X [H2'] by fol H2 IN_Ray IN_DIFF IN_SING; B ∉ a [notBa] by fol def_int Collinear_DEF ∉; ¬Collinear A O X [AOXnoncol] by fol def_int H2' NoncollinearityExtendsToLine; X ∈ b [Xb] by fol def_int H2' CollinearLinear; X ∉ a ∧ B,X same_side a [] by fol def_int notBa H2 RaySameSide SameSideSymmetric; P,X same_side a [] by fol def_int - notBa SameSideTransitive; fol AOXnoncol def_int Xb - IN_InteriorAngle; qed; `;; let WholeRayInterior = theorem `; ∀A O B X P. X ∈ int_angle A O B ∧ P ∈ ray O X ━ {O} ⇒ P ∈ int_angle A O B proof intro_TAC ∀A O B X P, XintAOB PrOX; consider a b such that ¬Collinear A O B ∧ Line a ∧ O ∈ a ∧ A ∈ a ∧ X ∉ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ X ∉ b ∧ X,B same_side a ∧ X,A same_side b [def_int] by fol XintAOB IN_InteriorAngle; P ∉ a ∧ P,X same_side a ∧ P ∉ b ∧ P,X same_side b [Psim_abX] by fol def_int PrOX RaySameSide; P,B same_side a ∧ P,A same_side b [] by fol - def_int Collinear_DEF SameSideTransitive ∉; fol def_int Psim_abX - IN_InteriorAngle; qed; `;; let AngleOrdering = theorem `; ∀O A P Q a. ¬(O = A) ⇒ Line a ∧ O ∈ a ∧ A ∈ a ⇒ P ∉ a ∧ Q ∉ a ⇒ P,Q same_side a ⇒ ¬Collinear P O Q ⇒ P ∈ int_angle Q O A ∨ Q ∈ int_angle P O A proof intro_TAC ∀O A P Q a, H1, H2, H3, H4, H5; ¬(P = O) ∧ ¬(P = Q) ∧ ¬(O = Q) [Distinct] by fol H5 NonCollinearImpliesDistinct; consider q such that Line q ∧ O ∈ q ∧ Q ∈ q [q_line] by fol Distinct I1; P ∉ q [notPq] by fol - H5 Collinear_DEF ∉; assume ¬(P ∈ int_angle Q O A) [notPintQOA] by fol; ¬Collinear Q O A ∧ ¬Collinear P O A [POAncol] by fol H1 H2 H3 I1 Collinear_DEF ∉; ¬(P,A same_side q) [] by fol - H2 q_line H3 notPq H4 notPintQOA IN_InteriorAngle; consider G such that G ∈ q ∧ G ∈ Open (P, A) [existG] by fol q_line - SameSide_DEF; G ∈ int_angle P O A [G_POA] by fol POAncol existG ConverseCrossbar; G ∉ a ∧ G,P same_side a ∧ ¬(G = O) [Gsim_aP] by fol - H1 H2 IN_InteriorAngle I1 ∉; G,Q same_side a [] by fol H2 Gsim_aP H3 H4 SameSideTransitive; O ∉ Open (Q, G) [notQOG] by fol - H2 SameSide_DEF B1' ∉; Collinear O G Q [] by fol q_line existG Collinear_DEF; Q ∈ ray O G ━ {O} [] by fol Gsim_aP - notQOG Distinct IN_Ray IN_DIFF IN_SING; fol G_POA - WholeRayInterior; qed; `;; let InteriorsDisjointSupplement = theorem `; ∀A O B A'. ¬Collinear A O B ∧ O ∈ Open (A, A') ⇒ int_angle B O A' ∩ int_angle A O B = ∅ proof intro_TAC ∀A O B A', H1 H2; ∀D. D ∈ int_angle A O B ⇒ D ∉ int_angle B O A' [] proof intro_TAC ∀D, H3; ¬(A = O) ∧ ¬(O = B) [] by fol H1 NonCollinearImpliesDistinct; consider a b such that Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ A' ∈ a [ab_line] by fol - H2 I1 BetweenLinear; ¬Collinear B O A' [] by fol H1 H2 CollinearSymmetry B1' NoncollinearityExtendsToLine; A ∉ b ∧ A' ∉ b [notAb] by fol ab_line H1 - Collinear_DEF ∉; ¬(A',A same_side b) [A'nsim_bA] by fol ab_line H2 B1' SameSide_DEF; D ∉ b ∧ D,A same_side b [DintAOB] by fol ab_line H3 InteriorUse; ¬(D,A' same_side b) [] by fol ab_line notAb DintAOB A'nsim_bA SameSideSymmetric SameSideTransitive; fol ab_line - InteriorUse ∉; qed; fol - DisjointOneNotOther; qed; `;; let InteriorReflectionInterior = theorem `; ∀A O B D A'. O ∈ Open (A, A') ∧ D ∈ int_angle A O B ⇒ B ∈ int_angle D O A' proof intro_TAC ∀A O B D A', H1 H2; consider a b such that ¬Collinear A O B ∧ Line a ∧ O ∈ a ∧ A ∈ a ∧ D ∉ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ D ∉ b ∧ D,B same_side a [DintAOB] by fol H2 IN_InteriorAngle; ¬(O = B) ∧ ¬(O = A') ∧ B ∉ a [Distinct] by fol - H1 NonCollinearImpliesDistinct B1' Collinear_DEF ∉; ¬Collinear D O B [DOB_ncol] by fol DintAOB - NonCollinearRaa CollinearSymmetry; A' ∈ a [A'a] by fol H1 DintAOB BetweenLinear; D ∉ int_angle B O A' [] by fol DintAOB H1 H2 InteriorsDisjointSupplement DisjointOneNotOther; fol Distinct DintAOB A'a DOB_ncol - AngleOrdering ∉; qed; `;; let Crossbar_THM = theorem `; ∀O A B D. D ∈ int_angle A O B ⇒ ∃G. G ∈ Open (A, B) ∧ G ∈ ray O D ━ {O} proof intro_TAC ∀O A B D, H1; consider a b such that ¬Collinear A O B ∧ Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ D ∉ a ∧ D ∉ b ∧ D,B same_side a ∧ D,A same_side b [DintAOB] by fol H1 IN_InteriorAngle; B ∉ a [notBa] by fol DintAOB Collinear_DEF ∉; ¬(A = O) ∧ ¬(A = B) ∧ ¬(O = B) ∧ ¬(D = O) [Distinct] by fol DintAOB NonCollinearImpliesDistinct ∉; consider l such that Line l ∧ O ∈ l ∧ D ∈ l [l_line] by fol - I1; consider A' such that O ∈ Open (A, A') [AOA'] by fol Distinct B2'; A' ∈ a ∧ Collinear A O A' ∧ ¬(A' = O) [A'a] by fol DintAOB - BetweenLinear B1'; ¬(A,A' same_side l) [Ansim_lA'] by fol l_line AOA' SameSide_DEF; B ∈ int_angle D O A' [] by fol H1 AOA' InteriorReflectionInterior; B,A' same_side l [Bsim_lA'] by fol l_line DintAOB A'a - InteriorUse; ¬Collinear A O D ∧ ¬Collinear B O D [AODncol] by fol H1 InteriorEZHelp InteriorAngleSymmetry; ¬Collinear D O A' [] by fol - A'a CollinearSymmetry NoncollinearityExtendsToLine; A ∉ l ∧ B ∉ l ∧ A' ∉ l [] by fol l_line AODncol - Collinear_DEF ∉; ¬(A,B same_side l) [] by fol l_line - Bsim_lA' Ansim_lA' SameSideTransitive; consider G such that G ∈ Open (A, B) ∧ G ∈ l [AGB] by fol l_line - SameSide_DEF; Collinear O D G [ODGcol] by fol - l_line Collinear_DEF; G ∈ int_angle A O B [] by fol DintAOB AGB ConverseCrossbar; G ∉ a ∧ G,B same_side a ∧ ¬(G = O) [Gsim_aB] by fol DintAOB - InteriorUse ∉; B,D same_side a [] by fol DintAOB notBa SameSideSymmetric; G,D same_side a [Gsim_aD] by fol DintAOB Gsim_aB notBa - SameSideTransitive; O ∉ Open (G, D) [] by fol DintAOB - SameSide_DEF ∉; G ∈ ray O D ━ {O} [] by fol Distinct ODGcol - Gsim_aB IN_Ray IN_DIFF IN_SING; fol AGB -; qed; `;; let AlternateConverseCrossbar = theorem `; ∀O A B G. Collinear A G B ∧ G ∈ int_angle A O B ⇒ G ∈ Open (A, B) proof intro_TAC ∀O A B G, H1; consider a b such that ¬Collinear A O B ∧ Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ G,B same_side a ∧ G,A same_side b [GintAOB] by fol H1 IN_InteriorAngle; ¬(A = B) ∧ ¬(G = A) ∧ ¬(G = B) ∧ A ∉ Open (G, B) ∧ B ∉ Open (G, A) [] by fol - H1 NonCollinearImpliesDistinct InteriorEZHelp SameSide_DEF ∉; fol - H1 B1' B3' ∉; qed; `;; let InteriorOpposite = theorem `; ∀A O B P p. P ∈ int_angle A O B ⇒ Line p ∧ O ∈ p ∧ P ∈ p ⇒ ¬(A,B same_side p) proof intro_TAC ∀A O B P p, PintAOB, p_line; consider G such that G ∈ Open (A, B) ∧ G ∈ ray O P [Gexists] by fol PintAOB Crossbar_THM IN_DIFF; fol p_line p_line - RayLine SUBSET Gexists SameSide_DEF; qed; `;; let IntervalTransitivity = theorem `; ∀O P Q R m. Line m ∧ O ∈ m ⇒ P ∈ m ━ {O} ∧ Q ∈ m ━ {O} ∧ R ∈ m ━ {O} ⇒ O ∉ Open (P, Q) ∧ O ∉ Open (Q, R) ⇒ O ∉ Open (P, R) proof intro_TAC ∀O P Q R m, H0, H2, H3; consider E such that E ∉ m ∧ ¬(O = E) [notEm] by fol H0 ExistsPointOffLine ∉; consider l such that Line l ∧ O ∈ l ∧ E ∈ l [l_line] by fol - I1; ¬(m = l) [] by fol notEm - ∉; l ∩ m = {O} [lmO] by fol l_line H0 - l_line I1Uniqueness; P ∉ l ∧ Q ∉ l ∧ R ∉ l [notPQRl] by fol - H2 EquivIntersectionHelp; P,Q same_side l ∧ Q,R same_side l [] by fol l_line H0 lmO H2 H3 EquivIntersection; P,R same_side l [Psim_lR] by fol l_line notPQRl - SameSideTransitive; fol l_line - SameSide_DEF ∉; qed; `;; let RayWellDefinedHalfway = theorem `; ∀O P Q. ¬(Q = O) ∧ P ∈ ray O Q ━ {O} ⇒ ray O P ⊂ ray O Q proof intro_TAC ∀O P Q, H1 H2; consider m such that Line m ∧ O ∈ m ∧ Q ∈ m [OQm] by fol H1 I1; P ∈ ray O Q ∧ ¬(P = O) ∧ O ∉ Open (P, Q) [H2'] by fol H2 IN_Ray IN_DIFF IN_SING; P ∈ m ∧ P ∈ m ━ {O} ∧ Q ∈ m ━ {O} [PQm_O] by fol OQm H2' RayLine SUBSET H2' OQm H1 IN_DIFF IN_SING; O ∉ Open (P, Q) [notPOQ] by fol H2' IN_Ray; rewrite SUBSET; X_genl_TAC X; intro_TAC XrayOP; X ∈ m ∧ O ∉ Open (X, P) [XrOP] by fol - SUBSET OQm PQm_O H2' RayLine IN_Ray; Collinear O Q X [OQXcol] by fol OQm - Collinear_DEF; assume ¬(X = O) [notXO] by fol H1 OriginInRay; X ∈ m ━ {O} [] by fol XrOP - IN_DIFF IN_SING; O ∉ Open (X, Q) [] by fol OQm - PQm_O XrOP H2' IntervalTransitivity; fol H1 OQXcol - IN_Ray; qed; `;; let RayWellDefined = theorem `; ∀O P Q. ¬(Q = O) ∧ P ∈ ray O Q ━ {O} ⇒ ray O P = ray O Q proof intro_TAC ∀O P Q, H1 H2; ray O P ⊂ ray O Q [PsubsetQ] by fol H1 H2 RayWellDefinedHalfway; ¬(P = O) ∧ Collinear O Q P ∧ O ∉ Open (P, Q) [H2'] by fol H2 IN_Ray IN_DIFF IN_SING; Q ∈ ray O P ━ {O} [] by fol H2' B1' ∉ CollinearSymmetry IN_Ray H1 IN_DIFF IN_SING; ray O Q ⊂ ray O P [QsubsetP] by fol H2' - RayWellDefinedHalfway; fol PsubsetQ QsubsetP SUBSET_ANTISYM; qed; `;; let OppositeRaysIntersect1pointHelp = theorem `; ∀A O B X. O ∈ Open (A, B) ∧ X ∈ ray O B ━ {O} ⇒ X ∉ ray O A ∧ O ∈ Open (X, A) proof intro_TAC ∀A O B X, H1 H2; ¬(A = O) ∧ ¬(A = B) ∧ ¬(O = B) ∧ Collinear A O B [AOB] by fol H1 B1'; ¬(X = O) ∧ Collinear O B X ∧ O ∉ Open (X, B) [H2'] by fol H2 IN_Ray IN_DIFF IN_SING; consider m such that Line m ∧ A ∈ m ∧ B ∈ m [m_line] by fol AOB I1; O ∈ m ∧ X ∈ m [Om] by fol m_line H2' AOB CollinearLinear; A ∈ m ━ {O} ∧ X ∈ m ━ {O} ∧ B ∈ m ━ {O} [] by fol m_line - H2' AOB IN_DIFF IN_SING; fol H1 m_line Om - H2' IntervalTransitivity ∉ B1' IN_Ray; qed; `;; let OppositeRaysIntersect1point = theorem `; ∀A O B. O ∈ Open (A, B) ⇒ ray O A ∩ ray O B = {O} proof intro_TAC ∀A O B, H1; ¬(A = O) ∧ ¬(O = B) [] by fol H1 B1'; rewrite GSYM SUBSET_ANTISYM_EQ SUBSET IN_INTER; conj_tac [Right] by fol - OriginInRay IN_SING; fol H1 OppositeRaysIntersect1pointHelp IN_DIFF IN_SING ∉; qed; `;; let IntervalRay = theorem `; ∀A B C. B ∈ Open (A, C) ⇒ ray A B = ray A C by fol B1' IntervalRayEZ RayWellDefined`;; let Reverse4Order = theorem `; ∀A B C D. ordered A B C D ⇒ ordered D C B A proof rewrite Ordered_DEF; fol B1'; qed; `;; let TransitivityBetweennessHelp = theorem `; ∀A B C D. B ∈ Open (A, C) ∧ C ∈ Open (B, D) ⇒ B ∈ Open (A, D) proof intro_TAC ∀A B C D, H1; D ∈ ray B C ━ {B} [] by fol H1 IntervalRayEZ; fol H1 - OppositeRaysIntersect1pointHelp B1'; qed; `;; let TransitivityBetweenness = theorem `; ∀A B C D. B ∈ Open (A, C) ∧ C ∈ Open (B, D) ⇒ ordered A B C D proof intro_TAC ∀A B C D, H1; B ∈ Open (A, D) [ABD] by fol H1 TransitivityBetweennessHelp; C ∈ Open (D, B) ∧ B ∈ Open (C, A) [] by fol H1 B1'; C ∈ Open (D, A) [] by fol - TransitivityBetweennessHelp; fol H1 ABD - B1' Ordered_DEF; qed; `;; let IntervalsAreConvex = theorem `; ∀A B C. B ∈ Open (A, C) ⇒ Open (A, B) ⊂ Open (A, C) proof intro_TAC ∀A B C, H1; ∀X. X ∈ Open (A, B) ⇒ X ∈ Open (A, C) [] proof intro_TAC ∀X, AXB; X ∈ ray B A ━ {B} [] by fol AXB B1' IntervalRayEZ; B ∈ Open (X, C) [] by fol H1 B1' - OppositeRaysIntersect1pointHelp; fol AXB - TransitivityBetweennessHelp; qed; fol - SUBSET; qed; `;; let TransitivityBetweennessVariant = theorem `; ∀A X B C. X ∈ Open (A, B) ∧ B ∈ Open (A, C) ⇒ ordered A X B C proof intro_TAC ∀A X B C, H1; X ∈ ray B A ━ {B} [] by fol H1 B1' IntervalRayEZ; B ∈ Open (X, C) [] by fol H1 B1' - OppositeRaysIntersect1pointHelp; fol H1 - TransitivityBetweenness; qed; `;; let Interval2sides2aLineHelp = theorem `; ∀A B C X. B ∈ Open (A, C) ⇒ X ∉ Open (A, B) ∨ X ∉ Open (B, C) proof intro_TAC ∀A B C X, H1; assume ¬(X ∉ Open (A, B)) [AXB] by fol; ordered A X B C [] by fol - ∉ H1 TransitivityBetweennessVariant; fol MESON [-; Ordered_DEF] [B ∈ Open (X, C)] B1' B3' ∉; qed; `;; let Interval2sides2aLine = theorem `; ∀A B C X. Collinear A B C ⇒ X ∉ Open (A, B) ∨ X ∉ Open (A, C) ∨ X ∉ Open (B, C) proof intro_TAC ∀A B C X, H1; assume ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) [Distinct] by fol B1' ∉; B ∈ Open (A, C) ∨ C ∈ Open (B, A) ∨ A ∈ Open (C, B) [] by fol - H1 B3'; fol - Interval2sides2aLineHelp B1' ∉; qed; `;; let TwosidesTriangle2aLine = theorem `; ∀A B C l. Line l ∧ ¬Collinear A B C ⇒ A ∉ l ∧ B ∉ l ∧ C ∉ l ⇒ ¬(A,B same_side l) ∧ ¬(B,C same_side l) ⇒ A,C same_side l proof intro_TAC ∀ A B C l, H1, off_l, H2; ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) [ABCdistinct] by fol H1 NonCollinearImpliesDistinct; consider m such that Line m ∧ A ∈ m ∧ C ∈ m [m_line] by fol - I1; assume ¬(l ∩ m = ∅) [lmIntersect] by fol H1 m_line DisjointLinesImplySameSide; consider Y such that Y ∈ l ∧ Y ∈ m [Ylm] by fol lmIntersect MEMBER_NOT_EMPTY IN_INTER; consider X Z such that X ∈ l ∧ X ∈ Open (A, B) ∧ Z ∈ l ∧ Z ∈ Open (C, B) [H2'] by fol H1 H2 SameSide_DEF B1'; ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Y ∈ m ━ {A} ∧ Y ∈ m ━ {C} ∧ C ∈ m ━ {A} ∧ A ∈ m ━ {C} [Distinct] by fol H1 NonCollinearImpliesDistinct Ylm off_l ∉ m_line IN_DIFF IN_SING; consider p such that Line p ∧ B ∈ p ∧ A ∈ p [p_line] by fol Distinct I1; consider q such that Line q ∧ B ∈ q ∧ C ∈ q [q_line] by fol Distinct I1; X ∈ p ∧ Z ∈ q [Xp] by fol p_line H2' BetweenLinear q_line H2'; A ∉ q ∧ B ∉ m ∧ C ∉ p [vertex_off_line] by fol q_line m_line p_line H1 Collinear_DEF ∉; X ∉ q ∧ X,A same_side q ∧ Z ∉ p ∧ Z,C same_side p [Xsim_qA] by fol q_line p_line - H2' B1' IntervalRayEZ RaySameSide; ¬(m = p) ∧ ¬(m = q) [] by fol m_line vertex_off_line ∉; p ∩ m = {A} ∧ q ∩ m = {C} [pmA] by fol p_line m_line q_line H1 - Xp H2' I1Uniqueness; Y ∉ p ∧ Y ∉ q [notYpq] by fol - Distinct EquivIntersectionHelp; X ∈ ray A B ━ {A} ∧ Z ∈ ray C B ━ {C} [] by fol H2' IntervalRayEZ H2' B1'; X ∉ m ∧ Z ∉ m ∧ X,B same_side m ∧ B,Z same_side m [notXZm] by fol m_line vertex_off_line - RaySameSide SameSideSymmetric; X,Z same_side m [] by fol m_line - vertex_off_line SameSideTransitive; Collinear X Y Z ∧ Y ∉ Open (X, Z) ∧ ¬(Y = X) ∧ ¬(Y = Z) ∧ ¬(X = Z) [] by fol H1 H2' Ylm Collinear_DEF m_line - SameSide_DEF notXZm Xsim_qA Xp ∉; Z ∈ Open (X, Y) ∨ X ∈ Open (Z, Y) [] by fol - B3' ∉ B1'; case_split ZXY | XZY by fol -; suppose X ∈ Open (Z, Y); ¬(Z,Y same_side p) [] by fol p_line Xp - SameSide_DEF; ¬(C,Y same_side p) [] by fol p_line Xsim_qA vertex_off_line notYpq - SameSideTransitive; A ∈ Open (C, Y) [] by fol p_line m_line pmA Distinct - EquivIntersection ∉; fol H1 Ylm off_l - B1' IntervalRayEZ RaySameSide; end; suppose Z ∈ Open (X, Y); ¬(X,Y same_side q) [] by fol q_line Xp - SameSide_DEF; ¬(A,Y same_side q) [] by fol q_line Xsim_qA vertex_off_line notYpq - SameSideTransitive; C ∈ Open (Y, A) [] by fol q_line m_line pmA Distinct - EquivIntersection ∉ B1'; fol H1 Ylm off_l - IntervalRayEZ RaySameSide; end; qed; `;; let LineUnionOf2Rays = theorem `; ∀A O B l. Line l ∧ A ∈ l ∧ B ∈ l ⇒ O ∈ Open (A, B) ⇒ l = ray O A ∪ ray O B proof intro_TAC ∀A O B l, H1, H2; ¬(A = O) ∧ ¬(O = B) ∧ O ∈ l [Distinct] by fol H2 B1' H1 BetweenLinear; ray O A ∪ ray O B ⊂ l [AOBsub_l] by fol H1 - RayLine UNION_SUBSET; ∀X. X ∈ l ⇒ X ∈ ray O A ∨ X ∈ ray O B [] proof intro_TAC ∀X, Xl; assume ¬(X ∈ ray O B) [notXrOB] by fol; Collinear O B X ∧ Collinear X A B ∧ Collinear O A X [XABcol] by fol Distinct H1 Xl Collinear_DEF; O ∈ Open (X, B) [] by fol notXrOB Distinct - IN_Ray ∉; O ∉ Open (X, A) [] by fol ∉ B1' XABcol - H2 Interval2sides2aLine; fol Distinct XABcol - IN_Ray; qed; l ⊂ ray O A ∪ ray O B [] by fol - IN_UNION SUBSET; fol - AOBsub_l SUBSET_ANTISYM; qed; `;; let AtMost2Sides = theorem `; ∀A B C l. Line l ⇒ A ∉ l ∧ B ∉ l ∧ C ∉ l ⇒ A,B same_side l ∨ A,C same_side l ∨ B,C same_side l proof intro_TAC ∀A B C l, l_line, H2; assume ¬(A = C) [notAC] by fol l_line H2 SameSideReflexive; assume Collinear A B C [ABCcol] by fol l_line H2 TwosidesTriangle2aLine; consider m such that Line m ∧ A ∈ m ∧ B ∈ m ∧ C ∈ m [m_line] by fol notAC - I1 Collinear_DEF; assume ¬(m ∩ l = ∅) [m_lNot0] by fol m_line l_line BetweenLinear SameSide_DEF IN_INTER NOT_IN_EMPTY; consider X such that X ∈ l ∧ X ∈ m [Xlm] by fol - IN_INTER MEMBER_NOT_EMPTY; A ∈ m ━ {X} ∧ B ∈ m ━ {X} ∧ C ∈ m ━ {X} [ABCm_X] by fol m_line - H2 ∉ IN_DIFF IN_SING; X ∉ Open (A, B) ∨ X ∉ Open (A, C) ∨ X ∉ Open (B, C) [] by fol ABCcol Interval2sides2aLine; fol l_line m_line m_line Xlm H2 ∉ I1Uniqueness ABCm_X - EquivIntersection; qed; `;; let FourPointsOrder = theorem `; ∀A B C X l. Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l ∧ X ∈ l ⇒ ¬(X = A) ∧ ¬(X = B) ∧ ¬(X = C) ⇒ B ∈ Open (A, C) ⇒ ordered X A B C ∨ ordered A X B C ∨ ordered A B X C ∨ ordered A B C X proof intro_TAC ∀A B C X l, H1, H2, H3; A ∈ Open (X, B) ∨ X ∈ Open (A, B) ∨ X ∈ Open (B, C) ∨ C ∈ Open (B, X) [] proof ¬(A = B) ∧ ¬(B = C) [ABCdistinct] by fol H3 B1'; Collinear A B X ∧ Collinear A C X ∧ Collinear C B X [ACXcol] by fol H1 Collinear_DEF; A ∈ Open (X, B) ∨ X ∈ Open (A, B) ∨ B ∈ Open (A, X) [3pos] by fol H2 ABCdistinct - B3' B1'; assume B ∈ Open (A, X) [ABX] by fol 3pos; B ∉ Open (C, X) [] by fol ACXcol H3 - Interval2sides2aLine ∉; fol H2 ABCdistinct ACXcol - B3' B1' ∉; qed; fol - H3 B1' TransitivityBetweenness TransitivityBetweennessVariant Reverse4Order; qed; `;; let HilbertAxiomRedundantByMoore = theorem `; ∀A B C D l. Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l ∧ D ∈ l ⇒ ¬(A = B) ∧ ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D) ⇒ ordered D A B C ∨ ordered A D B C ∨ ordered A B D C ∨ ordered A B C D ∨ ordered D A C B ∨ ordered A D C B ∨ ordered A C D B ∨ ordered A C B D ∨ ordered D C A B ∨ ordered C D A B ∨ ordered C A D B ∨ ordered C A B D proof intro_TAC ∀A B C D l, H1, H2; Collinear A B C [] by fol H1 Collinear_DEF; B ∈ Open (A, C) ∨ C ∈ Open (A, B) ∨ A ∈ Open (C, B) [] by fol H2 - B3' B1'; fol - H1 H2 FourPointsOrder; qed; `;; let InteriorTransitivity = theorem `; ∀A O B M G. G ∈ int_angle A O B ∧ M ∈ int_angle A O G ⇒ M ∈ int_angle A O B proof intro_TAC ∀A O B M G, GintAOB MintAOG; ¬Collinear A O B [AOBncol] by fol GintAOB IN_InteriorAngle; consider G' such that G' ∈ Open (A, B) ∧ G' ∈ ray O G ━ {O} [CrossG] by fol GintAOB Crossbar_THM; M ∈ int_angle A O G' [] by fol MintAOG - InteriorWellDefined; consider M' such that M' ∈ Open (A, G') ∧ M' ∈ ray O M ━ {O} [CrossM] by fol - Crossbar_THM; ¬(M' = O) ∧ ¬(M = O) ∧ Collinear O M M' ∧ O ∉ Open (M', M) [] by fol - IN_Ray IN_DIFF IN_SING; M ∈ ray O M' ━ {O} [MrOM'] by fol - CollinearSymmetry B1' ∉ IN_Ray IN_DIFF IN_SING; Open (A, G') ⊂ Open (A, B) ∧ M' ∈ Open (A, B) [] by fol CrossG IntervalsAreConvex CrossM SUBSET; M' ∈ int_angle A O B [] by fol AOBncol - ConverseCrossbar; fol - MrOM' WholeRayInterior; qed; `;; let HalfPlaneConvexNonempty = theorem `; ∀l H A. Line l ∧ A ∉ l ⇒ H = {X | X ∉ l ∧ X,A same_side l} ⇒ ¬(H = ∅) ∧ H ⊂ complement l ∧ Convex H proof intro_TAC ∀l H A, l_line, HalfPlane; ∀X. X ∈ H ⇔ X ∉ l ∧ X,A same_side l [Hdef] by simplify HalfPlane IN_ELIM_THM; H ⊂ complement l [Hsub] by fol - IN_PlaneComplement SUBSET; A,A same_side l ∧ A ∈ H [] by fol l_line SameSideReflexive Hdef; ¬(H = ∅) [Hnonempty] by fol - MEMBER_NOT_EMPTY; ∀P Q X. P ∈ H ∧ Q ∈ H ∧ X ∈ Open (P, Q) ⇒ X ∈ H [] proof intro_TAC ∀P Q X, PXQ; P ∉ l ∧ P,A same_side l ∧ Q ∉ l ∧ Q,A same_side l [PQinH] by fol - Hdef; P,Q same_side l [Psim_lQ] by fol l_line - SameSideSymmetric SameSideTransitive; X ∉ l [notXl] by fol - PXQ SameSide_DEF ∉; Open (X, P) ⊂ Open (P, Q) [] by fol PXQ IntervalsAreConvex B1' SUBSET; X,P same_side l [] by fol l_line - SUBSET Psim_lQ SameSide_DEF; X,A same_side l [] by fol l_line notXl PQinH - Psim_lQ PQinH SameSideTransitive; fol - notXl Hdef; qed; fol Hnonempty Hsub - SUBSET CONVEX; qed; `;; let PlaneSeparation = theorem `; ∀l. Line l ⇒ ∃H1 H2. H1 ∩ H2 = ∅ ∧ ¬(H1 = ∅) ∧ ¬(H2 = ∅) ∧ Convex H1 ∧ Convex H2 ∧ complement l = H1 ∪ H2 ∧ ∀P Q. P ∈ H1 ∧ Q ∈ H2 ⇒ ¬(P,Q same_side l) proof intro_TAC ∀l, l_line; consider A such that A ∉ l [notAl] by fol l_line ExistsPointOffLine; consider E such that E ∈ l ∧ ¬(A = E) [El] by fol l_line I2 - ∉; consider B such that E ∈ Open (A, B) ∧ ¬(E = B) ∧ Collinear A E B [AEB] by fol - B2' B1'; B ∉ l [notBl] by fol - l_line El ∉ notAl NonCollinearRaa CollinearSymmetry; ¬(A,B same_side l) [Ansim_lB] by fol l_line El AEB SameSide_DEF; consider H1 H2 such that H1 = {X | X ∉ l ∧ X,A same_side l} ∧ H2 = {X | X ∉ l ∧ X,B same_side l} [H12sets] by fol; ∀X. (X ∈ H1 ⇔ X ∉ l ∧ X,A same_side l) ∧ (X ∈ H2 ⇔ X ∉ l ∧ X,B same_side l) [H12def] by simplify IN_ELIM_THM -; H1 ∩ H2 = ∅ [H12disjoint] proof assume ¬(H1 ∩ H2 = ∅) [nonempty] by fol; consider V such that V ∈ H1 ∧ V ∈ H2 [VinH12] by fol - MEMBER_NOT_EMPTY IN_INTER; V ∉ l ∧ V,A same_side l ∧ V ∉ l ∧ V,B same_side l [] by fol - H12def; A,B same_side l [] by fol l_line - notAl notBl SameSideSymmetric SameSideTransitive; fol - Ansim_lB; qed; ¬(H1 = ∅) ∧ ¬(H2 = ∅) ∧ H1 ⊂ complement l ∧ H2 ⊂ complement l ∧ Convex H1 ∧ Convex H2 [H12convex_nonempty] by fol l_line notAl notBl H12sets HalfPlaneConvexNonempty; H1 ∪ H2 ⊂ complement l [H12sub] by fol H12convex_nonempty UNION_SUBSET; ∀C. C ∈ complement l ⇒ C ∈ H1 ∪ H2 [] proof intro_TAC ∀C, compl; C ∉ l [notCl] by fol - IN_PlaneComplement; C,A same_side l ∨ C,B same_side l [] by fol l_line notAl notBl - Ansim_lB AtMost2Sides; fol notCl - H12def IN_UNION; qed; complement l ⊂ H1 ∪ H2 [] by fol - SUBSET; complement l = H1 ∪ H2 [compl_H1unionH2] by fol H12sub - SUBSET_ANTISYM; ∀P Q. P ∈ H1 ∧ Q ∈ H2 ⇒ ¬(P,Q same_side l) [opp_sides] proof intro_TAC ∀P Q, both; P ∉ l ∧ P,A same_side l ∧ Q ∉ l ∧ Q,B same_side l [PH1_QH2] by fol - H12def IN; fol l_line - notAl SameSideSymmetric notBl Ansim_lB SameSideTransitive; qed; fol H12disjoint H12convex_nonempty compl_H1unionH2 opp_sides; qed; `;; let TetralateralSymmetry = theorem `; ∀A B C D. Tetralateral A B C D ⇒ Tetralateral B C D A ∧ Tetralateral A B D C proof intro_TAC ∀A B C D, H1; ¬Collinear A B D ∧ ¬Collinear B D C ∧ ¬Collinear D C A ∧ ¬Collinear C A B [TetraABCD] by fol H1 Tetralateral_DEF CollinearSymmetry; simplify H1 - Tetralateral_DEF; fol H1 Tetralateral_DEF; qed; `;; let EasyEmptyIntersectionsTetralateralHelp = theorem `; ∀A B C D. Tetralateral A B C D ⇒ Open (A, B) ∩ Open (B, C) = ∅ proof intro_TAC ∀A B C D, H1; ∀X. X ∈ Open (B, C) ⇒ X ∉ Open (A, B) [] proof intro_TAC ∀X, BXC; ¬Collinear A B C ∧ Collinear B X C ∧ ¬(X = B) [] by fol H1 Tetralateral_DEF - B1'; ¬Collinear A X B [] by fol - CollinearSymmetry B1' NoncollinearityExtendsToLine; fol - B1' ∉; qed; fol - DisjointOneNotOther; qed; `;; let EasyEmptyIntersectionsTetralateral = theorem `; ∀A B C D. Tetralateral A B C D ⇒ Open (A, B) ∩ Open (B, C) = ∅ ∧ Open (B, C) ∩ Open (C, D) = ∅ ∧ Open (C, D) ∩ Open (D, A) = ∅ ∧ Open (D, A) ∩ Open (A, B) = ∅ proof intro_TAC ∀A B C D, H1; Tetralateral B C D A ∧ Tetralateral C D A B ∧ Tetralateral D A B C [] by fol H1 TetralateralSymmetry; fol H1 - EasyEmptyIntersectionsTetralateralHelp; qed; `;; let SegmentSameSideOppositeLine = theorem `; ∀A B C D a c. Quadrilateral A B C D ⇒ Line a ∧ A ∈ a ∧ B ∈ a ⇒ Line c ∧ C ∈ c ∧ D ∈ c ⇒ A,B same_side c ∨ C,D same_side a proof intro_TAC ∀A B C D a c, H1, a_line, c_line; assume ¬(C,D same_side a) [CDnsim_a] by fol; consider G such that G ∈ a ∧ G ∈ Open (C, D) [CGD] by fol - a_line SameSide_DEF; G ∈ c ∧ Collinear G B A [Gc] by fol c_line - BetweenLinear a_line Collinear_DEF; ¬Collinear B C D ∧ ¬Collinear C D A ∧ Open (A, B) ∩ Open (C, D) = ∅ [quadABCD] by fol H1 Quadrilateral_DEF Tetralateral_DEF; A ∉ c ∧ B ∉ c ∧ ¬(A = G) ∧ ¬(B = G) [Distinct] by fol - c_line Collinear_DEF ∉ Gc; G ∉ Open (A, B) [] by fol quadABCD CGD DisjointOneNotOther; A ∈ ray G B ━ {G} [] by fol Distinct Gc - IN_Ray IN_DIFF IN_SING; fol c_line Gc Distinct - RaySameSide; qed; `;; let ConvexImpliesQuad = theorem `; ∀A B C D. Tetralateral A B C D ⇒ C ∈ int_angle D A B ∧ D ∈ int_angle A B C ⇒ Quadrilateral A B C D proof intro_TAC ∀A B C D, H1, H2; ¬(A = B) ∧ ¬(B = C) ∧ ¬(A = D) [TetraABCD] by fol H1 Tetralateral_DEF; consider a such that Line a ∧ A ∈ a ∧ B ∈ a [a_line] by fol TetraABCD I1; consider b such that Line b ∧ B ∈ b ∧ C ∈ b [b_line] by fol TetraABCD I1; consider d such that Line d ∧ D ∈ d ∧ A ∈ d [d_line] by fol TetraABCD I1; Open (B, C) ⊂ b ∧ Open (A, B) ⊂ a [BCbABa] by fol b_line a_line BetweenLinear SUBSET; D,A same_side b ∧ C,D same_side a [] by fol H2 a_line b_line d_line InteriorUse; b ∩ Open (D, A) = ∅ ∧ a ∩ Open (C, D) = ∅ [] by fol - b_line SameSide_DEF IN_INTER MEMBER_NOT_EMPTY; fol H1 BCbABa - INTER_TENSOR SUBSET_REFL SUBSET_EMPTY Quadrilateral_DEF; qed; `;; let DiagonalsIntersectImpliesConvexQuad = theorem `; ∀A B C D G. ¬Collinear B C D ⇒ G ∈ Open (A, C) ∧ G ∈ Open (B, D) ⇒ ConvexQuadrilateral A B C D proof intro_TAC ∀A B C D G, BCDncol, DiagInt; ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D) ∧ ¬(C = A) ∧ ¬(A = G) ∧ ¬(D = G) ∧ ¬(B = G) [Distinct] by fol BCDncol NonCollinearImpliesDistinct DiagInt B1'; Collinear A G C ∧ Collinear B G D [Gcols] by fol DiagInt B1'; ¬Collinear C D G ∧ ¬Collinear B C G [Gncols] by fol BCDncol CollinearSymmetry Distinct Gcols NoncollinearityExtendsToLine; ¬Collinear C D A [CDAncol] by fol - CollinearSymmetry Distinct Gcols NoncollinearityExtendsToLine; ¬Collinear A B C ∧ ¬Collinear D A G [ABCncol] by fol Gncols - CollinearSymmetry Distinct Gcols NoncollinearityExtendsToLine; ¬Collinear D A B [DABncol] by fol - CollinearSymmetry Distinct Gcols NoncollinearityExtendsToLine; ¬(A = B) ∧ ¬(A = D) [] by fol DABncol NonCollinearImpliesDistinct; Tetralateral A B C D [TetraABCD] by fol Distinct - BCDncol CDAncol DABncol ABCncol Tetralateral_DEF; A ∈ ray C G ━ {C} ∧ B ∈ ray D G ━ {D} ∧ C ∈ ray A G ━ {A} ∧ D ∈ ray B G ━ {B} [ArCG] by fol DiagInt B1' IntervalRayEZ; G ∈ int_angle B C D ∧ G ∈ int_angle C D A ∧ G ∈ int_angle D A B ∧ G ∈ int_angle A B C [] by fol BCDncol CDAncol DABncol ABCncol DiagInt B1' ConverseCrossbar; A ∈ int_angle B C D ∧ B ∈ int_angle C D A ∧ C ∈ int_angle D A B ∧ D ∈ int_angle A B C [] by fol - ArCG WholeRayInterior; fol TetraABCD - ConvexImpliesQuad ConvexQuad_DEF; qed; `;; let DoubleNotSimImpliesDiagonalsIntersect = theorem `; ∀A B C D l m. Line l ∧ A ∈ l ∧ C ∈ l ⇒ Line m ∧ B ∈ m ∧ D ∈ m ⇒ Tetralateral A B C D ⇒ ¬(B,D same_side l) ⇒ ¬(A,C same_side m) ⇒ (∃G. G ∈ Open (A, C) ∩ Open (B, D)) ∧ ConvexQuadrilateral A B C D proof intro_TAC ∀A B C D l m, l_line, m_line, H1, H2, H3; ¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B [TetraABCD] by fol H1 Tetralateral_DEF; consider G such that G ∈ Open (A, C) ∧ G ∈ m [AGC] by fol H3 m_line SameSide_DEF; G ∈ l [Gl] by fol l_line - BetweenLinear; A ∉ m ∧ B ∉ l ∧ D ∉ l [] by fol TetraABCD m_line l_line Collinear_DEF ∉; ¬(l = m) ∧ B ∈ m ━ {G} ∧ D ∈ m ━ {G} [BDm_G] by fol - l_line ∉ m_line Gl IN_DIFF IN_SING; l ∩ m = {G} [] by fol l_line m_line - Gl AGC I1Uniqueness; G ∈ Open (B, D) [] by fol l_line m_line - BDm_G H2 EquivIntersection ∉; fol AGC - IN_INTER TetraABCD DiagonalsIntersectImpliesConvexQuad; qed; `;; let ConvexQuadImpliesDiagonalsIntersect = theorem `; ∀A B C D l m. Line l ∧ A ∈ l ∧ C ∈ l ⇒ Line m ∧ B ∈ m ∧ D ∈ m ⇒ ConvexQuadrilateral A B C D ⇒ ¬(B,D same_side l) ∧ ¬(A,C same_side m) ∧ (∃G. G ∈ Open (A, C) ∩ Open (B, D)) ∧ ¬Quadrilateral A B D C proof intro_TAC ∀A B C D l m, l_line, m_line, ConvQuadABCD; Tetralateral A B C D ∧ A ∈ int_angle B C D ∧ D ∈ int_angle A B C [convquadABCD] by fol ConvQuadABCD ConvexQuad_DEF Quadrilateral_DEF; ¬(B,D same_side l) ∧ ¬(A,C same_side m) [opp_sides] by fol convquadABCD l_line m_line InteriorOpposite; consider G such that G ∈ Open (A, C) ∩ Open (B, D) [Gexists] by fol l_line m_line convquadABCD opp_sides DoubleNotSimImpliesDiagonalsIntersect; ¬(Open (B, D) ∩ Open (C, A) = ∅) [] by fol - IN_INTER B1' MEMBER_NOT_EMPTY; ¬Quadrilateral A B D C [] by fol - Quadrilateral_DEF; fol opp_sides Gexists -; qed; `;; let FourChoicesTetralateralHelp = theorem `; ∀A B C D. Tetralateral A B C D ∧ C ∈ int_angle D A B ⇒ ConvexQuadrilateral A B C D ∨ C ∈ int_triangle D A B proof intro_TAC ∀A B C D, H1 CintDAB; ¬(A = B) ∧ ¬(D = A) ∧ ¬(A = C) ∧ ¬(B = D) ∧ ¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B [TetraABCD] by fol H1 Tetralateral_DEF; consider a d such that Line a ∧ A ∈ a ∧ B ∈ a ∧ Line d ∧ D ∈ d ∧ A ∈ d [ad_line] by fol TetraABCD I1; consider l m such that Line l ∧ A ∈ l ∧ C ∈ l ∧ Line m ∧ B ∈ m ∧ D ∈ m [lm_line] by fol TetraABCD I1; C ∉ a ∧ C ∉ d ∧ B ∉ l ∧ D ∉ l ∧ A ∉ m ∧ C ∉ m ∧ ¬Collinear A B D ∧ ¬Collinear B D A [tetra'] by fol TetraABCD ad_line lm_line Collinear_DEF ∉ CollinearSymmetry; ¬(B,D same_side l) [Bsim_lD] by fol CintDAB lm_line InteriorOpposite - SameSideSymmetric; assume A,C same_side m [same] by fol lm_line H1 Bsim_lD DoubleNotSimImpliesDiagonalsIntersect; C,A same_side m [Csim_mA] by fol lm_line - tetra' SameSideSymmetric; C,B same_side d ∧ C,D same_side a [] by fol ad_line CintDAB InteriorUse; C ∈ int_angle A B D ∧ C ∈ int_angle B D A [] by fol tetra' ad_line lm_line Csim_mA - IN_InteriorAngle; fol CintDAB - IN_InteriorTriangle; qed; `;; let FourChoicesTetralateralHelp = theorem `; ∀A B C D. Tetralateral A B C D ∧ C ∈ int_angle D A B ⇒ ConvexQuadrilateral A B C D ∨ C ∈ int_triangle D A B proof intro_TAC ∀A B C D, H1 CintDAB; ¬(A = B) ∧ ¬(D = A) ∧ ¬(A = C) ∧ ¬(B = D) ∧ ¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B [TetraABCD] by fol H1 Tetralateral_DEF; consider a d such that Line a ∧ A ∈ a ∧ B ∈ a ∧ Line d ∧ D ∈ d ∧ A ∈ d [ad_line] by fol TetraABCD I1; consider l m such that Line l ∧ A ∈ l ∧ C ∈ l ∧ Line m ∧ B ∈ m ∧ D ∈ m [lm_line] by fol TetraABCD I1; C ∉ a ∧ C ∉ d ∧ B ∉ l ∧ D ∉ l ∧ A ∉ m ∧ C ∉ m ∧ ¬Collinear A B D ∧ ¬Collinear B D A [tetra'] by fol TetraABCD ad_line lm_line Collinear_DEF ∉ CollinearSymmetry; ¬(B,D same_side l) [Bsim_lD] by fol CintDAB lm_line InteriorOpposite - SameSideSymmetric; assume A,C same_side m [same] by fol lm_line H1 Bsim_lD DoubleNotSimImpliesDiagonalsIntersect; C,A same_side m [Csim_mA] by fol lm_line - tetra' SameSideSymmetric; C,B same_side d ∧ C,D same_side a [] by fol ad_line CintDAB InteriorUse; C ∈ int_angle A B D ∧ C ∈ int_angle B D A [] by fol tetra' ad_line lm_line Csim_mA - IN_InteriorAngle; fol CintDAB - IN_InteriorTriangle; qed; `;; let InteriorTriangleSymmetry = theorem `; ∀A B C P. P ∈ int_triangle A B C ⇒ P ∈ int_triangle B C A by fol IN_InteriorTriangle`;; let FourChoicesTetralateral = theorem `; ∀A B C D a. Tetralateral A B C D ⇒ Line a ∧ A ∈ a ∧ B ∈ a ⇒ C,D same_side a ⇒ ConvexQuadrilateral A B C D ∨ ConvexQuadrilateral A B D C ∨ D ∈ int_triangle A B C ∨ C ∈ int_triangle D A B proof intro_TAC ∀A B C D a, H1, a_line, Csim_aD; ¬(A = B) ∧ ¬Collinear A B C ∧ ¬Collinear C D A ∧ ¬Collinear D A B ∧ Tetralateral A B D C [TetraABCD] by fol H1 Tetralateral_DEF TetralateralSymmetry; ¬Collinear C A D ∧ C ∉ a ∧ D ∉ a [notCDa] by fol TetraABCD CollinearSymmetry a_line Collinear_DEF ∉; C ∈ int_angle D A B ∨ D ∈ int_angle C A B [] by fol TetraABCD a_line - Csim_aD AngleOrdering; case_split CintDAB | DintCAB by fol -; suppose C ∈ int_angle D A B; ConvexQuadrilateral A B C D ∨ C ∈ int_triangle D A B [] by fol H1 - FourChoicesTetralateralHelp; fol -; end; suppose D ∈ int_angle C A B; ConvexQuadrilateral A B D C ∨ D ∈ int_triangle C A B [] by fol TetraABCD - FourChoicesTetralateralHelp; fol - InteriorTriangleSymmetry; end; qed; `;; let QuadrilateralSymmetry = theorem `; ∀A B C D. Quadrilateral A B C D ⇒ Quadrilateral B C D A ∧ Quadrilateral C D A B ∧ Quadrilateral D A B C by fol Quadrilateral_DEF INTER_COMM TetralateralSymmetry Quadrilateral_DEF`;; let FiveChoicesQuadrilateral = theorem `; ∀A B C D l m. Quadrilateral A B C D ⇒ Line l ∧ A ∈ l ∧ C ∈ l ∧ Line m ∧ B ∈ m ∧ D ∈ m ⇒ (ConvexQuadrilateral A B C D ∨ A ∈ int_triangle B C D ∨ B ∈ int_triangle C D A ∨ C ∈ int_triangle D A B ∨ D ∈ int_triangle A B C) ∧ (¬(B,D same_side l) ∨ ¬(A,C same_side m)) proof intro_TAC ∀A B C D l m, H1, lm_line; Tetralateral A B C D [H1Tetra] by fol H1 Quadrilateral_DEF; ¬(A = B) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(C = D) [Distinct] by fol H1Tetra Tetralateral_DEF; consider a c such that Line a ∧ A ∈ a ∧ B ∈ a ∧ Line c ∧ C ∈ c ∧ D ∈ c [ac_line] by fol Distinct I1; Quadrilateral C D A B ∧ Tetralateral C D A B [tetraCDAB] by fol H1 QuadrilateralSymmetry Quadrilateral_DEF; ¬ConvexQuadrilateral