(* (c) Copyright, Bill Richter 2013 *) (* Distributed under the same license as HOL Light *) (* *) (* An ongoing readable.ml port of Multivariate/topology.ml with 3 features: *) (* 1) A topological space will be an ordered pair α = (X, L), where L is the *) (* the set of open sets on X. topology.ml defines a topological space to be *) (* just L, and the topspace X is defined as UNIONS L. *) (* 2) Result about Connectiveness, limit points, interior and closure are *) (* first proved for general topological spaces and then specialized to *) (* Euclidean space. *) (* 3)All general topology theorems using subtopology α u have antecedent *) (* u ⊂ topspace α. *) (* The math character ━ is used for DIFF. *) (* This file, together with from_topology.ml, shows that all of *) (* Multivariate/topology.ml is either ported/modified here, or else run on *) (* top of this file. *) (* Thanks to Vince Aravantinos for improving the proofs of OPEN_BALL, *) (* CONNECTED_OPEN_IN_EQ, CONNECTED_CLOSED_IN_EQ and INTERIOR_EQ. *) needs "RichterHilbertAxiomGeometry/readable.ml";; needs "Multivariate/determinants.ml";; ParseAsInfix("∉",(11, "right"));; let NOTIN = NewDefinition `; ∀a l. a ∉ l ⇔ ¬(a ∈ l)`;; let DIFF_UNION = theorem `; ∀u s t. u ━ (s ∪ t) = (u ━ s) ∩ (u ━ t) by set`;; let DIFF_INTER = theorem `; ∀u s t. u ━ (s ∩ t) = (u ━ s) ∪ (u ━ t) by set`;; let DIFF_REFL = theorem `; ∀u t. t ⊂ u ⇒ u ━ (u ━ t) = t by set`;; let DIFF_SUBSET = theorem `; ∀u s t. s ⊂ t ⇒ s ━ u ⊂ t ━ u by set`;; let DOUBLE_DIFF_UNION = theorem `; ∀A s t. A ━ s ━ t = A ━ (s ∪ t) by set`;; let SUBSET_COMPLEMENT = theorem `; ∀s t A. s ⊂ A ⇒ (s ⊂ A ━ t ⇔ s ∩ t = ∅) by set`;; let COMPLEMENT_DISJOINT = theorem `; ∀A s t. s ⊂ A ⇒ (s ⊂ t ⇔ s ∩ (A ━ t) = ∅) by set`;; let COMPLEMENT_DUALITY = theorem `; ∀A s t. s ⊂ A ∧ t ⊂ A ⇒ (s = t ⇔ A ━ s = A ━ t) by set`;; let COMPLEMENT_DUALITY_UNION = theorem `; ∀A s t. s ⊂ A ∧ t ⊂ A ∧ u ⊂ A ⇒ (s = t ∪ u ⇔ A ━ s = (A ━ t) ∩ (A ━ u)) by set`;; let SUBSET_DUALITY = theorem `; ∀s t u. t ⊂ u ⇒ s ━ u ⊂ s ━ t by set`;; let COMPLEMENT_INTER_DIFF = theorem `; ∀A s t. s ⊂ A ⇒ s ━ t = s ∩ (A ━ t) by set`;; let INTERS_SUBSET = theorem `; ∀f t. ¬(f = ∅) ∧ (∀s. s ∈ f ⇒ s ⊂ t) ⇒ INTERS f ⊂ t by set`;; let IN_SET_FUNCTION_PREDICATE = theorem `; ∀x f P. x ∈ {f y | P y} ⇔ ∃y. x = f y ∧ P y by set`;; let INTER_TENSOR = theorem `; ∀s s' t t'. s ⊂ s' ∧ t ⊂ t' ⇒ s ∩ t ⊂ s' ∩ t' by set`;; let UNION_TENSOR = theorem `; ∀s s' t t'. s ⊂ s' ∧ t ⊂ t' ⇒ s ∪ t ⊂ s' ∪ t' by set`;; let ExistsTensorInter = theorem `; ∀F G H. (∀x y. F x ∧ G y ⇒ H (x ∩ y)) ⇒ (∃x. F x) ∧ (∃y. G y) ⇒ (∃z. H z) by fol`;; let istopology = NewDefinition `; istopology (X, L) ⇔ (∀U. U ∈ L ⇒ U ⊂ X) ∧ ∅ ∈ L ∧ X ∈ L ∧ (∀s t. s ∈ L ∧ t ∈ L ⇒ s ∩ t ∈ L) ∧ ∀k. k ⊂ L ⇒ UNIONS k ∈ L`;; let UnderlyingSpace = NewDefinition `; UnderlyingSpace α = FST α`;; let OpenSets = NewDefinition `; OpenSets α = SND α`;; let ExistsTopology = theorem `; ∀X. ∃α. istopology α ∧ UnderlyingSpace α = X proof intro_TAC ∀X; consider L such that L = {U | U ⊂ X} [Lexists] by fol; exists_TAC (X, L); rewrite istopology IN_ELIM_THM Lexists UnderlyingSpace; set; qed; `;; let topology_tybij_th = theorem `; ∃t. istopology t by fol ExistsTopology`;; let topology_tybij = new_type_definition "topology" ("mk_topology","dest_topology") topology_tybij_th;; let ISTOPOLOGYdest_topology = theorem `; ∀α. istopology (dest_topology α) by fol topology_tybij`;; let OpenIn = NewDefinition `; ∀α. open_in α = OpenSets (dest_topology α)`;; let topspace = NewDefinition `; ∀α. topspace α = UnderlyingSpace (dest_topology α)`;; let TopologyPAIR = theorem `; ∀α. dest_topology α = (topspace α, open_in α) by rewrite PAIR_EQ OpenIn topspace UnderlyingSpace OpenSets`;; let Topology_Eq = theorem `; ∀α β. topspace α = topspace β ∧ (∀U. open_in α U ⇔ open_in β U) ⇔ α = β proof intro_TAC ∀α β; eq_tac [Right] by fol; intro_TAC H1 H2; dest_topology α = dest_topology β [] by simplify TopologyPAIR PAIR_EQ H1 H2 FUN_EQ_THM; fol - topology_tybij; qed; `;; let OpenInCLAUSES = theorem `; ∀α X. topspace α = X ⇒ (∀U. open_in α U ⇒ U ⊂ X) ∧ open_in α ∅ ∧ open_in α X ∧ (∀s t. open_in α s ∧ open_in α t ⇒ open_in α (s ∩ t)) ∧ ∀k. (∀s. s ∈ k ⇒ open_in α s) ⇒ open_in α (UNIONS k) proof intro_TAC ∀α X, H1; consider L such that L = open_in α [Ldef] by fol; istopology (X, L) [] by fol H1 Ldef TopologyPAIR PAIR_EQ ISTOPOLOGYdest_topology; fol Ldef - istopology IN SUBSET; qed; `;; let OPEN_IN_SUBSET = theorem `; ∀α s. open_in α s ⇒ s ⊂ topspace α by fol OpenInCLAUSES`;; let OPEN_IN_EMPTY = theorem `; ∀α. open_in α ∅ by fol OpenInCLAUSES`;; let OPEN_IN_INTER = theorem `; ∀α s t. open_in α s ∧ open_in α t ⇒ open_in α (s ∩ t) by fol OpenInCLAUSES`;; let OPEN_IN_UNIONS = theorem `; ∀α k. (∀s. s ∈ k ⇒ open_