A B D C ∧ ¬ConvexQuadrilateral C D B A [notconvquad] by fol Distinct I1 H1 - ConvexQuadImpliesDiagonalsIntersect; ConvexQuadrilateral A B C D ∨ A ∈ int_triangle B C D ∨ B ∈ int_triangle C D A ∨ C ∈ int_triangle D A B ∨ D ∈ int_triangle A B C [5choices] proof A,B same_side c ∨ C,D same_side a [2pos] by fol H1 ac_line SegmentSameSideOppositeLine; assume A,B same_side c [Asym_cB] by fol 2pos H1Tetra ac_line notconvquad FourChoicesTetralateral; ConvexQuadrilateral C D A B ∨ B ∈ int_triangle C D A ∨ A ∈ int_triangle B C D [X1] by fol tetraCDAB ac_line - notconvquad FourChoicesTetralateral; fol - QuadrilateralSymmetry ConvexQuad_DEF; qed; ¬(B,D same_side l) ∨ ¬(A,C same_side m) [] by fol - lm_line ConvexQuadImpliesDiagonalsIntersect IN_InteriorTriangle InteriorAngleSymmetry InteriorOpposite; fol 5choices -; qed; `;; let IntervalSymmetry = theorem `; ∀A B. Open (A, B) = Open (B, A) by fol B1' EXTENSION`;; let SegmentSymmetry = theorem `; ∀A B. seg A B = seg B A by fol Segment_DEF INSERT_COMM IntervalSymmetry`;; let C1OppositeRay = theorem `; ∀O P s. Segment s ∧ ¬(O = P) ⇒ ∃Q. P ∈ Open (O, Q) ∧ seg P Q ≡ s proof intro_TAC ∀O P s, H1; consider Z such that P ∈ Open (O, Z) ∧ ¬(P = Z) [OPZ] by fol H1 B2' B1'; consider Q such that Q ∈ ray P Z ━ {P} ∧ seg P Q ≡ s [PQeq] by fol H1 - C1; P ∈ Open (Q, O) [] by fol OPZ - OppositeRaysIntersect1pointHelp; fol - B1' PQeq; qed; `;; let OrderedCongruentSegments = theorem `; ∀A B C D G. ¬(A = C) ∧ ¬(D = G) ⇒ seg A C ≡ seg D G ⇒ B ∈ Open (A, C) ⇒ ∃E. E ∈ Open (D, G) ∧ seg A B ≡ seg D E proof intro_TAC ∀A B C D G, H1, H2, H3; Segment (seg A B) ∧ Segment (seg A C) ∧ Segment (seg B C) ∧ Segment (seg D G) [segs] by fol H3 B1' H1 SEGMENT; seg D G ≡ seg A C [DGeqAC] by fol - H2 C2Symmetric; consider E such that E ∈ ray D G ━ {D} ∧ seg D E ≡ seg A B [DEeqAB] by fol segs H1 C1; ¬(E = D) ∧ Collinear D E G ∧ D ∉ Open (G, E) [ErDG] by fol - IN_DIFF IN_SING IN_Ray B1' CollinearSymmetry ∉; consider G' such that E ∈ Open (D, G') ∧ seg E G' ≡ seg B C [DEG'] by fol segs - C1OppositeRay; seg D G' ≡ seg A C [DG'eqAC] by fol DEG' H3 DEeqAB C3; Segment (seg D G') ∧ Segment (seg D E) [] by fol DEG' B1' SEGMENT; seg A C ≡ seg D G' ∧ seg A B ≡ seg D E [ABeqDE] by fol segs - DG'eqAC C2Symmetric DEeqAB; G' ∈ ray D E ━ {D} ∧ G ∈ ray D E ━ {D} [] by fol DEG' IntervalRayEZ ErDG IN_Ray H1 IN_DIFF IN_SING; G' = G [] by fol ErDG segs - DG'eqAC DGeqAC C1; fol - DEG' ABeqDE; qed; `;; let SegmentSubtraction = theorem `; ∀A B C A' B' C'. B ∈ Open (A, C) ∧ B' ∈ Open (A', C') ⇒ seg A B ≡ seg A' B' ⇒ seg A C ≡ seg A' C' ⇒ seg B C ≡ seg B' C' proof intro_TAC ∀A B C A' B' C', H1, H2, H3; ¬(A = B) ∧ ¬(A = C) ∧ Collinear A B C ∧ Segment (seg A' C') ∧ Segment (seg B' C') [Distinct] by fol H1 B1' SEGMENT; consider Q such that B ∈ Open (A, Q) ∧ seg B Q ≡ seg B' C' [defQ] by fol - C1OppositeRay; seg A Q ≡ seg A' C' [AQ_A'C'] by fol H1 H2 - C3; ¬(A = Q) ∧ Collinear A B Q ∧ A ∉ Open (C, B) ∧ A ∉ Open (Q, B) [] proof simplify defQ B1' ∉; fol defQ B1' H1 B3'; qed; C ∈ ray A B ━ {A} ∧ Q ∈ ray A B ━ {A} [] by fol Distinct - IN_Ray IN_DIFF IN_SING; fol defQ Distinct - AQ_A'C' H3 C1; qed; `;; let SegmentOrderingUse = theorem `; ∀A B s. Segment s ∧ ¬(A = B) ⇒ s <__ seg A B ⇒ ∃G. G ∈ Open (A, B) ∧ s ≡ seg A G proof intro_TAC ∀A B s, H1, H2; consider A' B' G' such that seg A B = seg A' B' ∧ G' ∈ Open (A', B') ∧ s ≡ seg A' G' [H2'] by fol H2 SegmentOrdering_DEF; ¬(A' = G') ∧ ¬(A' = B') ∧ seg A' B' ≡ seg A B [A'notB'G'] by fol - B1' H1 SEGMENT C2Reflexive; consider G such that G ∈ Open (A, B) ∧ seg A' G' ≡ seg A G [AGB] by fol A'notB'G' H1 H2' - OrderedCongruentSegments; s ≡ seg A G [] by fol H1 A'notB'G' - B1' SEGMENT H2' C2Transitive; fol AGB -; qed; `;; let SegmentTrichotomy1 = theorem `; ∀s t. s <__ t ⇒ ¬(s ≡ t) proof intro_TAC ∀s t, H1; consider A B G such that Segment s ∧ t = seg A B ∧ G ∈ Open (A, B) ∧ s ≡ seg A G [H1'] by fol H1 SegmentOrdering_DEF; ¬(A = G) ∧ ¬(A = B) ∧ ¬(G = B) [Distinct] by fol H1' B1'; seg A B ≡ seg A B [ABrefl] by fol - SEGMENT C2Reflexive; G ∈ ray A B ━ {A} ∧ B ∈ ray A B ━ {A} [] by fol H1' IntervalRay EndpointInRay Distinct IN_DIFF IN_SING; ¬(seg A G ≡ seg A B) ∧ seg A G ≡ s [] by fol Distinct SEGMENT - ABrefl C1 H1' C2Symmetric; fol Distinct H1' SEGMENT - C2Transitive; qed; `;; let SegmentTrichotomy2 = theorem `; ∀s t u. s <__ t ∧ Segment u ∧ t ≡ u ⇒ s <__ u proof intro_TAC ∀s t u, H1 H2; consider A B P such that Segment s ∧ t = seg A B ∧ P ∈ Open (A, B) ∧ s ≡ seg A P [H1'] by fol H1 SegmentOrdering_DEF; ¬(A = B) ∧ ¬(A = P) [Distinct] by fol - B1'; consider X Y such that u = seg X Y ∧ ¬(X = Y) [uXY] by fol H2 SEGMENT; consider Q such that Q ∈ Open (X, Y) ∧ seg A P ≡ seg X Q [XQY] by fol Distinct - H1' H2 OrderedCongruentSegments; ¬(X = Q) ∧ s ≡ seg X Q [] by fol - B1' H1' Distinct SEGMENT XQY C2Transitive; fol H1' uXY XQY - SegmentOrdering_DEF; qed; `;; let SegmentOrderTransitivity = theorem `; ∀s t u. s <__ t ∧ t <__ u ⇒ s <__ u proof intro_TAC ∀s t u, H1; consider A B G such that u = seg A B ∧ G ∈ Open (A, B) ∧ t ≡ seg A G [H1'] by fol H1 SegmentOrdering_DEF; ¬(A = B) ∧ ¬(A = G) ∧ Segment s [Distinct] by fol H1' B1' H1 SegmentOrdering_DEF; s <__ seg A G [] by fol H1 H1' Distinct SEGMENT SegmentTrichotomy2; consider F such that F ∈ Open (A, G) ∧ s ≡ seg A F [AFG] by fol Distinct - SegmentOrderingUse; F ∈ Open (A, B) [] by fol H1' IntervalsAreConvex - SUBSET; fol Distinct H1' - AFG SegmentOrdering_DEF; qed; `;; let SegmentTrichotomy = theorem `; ∀s t. Segment s ∧ Segment t ⇒ (s ≡ t ∨ s <__ t ∨ t <__ s) ∧ ¬(s ≡ t ∧ s <__ t) ∧ ¬(s ≡ t ∧ t <__ s) ∧ ¬(s <__ t ∧ t <__ s) proof intro_TAC ∀s t, H1; ¬(s ≡ t ∧ s <__ t) [Not12] by fol - SegmentTrichotomy1; ¬(s ≡ t ∧ t <__ s) [Not13] by fol H1 - SegmentTrichotomy1 C2Symmetric; ¬(s <__ t ∧ t <__ s) [Not23] by fol H1 - SegmentOrderTransitivity SegmentTrichotomy1 H1 C2Reflexive; consider O P such that s = seg O P ∧ ¬(O = P) [sOP] by fol H1 SEGMENT; consider Q such that Q ∈ ray O P ━ {O} ∧ seg O Q ≡ t [QrOP] by fol H1 - C1; O ∉ Open (Q, P) ∧ Collinear O P Q ∧ ¬(O = Q) [notQOP] by fol - IN_DIFF IN_SING IN_Ray; s ≡ seg O P ∧ t ≡ seg O Q ∧ seg O Q ≡ t ∧ seg O P ≡ s [stOPQ] by fol H1 sOP - SEGMENT QrOP C2Reflexive C2Symmetric; assume ¬(Q = P) [notQP] by fol stOPQ sOP QrOP Not12 Not13 Not23; P ∈ Open (O, Q) ∨ Q ∈ Open (O, P) [] by fol sOP - notQOP B3' B1' ∉; s <__ seg O Q ∨ t <__ seg O P [] by fol H1 - stOPQ SegmentOrdering_DEF; s <__ t ∨ t <__ s [] by fol - H1 stOPQ SegmentTrichotomy2; fol - Not12 Not13 Not23; qed; `;; let C4Uniqueness = theorem `; ∀O A B P l. Line l ∧ O ∈ l ∧ A ∈ l ∧ ¬(O = A) ⇒ B ∉ l ∧ P ∉ l ∧ P,B same_side l ⇒ ∡ A O P ≡ ∡ A O B ⇒ ray O B = ray O P proof intro_TAC ∀O A B P l, H1, H2, H3; ¬(O = B) ∧ ¬(O = P) ∧ Ray (ray O B) ∧ Ray (ray O P) [Distinct] by fol H2 H1 ∉ RAY; ¬Collinear A O B ∧ B,B same_side l [Bsim_lB] by fol H1 H2 I1 Collinear_DEF ∉ SameSideReflexive; Angle (∡ A O B) ∧ ∡ A O B ≡ ∡ A O B [] by fol - ANGLE C5Reflexive; fol - H1 H2 Distinct Bsim_lB H3 C4; qed; `;; let AngleSymmetry = theorem `; ∀A O B. ∡ A O B = ∡ B O A by fol Angle_DEF UNION_COMM`;; let TriangleCongSymmetry = theorem `; ∀A B C A' B' C'. A,B,C ≅ A',B',C' ⇒ A,C,B ≅ A',C',B' ∧ B,A,C ≅ B',A',C' ∧ B,C,A ≅ B',C',A' ∧ C,A,B ≅ C',A',B' ∧ C,B,A ≅ C',B',A' proof intro_TAC ∀A B C A' B' C', H1; ¬Collinear A B C ∧ ¬Collinear A' B' C' ∧ seg A B ≡ seg A' B' ∧ seg A C ≡ seg A' C' ∧ seg B C ≡ seg B' C' ∧ ∡ A B C ≡ ∡ A' B' C' ∧ ∡ B C A ≡ ∡ B' C' A' ∧ ∡ C A B ≡ ∡ C' A' B' [H1'] by fol H1 TriangleCong_DEF; seg B A ≡ seg B' A' ∧ seg C A ≡ seg C' A' ∧ seg C B ≡ seg C' B' [segments] by fol H1' SegmentSymmetry; ∡ C B A ≡ ∡ C' B' A' ∧ ∡ A C B ≡ ∡ A' C' B' ∧ ∡ B A C ≡ ∡ B' A' C' [] by fol H1' AngleSymmetry; fol CollinearSymmetry H1' segments - TriangleCong_DEF; qed; `;; let SAS = theorem `; ∀A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C' ⇒ seg B A ≡ seg B' A' ∧ seg B C ≡ seg B' C' ⇒ ∡ A B C ≡ ∡ A' B' C' ⇒ A,B,C ≅ A',B',C' proof intro_TAC ∀A B C A' B' C', H1, H2, H3; ¬(A = B) ∧ ¬(A = C) ∧ ¬(A' = C') [Distinct] by fol H1 NonCollinearImpliesDistinct; consider c such that Line c ∧ A ∈ c ∧ B ∈ c [c_line] by fol Distinct I1; C ∉ c [notCc] by fol H1 c_line Collinear_DEF ∉; ∡ B C A ≡ ∡ B' C' A' [BCAeq] by fol H1 H2 H3 C6; ∡ B A C ≡ ∡ B' A' C' [BACeq] by fol H1 CollinearSymmetry H2 H3 AngleSymmetry C6; consider Y such that Y ∈ ray A C ━ {A} ∧ seg A Y ≡ seg A' C' [YrAC] by fol Distinct SEGMENT C1; Y ∉ c ∧ Y,C same_side c [Ysim_cC] by fol c_line notCc - RaySameSide; ¬Collinear Y A B [YABncol] by fol Distinct c_line - NonCollinearRaa CollinearSymmetry; ray A Y = ray A C ∧ ∡ Y A B = ∡ C A B [] by fol Distinct YrAC RayWellDefined Angle_DEF; ∡ Y A B ≡ ∡ C' A' B' [] by fol BACeq - AngleSymmetry; ∡ A B Y ≡ ∡ A' B' C' [ABYeq] by fol YABncol H1 CollinearSymmetry H2 SegmentSymmetry YrAC - C6; Angle (∡ A B C) ∧ Angle (∡ A' B' C') ∧ Angle (∡ A B Y) [] by fol H1 CollinearSymmetry YABncol ANGLE; ∡ A B Y ≡ ∡ A B C [ABYeqABC] by fol - ABYeq - H3 C5Symmetric C5Transitive; ray B C = ray B Y ∧ ¬(Y = B) ∧ Y ∈ ray B C [] by fol c_line Distinct notCc Ysim_cC ABYeqABC C4Uniqueness ∉ - EndpointInRay; Collinear B C Y ∧ Collinear A C Y [ABCYcol] by fol - YrAC IN_DIFF IN_SING IN_Ray; C = Y [] by fol H1 ABCYcol TwoSidesTriangle1Intersection; seg A C ≡ seg A' C' [] by fol - YrAC; fol H1 H2 SegmentSymmetry - H3 BCAeq BACeq AngleSymmetry TriangleCong_DEF; qed; `;; let ASA = theorem `; ∀A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C' ⇒ seg A C ≡ seg A' C' ⇒ ∡ C A B ≡ ∡ C' A' B' ∧ ∡ B C A ≡ ∡ B' C' A' ⇒ A,B,C ≅ A',B',C' proof intro_TAC ∀A B C A' B' C', H1, H2, H3; ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ ¬(A' = B') ∧ ¬(A' = C') ∧ ¬(B' = C') ∧ Segment (seg C' B') [Distinct] by fol H1 NonCollinearImpliesDistinct SEGMENT; consider D such that D ∈ ray C B ━ {C} ∧ seg C D ≡ seg C' B' ∧ ¬(D = C) [DrCB] by fol - C1 IN_DIFF IN_SING; Collinear C B D [CBDcol] by fol - IN_DIFF IN_SING IN_Ray; ¬Collinear D C A ∧ Angle (∡ C A D) ∧ Angle (∡ C' A' B') ∧ Angle (∡ C A B) [DCAncol] by fol H1 CollinearSymmetry - DrCB NoncollinearityExtendsToLine H1 ANGLE; consider b such that Line b ∧ A ∈ b ∧ C ∈ b [b_line] by fol Distinct I1; B ∉ b ∧ ¬(D = A) [notBb] by fol H1 - Collinear_DEF ∉ DCAncol NonCollinearImpliesDistinct; D ∉ b ∧ D,B same_side b [Dsim_bB] by fol b_line - DrCB RaySameSide; ray C D = ray C B [] by fol Distinct DrCB RayWellDefined; ∡ D C A ≡ ∡ B' C' A' [] by fol H3 - Angle_DEF; D,C,A ≅ B',C',A' [] by fol DCAncol H1 CollinearSymmetry DrCB H2 SegmentSymmetry - SAS; ∡ C A D ≡ ∡ C' A' B' [] by fol - TriangleCong_DEF; ∡ C A D ≡ ∡ C A B [] by fol DCAncol - H3 C5Symmetric C5Transitive; ray A B = ray A D ∧ D ∈ ray A B [] by fol b_line Distinct notBb Dsim_bB - C4Uniqueness notBb EndpointInRay; Collinear A B D [ABDcol] by fol - IN_Ray; D = B [] by fol H1 CBDcol ABDcol CollinearSymmetry TwoSidesTriangle1Intersection; seg C B ≡ seg C' B' [] by fol - DrCB; B,C,A ≅ B',C',A' [] by fol H1 CollinearSymmetry - H2 SegmentSymmetry H3 SAS; fol - TriangleCongSymmetry; qed; `;; let AngleSubtraction = theorem `; ∀A O B A' O' B' G G'. G ∈ int_angle A O B ∧ G' ∈ int_angle A' O' B' ⇒ ∡ A O B ≡ ∡ A' O' B' ∧ ∡ A O G ≡ ∡ A' O' G' ⇒ ∡ G O B ≡ ∡ G' O' B' proof intro_TAC ∀A O B A' O' B' G G', H1, H2; ¬Collinear A O B ∧ ¬Collinear A' O' B' [A'O'B'ncol] by fol H1 IN_InteriorAngle; ¬(A = O) ∧ ¬(O = B) ∧ ¬(G = O) ∧ ¬(G' = O') ∧ Segment (seg O' A') ∧ Segment (seg O' B') [Distinct] by fol - NonCollinearImpliesDistinct H1 InteriorEZHelp SEGMENT; consider X Y such that X ∈ ray O A ━ {O} ∧ seg O X ≡ seg O' A' ∧ Y ∈ ray O B ━ {O} ∧ seg O Y ≡ seg O' B' [XYexists] by fol - C1; G ∈ int_angle X O Y [GintXOY] by fol H1 XYexists InteriorWellDefined InteriorAngleSymmetry; consider H H' such that H ∈ Open (X, Y) ∧ H ∈ ray O G ━ {O} ∧ H' ∈ Open (A', B') ∧ H' ∈ ray O' G' ━ {O'} [Hexists] by fol - H1 Crossbar_THM; H ∈ int_angle X O Y ∧ H' ∈ int_angle A' O' B' [HintXOY] by fol GintXOY H1 - WholeRayInterior; ray O X = ray O A ∧ ray O Y = ray O B ∧ ray O H = ray O G ∧ ray O' H' = ray O' G' [Orays] by fol Distinct XYexists Hexists RayWellDefined; ∡ X O Y ≡ ∡ A' O' B' ∧ ∡ X O H ≡ ∡ A' O' H' [H2'] by fol H2 - Angle_DEF; ¬Collinear X O Y [] by fol GintXOY IN_InteriorAngle; X,O,Y ≅ A',O',B' [] by fol - A'O'B'ncol H2' XYexists SAS; seg X Y ≡ seg A' B' ∧ ∡ O Y X ≡ ∡ O' B' A' ∧ ∡ Y X O ≡ ∡ B' A' O' [XOYcong] by fol - TriangleCong_DEF; ¬Collinear O H X ∧ ¬Collinear O' H' A' ∧ ¬Collinear O Y H ∧ ¬Collinear O' B' H' [OHXncol] by fol HintXOY InteriorEZHelp InteriorAngleSymmetry CollinearSymmetry; ray X H = ray X Y ∧ ray A' H' = ray A' B' ∧ ray Y H = ray Y X ∧ ray B' H' = ray B' A' [Hrays] by fol Hexists B1' IntervalRay; ∡ H X O ≡ ∡ H' A' O' [] by fol XOYcong - Angle_DEF; O,H,X ≅ O',H',A' [] by fol OHXncol XYexists - H2' ASA; seg X H ≡ seg A' H' [] by fol - TriangleCong_DEF SegmentSymmetry; seg H Y ≡ seg H' B' [] by fol Hexists XOYcong - SegmentSubtraction; seg Y O ≡ seg B' O' ∧ seg Y H ≡ seg B' H' [YHeq] by fol XYexists - SegmentSymmetry; ∡ O Y H ≡ ∡ O' B' H' [] by fol XOYcong Hrays Angle_DEF; O,Y,H ≅ O',B',H' [] by fol OHXncol YHeq - SAS; ∡ H O Y ≡ ∡ H' O' B' [] by fol - TriangleCong_DEF; fol - Orays Angle_DEF; qed; `;; let OrderedCongruentAngles = theorem `; ∀A O B A' O' B' G. ¬Collinear A' O' B' ∧ ∡ A O B ≡ ∡ A' O' B' ∧ G ∈ int_angle A O B ⇒ ∃G'. G' ∈ int_angle A' O' B' ∧ ∡ A O G ≡ ∡ A' O' G' proof intro_TAC ∀A O B A' O' B' G, H1 H2 H3; ¬Collinear A O B [AOBncol] by fol H3 IN_InteriorAngle; ¬(A = O) ∧ ¬(O = B) ∧ ¬(A' = B') ∧ ¬(O = G) ∧ Segment (seg O' A') ∧ Segment (seg O' B') [Distinct] by fol AOBncol H1 NonCollinearImpliesDistinct H3 InteriorEZHelp SEGMENT; consider X Y such that X ∈ ray O A ━ {O} ∧ seg O X ≡ seg O' A' ∧ Y ∈ ray O B ━ {O} ∧ seg O Y ≡ seg O' B' [defXY] by fol - C1; G ∈ int_angle X O Y [GintXOY] by fol H3 - InteriorWellDefined InteriorAngleSymmetry; ¬Collinear X O Y ∧ ¬(X = Y) [XOYncol] by fol - IN_InteriorAngle NonCollinearImpliesDistinct; consider H such that H ∈ Open (X, Y) ∧ H ∈ ray O G ━ {O} [defH] by fol GintXOY Crossbar_THM; ray O X = ray O A ∧ ray O Y = ray O B ∧ ray O H = ray O G [Orays] by fol Distinct defXY - RayWellDefined; ∡ X O Y ≡ ∡ A' O' B' [] by fol H2 - Angle_DEF; X,O,Y ≅ A',O',B' [] by fol XOYncol H1 defXY - SAS; seg X Y ≡ seg A' B' ∧ ∡ O X Y ≡ ∡ O' A' B' [YXOcong] by fol - TriangleCong_DEF AngleSymmetry; consider G' such that G' ∈ Open (A', B') ∧ seg X H ≡ seg A' G' [A'G'B'] by fol XOYncol Distinct - defH OrderedCongruentSegments; G' ∈ int_angle A' O' B' [G'intA'O'B'] by fol H1 - ConverseCrossbar; ray X H = ray X Y ∧ ray A' G' = ray A' B' [] by fol defH A'G'B' IntervalRay; ∡ O X H ≡ ∡ O' A' G' [HXOeq] by fol - Angle_DEF YXOcong; H ∈ int_angle X O Y [] by fol GintXOY defH WholeRayInterior; ¬Collinear O X H ∧ ¬Collinear O' A' G' [] by fol - G'intA'O'B' InteriorEZHelp CollinearSymmetry; O,X,H ≅ O',A',G' [] by fol - A'G'B' defXY SegmentSymmetry HXOeq SAS; ∡ X O H ≡ ∡ A' O' G' [] by fol - TriangleCong_DEF AngleSymmetry; fol G'intA'O'B' - Orays Angle_DEF; qed; `;; let AngleAddition = theorem `; ∀A O B A' O' B' G G'. G ∈ int_angle A O B ∧ G' ∈ int_angle A' O' B' ⇒ ∡ A O G ≡ ∡ A' O' G' ∧ ∡ G O B ≡ ∡ G' O' B' ⇒ ∡ A O B ≡ ∡ A' O' B' proof intro_TAC ∀A O B A' O' B' G G', H1, H2; ¬Collinear A O B ∧ ¬Collinear A' O' B' [AOBncol] by fol H1 IN_InteriorAngle; ¬(A = O) ∧ ¬(A = B) ∧ ¬(O = B) ∧ ¬(A' = O') ∧ ¬(A' = B') ∧ ¬(O' = B') ∧ ¬(G = O) [Distinct] by fol - NonCollinearImpliesDistinct H1 InteriorEZHelp; consider a b such that Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b [a_line] by fol Distinct I1; consider g such that Line g ∧ O ∈ g ∧ G ∈ g [g_line] by fol Distinct I1; G ∉ a ∧ G,B same_side a [H1'] by fol a_line H1 InteriorUse; ¬Collinear A O G ∧ ¬Collinear A' O' G' [AOGncol] by fol H1 InteriorEZHelp IN_InteriorAngle; Angle (∡ A O B) ∧ Angle (∡ A' O' B') ∧ Angle (∡ A O G) ∧ Angle (∡ A' O' G') [angles] by fol AOBncol - ANGLE; ∃! r. Ray r ∧ ∃X. ¬(O = X) ∧ r = ray O X ∧ X ∉ a ∧ X,G same_side a ∧ ∡ A O X ≡ ∡ A' O' B' [] by simplify C4 - angles Distinct a_line H1'; consider X such that X ∉ a ∧ X,G same_side a ∧ ∡ A O X ≡ ∡ A' O' B' [Xexists] by fol -; ¬Collinear A O X [AOXncol] by fol Distinct a_line Xexists NonCollinearRaa CollinearSymmetry; ∡ A' O' B' ≡ ∡ A O X [] by fol - AOBncol ANGLE Xexists C5Symmetric; consider Y such that Y ∈ int_angle A O X ∧ ∡ A' O' G' ≡ ∡ A O Y [YintAOX] by fol AOXncol - H1 OrderedCongruentAngles; ¬Collinear A O Y [] by fol - InteriorEZHelp; ∡ A O Y ≡ ∡ A O G [AOGeq] by fol - angles - ANGLE YintAOX H2 C5Transitive C5Symmetric; consider x such that Line x ∧ O ∈ x ∧ X ∈ x [x_line] by fol Distinct I1; Y ∉ a ∧ Y,X same_side a [] by fol a_line - YintAOX InteriorUse; Y ∉ a ∧ Y,G same_side a [] by fol a_line - Xexists H1' SameSideTransitive; ray O G = ray O Y [] by fol a_line Distinct H1' - AOGeq C4Uniqueness; G ∈ ray O Y ━ {O} [] by fol Distinct - EndpointInRay IN_DIFF IN_SING; G ∈ int_angle A O X [GintAOX] by fol YintAOX - WholeRayInterior; ∡ G O X ≡ ∡ G' O' B' [GOXeq] by fol - H1 Xexists H2 AngleSubtraction; ¬Collinear G O X ∧ ¬Collinear G O B ∧ ¬Collinear G' O' B' [GOXncol] by fol GintAOX H1 InteriorAngleSymmetry InteriorEZHelp CollinearSymmetry; Angle (∡ G O X) ∧ Angle (∡ G O B) ∧ Angle (∡ G' O' B') [] by fol - ANGLE; ∡ G O X ≡ ∡ G O B [G'O'Xeq] by fol angles - GOXeq C5Symmetric H2 C5Transitive; ¬(A,X same_side g) ∧ ¬(A,B same_side g) [Ansim_aXB] by fol g_line GintAOX H1 InteriorOpposite; A ∉ g ∧ B ∉ g ∧ X ∉ g [notABXg] by fol g_line AOGncol GOXncol Distinct I1 Collinear_DEF ∉; X,B same_side g [] by fol g_line - Ansim_aXB AtMost2Sides; ray O X = ray O B [] by fol g_line Distinct notABXg - G'O'Xeq C4Uniqueness; fol - Xexists Angle_DEF; qed; `;; let AngleOrderingUse = theorem `; ∀A O B α. Angle α ∧ ¬Collinear A O B ⇒ α <_ang ∡ A O B ⇒ ∃G. G ∈ int_angle A O B ∧ α ≡ ∡ A O G proof intro_TAC ∀A O B α, H1, H3; consider A' O' B' G' such that ¬Collinear A' O' B' ∧ ∡ A O B = ∡ A' O' B' ∧ G' ∈ int_angle A' O' B' ∧ α ≡ ∡ A' O' G' [H3'] by fol H3 AngleOrdering_DEF; Angle (∡ A O B) ∧ Angle (∡ A' O' B') ∧ Angle (∡ A' O' G') [angles] by fol H1 - ANGLE InteriorEZHelp; ∡ A' O' B' ≡ ∡ A O B [] by fol - H3' C5Reflexive; consider G such that G ∈ int_angle A O B ∧ ∡ A' O' G' ≡ ∡ A O G [GintAOB] by fol H1 H3' - OrderedCongruentAngles; α ≡ ∡ A O G [] by fol H1 angles - InteriorEZHelp ANGLE H3' GintAOB C5Transitive; fol - GintAOB; qed; `;; let AngleTrichotomy1 = theorem `; ∀α β. α <_ang β ⇒ ¬(α ≡ β) proof intro_TAC ∀α β, H1; assume α ≡ β [Con] by fol; consider A O B G such that Angle α ∧ ¬Collinear A O B ∧ β = ∡ A O B ∧ G ∈ int_angle A O B ∧ α ≡ ∡ A O G [H1'] by fol H1 AngleOrdering_DEF; ¬(A = O) ∧ ¬(O = B) ∧ ¬Collinear A O G [Distinct] by fol H1' NonCollinearImpliesDistinct InteriorEZHelp; consider a such that Line a ∧ O ∈ a ∧ A ∈ a [a_line] by fol Distinct I1; consider b such that Line b ∧ O ∈ b ∧ B ∈ b [b_line] by fol Distinct I1; B ∉ a [notBa] by fol a_line H1' Collinear_DEF ∉; G ∉ a ∧ G ∉ b ∧ G,B same_side a [GintAOB] by fol a_line b_line H1' InteriorUse; ∡ A O G ≡ α [] by fol H1' Distinct ANGLE C5Symmetric; ∡ A O G ≡ ∡ A O B [] by fol H1' Distinct ANGLE - Con C5Transitive; ray O B = ray O G [] by fol a_line Distinct notBa GintAOB - C4Uniqueness; G ∈ b [] by fol Distinct - EndpointInRay b_line RayLine SUBSET; fol - GintAOB ∉; qed; `;; let AngleTrichotomy2 = theorem `; ∀α β γ. α <_ang β ∧ Angle γ ∧ β ≡ γ ⇒ α <_ang γ proof intro_TAC ∀α β γ, H1 H2 H3; consider A O B G such that Angle α ∧ ¬Collinear A O B ∧ β = ∡ A O B ∧ G ∈ int_angle A O B ∧ α ≡ ∡ A O G [H1'] by fol H1 AngleOrdering_DEF; consider A' O' B' such that γ = ∡ A' O' B' ∧ ¬Collinear A' O' B' [γA'O'B'] by fol H2 ANGLE; consider G' such that G' ∈ int_angle A' O' B' ∧ ∡ A O G ≡ ∡ A' O' G' [G'intA'O'B'] by fol γA'O'B' H1' H3 OrderedCongruentAngles; ¬Collinear A O G ∧ ¬Collinear A' O' G' [ncol] by fol H1' - InteriorEZHelp; α ≡ ∡ A' O' G' [] by fol H1' ANGLE - G'intA'O'B' C5Transitive; fol H1' - ncol γA'O'B' G'intA'O'B' - AngleOrdering_DEF; qed; `;; let AngleOrderTransitivity = theorem `; ∀α β γ. α <_ang β ∧ β <_ang γ ⇒ α <_ang γ proof intro_TAC ∀α β γ, H1 H2; consider A O B G such that Angle β ∧ ¬Collinear A O B ∧ γ = ∡ A O B ∧ G ∈ int_angle A O B ∧ β ≡ ∡ A O G [H2'] by fol H2 AngleOrdering_DEF; ¬Collinear A O G [AOGncol] by fol H2' InteriorEZHelp; Angle α ∧ Angle (∡ A O G) ∧ Angle γ [angles] by fol H1 AngleOrdering_DEF H2' - ANGLE; α <_ang ∡ A O G [] by fol H1 H2' - AngleTrichotomy2; consider F such that F ∈ int_angle A O G ∧ α ≡ ∡ A O F [FintAOG] by fol angles AOGncol - AngleOrderingUse; F ∈ int_angle A O B [] by fol H2' - InteriorTransitivity; fol angles H2' - FintAOG AngleOrdering_DEF; qed; `;; let AngleTrichotomy = theorem `; ∀α β. Angle α ∧ Angle β ⇒ (α ≡ β ∨ α <_ang β ∨ β <_ang α) ∧ ¬(α ≡ β ∧ α <_ang β) ∧ ¬(α ≡ β ∧ β <_ang α) ∧ ¬(α <_ang β ∧ β <_ang α) proof intro_TAC ∀α β, H1; ¬(α ≡ β ∧ α <_ang β) [Not12] by fol AngleTrichotomy1; ¬(α ≡ β ∧ β <_ang α) [Not13] by fol H1 C5Symmetric AngleTrichotomy1; ¬(α <_ang β ∧ β <_ang α) [Not23] by fol H1 AngleOrderTransitivity AngleTrichotomy1 C5Reflexive; consider P O A such that α = ∡ P O A ∧ ¬Collinear P O A [POA] by fol H1 ANGLE; ¬(P = O) ∧ ¬(O = A) [Distinct] by fol - NonCollinearImpliesDistinct; consider a such that Line a ∧ O ∈ a ∧ A ∈ a [a_line] by fol - I1; P ∉ a [notPa] by fol - Distinct I1 POA Collinear_DEF ∉; ∃! r. Ray r ∧ ∃Q. ¬(O = Q) ∧ r = ray O Q ∧ Q ∉ a ∧ Q,P same_side a ∧ ∡ A O Q ≡ β [] by simplify H1 Distinct a_line C4 -; consider Q such that ¬(O = Q) ∧ Q ∉ a ∧ Q,P same_side a ∧ ∡ A O Q ≡ β [Qexists] by fol -; O ∉ Open (Q, P) [notQOP] by fol a_line Qexists SameSide_DEF ∉; ¬Collinear A O P [AOPncol] by fol POA CollinearSymmetry; ¬Collinear A O Q [AOQncol] by fol a_line Distinct I1 Collinear_DEF Qexists ∉; Angle (∡ A O P) ∧ Angle (∡ A O Q) [] by fol AOPncol - ANGLE; α ≡ ∡ A O P ∧ β ≡ ∡ A O Q ∧ ∡ A O P ≡ α [flip] by fol H1 - POA AngleSymmetry C5Reflexive Qexists C5Symmetric; case_split QOPcol | QOPcolncol by fol -; suppose Collinear Q O P; Collinear O P Q [] by fol - CollinearSymmetry; Q ∈ ray O P ━ {O} [] by fol Distinct - notQOP IN_Ray Qexists IN_DIFF IN_SING; ray O Q = ray O P [] by fol Distinct - RayWellDefined; ∡ P O A = ∡ A O Q [] by fol - Angle_DEF AngleSymmetry; fol - POA Qexists Not12 Not13 Not23; end; suppose ¬Collinear Q O P; P ∈ int_angle Q O A ∨ Q ∈ int_angle P O A [] by fol Distinct a_line Qexists notPa - AngleOrdering; P ∈ int_angle A O Q ∨ Q ∈ int_angle A O P [] by fol - InteriorAngleSymmetry; α <_ang ∡ A O Q ∨ β <_ang ∡ A O P [] by fol H1 AOQncol AOPncol - flip AngleOrdering_DEF; α <_ang β ∨ β <_ang α [] by fol H1 - Qexists flip AngleTrichotomy2; fol - Not12 Not13 Not23; end; qed; `;; let SupplementExists = theorem `; ∀α. Angle α ⇒ ∃α'. α suppl α' proof intro_TAC ∀α, H1; consider A O B such that α = ∡ A O B ∧ ¬Collinear A O B ∧ ¬(A = O) [def_α] by fol H1 ANGLE NonCollinearImpliesDistinct; consider A' such that O ∈ Open (A, A') [AOA'] by fol - B2'; ∡ A O B suppl ∡ A' O B [AOBsup] by fol def_α - SupplementaryAngles_DEF AngleSymmetry; fol - def_α; qed; `;; let SupplementImpliesAngle = theorem `; ∀α β. α suppl β ⇒ Angle α ∧ Angle β proof intro_TAC ∀α β, H1; consider A O B A' such that ¬Collinear A O B ∧ O ∈ Open (A, A') ∧ α = ∡ A O B ∧ β = ∡ B O A' [H1'] by fol H1 SupplementaryAngles_DEF; ¬(O = A') ∧ Collinear A O A' [Distinct] by fol - NonCollinearImpliesDistinct B1'; ¬Collinear B O A' [] by fol H1' CollinearSymmetry - NoncollinearityExtendsToLine; fol H1' - ANGLE; qed; `;; let RightImpliesAngle = theorem `; ∀α. Right α ⇒ Angle α by fol RightAngle_DEF SupplementImpliesAngle`;; let SupplementSymmetry = theorem `; ∀α β. α suppl β ⇒ β suppl α proof intro_TAC ∀α β, H1; consider A O B A' such that ¬Collinear A O B ∧ O ∈ Open (A, A') ∧ α = ∡ A O B ∧ β = ∡ B O A' [H1'] by fol H1 SupplementaryAngles_DEF; ¬(O = A') ∧ Collinear A O A' [] by fol - NonCollinearImpliesDistinct B1'; ¬Collinear A' O B [A'OBncol] by fol H1' CollinearSymmetry - NoncollinearityExtendsToLine; O ∈ Open (A', A) ∧ β = ∡ A' O B ∧ α = ∡ B O A [] by fol H1' B1' AngleSymmetry; fol A'OBncol - SupplementaryAngles_DEF; qed; `;; let SupplementsCongAnglesCong = theorem `; ∀α β α' β'. α suppl α' ∧ β suppl β' ⇒ α ≡ β ⇒ α' ≡ β' proof intro_TAC ∀α β α' β', H1, H2; consider A O B A' such that ¬Collinear A O B ∧ O ∈ Open (A, A') ∧ α = ∡ A O B ∧ α' = ∡ B O A' [def_α] by fol H1 SupplementaryAngles_DEF; ¬(A = O) ∧ ¬(O = B) ∧ ¬(A = A') ∧ ¬(O = A') ∧ Collinear A O A' [Distinctα] by fol - NonCollinearImpliesDistinct B1'; ¬Collinear B A A' ∧ ¬Collinear O A' B [BAA'ncol] by fol def_α CollinearSymmetry - NoncollinearityExtendsToLine; Segment (seg O A) ∧ Segment (seg O B) ∧ Segment (seg O A') [Osegments] by fol Distinctα SEGMENT; consider C P D C' such that ¬Collinear C P D ∧ P ∈ Open (C, C') ∧ β = ∡ C P D ∧ β' = ∡ D P C' [def_β] by fol H1 SupplementaryAngles_DEF; ¬(C = P) ∧ ¬(P = D) ∧ ¬(P = C') [Distinctβ] by fol def_β NonCollinearImpliesDistinct B1'; consider X such that X ∈ ray P C ━ {P} ∧ seg P X ≡ seg O A [defX] by fol Osegments Distinctβ C1; consider Y such that Y ∈ ray P D ━ {P} ∧ seg P Y ≡ seg O B ∧ ¬(Y = P) [defY] by fol Osegments Distinctβ C1 IN_DIFF IN_SING; consider X' such that X' ∈ ray P C' ━ {P} ∧ seg P X' ≡ seg O A' [defX'] by fol Osegments Distinctβ C1; P ∈ Open (X', C) ∧ P ∈ Open (X, X') [XPX'] by fol def_β - OppositeRaysIntersect1pointHelp defX; ¬(X = P) ∧ ¬(X' = P) ∧ Collinear X P X' ∧ ¬(X = X') ∧ ray A' O = ray A' A ∧ ray X' P = ray X' X [XPX'line] by fol defX defX' IN_DIFF IN_SING - B1' def_α IntervalRay; Collinear P D Y ∧ Collinear P C X [] by fol defY defX IN_DIFF IN_SING IN_Ray; ¬Collinear C P Y ∧ ¬Collinear X P Y [XPYncol] by fol def_β - defY NoncollinearityExtendsToLine CollinearSymmetry XPX'line; ¬Collinear Y X X' ∧ ¬Collinear P X' Y [YXX'ncol] by fol - CollinearSymmetry XPX' XPX'line NoncollinearityExtendsToLine; ray P X = ray P C ∧ ray P Y = ray P D ∧ ray P X' = ray P C' [equalPrays] by fol Distinctβ defX defY defX' RayWellDefined; β = ∡ X P Y ∧ β' = ∡ Y P X' ∧ ∡ A O B ≡ ∡ X P Y [AOBeqXPY] by fol def_β - Angle_DEF H2 def_α; seg O A ≡ seg P X ∧ seg O B ≡ seg P Y ∧ seg A' O ≡ seg X' P [OAeq] by fol Osegments XPX'line SEGMENT defX defY defX' C2Symmetric SegmentSymmetry; seg A A' ≡ seg X X' [AA'eq] by fol def_α XPX'line XPX' - SegmentSymmetry C3; A,O,B ≅ X,P,Y [] by fol def_α XPYncol OAeq AOBeqXPY SAS; seg A B ≡ seg X Y ∧ ∡ B A O ≡ ∡ Y X P [AOB≅] by fol - TriangleCong_DEF AngleSymmetry; ray A O = ray A A' ∧ ray X P = ray X X' ∧ ∡ B A A' ≡ ∡ Y X X' [] by fol def_α XPX' IntervalRay - Angle_DEF; B,A,A' ≅ Y,X,X' [] by fol BAA'ncol YXX'ncol AOB≅ - AA'eq - SAS; seg A' B ≡ seg X' Y ∧ ∡ A A' B ≡ ∡ X X' Y [] by fol - TriangleCong_DEF SegmentSymmetry; O,A',B ≅ P,X',Y [] by fol BAA'ncol YXX'ncol OAeq - XPX'line Angle_DEF SAS; ∡ B O A' ≡ ∡ Y P X' [] by fol - TriangleCong_DEF; fol - equalPrays def_β Angle_DEF def_α; qed; `;; let SupplementUnique = theorem `; ∀α β β'. α suppl β ∧ α suppl β' ⇒ β ≡ β' by fol SupplementaryAngles_DEF ANGLE C5Reflexive SupplementsCongAnglesCong`;; let CongRightImpliesRight = theorem `; ∀α β. Angle α ∧ Right β ⇒ α ≡ β ⇒ Right α proof intro_TAC ∀α β, H1, H2; consider α' β' such that α suppl α' ∧ β suppl β' ∧ β ≡ β' [suppl] by fol H1 SupplementExists H1 RightAngle_DEF; α' ≡ β' [α'eqβ'] by fol suppl H2 SupplementsCongAnglesCong; Angle β ∧ Angle α' ∧ Angle β' [] by fol suppl SupplementImpliesAngle; α ≡ α' [] by fol H1 - H2 suppl α'eqβ' C5Symmetric C5Transitive; fol suppl - RightAngle_DEF; qed; `;; let RightAnglesCongruentHelp = theorem `; ∀A O B A' P a. ¬Collinear A O B ∧ O ∈ Open (A, A') ⇒ Right (∡ A O B) ∧ Right (∡ A O P) ⇒ P ∉ int_angle A O B proof intro_TAC ∀A O B A' P a, H1, H2; assume ¬(P ∉ int_angle A O B) [Con] by fol; P ∈ int_angle A O B [PintAOB] by fol - ∉; B ∈ int_angle P O A' ∧ B ∈ int_angle A' O P [BintA'OP] by fol H1 - InteriorReflectionInterior InteriorAngleSymmetry ; ¬Collinear A O P ∧ ¬Collinear P O A' [AOPncol] by fol PintAOB InteriorEZHelp - IN_InteriorAngle; ∡ A O B suppl ∡ B O A' ∧ ∡ A O P suppl ∡ P O A' [AOBsup] by fol H1 - SupplementaryAngles_DEF; consider α' β' such that ∡ A O B suppl α' ∧ ∡ A O B ≡ α' ∧ ∡ A O P suppl β' ∧ ∡ A O P ≡ β' [supplα'] by fol H2 RightAngle_DEF; α' ≡ ∡ B O A' ∧ β' ≡ ∡ P O A' [α'eqA'OB] by fol - AOBsup SupplementUnique; Angle (∡ A O B) ∧ Angle α' ∧ Angle (∡ B O A') ∧ Angle (∡ A O P) ∧ Angle β' ∧ Angle (∡ P O A') [angles] by fol AOBsup supplα' SupplementImpliesAngle AngleSymmetry; ∡ A O B ≡ ∡ B O A' ∧ ∡ A O P ≡ ∡ P O A' [H2'] by fol - supplα' α'eqA'OB C5Transitive; ∡ A O P ≡ ∡ A O P ∧ ∡ B O A' ≡ ∡ B O A' [refl] by fol angles C5Reflexive; ∡ A O P <_ang ∡ A O B ∧ ∡ B O A' <_ang ∡ P O A' [BOA'lessPOA'] by fol angles H1 PintAOB - AngleOrdering_DEF AOPncol CollinearSymmetry BintA'OP AngleSymmetry; ∡ A O P <_ang ∡ B O A' [] by fol - angles H2' AngleTrichotomy2; ∡ A O P <_ang ∡ P O A' [] by fol - BOA'lessPOA' AngleOrderTransitivity; fol - H2' AngleTrichotomy1; qed; `;; let RightAnglesCongruent = theorem `; ∀α β. Right α ∧ Right β ⇒ α ≡ β proof intro_TAC ∀α β, H1; consider α' such that α suppl α' ∧ α ≡ α' [αright] by fol H1 RightAngle_DEF; consider A O B A' such that ¬Collinear A O B ∧ O ∈ Open (A, A') ∧ α = ∡ A O B ∧ α' = ∡ B O A' [def_α] by fol - SupplementaryAngles_DEF; ¬(A = O) ∧ ¬(O = B) [Distinct] by fol def_α NonCollinearImpliesDistinct B1'; consider a such that Line a ∧ O ∈ a ∧ A ∈ a [a_line] by fol Distinct I1; B ∉ a [notBa] by fol - def_α Collinear_DEF ∉; Angle β [] by fol H1 RightImpliesAngle; ∃! r. Ray r ∧ ∃P. ¬(O = P) ∧ r = ray O P ∧ P ∉ a ∧ P,B same_side a ∧ ∡ A O P ≡ β [] by simplify C4 - Distinct a_line notBa; consider P such that ¬(O = P) ∧ P ∉ a ∧ P,B same_side a ∧ ∡ A O P ≡ β [defP] by fol -; O ∉ Open (P, B) [notPOB] by fol a_line - SameSide_DEF ∉; ¬Collinear A O P [AOPncol] by fol a_line Distinct defP NonCollinearRaa CollinearSymmetry; Right (∡ A O P) [AOPright] by fol - ANGLE H1 defP CongRightImpliesRight; P ∉ int_angle A O B ∧ B ∉ int_angle A O P [] by fol def_α H1 - AOPncol AOPright RightAnglesCongruentHelp; Collinear P O B [] by fol Distinct a_line defP notBa - AngleOrdering InteriorAngleSymmetry ∉; P ∈ ray O B ━ {O} [] by fol Distinct - CollinearSymmetry notPOB IN_Ray defP IN_DIFF IN_SING; ray O P = ray O B ∧ ∡ A O P = ∡ A O B [] by fol Distinct - RayWellDefined Angle_DEF; fol - defP def_α; qed; `;; let OppositeRightAnglesLinear = theorem `; ∀A B O H h. ¬Collinear A O H ∧ ¬Collinear H O B ⇒ Right (∡ A O H) ∧ Right (∡ H O B) ⇒ Line h ∧ O ∈ h ∧ H ∈ h ∧ ¬(A,B same_side h) ⇒ O ∈ Open (A, B) proof intro_TAC ∀A B O H h, H0, H1, H2; ¬(A = O) ∧ ¬(O = H) ∧ ¬(O = B) [Distinct] by fol H0 NonCollinearImpliesDistinct; A ∉ h ∧ B ∉ h [notABh] by fol H0 H2 Collinear_DEF ∉; consider E such that O ∈ Open (A, E) ∧ ¬(E = O) [AOE] by fol Distinct B2' B1'; ∡ A O H suppl ∡ H O E [AOHsupplHOE] by fol H0 - SupplementaryAngles_DEF; E ∉ h [notEh] by fol H2 ∉ AOE BetweenLinear notABh; ¬(A,E same_side h) [] by fol H2 AOE SameSide_DEF; B,E same_side h [Bsim_hE] by fol H2 notABh notEh - H2 AtMost2Sides; consider α' such that ∡ A O H suppl α' ∧ ∡ A O H ≡ α' [AOHsupplα'] by fol H1 RightAngle_DEF; Angle (∡ H O B) ∧ Angle (∡ A O H) ∧ Angle α' ∧ Angle (∡ H O E) [angα'] by fol H1 RightImpliesAngle - AOHsupplHOE SupplementImpliesAngle; ∡ H O B ≡ ∡ A O H ∧ α' ≡ ∡ H O E [] by fol H1 RightAnglesCongruent AOHsupplα' AOHsupplHOE SupplementUnique; ∡ H O B ≡ ∡ H O E [] by fol angα' - AOHsupplα' C5Transitive; ray O B = ray O E [] by fol H2 Distinct notABh notEh Bsim_hE - C4Uniqueness; B ∈ ray O E ━ {O} [] by fol Distinct EndpointInRay - IN_DIFF IN_SING; fol AOE - OppositeRaysIntersect1pointHelp B1'; qed; `;; let RightImpliesSupplRight = theorem `; ∀A O B A'. ¬Collinear A O B ∧ O ∈ Open (A, A') ∧ Right (∡ A O B) ⇒ Right (∡ B O A') proof intro_TAC ∀A O B A', H1 H2 H3; ∡ A O B suppl ∡ B O A' ∧ Angle (∡ A O B) ∧ Angle (∡ B O A') [AOBsuppl] by fol H1 H2 SupplementaryAngles_DEF SupplementImpliesAngle; consider β such that ∡ A O B suppl β ∧ ∡ A O B ≡ β [βsuppl] by fol H3 RightAngle_DEF; Angle β ∧ β ≡ ∡ A O B [angβ] by fol - SupplementImpliesAngle C5Symmetric; ∡ B O A' ≡ β [] by fol AOBsuppl βsuppl SupplementUnique; ∡ B O A' ≡ ∡ A O B [] by fol AOBsuppl angβ - βsuppl C5Transitive; fol AOBsuppl H3 - CongRightImpliesRight; qed; `;; let IsoscelesCongBaseAngles = theorem `; ∀A B C. ¬Collinear A B C ∧ seg B A ≡ seg B C ⇒ ∡ C A B ≡ ∡ A C B proof intro_TAC ∀A B C, H1 H2; ¬(A = B) ∧ ¬(B = C) ∧ ¬Collinear C B A [CBAncol] by fol H1 NonCollinearImpliesDistinct CollinearSymmetry; seg B C ≡ seg B A ∧ ∡ A B C ≡ ∡ C B A [] by fol - SEGMENT H2 C2Symmetric H1 ANGLE AngleSymmetry C5Reflexive; fol H1 CBAncol H2 - SAS TriangleCong_DEF; qed; `;; let C4withC1 = theorem `; ∀α l O A Y P Q. Angle α ∧ ¬(O = A) ∧ ¬(P = Q) ⇒ Line l ∧ O ∈ l ∧ A ∈ l ∧ Y ∉ l ⇒ ∃N. ¬(O = N) ∧ N ∉ l ∧ N,Y same_side l ∧ seg O N ≡ seg P Q ∧ ∡ A O N ≡ α proof intro_TAC ∀α l O A Y P Q, H1, l_line; ∃! r. Ray r ∧ ∃B. ¬(O = B) ∧ r = ray O B ∧ B ∉ l ∧ B,Y same_side l ∧ ∡ A O B ≡ α [] by simplify C4 H1 l_line; consider B such that ¬(O = B) ∧ B ∉ l ∧ B,Y same_side l ∧ ∡ A O B ≡ α [Bexists] by fol -; consider N such that N ∈ ray O B ━ {O} ∧ seg O N ≡ seg P Q [Nexists] by fol H1 - SEGMENT C1; N ∉ l ∧ N,B same_side l [notNl] by fol l_line Bexists Nexists RaySameSide; N,Y same_side l [Nsim_lY] by fol l_line - Bexists SameSideTransitive; ray O N = ray O B [] by fol Bexists Nexists RayWellDefined; ∡ A O N ≡ α [] by fol - Bexists Angle_DEF; fol Nexists IN_DIFF IN_SING notNl Nsim_lY Nexists -; qed; `;; let C4OppositeSide = theorem `; ∀α l O A Z P Q. Angle α ∧ ¬(O = A) ∧ ¬(P = Q) ⇒ Line l ∧ O ∈ l ∧ A ∈ l ∧ Z ∉ l ⇒ ∃N. ¬(O = N) ∧ N ∉ l ∧ ¬(Z,N same_side l) ∧ seg O N ≡ seg P Q ∧ ∡ A O N ≡ α proof intro_TAC ∀α l O A Z P Q, H1, l_line; ¬(Z = O) [] by fol l_line ∉; consider Y such that O ∈ Open (Z, Y) [ZOY] by fol - B2'; ¬(O = Y) ∧ Collinear O Z Y [notOY] by fol - B1' CollinearSymmetry; Y ∉ l [notYl] by fol notOY l_line NonCollinearRaa ∉; consider N such that ¬(O = N) ∧ N ∉ l ∧ N,Y same_side l ∧ seg O N ≡ seg P Q ∧ ∡ A O N ≡ α [Nexists] by simplify C4withC1 H1 l_line -; ¬(Z,Y same_side l) [] by fol l_line ZOY SameSide_DEF; ¬(Z,N same_side l) [] by fol l_line Nexists notYl - SameSideTransitive; fol - Nexists; qed; `;; let SSS = theorem `; ∀A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C' ⇒ seg A B ≡ seg A' B' ∧ seg A C ≡ seg A' C' ∧ seg B C ≡ seg B' C' ⇒ A,B,C ≅ A',B',C' proof intro_TAC ∀A B C A' B' C', H1, H2; ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ ¬(A' = B') ∧ ¬(B' = C') [Distinct] by fol H1 NonCollinearImpliesDistinct; consider h such that Line h ∧ A ∈ h ∧ C ∈ h [h_line] by fol Distinct I1; B ∉ h [notBh] by fol h_line H1 ∉ Collinear_DEF; Segment (seg A B) ∧ Segment (seg C B) ∧ Segment (seg A' B') ∧ Segment (seg C' B') [segments] by fol Distinct - SEGMENT; Angle (∡ C' A' B') [] by fol H1 CollinearSymmetry ANGLE; consider N such that ¬(A = N) ∧ N ∉ h ∧ ¬(B,N same_side h) ∧ seg A N ≡ seg A' B' ∧ ∡ C A N ≡ ∡ C' A' B' [Nexists] by simplify C4OppositeSide - Distinct h_line notBh; ¬(C = N) [] by fol h_line Nexists ∉; Segment (seg A N) ∧ Segment (seg C N) [segN] by fol Nexists - SEGMENT; ¬Collinear A N C [ANCncol] by fol Distinct h_line Nexists NonCollinearRaa; Angle (∡ A B C) ∧ Angle (∡ A' B' C') ∧ Angle (∡ A N C) [angles] by fol H1 - ANGLE; seg A B ≡ seg A N [ABeqAN] by fol segments segN Nexists H2 C2Symmetric C2Transitive; C,A,N ≅ C',A',B' [] by fol ANCncol H1 CollinearSymmetry H2 Nexists SAS; ∡ A N C ≡ ∡ A' B' C' ∧ seg C N ≡ seg C' B' [ANCeq] by fol - TriangleCong_DEF; seg C B ≡ seg C N [CBeqCN] by fol segments segN - H2 SegmentSymmetry C2Symmetric C2Transitive; consider G such that G ∈ h ∧ G ∈ Open (B, N) [BGN] by fol Nexists h_line SameSide_DEF; ¬(B = N) [notBN] by fol - B1'; ray B G = ray B N ∧ ray N G = ray N B [Grays] by fol BGN B1' IntervalRay; consider v such that Line v ∧ B ∈ v ∧ N ∈ v [v_line] by fol notBN I1; G ∈ v ∧ ¬(h = v) [] by fol v_line BGN BetweenLinear notBh ∉; h ∩ v = {G} [hvG] by fol h_line v_line - BGN I1Uniqueness; ¬(G = A) ⇒ ∡ A B G ≡ ∡ A N G [ABGeqANG] proof intro_TAC notGA; A ∉ v [] by fol hvG h_line - EquivIntersectionHelp IN_DIFF IN_SING; ¬Collinear B A N [] by fol v_line notBN I1 Collinear_DEF - ∉; ∡ N B A ≡ ∡ B N A [] by fol - ABeqAN IsoscelesCongBaseAngles; ∡ G B A ≡ ∡ G N A [] by fol - Grays Angle_DEF notGA; fol - AngleSymmetry; qed; ¬(G = C) ⇒ ∡ G B C ≡ ∡ G N C [GBCeqGNC] proof intro_TAC notGC; C ∉ v [] by fol hvG h_line - EquivIntersectionHelp IN_DIFF IN_SING; ¬Collinear B C N [] by fol v_line notBN I1 Collinear_DEF - ∉; ∡ N B C ≡ ∡ B N C [] by fol - CBeqCN IsoscelesCongBaseAngles AngleSymmetry; fol - Grays Angle_DEF; qed; ∡ A B C ≡ ∡ A N C [] proof assume ¬(G = A) ∧ ¬(G = C) [AGCdistinct] by fol Distinct GBCeqGNC ABGeqANG; ∡ A B G ≡ ∡ A N G ∧ ∡ G B C ≡ ∡ G N C [Gequivs] by fol - ABGeqANG GBCeqGNC; ¬Collinear G B C ∧ ¬Collinear G N C ∧ ¬Collinear G B A ∧ ¬Collinear G N A [Gncols] by fol AGCdistinct h_line BGN notBh Nexists NonCollinearRaa; Collinear A G C [] by fol h_line BGN Collinear_DEF; G ∈ Open (A, C) ∨ C ∈ Open (G, A) ∨ A ∈ Open (C, G) [] by fol Distinct AGCdistinct - B3'; case_split AGC | GAC | CAG by fol -; suppose G ∈ Open (A, C); G ∈ int_angle A B C ∧ G ∈ int_angle A N C [] by fol H1 ANCncol - ConverseCrossbar; fol - Gequivs AngleAddition; end; suppose C ∈ Open (G, A); C ∈ int_angle G B A ∧ C ∈ int_angle G N A [] by fol Gncols - B1' ConverseCrossbar; fol - Gequivs AngleSubtraction AngleSymmetry; end; suppose A ∈ Open (C, G); A ∈ int_angle G B C ∧ A ∈ int_angle G N C [] by fol Gncols - B1' ConverseCrossbar; fol - Gequivs AngleSymmetry AngleSubtraction; end; qed; ∡ A B C ≡ ∡ A' B' C' [] by fol angles - ANCeq C5Transitive; fol H1 H2 SegmentSymmetry - SAS; qed; `;; let AngleBisector = theorem `; ∀A B C. ¬Collinear B A C ⇒ ∃M. M ∈ int_angle B A C ∧ ∡ B A M ≡ ∡ M A C proof intro_TAC ∀A B C, H1; ¬(A = B) ∧ ¬(A = C) [Distinct] by fol H1 NonCollinearImpliesDistinct; consider D such that B ∈ Open (A, D) [ABD] by fol Distinct B2'; ¬(A = D) ∧ Collinear A B D ∧ Segment (seg A D) [ABD'] by fol - B1' SEGMENT; consider E such that E ∈ ray A C ━ {A} ∧ seg A E ≡ seg A D ∧ ¬(A = E) [ErAC] by fol - Distinct C1 IN_Ray IN_DIFF IN_SING; Collinear A C E ∧ D ∈ ray A B ━ {A} [notAE] by fol - IN_Ray ABD IntervalRayEZ IN_DIFF IN_SING; ray A D = ray A B ∧ ray A E = ray A C [equalrays] by fol Distinct notAE ErAC RayWellDefined; ¬Collinear D A E ∧ ¬Collinear E A D ∧ ¬Collinear A E D [EADncol] by fol H1 ABD' notAE ErAC CollinearSymmetry NoncollinearityExtendsToLine; ∡ D E A ≡ ∡ E D A [DEAeq] by fol EADncol ErAC IsoscelesCongBaseAngles; ¬Collinear E D A ∧ Angle (∡ E D A) ∧ ¬Collinear A D E ∧ ¬Collinear D E A [angEDA] by fol EADncol CollinearSymmetry ANGLE; ¬(D = E) [notDE] by fol EADncol NonCollinearImpliesDistinct; consider h such that Line h ∧ D ∈ h ∧ E ∈ h [h_line] by fol - I1; A ∉ h [notAh] by fol - Collinear_DEF EADncol ∉; consider M such that ¬(D = M) ∧ M ∉ h ∧ ¬(A,M same_side h) ∧ seg D M ≡ seg D A ∧ ∡ E D M ≡ ∡ E D A [Mexists] by simplify C4OppositeSide angEDA notDE ABD' h_line -; ¬(A = M) [notAM] by fol h_line - SameSideReflexive; ¬Collinear E D M ∧ ¬Collinear D E M ∧ ¬Collinear M E D [EDMncol] by fol notDE h_line Mexists NonCollinearRaa CollinearSymmetry; seg D E ≡ seg D E ∧ seg M A ≡ seg M A [MArefl] by fol notDE notAM SEGMENT C2Reflexive; E,D,M ≅ E,D,A [] by fol EDMncol angEDA - Mexists SAS; seg M E ≡ seg A E ∧ ∡ M E D ≡ ∡ A E D ∧ ∡ D E M ≡ ∡ D E A [MED≅] by fol - TriangleCong_DEF SegmentSymmetry AngleSymmetry; ∡ E D A ≡ ∡ D E A ∧ ∡ E D A ≡ ∡ E D M ∧ ∡ D E A ≡ ∡ D E M [EDAeqEDM] by fol EDMncol ANGLE angEDA Mexists MED≅ DEAeq C5Symmetric; consider G such that G ∈ h ∧ G ∈ Open (A, M) [AGM] by fol Mexists h_line SameSide_DEF; M ∈ ray A G ━ {A} [MrAG] by fol - IntervalRayEZ; consider v such that Line v ∧ A ∈ v ∧ M ∈ v ∧ G ∈ v [v_line] by fol notAM I1 AGM BetweenLinear; ¬(v = h) ∧ v ∩ h = {G} [vhG] by fol - notAh ∉ h_line AGM I1Uniqueness; D ∉ v [notDv] proof assume ¬(D ∉ v) [Con] by fol; D ∈ v ∧ D = G [DG] by fol h_line - ∉ vhG IN_INTER IN_SING; D ∈ Open (A, M) [] by fol DG AGM; ∡ E D A suppl ∡ E D M [EDAsuppl] by fol angEDA - SupplementaryAngles_DEF AngleSymmetry; Right (∡ E D A) [] by fol EDAsuppl EDAeqEDM RightAngle_DEF; Right (∡ A E D) [RightAED] by fol angEDA ANGLE - DEAeq CongRightImpliesRight AngleSymmetry; Right (∡ D E M) [] by fol EDMncol ANGLE - MED≅ CongRightImpliesRight AngleSymmetry; E ∈ Open (A, M) [] by fol EADncol EDMncol RightAED - h_line Mexists OppositeRightAnglesLinear; E ∈ v ∧ E = G [] by fol v_line - BetweenLinear h_line vhG IN_INTER IN_SING; fol - DG notDE; qed; E ∉ v [notEv] proof assume ¬(E ∉ v) [Con] by fol; E ∈ v ∧ E = G [EG] by fol h_line - ∉ vhG IN_INTER IN_SING; E ∈ Open (A, M) [] by fol - AGM; ∡ D E A suppl ∡ D E M [DEAsuppl] by fol EADncol - SupplementaryAngles_DEF AngleSymmetry; Right (∡ D E A) [RightDEA] by fol DEAsuppl EDAeqEDM RightAngle_DEF; Right (∡ E D A) [RightEDA] by fol angEDA RightDEA EDAeqEDM CongRightImpliesRight; Right (∡ E D M) [] by fol EDMncol ANGLE RightEDA Mexists CongRightImpliesRight; D ∈ Open (A, M) [] by fol angEDA EDMncol RightEDA AngleSymmetry - h_line Mexists OppositeRightAnglesLinear; D ∈ v ∧ D = G [] by fol v_line - BetweenLinear h_line vhG IN_INTER IN_SING; fol - EG notDE; qed; ¬Collinear M A E ∧ ¬Collinear M A D ∧ ¬(M = E) [MAEncol] by fol notAM v_line notEv notDv NonCollinearRaa CollinearSymmetry NonCollinearImpliesDistinct; seg M E ≡ seg A D [MEeqAD] by fol - ErAC ABD' SEGMENT MED≅ ErAC C2Transitive; seg A D ≡ seg M D [] by fol SegmentSymmetry ABD' Mexists SEGMENT C2Symmetric; seg M E ≡ seg M D [] by fol MAEncol ABD' Mexists SEGMENT MEeqAD - C2Transitive; M,A,E ≅ M,A,D [] by fol MAEncol MArefl - ErAC SSS; ∡ M A E ≡ ∡ M A D [MAEeq] by fol - TriangleCong_DEF; ∡ D A M ≡ ∡ M A E [] by fol MAEncol ANGLE MAEeq C5Symmetric AngleSymmetry; ∡ B A M ≡ ∡ M A C [BAMeqMAC] by fol - equalrays Angle_DEF; ¬(E,D same_side v) [] proof assume E,D same_side v [Con] by fol; ray A D = ray A E [] by fol v_line notAM notDv notEv - MAEeq C4Uniqueness; fol ABD' EndpointInRay - IN_Ray EADncol; qed; consider H such that H ∈ v ∧ H ∈ Open (E, D) [EHD] by fol v_line - SameSide_DEF; H = G [] by fol - h_line BetweenLinear IN_INTER vhG IN_SING; G ∈ int_angle E A D [GintEAD] by fol EADncol - EHD ConverseCrossbar; M ∈ int_angle E A D [MintEAD] by fol GintEAD MrAG WholeRayInterior; B ∈ ray A D ━ {A} ∧ C ∈ ray A E ━ {A} [] by fol equalrays Distinct EndpointInRay IN_DIFF IN_SING; M ∈ int_angle B A C [] by fol MintEAD - InteriorWellDefined InteriorAngleSymmetry; fol - BAMeqMAC; qed; `;; let EuclidPropositionI_6 = theorem `; ∀A B C. ¬Collinear A B C ∧ ∡ B A C ≡ ∡ B C A ⇒ seg B A ≡ seg B C proof intro_TAC ∀A B C, H1 H2; ¬(A = C) [] by fol H1 NonCollinearImpliesDistinct; seg C A ≡ seg A C [CAeqAC] by fol SegmentSymmetry - SEGMENT C2Reflexive; ¬Collinear B C A ∧ ¬Collinear C B A ∧ ¬Collinear B A C [BCAncol] by fol H1 CollinearSymmetry; ∡ A C B ≡ ∡ C A B [] by fol - ANGLE H2 C5Symmetric AngleSymmetry; C,B,A ≅ A,B,C [] by fol H1 BCAncol CAeqAC H2 - ASA; fol - TriangleCong_DEF; qed; `;; let IsoscelesExists = theorem `; ∀A B. ¬(A = B) ⇒ ∃D. ¬Collinear A D B ∧ seg D A ≡ seg D B proof intro_TAC ∀A B, H1; consider l such that Line l ∧ A ∈ l ∧ B ∈ l [l_line] by fol H1 I1; consider C such that C ∉ l [notCl] by fol - ExistsPointOffLine; ¬Collinear C A B ∧ ¬Collinear C B A ∧ ¬Collinear A B C ∧ ¬Collinear A C B ∧ ¬Collinear B A C [CABncol] by fol l_line H1 I1 Collinear_DEF - ∉; ∡ C A B ≡ ∡ C B A ∨ ∡ C A B <_ang ∡ C B A ∨ ∡ C B A <_ang ∡ C A B [] by fol - ANGLE AngleTrichotomy; case_split cong | less | greater by fol -; suppose ∡ C A B ≡ ∡ C B A; fol - CABncol EuclidPropositionI_6; end; suppose ∡ C A B <_ang ∡ C B A; ∡ C A B <_ang ∡ A B C [] by fol - AngleSymmetry; consider E such that E ∈ int_angle A B C ∧ ∡ C A B ≡ ∡ A B E [Eexists] by fol CABncol ANGLE - AngleOrderingUse; ¬(B = E) [notBE] by fol - InteriorEZHelp; consider D such that D ∈ Open (A, C) ∧ D ∈ ray B E ━ {B} [Dexists] by fol Eexists Crossbar_THM; D ∈ int_angle A B C [] by fol Eexists - WholeRayInterior; ¬Collinear A D B [ADBncol] by fol - InteriorEZHelp CollinearSymmetry; ray B D = ray B E ∧ ray A D = ray A C [] by fol notBE Dexists RayWellDefined IntervalRay; ∡ D A B ≡ ∡ A B D [] by fol Eexists - Angle_DEF; fol ADBncol - AngleSymmetry EuclidPropositionI_6; end; suppose ∡ C B A <_ang ∡ C A B; ∡ C B A <_ang ∡ B A C [] by fol - AngleSymmetry; consider E such that E ∈ int_angle B A C ∧ ∡ C B A ≡ ∡ B A E [Eexists] by fol CABncol ANGLE - AngleOrderingUse; ¬(A = E) [notAE] by fol - InteriorEZHelp; consider D such that D ∈ Open (B, C) ∧ D ∈ ray A E ━ {A} [Dexists] by fol Eexists Crossbar_THM; D ∈ int_angle B A C [] by fol Eexists - WholeRayInterior; ¬Collinear A D B ∧ ¬Collinear D A B ∧ ¬Collinear D B A [ADBncol] by fol - InteriorEZHelp CollinearSymmetry; ray A D = ray A E ∧ ray B D = ray B C [] by fol notAE Dexists RayWellDefined IntervalRay; ∡ D B A ≡ ∡ B A D [] by fol Eexists - Angle_DEF; ∡ D A B ≡ ∡ D B A [] by fol AngleSymmetry ADBncol ANGLE - C5Symmetric; fol ADBncol - EuclidPropositionI_6; end; qed; `;; let MidpointExists = theorem `; ∀A B. ¬(A = B) ⇒ ∃M. M ∈ Open (A, B) ∧ seg A M ≡ seg M B proof intro_TAC ∀A B, H1; consider D such that ¬Collinear A D B ∧ seg D A ≡ seg D B [Dexists] by fol H1 IsoscelesExists; consider F such that F ∈ int_angle A D B ∧ ∡ A D F ≡ ∡ F D B [Fexists] by fol - AngleBisector; ¬(D = F) [notDF] by fol - InteriorEZHelp; consider M such that M ∈ Open (A, B) ∧ M ∈ ray D F ━ {D} [Mexists] by fol Fexists Crossbar_THM; ray D M = ray D F [] by fol notDF - RayWellDefined; ∡ A D M ≡ ∡ M D B [ADMeqMDB] by fol Fexists - Angle_DEF; M ∈ int_angle A D B [] by fol Fexists Mexists WholeRayInterior; ¬(D = M) ∧ ¬Collinear A D M ∧ ¬Collinear B D M [ADMncol] by fol - InteriorEZHelp InteriorAngleSymmetry; seg D M ≡ seg D M [] by fol - SEGMENT C2Reflexive; A,D,M ≅ B,D,M [] by fol ADMncol Dexists - ADMeqMDB AngleSymmetry SAS; fol Mexists - TriangleCong_DEF SegmentSymmetry; qed; `;; let EuclidPropositionI_7short = theorem `; ∀A B C D a. ¬(A = B) ∧ Line a ∧ A ∈ a ∧ B ∈ a ⇒ ¬(C = D) ∧ C ∉ a ∧ D ∉ a ∧ C,D same_side a ⇒ seg A C ≡ seg A D ⇒ ¬(seg B C ≡ seg B D) proof intro_TAC ∀A B C D a, a_line, Csim_aD, ACeqAD; ¬(A = C) ∧ ¬(A = D) [AnotCD] by fol a_line Csim_aD ∉; assume seg B C ≡ seg B D [Con] by fol; seg C B ≡ seg D B ∧ seg A B ≡ seg A B ∧ seg A D ≡ seg A D [segeqs] by fol - SegmentSymmetry a_line AnotCD SEGMENT C2Reflexive; ¬Collinear A C B ∧ ¬Collinear A D B [] by fol a_line I1 Csim_aD Collinear_DEF ∉; A,C,B ≅ A,D,B [] by fol - ACeqAD segeqs SSS; ∡ B A C ≡ ∡ B A D [] by fol - TriangleCong_DEF; ray A D = ray A C [] by fol a_line Csim_aD - C4Uniqueness; C ∈ ray A D ━ {A} ∧ D ∈ ray A D ━ {A} [] by fol AnotCD - EndpointInRay IN_DIFF IN_SING; C = D [] by fol AnotCD SEGMENT - ACeqAD segeqs C1; fol - Csim_aD; qed; `;; let EuclidPropositionI_7Help = theorem `; ∀A B C D a. ¬(A = B) ⇒ Line a ∧ A ∈ a ∧ B ∈ a ⇒ ¬(C = D) ∧ C ∉ a ∧ D ∉ a ∧ C,D same_side a ⇒ seg A C ≡ seg A D ⇒ C ∈ int_triangle D A B ∨ ConvexQuadrilateral A B C D ⇒ ¬(seg B C ≡ seg B D) proof intro_TAC ∀A B C D a, notAB, a_line, Csim_aD, ACeqAD, Int_ConvQuad; ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) [Distinct] by fol a_line Csim_aD ∉ SameSide_DEF; case_split convex | CintDAB by fol Int_ConvQuad; suppose ConvexQuadrilateral A B C D; A ∈ int_angle B C D ∧ B ∈ int_angle C D A ∧ Tetralateral A B C D [ABint] by fol - ConvexQuad_DEF Quadrilateral_DEF; ¬Collinear B C D ∧ ¬Collinear D C B ∧ ¬Collinear C B D ∧ ¬Collinear C D A ∧ ¬Collinear D A C ∧ Angle (∡ D C A) ∧ Angle (∡ C D B) [angCDB] by fol - Tetralateral_DEF CollinearSymmetry ANGLE; ∡ C D A ≡ ∡ D C A [CDAeqDCA] by fol angCDB Distinct SEGMENT ACeqAD C2Symmetric IsoscelesCongBaseAngles; A ∈ int_angle D C B ∧ ∡ D C A ≡ ∡ D C A ∧ ∡ C D B ≡ ∡ C D B [] by fol ABint InteriorAngleSymmetry angCDB ANGLE C5Reflexive; ∡ D C A <_ang ∡ D C B ∧ ∡ C D B <_ang ∡ C D A [] by fol angCDB ABint - AngleOrdering_DEF; ∡ C D B <_ang ∡ D C B [] by fol - angCDB CDAeqDCA AngleTrichotomy2 AngleOrderTransitivity; ¬(∡ D C B ≡ ∡ C D B) [] by fol - AngleTrichotomy1 angCDB ANGLE C5Symmetric; fol angCDB - IsoscelesCongBaseAngles; end; suppose C ∈ int_triangle D A B; C ∈ int_angle A D B ∧ C ∈ int_angle D A B [CintADB] by fol - IN_InteriorTriangle InteriorAngleSymmetry; ¬Collinear A D C ∧ ¬Collinear B D C [ADCncol] by fol CintADB InteriorEZHelp InteriorAngleSymmetry; ¬Collinear D A C ∧ ¬Collinear C D A ∧ ¬Collinear A C D ∧ ¬Collinear A D C [DACncol] by fol - CollinearSymmetry; ¬Collinear B C D ∧ Angle (∡ D C A) ∧ Angle (∡ C D B) ∧ ¬Collinear D C B [angCDB] by fol ADCncol - CollinearSymmetry ANGLE; ∡ C D A ≡ ∡ D C A [CDAeqDCA] by fol DACncol Distinct ADCncol SEGMENT ACeqAD C2Symmetric IsoscelesCongBaseAngles; consider E such that D ∈ Open (A, E) ∧ ¬(D = E) ∧ Collinear A D E [ADE] by fol Distinct B2' B1'; B ∈ int_angle C D E ∧ Collinear D A E [BintCDE] by fol CintADB - InteriorReflectionInterior CollinearSymmetry; ¬Collinear C D E [CDEncol] by fol DACncol - ADE NoncollinearityExtendsToLine; consider F such that F ∈ Open (B, D) ∧ F ∈ ray A C ━ {A} [Fexists] by fol CintADB Crossbar_THM B1'; F ∈ int_angle B C D [FintBCD] by fol ADCncol CollinearSymmetry - ConverseCrossbar; ¬Collinear D C F [DCFncol] by fol Distinct ADCncol CollinearSymmetry Fexists B1' NoncollinearityExtendsToLine; Collinear A C F ∧ F ∈ ray D B ━ {D} ∧ C ∈ int_angle A D F [] by fol Fexists IN_DIFF IN_SING IN_Ray B1' IntervalRayEZ CintADB InteriorWellDefined; C ∈ Open (A, F) [] by fol - AlternateConverseCrossbar; ∡ A D C suppl ∡ C D E ∧ ∡ A C D suppl ∡ D C F [] by fol ADE DACncol - SupplementaryAngles_DEF; ∡ C D E ≡ ∡ D C F [CDEeqDCF] by fol - CDAeqDCA AngleSymmetry SupplementsCongAnglesCong; ∡ C D B <_ang ∡ C D E [] by fol angCDB CDEncol BintCDE C5Reflexive AngleOrdering_DEF; ∡ C D B <_ang ∡ D C F [CDBlessDCF] by fol - DCFncol ANGLE CDEeqDCF AngleTrichotomy2; ∡ D C F <_ang ∡ D C B [] by fol DCFncol ANGLE angCDB FintBCD InteriorAngleSymmetry C5Reflexive AngleOrdering_DEF; ∡ C D B <_ang ∡ D C B [] by fol CDBlessDCF - AngleOrderTransitivity; ¬(∡ D C B ≡ ∡ C D B) [] by fol - AngleTrichotomy1 angCDB CollinearSymmetry ANGLE C5Symmetric; fol Distinct ADCncol CollinearSymmetry - IsoscelesCongBaseAngles; end; qed; `;; let EuclidPropositionI_7 = theorem `; ∀A B C D a. ¬(A = B) ⇒ Line a ∧ A ∈ a ∧ B ∈ a ⇒ ¬(C = D) ∧ C ∉ a ∧ D ∉ a ∧ C,D same_side a ⇒ seg A C ≡ seg A D ⇒ ¬(seg B C ≡ seg B D) proof intro_TAC ∀A B C D a, notAB, a_line, Csim_aD, ACeqAD; ¬Collinear A B C ∧ ¬Collinear D A B [ABCncol] by fol a_line notAB Csim_aD NonCollinearRaa CollinearSymmetry; ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ A ∉ Open (C, D) [Distinct] by fol a_line Csim_aD ∉ SameSide_DEF; ¬Collinear A D C [ADCncol] proof assume Collinear A D C [Con] by fol; C ∈ ray A D ━ {A} ∧ D ∈ ray A D ━ {A} ∧ seg A D ≡ seg A D [] by fol Distinct - IN_Ray EndpointInRay IN_DIFF IN_SING SEGMENT C2Reflexive; fol Distinct SEGMENT - ACeqAD C1 Csim_aD; qed; D,C same_side a [Dsim_aC] by fol a_line Csim_aD SameSideSymmetric; seg A D ≡ seg A C ∧ seg B D ≡ seg B D [ADeqAC] by fol Distinct SEGMENT ACeqAD C2Symmetric C2Reflexive; ¬Collinear D A C ∧ ¬Collinear C D A ∧ ¬Collinear A C D ∧ ¬Collinear A D C [DACncol] by fol ADCncol CollinearSymmetry; ¬(seg B D ≡ seg B C) ⇒ ¬(seg B C ≡ seg B D) [BswitchDC] by fol Distinct SEGMENT C2Symmetric; case_split BDCcol | BDCncol by fol -; suppose Collinear B D C; B ∉ Open (C, D) ∧ C ∈ ray B D ━ {B} ∧ D ∈ ray B D ━ {B} [] by fol a_line Csim_aD SameSide_DEF ∉ Distinct - IN_Ray Distinct IN_DIFF IN_SING EndpointInRay; fol Distinct SEGMENT - ACeqAD ADeqAC C1 Csim_aD; end; suppose ¬Collinear B D C; Tetralateral A B C D [] by fol notAB Distinct Csim_aD ABCncol - CollinearSymmetry DACncol Tetralateral_DEF; ConvexQuadrilateral A B C D ∨ C ∈ int_triangle D A B ∨ ConvexQuadrilateral A B D C ∨ D ∈ int_triangle C A B [] by fol - a_line Csim_aD FourChoicesTetralateral InteriorTriangleSymmetry; fol notAB a_line Csim_aD Dsim_aC ACeqAD ADeqAC - EuclidPropositionI_7Help BswitchDC; end; qed; `;; let EuclidPropositionI_11 = theorem `; ∀A B. ¬(A = B) ⇒ ∃F. Right (∡ A B F) proof intro_TAC ∀A B, notAB; consider C such that B ∈ Open (A, C) ∧ seg B C ≡ seg B A [ABC] by fol notAB SEGMENT C1OppositeRay; ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Collinear A B C [Distinct] by fol ABC B1'; seg B A ≡ seg B C [BAeqBC] by fol - SEGMENT ABC C2Symmetric; consider F such that ¬Collinear A F C ∧ seg F A ≡ seg F C [Fexists] by fol Distinct IsoscelesExists; ¬Collinear B F A ∧ ¬Collinear B F C [BFAncol] by fol - CollinearSymmetry Distinct NoncollinearityExtendsToLine; ¬Collinear A B F ∧ Angle (∡ A B F) [angABF] by fol BFAncol CollinearSymmetry ANGLE; ∡ A B F suppl ∡ F B C [ABFsuppl] by fol - ABC SupplementaryAngles_DEF; ¬(B = F) ∧ seg B F ≡ seg B F [] by fol BFAncol NonCollinearImpliesDistinct SEGMENT C2Reflexive; B,F,A ≅ B,F,C [] by fol BFAncol - BAeqBC Fexists SSS; ∡ A B F ≡ ∡ F B C [] by fol - TriangleCong_DEF AngleSymmetry; fol angABF ABFsuppl - RightAngle_DEF; qed; `;; let DropPerpendicularToLine = theorem `; ∀P l. Line l ∧ P ∉ l ⇒ ∃E Q. E ∈ l ∧ Q ∈ l ∧ Right (∡ P Q E) proof intro_TAC ∀P l, l_line; consider A B such that A ∈ l ∧ B ∈ l ∧ ¬(A = B) [ABl] by fol l_line I2; ¬Collinear B A P ∧ ¬Collinear P A B ∧ ¬(A = P) [BAPncol] by fol ABl l_line NonCollinearRaa CollinearSymmetry ∉; Angle (∡ B A P) ∧ Angle (∡ P A B) [angBAP] by fol - ANGLE AngleSymmetry; consider P' such that ¬(A = P') ∧ P' ∉ l ∧ ¬(P,P' same_side l) ∧ seg A P' ≡ seg A P ∧ ∡ B A P' ≡ ∡ B A P [P'exists] by simplify C4OppositeSide - ABl BAPncol l_line; consider Q such that Q ∈ l ∧ Q ∈ Open (P, P') ∧ Collinear A B Q [Qexists] by fol l_line - SameSide_DEF ABl Collinear_DEF; ¬Collinear B A P' [BAP'ncol] by fol l_line ABl I1 Collinear_DEF P'exists ∉; ∡ B A P ≡ ∡ B A P' [BAPeqBAP'] by fol - ANGLE angBAP P'exists C5Symmetric; ∃E. E ∈ l ∧ ¬Collinear P Q E ∧ ∡ P Q E ≡ ∡ E Q P' [] proof assume ¬(A = Q) [notAQ] by fol ABl BAPncol BAPeqBAP' AngleSymmetry; seg A Q ≡ seg A Q ∧ seg A P ≡ seg A P' [APeqAP'] by fol - SEGMENT C2Reflexive BAPncol P'exists C2Symmetric; ¬Collinear Q A P' ∧ ¬Collinear Q A P [QAP'ncol] by fol notAQ l_line ABl Qexists P'exists NonCollinearRaa CollinearSymmetry; ∡ Q A P ≡ ∡ Q A P' [] proof case_split QAB | notQAB by fol - ∉; suppose A ∈ Open (Q, B); ∡ B A P suppl ∡ P A Q ∧ ∡ B A P' suppl ∡ P' A Q [] by fol BAPncol BAP'ncol - B1' SupplementaryAngles_DEF; fol - BAPeqBAP' SupplementsCongAnglesCong AngleSymmetry; end; suppose A ∉ Open (Q, B); Q ∈ ray A B ━ {A} [QrayAB_A] by fol ABl Qexists notQAB IN_Ray notAQ IN_DIFF IN_SING; ray A Q = ray A B [] by fol - ABl RayWellDefined; fol notAQ QrayAB_A - BAPeqBAP' Angle_DEF; end; qed; Q,A,P ≅ Q,A,P' [] by fol QAP'ncol APeqAP' - SAS; fol - TriangleCong_DEF AngleSymmetry ABl QAP'ncol CollinearSymmetry; qed; consider E such that E ∈ l ∧ ¬Collinear P Q E ∧ ∡ P Q E ≡ ∡ E Q P' [Eexists] by fol -; ∡ P Q E suppl ∡ E Q P' ∧ Right (∡ P Q E) [] by fol - Qexists SupplementaryAngles_DEF RightAngle_DEF; fol Eexists Qexists -; qed; `;; let EuclidPropositionI_14 = theorem `; ∀A B C D l. Line l ∧ A ∈ l ∧ B ∈ l ∧ ¬(A = B) ⇒ C ∉ l ∧ D ∉ l ∧ ¬(C,D same_side l) ⇒ ∡ C B A suppl ∡ A B D ⇒ B ∈ Open (C, D) proof intro_TAC ∀A B C D l, l_line, Cnsim_lD, CBAsupplABD; ¬(B = C) ∧ ¬(B = D) ∧ ¬Collinear C B A [Distinct] by fol l_line Cnsim_lD ∉ I1 Collinear_DEF; consider E such that B ∈ Open (C, E) [CBE] by fol Distinct B2'; E ∉ l ∧ ¬(C,E same_side l) [Csim_lE] by fol l_line ∉ - BetweenLinear Cnsim_lD SameSide_DEF; D,E same_side l [Dsim_lE] by fol l_line Cnsim_lD - AtMost2Sides; ∡ C B A suppl ∡ A B E [] by fol Distinct CBE SupplementaryAngles_DEF; ∡ A B D ≡ ∡ A B E [] by fol CBAsupplABD - SupplementUnique; ray B E = ray B D [] by fol l_line Csim_lE Cnsim_lD Dsim_lE - C4Uniqueness; D ∈ ray B E ━ {B} [] by fol Distinct - EndpointInRay IN_DIFF IN_SING; fol CBE - OppositeRaysIntersect1pointHelp B1'; qed; `;; (* Euclid's Proposition I.15 *) let VerticalAnglesCong = theorem `; ∀A B O A' B'. ¬Collinear A O B ⇒ O ∈ Open (A, A') ∧ O ∈ Open (B, B') ⇒ ∡ B O A' ≡ ∡ B' O A proof intro_TAC ∀A B O A' B', H1, H2; ∡ A O B suppl ∡ B O A' [AOBsupplBOA'] by fol H1 H2 SupplementaryAngles_DEF; ∡ B O A suppl ∡ A O B' [] by fol H1 CollinearSymmetry H2 SupplementaryAngles_DEF; fol AOBsupplBOA' - AngleSymmetry SupplementUnique; qed; `;; let EuclidPropositionI_16 = theorem `; ∀A B C D. ¬Collinear A B C ∧ C ∈ Open (B, D) ⇒ ∡ B A C <_ang ∡ D C A proof intro_TAC ∀A B C D, H1 H2; ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) [Distinct] by fol H1 NonCollinearImpliesDistinct; consider l such that Line l ∧ A ∈ l ∧ C ∈ l [l_line] by fol Distinct I1; consider m such that Line m ∧ B ∈ m ∧ C ∈ m [m_line] by fol Distinct I1; D ∈ m [Dm] by fol m_line H2 BetweenLinear; consider E such that E ∈ Open (A, C) ∧ seg A E ≡ seg E C [AEC] by fol Distinct MidpointExists; ¬(A = E) ∧ ¬(E = C) ∧ Collinear A E C ∧ ¬(B = E) [AECcol] by fol - B1' H1; E ∈ l [El] by fol l_line AEC BetweenLinear; consider F such that E ∈ Open (B, F) ∧ seg E F ≡ seg E B [BEF] by fol AECcol SEGMENT C1OppositeRay; ¬(B = E) ∧ ¬(B = F) ∧ ¬(E = F) ∧ Collinear B E F [BEF'] by fol BEF B1'; B ∉ l [notBl] by fol l_line Distinct I1 Collinear_DEF H1 ∉; ¬Collinear A E B ∧ ¬Collinear C E B [AEBncol] by fol AECcol l_line El notBl NonCollinearRaa CollinearSymmetry; Angle (∡ B A E) [angBAE] by fol - CollinearSymmetry ANGLE; ¬Collinear C E F [CEFncol] by fol AEBncol BEF' CollinearSymmetry NoncollinearityExtendsToLine; ∡ B E A ≡ ∡ F E C [BEAeqFEC] by fol AEBncol AEC B1' BEF VerticalAnglesCong; seg E A ≡ seg E C ∧ seg E B ≡ seg E F [] by fol AEC SegmentSymmetry AECcol BEF' SEGMENT BEF C2Symmetric; A,E,B ≅ C,E,F [] by fol AEBncol CEFncol - BEAeqFEC AngleSymmetry SAS; ∡ B A E ≡ ∡ F C E [BAEeqFCE] by fol - TriangleCong_DEF; ¬Collinear E C D [ECDncol] by fol AEBncol H2 B1' CollinearSymmetry NoncollinearityExtendsToLine; F ∉ l ∧ D ∉ l [notFl] by fol l_line El Collinear_DEF CEFncol - ∉; F ∈ ray B E ━ {B} ∧ E ∉ m [] by fol BEF IntervalRayEZ m_line Collinear_DEF AEBncol ∉; F ∉ m ∧ F,E same_side m [Fsim_mE] by fol m_line - RaySameSide; ¬(B,F same_side l) ∧ ¬(B,D same_side l) [] by fol El l_line BEF H2 SameSide_DEF; F,D same_side l [] by fol l_line notBl notFl - AtMost2Sides; F ∈ int_angle E C D [] by fol ECDncol l_line El m_line Dm notFl Fsim_mE - IN_InteriorAngle; ∡ B A E <_ang ∡ E C D [BAElessECD] by fol angBAE ECDncol - BAEeqFCE AngleSymmetry AngleOrdering_DEF; ray A E = ray A C ∧ ray C E = ray C A [] by fol AEC B1' IntervalRay; ∡ B A C <_ang ∡ A C D [] by fol BAElessECD - Angle_DEF; fol - AngleSymmetry; qed; `;; let ExteriorAngle = theorem `; ∀A B C D. ¬Collinear A B C ∧ C ∈ Open (B, D) ⇒ ∡ A B C <_ang ∡ A C D proof intro_TAC ∀A B C D, H1 H2; ¬(C = D) ∧ C ∈ Open (D, B) ∧ Collinear B C D [H2'] by fol H2 BetweenLinear B1'; ¬Collinear B A C ∧ ¬(A = C) [BACncol] by fol H1 CollinearSymmetry NonCollinearImpliesDistinct; consider E such that C ∈ Open (A, E) [ACE] by fol - B2'; ¬(C = E) ∧ C ∈ Open (E, A) ∧ Collinear A C E [ACE'] by fol - B1'; ¬Collinear A C D ∧ ¬Collinear D C E [DCEncol] by fol H1 CollinearSymmetry H2' - NoncollinearityExtendsToLine; ∡ A B C <_ang ∡ E C B [ABClessECB] by fol BACncol ACE EuclidPropositionI_16; ∡ E C B ≡ ∡ A C D [] by fol DCEncol ACE' H2' VerticalAnglesCong; fol ABClessECB DCEncol ANGLE - AngleTrichotomy2; qed; `;; let EuclidPropositionI_17 = theorem `; ∀A B C α β γ. ¬Collinear A B C ∧ α = ∡ A B C ∧ β = ∡ B C A ⇒ β suppl γ ⇒ α <_ang γ proof intro_TAC ∀A B C α β γ, H1, H2; Angle γ [angγ] by fol H2 SupplementImpliesAngle; ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) [Distinct] by fol H1 NonCollinearImpliesDistinct; ¬Collinear B A C ∧ ¬Collinear A C B [BACncol] by fol H1 CollinearSymmetry; consider D such that C ∈ Open (A, D) [ACD] by fol Distinct B2'; ∡ A B C <_ang ∡ D C B [ABClessDCB] by fol BACncol ACD EuclidPropositionI_16; β suppl ∡ B C D [] by fol - H1 AngleSymmetry BACncol ACD SupplementaryAngles_DEF; ∡ B C D ≡ γ [] by fol H2 - SupplementUnique; fol ABClessDCB H1 AngleSymmetry angγ - AngleTrichotomy2; qed; `;; let EuclidPropositionI_18 = theorem `; ∀A B C. ¬Collinear A B C ∧ seg A C <__ seg A B ⇒ ∡ A B C <_ang ∡ B C A proof intro_TAC ∀A B C, H1 H2; ¬(A = B) ∧ ¬(A = C) [Distinct] by fol H1 NonCollinearImpliesDistinct; consider D such that D ∈ Open (A, B) ∧ seg A C ≡ seg A D [ADB] by fol Distinct SEGMENT H2 SegmentOrderingUse; ¬(D = A) ∧ ¬(D = B) ∧ D ∈ Open (B, A) ∧ Collinear A D B ∧ ray B D = ray B A [ADB'] by fol - B1' IntervalRay; D ∈ int_angle A C B ∧ ¬Collinear A C B [DintACB] by fol H1 CollinearSymmetry ADB ConverseCrossbar; ¬Collinear D A C ∧ ¬Collinear C B D ∧ ¬Collinear C D A [DACncol] by fol H1 CollinearSymmetry ADB' NoncollinearityExtendsToLine; seg A D ≡ seg A C [] by fol ADB' Distinct SEGMENT ADB C2Symmetric; ∡ C D A ≡ ∡ A C D [] by fol DACncol - IsoscelesCongBaseAngles AngleSymmetry; ∡ C D A <_ang ∡ A C B [CDAlessACB] by fol DACncol ANGLE H1 DintACB - AngleOrdering_DEF; ∡ B D C suppl ∡ C D A [] by fol DACncol CollinearSymmetry ADB' SupplementaryAngles_DEF; ∡ C B D <_ang ∡ C D A [] by fol DACncol - EuclidPropositionI_17; ∡ C B D <_ang ∡ A C B [] by fol - CDAlessACB AngleOrderTransitivity; fol - ADB' Angle_DEF AngleSymmetry; qed; `;; let EuclidPropositionI_19 = theorem `; ∀A B C. ¬Collinear A B C ∧ ∡ A B C <_ang ∡ B C A ⇒ seg A C <__ seg A B proof intro_TAC ∀A B C, H1 H2; ¬Collinear B A C ∧ ¬Collinear B C A ∧ ¬Collinear A C B [BACncol] by fol H1 CollinearSymmetry; ¬(A = B) ∧ ¬(A = C) [Distinct] by fol H1 NonCollinearImpliesDistinct; assume ¬(seg A C <__ seg A B) [Con] by fol; seg A B ≡ seg A C ∨ seg A B <__ seg A C [] by fol Distinct SEGMENT - SegmentTrichotomy; case_split cong | less by fol -; suppose seg A B ≡ seg A C; ∡ C B A ≡ ∡ B C A [] by fol BACncol - IsoscelesCongBaseAngles; fol - AngleSymmetry H2 AngleTrichotomy1; end; suppose seg A B <__ seg A C; ∡ A C B <_ang ∡ C B A [] by fol BACncol - EuclidPropositionI_18; fol H1 BACncol ANGLE - AngleSymmetry H2 AngleTrichotomy; end; qed; `;; let EuclidPropositionI_20 = theorem `; ∀A B C D. ¬Collinear A B C ⇒ A ∈ Open (B, D) ∧ seg A D ≡ seg A C ⇒ seg B C <__ seg B D proof intro_TAC ∀A B C D, H1, H2; ¬(B = D) ∧ ¬(A = D) ∧ A ∈ Open (D, B) ∧ Collinear B A D ∧ ray D A = ray D B [BAD'] by fol H2 B1' IntervalRay; ¬Collinear C A D [CADncol] by fol H1 CollinearSymmetry BAD' NoncollinearityExtendsToLine; ¬Collinear D C B ∧ ¬Collinear B D C [DCBncol] by fol H1 CollinearSymmetry BAD' NoncollinearityExtendsToLine; Angle (∡ C D A) [angCDA] by fol CADncol CollinearSymmetry ANGLE; ∡ C D A ≡ ∡ D C A [CDAeqDCA] by fol CADncol CollinearSymmetry H2 IsoscelesCongBaseAngles; A ∈ int_angle D C B [] by fol DCBncol BAD' ConverseCrossbar; ∡ C D A <_ang ∡ D C B [] by fol angCDA DCBncol - CDAeqDCA AngleOrdering_DEF; ∡ B D C <_ang ∡ D C B [] by fol - BAD' Angle_DEF AngleSymmetry; fol DCBncol - EuclidPropositionI_19; qed; `;; let EuclidPropositionI_21 = theorem `; ∀A B C D. ¬Collinear A B C ∧ D ∈ int_triangle A B C ⇒ ∡ A B C <_ang ∡ C D A proof intro_TAC ∀A B C D, H1 H2; ¬(B = A) ∧ ¬(B = C) ∧ ¬(A = C) [Distinct] by fol H1 NonCollinearImpliesDistinct; D ∈ int_angle B A C ∧ D ∈ int_angle C B A [DintTri] by fol H2 IN_InteriorTriangle InteriorAngleSymmetry; consider E such that E ∈ Open (B, C) ∧ E ∈ ray A D ━ {A} [BEC] by fol - Crossbar_THM; ¬(B = E) ∧ ¬(E = C) ∧ Collinear B E C ∧ Collinear A D E [BEC'] by fol - B1' IN_Ray IN_DIFF IN_SING; ray B E = ray B C ∧ E ∈ ray B C ━ {B} [rBErBC] by fol BEC IntervalRay IntervalRayEZ; D ∈ int_angle A B E [DintABE] by fol DintTri - InteriorAngleSymmetry InteriorWellDefined; D ∈ Open (A, E) [ADE] by fol BEC' - AlternateConverseCrossbar; ray E D = ray E A [rEDrEA] by fol - B1' IntervalRay; ¬Collinear A B E ∧ ¬Collinear B E A ∧ ¬Collinear C B D ∧ ¬(A = D) [ABEncol] by fol DintABE IN_InteriorAngle CollinearSymmetry DintTri InteriorEZHelp; ¬Collinear E D C ∧ ¬Collinear C E D [EDCncol] by fol - CollinearSymmetry BEC' NoncollinearityExtendsToLine; ∡ A B E <_ang ∡ A E C ∧ ∡ C E D = ∡ D E C [] by fol ABEncol BEC ExteriorAngle AngleSymmetry; ∡ A B C <_ang ∡ C E D [ABClessAEC] by fol - rBErBC rEDrEA Angle_DEF; ∡ C E D <_ang ∡ C D A [] by fol EDCncol ADE B1' ExteriorAngle; fol ABClessAEC - AngleOrderTransitivity; qed; `;; let AngleTrichotomy3 = theorem `; ∀α β γ. α <_ang β ∧ Angle γ ∧ γ ≡ α ⇒ γ <_ang β proof intro_TAC ∀α β γ, H1; consider A O B G such that Angle α ∧ ¬Collinear A O B ∧ β = ∡ A O B ∧ G ∈ int_angle A O B ∧ α ≡ ∡ A O G [H1'] by fol H1 AngleOrdering_DEF; ¬Collinear A O G [] by fol - InteriorEZHelp; γ ≡ ∡ A O G [] by fol H1 H1' - ANGLE C5Transitive; fol H1 H1' - AngleOrdering_DEF; qed; `;; let InteriorCircleConvexHelp = theorem `; ∀O A B C. ¬Collinear A O C ⇒ B ∈ Open (A, C) ⇒ seg O A <__ seg O C ∨ seg O A ≡ seg O C ⇒ seg O B <__ seg O C proof intro_TAC ∀O A B C, H1, H2, H3; ¬Collinear O C A ∧ ¬Collinear C O A ∧ ¬(O = A) ∧ ¬(O = C) [H1'] by fol H1 CollinearSymmetry NonCollinearImpliesDistinct; ray A B = ray A C ∧ ray C B = ray C A [equal_rays] by fol H2 IntervalRay B1'; ∡ O C A <_ang ∡ C A O ∨ ∡ O C A ≡ ∡ C A O [] proof assume seg O A ≡ seg O C [seg_eq] by fol H3 H1' EuclidPropositionI_18; seg O C ≡ seg O A [] by fol H1' SEGMENT - C2Symmetric; fol H1' - IsoscelesCongBaseAngles AngleSymmetry; qed; ∡ O C B <_ang ∡ B A O ∨ ∡ O C B ≡ ∡ B A O [] by fol - equal_rays Angle_DEF; ∡ B C O <_ang ∡ O A B ∨ ∡ B C O ≡ ∡ O A B [BCOlessOAB] by fol - AngleSymmetry; ¬Collinear O A B ∧ ¬Collinear B C O ∧ ¬Collinear O C B [OABncol] by fol H1 CollinearSymmetry H2 B1' NoncollinearityExtendsToLine; ∡ O A B <_ang ∡ O B C [] by fol - H2 ExteriorAngle; ∡ B C O <_ang ∡ O B C [] by fol BCOlessOAB - AngleOrderTransitivity OABncol ANGLE - AngleTrichotomy3; fol OABncol - AngleSymmetry EuclidPropositionI_19; qed; `;; let InteriorCircleConvex = theorem `; ∀O R A B C. ¬(O = R) ⇒ B ∈ Open (A, C) ⇒ A ∈ int_circle O R ∧ C ∈ int_circle O R ⇒ B ∈ int_circle O R proof intro_TAC ∀O R A B C, H1, H2, H3; ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ B ∈ Open (C, A) [H2'] by fol H2 B1'; (A = O ∨ seg O A <__ seg O R) ∧ (C = O ∨ seg O C <__ seg O R) [ACintOR] by fol H3 H1 IN_InteriorCircle; case_split OAC | OnotAC by fol -; suppose O = A ∨ O = C; B ∈ Open (O, C) ∨ B ∈ Open (O, A) [] by fol - H2 B1'; seg O B <__ seg O A ∧ ¬(O = A) ∨ seg O B <__ seg O C ∧ ¬(O = C) [] by fol - B1' SEGMENT C2Reflexive SegmentOrdering_DEF; seg O B <__ seg O R [] by fol - ACintOR SegmentOrderTransitivity; fol - H1 IN_InteriorCircle; end; suppose ¬(O = A) ∧ ¬(O = C); case_split AOCncol | AOCcol by fol -; suppose ¬Collinear A O C; seg O A <__ seg O C ∨ seg O A ≡ seg O C ∨ seg O C <__ seg O A [] by fol OnotAC SEGMENT SegmentTrichotomy; seg O B <__ seg O C ∨ seg O B <__ seg O A [] by fol AOCncol H2 - InteriorCircleConvexHelp CollinearSymmetry B1'; fol OnotAC ACintOR - SegmentOrderTransitivity H1 IN_InteriorCircle; end; suppose Collinear A O C; consider l such that Line l ∧ A ∈ l ∧ C ∈ l [l_line] by fol H2' I1; Collinear B A O ∧ Collinear B C O [OABCcol] by fol - H2 BetweenLinear H2' AOCcol CollinearLinear Collinear_DEF; B ∉ Open (O, A) ∧ B ∉ Open (O, C) ⇒ B = O [] proof intro_TAC Assumption; O ∈ ray B A ∩ ray B C [] by fol H2' OABCcol - IN_Ray IN_INTER; fol - H2 OppositeRaysIntersect1point IN_SING; qed; B ∈ Open (O, A) ∨ B ∈ Open (O, C) ∨ B = O [] by fol - ∉; seg O B <__ seg O A ∨ seg O B <__ seg O C ∨ B = O [] by fol - B1' SEGMENT C2Reflexive SegmentOrdering_DEF; seg O B <__ seg O R ∨ B = O [] by fol - ACintOR OnotAC SegmentOrderTransitivity; fol - H1 IN_InteriorCircle; end; end; qed; `;; let SegmentTrichotomy3 = theorem `; ∀s t u. s <__ t ∧ Segment u ∧ u ≡ s ⇒ u <__ t proof intro_TAC ∀s t u, H1; consider C D X such that Segment s ∧ t = seg C D ∧ X ∈ Open (C, D) ∧ s ≡ seg C X ∧ ¬(C = X) [H1'] by fol H1 SegmentOrdering_DEF B1'; u ≡ seg C X [] by fol H1 - SEGMENT C2Transitive; fol H1 H1' - SegmentOrdering_DEF; qed; `;; let EuclidPropositionI_24Help = theorem `; ∀O A C O' D M. ¬Collinear A O C ∧ ¬Collinear D O' M ⇒ seg O' D ≡ seg O A ∧ seg O' M ≡ seg O C ⇒ ∡ D O' M <_ang ∡ A O C ⇒ seg O A <__ seg O C ∨ seg O A ≡ seg O C ⇒ seg D M <__ seg A C proof intro_TAC ∀O A C O' D M, H1, H2, H3, H4; consider K such that K ∈ int_angle A O C ∧ ∡ D O' M ≡ ∡ A O K [KintAOC] by fol H1 ANGLE H3 AngleOrderingUse; ¬(O = C) ∧ ¬(D = M) ∧ ¬(O' = M) ∧ ¬(O = K) [Distinct] by fol H1 NonCollinearImpliesDistinct - InteriorEZHelp; consider B such that B ∈ ray O K ━ {O} ∧ seg O B ≡ seg O C [BrOK] by fol Distinct SEGMENT - C1; ray O B = ray O K [] by fol Distinct - RayWellDefined; ∡ D O' M ≡ ∡ A O B [DO'MeqAOB] by fol KintAOC - Angle_DEF; B ∈ int_angle A O C [BintAOC] by fol KintAOC BrOK WholeRayInterior; ¬(B = O) ∧ ¬Collinear A O B [AOBncol] by fol - InteriorEZHelp; seg O C ≡ seg O B [OCeqOB] by fol Distinct - SEGMENT BrOK C2Symmetric; seg O' M ≡ seg O B [] by fol Distinct SEGMENT AOBncol H2 - C2Transitive; D,O',M ≅ A,O,B [] by fol H1 AOBncol H2 - DO'MeqAOB SAS; seg D M ≡ seg A B [DMeqAB] by fol - TriangleCong_DEF; consider G such that G ∈ Open (A, C) ∧ G ∈ ray O B ━ {O} ∧ ¬(G = O) [AGC] by fol BintAOC Crossbar_THM B1' IN_DIFF IN_SING; Segment (seg O G) ∧ ¬(O = B) [notOB] by fol - SEGMENT BrOK IN_DIFF IN_SING; seg O G <__ seg O C [] by fol H1 AGC H4 InteriorCircleConvexHelp; seg O G <__ seg O B [] by fol - OCeqOB BrOK SEGMENT SegmentTrichotomy2 IN_DIFF IN_SING; consider G' such that G' ∈ Open (O, B) ∧ seg O G ≡ seg O G' [OG'B] by fol notOB - SegmentOrderingUse; ¬(G' = O) ∧ seg O G' ≡ seg O G' ∧ Segment (seg O G') [notG'O] by fol - B1' SEGMENT C2Reflexive SEGMENT; G' ∈ ray O B ━ {O} [] by fol OG'B IntervalRayEZ; G' = G ∧ G ∈ Open (B, O) [] by fol notG'O notOB - AGC OG'B C1 B1'; ConvexQuadrilateral B A O C [] by fol H1 - AGC DiagonalsIntersectImpliesConvexQuad; A ∈ int_angle O C B ∧ O ∈ int_angle C B A ∧ Quadrilateral B A O C [OintCBA] by fol - ConvexQuad_DEF; A ∈ int_angle B C O [AintBCO] by fol - InteriorAngleSymmetry; Tetralateral B A O C [] by fol OintCBA Quadrilateral_DEF; ¬Collinear C B A ∧ ¬Collinear B C O ∧ ¬Collinear C O B ∧ ¬Collinear C B O [BCOncol] by fol - Tetralateral_DEF CollinearSymmetry; ∡ B C O ≡ ∡ C B O [BCOeqCBO] by fol - OCeqOB IsoscelesCongBaseAngles; ¬Collinear B C A ∧ ¬Collinear A C B [ACBncol] by fol AintBCO InteriorEZHelp CollinearSymmetry; ∡ B C A ≡ ∡ B C A ∧ Angle (∡ B C A) ∧ ∡ C B O ≡ ∡ C B O [CBOref] by fol - ANGLE BCOncol C5Reflexive; ∡ B C A <_ang ∡ B C O [] by fol - BCOncol ANGLE AintBCO AngleOrdering_DEF; ∡ B C A <_ang ∡ C B O [BCAlessCBO] by fol - BCOncol ANGLE BCOeqCBO AngleTrichotomy2; ∡ C B O <_ang ∡ C B A [] by fol BCOncol ANGLE OintCBA CBOref AngleOrdering_DEF; ∡ A C B <_ang ∡ C B A [] by fol BCAlessCBO - AngleOrderTransitivity AngleSymmetry; seg A B <__ seg A C [] by fol ACBncol - EuclidPropositionI_19; fol - Distinct SEGMENT DMeqAB SegmentTrichotomy3; qed; `;; let EuclidPropositionI_24 = theorem `; ∀O A C O' D M. ¬Collinear A O C ∧ ¬Collinear D O' M ⇒ seg O' D ≡ seg O A ∧ seg O' M ≡ seg O C ⇒ ∡ D O' M <_ang ∡ A O C ⇒ seg D M <__ seg A C proof intro_TAC ∀O A C O' D M, H1, H2, H3; ¬(O = A) ∧ ¬(O = C) ∧ ¬Collinear C O A ∧ ¬Collinear M O' D [Distinct] by fol H1 NonCollinearImpliesDistinct CollinearSymmetry; seg O A ≡ seg O C ∨ seg O A <__ seg O C ∨ seg O C <__ seg O A [3pos] by fol - SEGMENT SegmentTrichotomy; assume seg O C <__ seg O A [H4] by fol 3pos H1 H2 H3 EuclidPropositionI_24Help; ∡ M O' D <_ang ∡ C O A [] by fol H3 AngleSymmetry; fol Distinct H3 AngleSymmetry H2 H4 EuclidPropositionI_24Help SegmentSymmetry; qed; `;; let EuclidPropositionI_25 = theorem `; ∀O A C O' D M. ¬Collinear A O C ∧ ¬Collinear D O' M ⇒ seg O' D ≡ seg O A ∧ seg O' M ≡ seg O C ⇒ seg D M <__ seg A C ⇒ ∡ D O' M <_ang ∡ A O C proof intro_TAC ∀O A C O' D M, H1, H2, H3; ¬(O = A) ∧ ¬(O = C) ∧ ¬(A = C) ∧ ¬(D = M) ∧ ¬(O' = D) ∧ ¬(O' = M) [Distinct] by fol H1 NonCollinearImpliesDistinct; assume ¬(∡ D O' M <_ang ∡ A O C) [Contradiction] by fol; ∡ D O' M ≡ ∡ A O C ∨ ∡ A O C <_ang ∡ D O' M [] by fol H1 ANGLE - AngleTrichotomy; case_split Cong | Con by fol -; suppose ∡ D O' M ≡ ∡ A O C; D,O',M ≅ A,O,C [] by fol H1 H2 - SAS; seg D M ≡ seg A C [] by fol - TriangleCong_DEF; fol Distinct SEGMENT - H3 SegmentTrichotomy; end; suppose ∡ A O C <_ang ∡ D O' M; seg O A ≡ seg O' D ∧ seg O C ≡ seg O' M [H2'] by fol Distinct SEGMENT H2 C2Symmetric; seg A C <__ seg D M [] by fol H1 - Con EuclidPropositionI_24; fol Distinct SEGMENT - H3 SegmentTrichotomy; end; qed; `;; let AAS = theorem `; ∀A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C' ⇒ ∡ A B C ≡ ∡ A' B' C' ∧ ∡ B C A ≡ ∡ B' C' A' ⇒ seg A B ≡ seg A' B' ⇒ A,B,C ≅ A',B',C' proof intro_TAC ∀A B C A' B' C', H1, H2, H3; ¬(A = B) ∧ ¬(B = C) ∧ ¬(B' = C') [Distinct] by fol H1 NonCollinearImpliesDistinct; consider G such that G ∈ ray B C ━ {B} ∧ seg B G ≡ seg B' C' [Gexists] by fol Distinct SEGMENT C1; ¬(G = B) ∧ B ∉ Open (G, C) ∧ Collinear G B C [notGBC] by fol - IN_Ray CollinearSymmetry IN_DIFF IN_SING; ¬Collinear A B G ∧ ¬Collinear B G A [ABGncol] by fol H1 notGBC CollinearSymmetry NoncollinearityExtendsToLine; ray B G = ray B C [] by fol Distinct Gexists RayWellDefined; ∡ A B G = ∡ A B C [] by fol Distinct - Angle_DEF; A,B,G ≅ A',B',C' [ABG≅A'B'C'] by fol H1 ABGncol H3 SegmentSymmetry H2 - Gexists SAS; ∡ B G A ≡ ∡ B' C' A' [BGAeqB'C'A'] by fol - TriangleCong_DEF; ¬Collinear B C A ∧ ¬Collinear B' C' A' [BCAncol] by fol H1 CollinearSymmetry; ∡ B' C' A' ≡ ∡ B C A ∧ ∡ B C A ≡ ∡ B C A [BCArefl] by fol - ANGLE H2 C5Symmetric C5Reflexive; ∡ B G A ≡ ∡ B C A [BGAeqBCA] by fol ABGncol BCAncol ANGLE BGAeqB'C'A' - C5Transitive; assume ¬(G = C) [notGC] by fol BGAeqBCA ABG≅A'B'C'; ¬Collinear A C G ∧ ¬Collinear A G C [ACGncol] by fol H1 notGBC - CollinearSymmetry NoncollinearityExtendsToLine; C ∈ Open (B, G) ∨ G ∈ Open (C, B) [] by fol notGBC notGC Distinct B3' ∉; case_split BCG | CGB by fol -; suppose C ∈ Open (B, G) ; C ∈ Open (G, B) ∧ ray G C = ray G B [rGCrBG] by fol - B1' IntervalRay; ∡ A G C <_ang ∡ A C B [] by fol ACGncol - ExteriorAngle; ∡ B G A <_ang ∡ B C A [] by fol - rGCrBG Angle_DEF AngleSymmetry AngleSymmetry; fol ABGncol BCAncol ANGLE - AngleSymmetry BGAeqBCA AngleTrichotomy; end; suppose G ∈ Open (C, B); ray C G = ray C B ∧ ∡ A C G <_ang ∡ A G B [] by fol - IntervalRay ACGncol ExteriorAngle; ∡ A C B <_ang ∡ B G A [] by fol - Angle_DEF AngleSymmetry; ∡ B C A <_ang ∡ B C A [] by fol - BCAncol ANGLE BGAeqBCA AngleTrichotomy2 AngleSymmetry; fol - BCArefl AngleTrichotomy1; end; qed; `;; let ParallelSymmetry = theorem `; ∀l k. l ∥ k ⇒ k ∥ l by fol PARALLEL INTER_COMM`;; let AlternateInteriorAngles = theorem `; ∀A B C E l m t. Line l ∧ A ∈ l ∧ E ∈ l ⇒ Line m ∧ B ∈ m ∧ C ∈ m ⇒ Line t ∧ A ∈ t ∧ B ∈ t ⇒ ¬(A = E) ∧ ¬(B = C) ∧ ¬(A = B) ∧ E ∉ t ∧ C ∉ t ⇒ ¬(C,E same_side t) ⇒ ∡ E A B ≡ ∡ C B A ⇒ l ∥ m proof intro_TAC ∀A B C E l m t, l_line, m_line, t_line, Distinct, Cnsim_tE, AltIntAngCong; ¬Collinear E A B ∧ ¬Collinear C B A [EABncol] by fol t_line Distinct NonCollinearRaa CollinearSymmetry; B ∉ l ∧ A ∉ m [notAmBl] by fol l_line m_line Collinear_DEF - ∉; assume ¬(l ∥ m) [Con] by fol; ¬(l ∩ m = ∅) [] by fol - l_line m_line PARALLEL; consider G such that G ∈ l ∧ G ∈ m [Glm] by fol - MEMBER_NOT_EMPTY IN_INTER; ¬(G = A) ∧ ¬(G = B) ∧ Collinear B G C ∧ Collinear B C G ∧ Collinear A E G ∧ Collinear A G E [GnotAB] by fol - notAmBl ∉ m_line l_line Collinear_DEF; ¬Collinear A G B ∧ ¬Collinear B G A ∧ G ∉ t [AGBncol] by fol EABncol CollinearSymmetry - NoncollinearityExtendsToLine t_line Collinear_DEF ∉; ¬(E,C same_side t) [Ensim_tC] by fol t_line - Distinct Cnsim_tE SameSideSymmetric; E ∈ l ━ {A} ∧ G ∈ l ━ {A} [] by fol l_line Glm Distinct GnotAB IN_DIFF IN_SING; ¬(G,E same_side t) [] proof assume G,E same_side t [Gsim_tE] by fol; A ∉ Open (G, E) [notGAE] by fol t_line - SameSide_DEF ∉; G ∈ ray A E ━ {A} [] by fol Distinct GnotAB notGAE IN_Ray GnotAB IN_DIFF IN_SING; ray A G = ray A E [rAGrAE] by fol Distinct - RayWellDefined; ¬(C,G same_side t) [Cnsim_tG] by fol t_line AGBncol Distinct Gsim_tE Cnsim_tE SameSideTransitive; C ∉ ray B G [notCrBG] by fol - IN_Ray Distinct t_line AGBncol RaySameSide Cnsim_tG IN_DIFF IN_SING ∉; B ∈ Open (C, G) [] by fol - GnotAB ∉ IN_Ray; ∡ G A B <_ang ∡ C B A [] by fol AGBncol notCrBG - B1' EuclidPropositionI_16; ∡ E A B <_ang ∡ C B A [] by fol - rAGrAE Angle_DEF; fol EABncol ANGLE AltIntAngCong - AngleTrichotomy1; qed; G,C same_side t [Gsim_tC] by fol t_line AGBncol Distinct - Cnsim_tE AtMost2Sides; B ∉ Open (G, C) [notGBC] by fol t_line - SameSide_DEF ∉; G ∈ ray B C ━ {B} [] by fol Distinct GnotAB notGBC IN_Ray GnotAB IN_DIFF IN_SING; ray B G = ray B C [rBGrBC] by fol Distinct - RayWellDefined; ∡ C B A ≡ ∡ E A B [flipAltIntAngCong] by fol EABncol ANGLE AltIntAngCong C5Symmetric; ¬(E,G same_side t) [Ensim_tG] by fol t_line AGBncol Distinct Gsim_tC Ensim_tC SameSideTransitive; E ∉ ray A G [notErAG] by fol - IN_Ray Distinct t_line AGBncol RaySameSide Ensim_tG IN_DIFF IN_SING ∉; A ∈ Open (E, G) [] by fol - GnotAB ∉ IN_Ray; ∡ G B A <_ang ∡ E A B [] by fol AGBncol notErAG - B1' EuclidPropositionI_16; ∡ C B A <_ang ∡ E A B [] by fol - rBGrBC Angle_DEF; fol EABncol ANGLE flipAltIntAngCong - AngleTrichotomy1; qed; `;; let EuclidPropositionI_28 = theorem `; ∀A B C D E F G H l m t. Line l ∧ A ∈ l ∧ B ∈ l ∧ G ∈ l ⇒ Line m ∧ C ∈ m ∧ D ∈ m ∧ H ∈ m ⇒ Line t ∧ G ∈ t ∧ H ∈ t ⇒ G ∉ m ∧ H ∉ l ⇒ G ∈ Open (A, B) ∧ H ∈ Open (C, D) ⇒ G ∈ Open (E, H) ∧ H ∈ Open (F, G) ⇒ ¬(D,A same_side t) ⇒ ∡ E G B ≡ ∡ G H D ∨ ∡ B G H suppl ∡ G H D ⇒ l ∥ m proof intro_TAC ∀A B C D E F G H l m t, l_line, m_line, t_line, notGmHl, H1, H2, H3, H4; ¬(A = G) ∧ ¬(G = B) ∧ ¬(H = D) ∧ ¬(E = G) ∧ ¬(G = H) ∧ Collinear A G B ∧ Collinear E G H [Distinct] by fol H1 H2 B1'; ¬Collinear H G A ∧ ¬Collinear G H D ∧ A ∉ t ∧ D ∉ t [HGAncol] by fol Distinct l_line m_line notGmHl NonCollinearRaa CollinearSymmetry Collinear_DEF t_line ∉; ¬Collinear B G H ∧ ¬Collinear A G E ∧ ¬Collinear E G B [BGHncol] by fol - Distinct CollinearSymmetry NoncollinearityExtendsToLine; ∡ A G H ≡ ∡ D H G [] proof case_split EGBeqGHD | BGHeqGHD by fol H4; suppose ∡ E G B ≡ ∡ G H D; ∡ E G B ≡ ∡ H G A ∧ Angle (∡ E G B) ∧ Angle (∡ H G A) ∧ Angle (∡ G H D) [boo] by fol BGHncol H1 H2 VerticalAnglesCong HGAncol ANGLE; ∡ H G A ≡ ∡ E G B [] by fol - C5Symmetric; ∡ H G A ≡ ∡ G H D [] by fol boo - EGBeqGHD C5Transitive; fol - AngleSymmetry; end; suppose ∡ B G H suppl ∡ G H D; ∡ B G H suppl ∡ H G A [] by fol BGHncol H1 B1' SupplementaryAngles_DEF; fol - BGHeqGHD AngleSymmetry SupplementUnique AngleSymmetry; end; qed; fol l_line m_line t_line Distinct HGAncol H3 - AlternateInteriorAngles; qed; `;; let OppositeSidesCongImpliesParallelogram = theorem `; ∀A B C D. Quadrilateral A B C D ⇒ seg A B ≡ seg C D ∧ seg B C ≡ seg D A ⇒ Parallelogram A B C D proof intro_TAC ∀A B C D, H1, H2; ¬(A = B) ∧ ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D) ∧ ¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B [TetraABCD] by fol H1 Quadrilateral_DEF Tetralateral_DEF; consider a c such that Line a ∧ A ∈ a ∧ B ∈ a ∧ Line c ∧ C ∈ c ∧ D ∈ c [ac_line] by fol TetraABCD I1; consider b d such that Line b ∧ B ∈ b ∧ C ∈ b ∧ Line d ∧ D ∈ d ∧ A ∈ d [bd_line] by fol TetraABCD I1; consider l such that Line l ∧ A ∈ l ∧ C ∈ l [l_line] by fol TetraABCD I1; consider m such that Line m ∧ B ∈ m ∧ D ∈ m [m_line] by fol TetraABCD I1; B ∉ l ∧ D ∉ l ∧ A ∉ m ∧ C ∉ m [notBDlACm] by fol l_line m_line TetraABCD Collinear_DEF ∉; seg A C ≡ seg C A ∧ seg B D ≡ seg D B [seg_refl] by fol TetraABCD SEGMENT C2Reflexive SegmentSymmetry; A,B,C ≅ C,D,A [] by fol TetraABCD H2 - SSS; ∡ B C A ≡ ∡ D A C ∧ ∡ C A B ≡ ∡ A C D [BCAeqDAC] by fol - TriangleCong_DEF; seg C D ≡ seg A B [CDeqAB] by fol TetraABCD SEGMENT H2 C2Symmetric; B,C,D ≅ D,A,B [] by fol TetraABCD H2 - seg_refl SSS; ∡ C D B ≡ ∡ A B D ∧ ∡ D B C ≡ ∡ B D A ∧ ∡ C B D ≡ ∡ A D B [CDBeqABD] by fol - TriangleCong_DEF AngleSymmetry; ¬(B,D same_side l) ∨ ¬(A,C same_side m) [] by fol H1 l_line m_line FiveChoicesQuadrilateral; case_split Case1 | Ansim_mC by fol -; suppose ¬(B,D same_side l); ¬(D,B same_side l) [] by fol l_line notBDlACm - SameSideSymmetric; a ∥ c ∧ b ∥ d [] by fol ac_line l_line TetraABCD notBDlACm - BCAeqDAC AngleSymmetry AlternateInteriorAngles bd_line BCAeqDAC; fol H1 ac_line bd_line - Parallelogram_DEF; end; suppose ¬(A,C same_side m); b ∥ d [b∥d] by fol bd_line m_line TetraABCD notBDlACm - CDBeqABD AlternateInteriorAngles; c ∥ a [] by fol ac_line m_line TetraABCD notBDlACm Ansim_mC CDBeqABD AlternateInteriorAngles; fol H1 ac_line bd_line b∥d - ParallelSymmetry Parallelogram_DEF; end; qed; `;; let OppositeAnglesCongImpliesParallelogramHelp = theorem `; ∀A B C D a c. Quadrilateral A B C D ⇒ ∡ A B C ≡ ∡ C D A ∧ ∡ D A B ≡ ∡ B C D ⇒ Line a ∧ A ∈ a ∧ B ∈ a ⇒ Line c ∧ C ∈ c ∧ D ∈ c ⇒ a ∥ c proof intro_TAC ∀A B C D a c, H1, H2, a_line, c_line; ¬(A = B) ∧ ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D) ∧ ¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B [TetraABCD] by fol H1 Quadrilateral_DEF Tetralateral_DEF; ∡ C D A ≡ ∡ A B C ∧ ∡ B C D ≡ ∡ D A B [H2'] by fol TetraABCD ANGLE H2 C5Symmetric; consider l m such that Line l ∧ A ∈ l ∧ C ∈ l ∧ Line m ∧ B ∈ m ∧ D ∈ m [lm_line] by fol TetraABCD I1; consider b d such that Line b ∧ B ∈ b ∧ C ∈ b ∧ Line d ∧ D ∈ d ∧ A ∈ d [bd_line] by fol TetraABCD I1; A ∉ c ∧ B ∉ c ∧ A ∉ b ∧ D ∉ b ∧ B ∉ d ∧ C ∉ d [point_off_line] by fol c_line bd_line Collinear_DEF TetraABCD ∉; ¬(A ∈ int_triangle B C D ∨ B ∈ int_triangle C D A ∨ C ∈ int_triangle D A B ∨ D ∈ int_triangle A B C) [] proof assume A ∈ int_triangle B C D ∨ B ∈ int_triangle C D A ∨ C ∈ int_triangle D A B ∨ D ∈ int_triangle A B C [Con] by fol; ∡ B C D <_ang ∡ D A B ∨ ∡ C D A <_ang ∡ A B C ∨ ∡ D A B <_ang ∡ B C D ∨ ∡ A B C <_ang ∡ C D A [] by fol TetraABCD - EuclidPropositionI_21; fol - H2' H2 AngleTrichotomy1; qed; ConvexQuadrilateral A B C D [] by fol H1 lm_line - FiveChoicesQuadrilateral; A ∈ int_angle B C D ∧ B ∈ int_angle C D A ∧ C ∈ int_angle D A B ∧ D ∈ int_angle A B C [AintBCD] by fol - ConvexQuad_DEF; B,A same_side c ∧ B,C same_side d [Bsim_cA] by fol c_line bd_line - InteriorUse; A,D same_side b [Asim_bD] by fol bd_line c_line AintBCD InteriorUse; assume ¬(a ∥ c) [Con] by fol; consider G such that G ∈ a ∧ G ∈ c [Gac] by fol - a_line c_line PARALLEL MEMBER_NOT_EMPTY IN_INTER; Collinear A B G ∧ Collinear D G C ∧ Collinear C G D [ABGcol] by fol a_line - Collinear_DEF c_line; ¬(G = A) ∧ ¬(G = B) ∧ ¬(G = C) ∧ ¬(G = D) [GnotABCD] by fol Gac ABGcol TetraABCD CollinearSymmetry Collinear_DEF; ¬Collinear B G C ∧ ¬Collinear A D G [BGCncol] by fol c_line Gac GnotABCD point_off_line NonCollinearRaa CollinearSymmetry; ¬Collinear B C G ∧ ¬Collinear G B C ∧ ¬Collinear G A D ∧ ¬Collinear A G D [BCGncol] by fol - CollinearSymmetry; G ∉ b ∧ G ∉ d [notGb] by fol bd_line Collinear_DEF BGCncol ∉; G ∉ Open (B, A) [notBGA] by fol Bsim_cA Gac SameSide_DEF ∉; B ∉ Open (A, G) [notABG] proof assume ¬(B ∉ Open (A, G)) [Con] by fol; B ∈ Open (A, G) [ABG] by fol - ∉; ray A B = ray A G [rABrAG] by fol - IntervalRay; ¬(A,G same_side b) [] by fol bd_line ABG SameSide_DEF; ¬(D,G same_side b) [] by fol bd_line point_off_line notGb Asim_bD - SameSideTransitive; D ∉ ray C G [] by fol bd_line notGb - RaySameSide TetraABCD IN_DIFF IN_SING ∉; C ∈ Open (D, G) [DCG] by fol GnotABCD ABGcol - IN_Ray ∉; consider M such that D ∈ Open (C, M) [CDM] by fol TetraABCD B2'; D ∈ Open (G, M) [GDM] by fol - B1' DCG TransitivityBetweennessHelp; ∡ C D A suppl ∡ A D M ∧ ∡ A B C suppl ∡ C B G [] by fol TetraABCD CDM ABG SupplementaryAngles_DEF; ∡ M D A ≡ ∡ G B C [MDAeqGBC] by fol - H2' SupplementsCongAnglesCong AngleSymmetry; ∡ G A D <_ang ∡ M D A ∧ ∡ G B C <_ang ∡ D C B [] by fol BCGncol BGCncol GDM DCG B1' EuclidPropositionI_16; ∡ G A D <_ang ∡ D C B [] by fol - BCGncol ANGLE MDAeqGBC AngleTrichotomy2 AngleOrderTransitivity; ∡ D A B <_ang ∡ B C D [] by fol - rABrAG Angle_DEF AngleSymmetry; fol - H2 AngleTrichotomy1; qed; A ∉ Open (G, B) [] proof assume ¬(A ∉ Open (G, B)) [Con] by fol; A ∈ Open (B, G) [BAG] by fol - B1' ∉; ray B A = ray B G [rBArBG] by fol - IntervalRay; ¬(B,G same_side d) [] by fol bd_line BAG SameSide_DEF; ¬(C,G same_side d) [] by fol bd_line point_off_line notGb Bsim_cA - SameSideTransitive; C ∉ ray D G [] by fol bd_line notGb - RaySameSide TetraABCD IN_DIFF IN_SING ∉; D ∈ Open (C, G) [CDG] by fol GnotABCD ABGcol - IN_Ray ∉; consider M such that C ∈ Open (D, M) [DCM] by fol B2' TetraABCD; C ∈ Open (G, M) [GCM] by fol - B1' CDG TransitivityBetweennessHelp; ∡ B C D suppl ∡ M C B ∧ ∡ D A B suppl ∡ G A D [] by fol TetraABCD CollinearSymmetry DCM BAG SupplementaryAngles_DEF AngleSymmetry; ∡ M C B ≡ ∡ G A D [GADeqMCB] by fol - H2' SupplementsCongAnglesCong; ∡ G B C <_ang ∡ M C B ∧ ∡ G A D <_ang ∡ C D A [] by fol BGCncol GCM BCGncol CDG B1' EuclidPropositionI_16; ∡ G B C <_ang ∡ C D A [] by fol - BCGncol ANGLE GADeqMCB AngleTrichotomy2 AngleOrderTransitivity; ∡ A B C <_ang ∡ C D A [] by fol - rBArBG Angle_DEF; fol - H2 AngleTrichotomy1; qed; fol TetraABCD GnotABCD ABGcol notABG notBGA - B3' ∉; qed; `;; let OppositeAnglesCongImpliesParallelogram = theorem `; ∀A B C D. Quadrilateral A B C D ⇒ ∡ A B C ≡ ∡ C D A ∧ ∡ D A B ≡ ∡ B C D ⇒ Parallelogram A B C D proof intro_TAC ∀A B C D, H1, H2; Quadrilateral B C D A [QuadBCDA] by fol H1 QuadrilateralSymmetry; ¬(A = B) ∧ ¬(B = C) ∧ ¬(C = D) ∧ ¬(D = A) ∧ ¬Collinear B C D ∧ ¬Collinear D A B [TetraABCD] by fol H1 Quadrilateral_DEF Tetralateral_DEF; ∡ B C D ≡ ∡ D A B [H2'] by fol TetraABCD ANGLE H2 C5Symmetric; consider a such that Line a ∧ A ∈ a ∧ B ∈ a [a_line] by fol TetraABCD I1; consider b such that Line b ∧ B ∈ b ∧ C ∈ b [b_line] by fol TetraABCD I1; consider c such that Line c ∧ C ∈ c ∧ D ∈ c [c_line] by fol TetraABCD I1; consider d such that Line d ∧ D ∈ d ∧ A ∈ d [d_line] by fol TetraABCD I1; fol H1 QuadBCDA H2 H2' a_line b_line c_line d_line OppositeAnglesCongImpliesParallelogramHelp Parallelogram_DEF; qed; `;; let P = NewAxiom `;∀P l. Line l ∧ P ∉ l ⇒ ∃! m. Line m ∧ P ∈ m ∧ m ∥ l`;; NewConstant("μ",`:(point->bool)->real`);; let AMa = NewAxiom `;∀α. Angle α ⇒ &0 < μ α ∧ μ α < &180`;; let AMb = NewAxiom `;∀α. Right α ⇒ μ α = &90`;; let AMc = NewAxiom `;∀α β. Angle α ∧ Angle β ∧ α ≡ β ⇒ μ α = μ β`;; let AMd = NewAxiom `;∀A O B P. P ∈ int_angle A O B ⇒ μ (∡ A O B) = μ (∡ A O P) + μ (∡ P O B)`;; let ConverseAlternateInteriorAngles = theorem `; ∀A B C E l m. Line l ∧ A ∈ l ∧ E ∈ l ⇒ Line m ∧ B ∈ m ∧ C ∈ m ⇒ Line t ∧ A ∈ t ∧ B ∈ t ⇒ ¬(A = E) ∧ ¬(B = C) ∧ ¬(A = B) ∧ E ∉ t ∧ C ∉ t ⇒ ¬(C,E same_side t) ⇒ l ∥ m ⇒ ∡ E A B ≡ ∡ C B A proof intro_TAC ∀A B C E l m, l_line, m_line, t_line, Distinct, Cnsim_tE, para_lm; ¬Collinear C B A [] by fol Distinct t_line NonCollinearRaa CollinearSymmetry; A ∉ m ∧ Angle (∡ C B A) [notAm] by fol m_line - Collinear_DEF ∉ ANGLE; consider D such that ¬(A = D) ∧ D ∉ t ∧ ¬(C,D same_side t) ∧ seg A D ≡ seg A E ∧ ∡ B A D ≡ ∡ C B A [Dexists] by simplify C4OppositeSide - Distinct t_line; consider k such that Line k ∧ A ∈ k ∧ D ∈ k [k_line] by fol Distinct I1; k ∥ m [] by fol - m_line t_line Dexists Distinct AngleSymmetry AlternateInteriorAngles; k = l [] by fol m_line notAm l_line k_line - para_lm P; D,E same_side t ∧ A ∉ Open (D, E) ∧ Collinear A E D [] by fol t_line Distinct Dexists Cnsim_tE AtMost2Sides SameSide_DEF ∉ - k_line l_line Collinear_DEF; ray A D = ray A E [] by fol Distinct - IN_Ray Dexists RayWellDefined IN_DIFF IN_SING; fol - Dexists AngleSymmetry Angle_DEF; qed; `;; let HilbertTriangleSum = theorem `; ∀A B C. ¬Collinear A B C ⇒ ∃E F. B ∈ Open (E, F) ∧ C ∈ int_angle A B F ∧ ∡ E B A ≡ ∡ C A B ∧ ∡ C B F ≡ ∡ B C A proof intro_TAC ∀A B C, ABCncol; ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ ¬Collinear C A B [Distinct] by fol ABCncol NonCollinearImpliesDistinct CollinearSymmetry; consider l such that Line l ∧ A ∈ l ∧ C ∈ l [l_line] by fol Distinct I1; consider x such that Line x ∧ A ∈ x ∧ B ∈ x [x_line] by fol Distinct I1; consider y such that Line y ∧ B ∈ y ∧ C ∈ y [y_line] by fol Distinct I1; C ∉ x [notCx] by fol x_line ABCncol Collinear_DEF ∉; Angle (∡ C A B) [] by fol ABCncol CollinearSymmetry ANGLE; consider E such that ¬(B = E) ∧ E ∉ x ∧ ¬(C,E same_side x) ∧ seg B E ≡ seg A B ∧ ∡ A B E ≡ ∡ C A B [Eexists] by simplify C4OppositeSide - Distinct x_line notCx; consider m such that Line m ∧ B ∈ m ∧ E ∈ m [m_line] by fol - I1; ∡ E B A ≡ ∡ C A B [EBAeqCAB] by fol Eexists AngleSymmetry; m ∥ l [para_lm] by fol m_line l_line x_line Eexists Distinct notCx - AlternateInteriorAngles; m ∩ l = ∅ [ml0] by fol - PARALLEL; C ∉ m ∧ A ∉ m [notACm] by fol - l_line INTER_COMM DisjointOneNotOther; consider F such that B ∈ Open (E, F) [EBF] by fol Eexists B2'; ¬(B = F) ∧ F ∈ m [EBF'] by fol - B1' m_line BetweenLinear; ¬Collinear A B F ∧ F ∉ x [ABFncol] by fol EBF' m_line notACm NonCollinearRaa CollinearSymmetry Collinear_DEF x_line ∉; ¬(E,F same_side x) ∧ ¬(E,F same_side y) [Ensim_yF] by fol EBF x_line y_line SameSide_DEF; C,F same_side x [Csim_xF] by fol x_line notCx Eexists ABFncol Eexists - AtMost2Sides; C,A same_side m [] by fol m_line l_line ml0 DisjointLinesImplySameSide; C ∈ int_angle A B F [CintABF] by fol ABFncol x_line m_line EBF' notCx notACm Csim_xF - IN_InteriorAngle; A ∈ int_angle C B E [] by fol EBF B1' - InteriorAngleSymmetry InteriorReflectionInterior; A ∉ y ∧ A,E same_side y [Asim_yE] by fol y_line m_line - InteriorUse; E ∉ y ∧ F ∉ y [notEFy] by fol y_line m_line EBF' Eexists EBF' I1 Collinear_DEF notACm ∉; E,A same_side y [] by fol y_line - Asim_yE SameSideSymmetric; ¬(A,F same_side y) [Ansim_yF] by fol y_line notEFy Asim_yE - Ensim_yF SameSideTransitive; ∡ F B C ≡ ∡ A C B [] by fol m_line EBF' l_line y_line EBF' Distinct notEFy Asim_yE Ansim_yF para_lm ConverseAlternateInteriorAngles; fol EBF CintABF EBAeqCAB - AngleSymmetry; qed; `;; let EuclidPropositionI_13 = theorem `; ∀A O B A'. ¬Collinear A O B ∧ O ∈ Open (A, A') ⇒ μ (∡ A O B) + μ (∡ B O A') = &180 proof intro_TAC ∀A O B A', H1 H2; case_split RightAOB | notRightAOB by fol -; suppose Right (∡ A O B); Right (∡ B O A') ∧ μ (∡ A O B) = &90 ∧ μ (∡ B O A') = &90 [] by fol H1 H2 - RightImpliesSupplRight AMb; real_arithmetic -; end; suppose ¬Right (∡ A O B); ¬(A = O) ∧ ¬(O = B) [Distinct] by fol H1 NonCollinearImpliesDistinct; consider l such that Line l ∧ O ∈ l ∧ A ∈ l ∧ A' ∈ l [l_line] by fol - I1 H2 BetweenLinear; B ∉ l [notBl] by fol - Distinct I1 Collinear_DEF H1 ∉; consider F such that Right (∡ O A F) ∧ Angle (∡ O A F) [RightOAF] by fol Distinct EuclidPropositionI_11 RightImpliesAngle; ∃! r. Ray r ∧ ∃E. ¬(O = E) ∧ r = ray O E ∧ E ∉ l ∧ E,B same_side l ∧ ∡ A O E ≡ ∡ O A F [] by simplify C4 - Distinct l_line notBl; consider E such that ¬(O = E) ∧ E ∉ l ∧ E,B same_side l ∧ ∡ A O E ≡ ∡ O A F [Eexists] by fol -; ¬Collinear A O E [AOEncol] by fol Distinct l_line - NonCollinearRaa CollinearSymmetry; Right (∡ A O E) [RightAOE] by fol - ANGLE RightOAF Eexists CongRightImpliesRight; Right (∡ E O A') ∧ μ (∡ A O E) = &90 ∧ μ (∡ E O A') = &90 [RightEOA'] by fol AOEncol H2 - RightImpliesSupplRight AMb; ¬(∡ A O B ≡ ∡ A O E) [] by fol notRightAOB H1 ANGLE RightAOE CongRightImpliesRight; ¬(∡ A O B = ∡ A O E) [] by fol H1 AOEncol ANGLE - C5Reflexive; ¬(ray O B = ray O E) [] by fol - Angle_DEF; B ∉ ray O E ∧ O ∉ Open (B, E) [] by fol Distinct - Eexists RayWellDefined IN_DIFF IN_SING ∉ l_line B1' SameSide_DEF; ¬Collinear O E B [] by fol - Eexists IN_Ray ∉; E ∈ int_angle A O B ∨ B ∈ int_angle A O E [] by fol Distinct l_line Eexists notBl AngleOrdering - CollinearSymmetry InteriorAngleSymmetry; case_split EintAOB | BintAOE by fol -; suppose E ∈ int_angle A O B; B ∈ int_angle E O A' [] by fol H2 - InteriorReflectionInterior; μ (∡ A O B) = μ (∡ A O E) + μ (∡ E O B) ∧ μ (∡ E O A') = μ (∡ E O B) + μ (∡ B O A') [] by fol EintAOB - AMd; real_arithmetic - RightEOA'; end; suppose B ∈ int_angle A O E; E ∈ int_angle B O A' [] by fol H2 - InteriorReflectionInterior; μ (∡ A O E) = μ (∡ A O B) + μ (∡ B O E) ∧ μ (∡ B O A') = μ (∡ B O E) + μ (∡ E O A') [] by fol BintAOE - AMd; real_arithmetic - RightEOA'; end; end; qed; `;; let TriangleSum = theorem `; ∀A B C. ¬Collinear A B C ⇒ μ (∡ A B C) + μ (∡ B C A) + μ (∡ C A B) = &180 proof intro_TAC ∀A B C, ABCncol; ¬Collinear C A B ∧ ¬Collinear B C A [CABncol] by fol ABCncol CollinearSymmetry; consider E F such that B ∈ Open (E, F) ∧ C ∈ int_angle A B F ∧ ∡ E B A ≡ ∡ C A B ∧ ∡ C B F ≡ ∡ B C A [EBF] by fol ABCncol HilbertTriangleSum; ¬Collinear C B F ∧ ¬Collinear A B F ∧ Collinear E B F ∧ ¬(B = E) [CBFncol] by fol - InteriorAngleSymmetry InteriorEZHelp IN_InteriorAngle B1' CollinearSymmetry; ¬Collinear E B A [EBAncol] by fol CollinearSymmetry - NoncollinearityExtendsToLine; μ (∡ A B F) = μ (∡ A B C) + μ (∡ C B F) [μCintABF] by fol EBF AMd; μ (∡ E B A) + μ (∡ A B F) = &180 [suppl180] by fol EBAncol EBF EuclidPropositionI_13; μ (∡ C A B) = μ (∡ E B A) ∧ μ (∡ B C A) = μ (∡ C B F) [] by fol CABncol EBAncol CBFncol ANGLE EBF AMc; real_arithmetic suppl180 μCintABF -; qed; `;; let CircleConvex2_THM = theorem `; ∀O A B C. ¬Collinear A O B ⇒ B ∈ Open (A, C) ⇒ seg O A <__ seg O B ∨ seg O A ≡ seg O B ⇒ seg O B <__ seg O C proof intro_TAC ∀O A B C, H1, H2, H3; ¬Collinear O B A ∧ ¬Collinear B O A ∧ ¬Collinear O A B ∧ ¬(O = A) ∧ ¬(O = B) [H1'] by fol H1 CollinearSymmetry NonCollinearImpliesDistinct; B ∈ Open (C, A) ∧ ¬(C = A) ∧ ¬(C = B) ∧ Collinear A B C ∧ Collinear B A C [H2'] by fol H2 B1' CollinearSymmetry; ¬Collinear O B C ∧ ¬Collinear O C B [OBCncol] by fol H1' - NoncollinearityExtendsToLine CollinearSymmetry; ¬Collinear O A C [OABncol] by fol H1' H2' NoncollinearityExtendsToLine; ∡ O C B <_ang ∡ O B A [OCBlessOBA] by fol OBCncol H2' ExteriorAngle; ∡ O A B <_ang ∡ O B C [OABlessOBC] by fol H1' H2 ExteriorAngle; ∡ O B A <_ang ∡ B A O ∨ ∡ O B A ≡ ∡ B A O [] proof assume seg O A ≡ seg O B [Cong] by fol H3 H1' EuclidPropositionI_18; seg O B ≡ seg O A [] by fol H1' SEGMENT - C2Symmetric; fol H1' - IsoscelesCongBaseAngles AngleSymmetry; qed; ∡ O B A <_ang ∡ O A B ∨ ∡ O B A ≡ ∡ O A B [OBAlessOAB] by fol - AngleSymmetry; ∡ O C B <_ang ∡ O B C [] by fol OCBlessOBA - OABlessOBC OBCncol H1' OABncol OBCncol ANGLE - AngleOrderTransitivity AngleTrichotomy2; fol OBCncol - AngleSymmetry EuclidPropositionI_19; qed; `;;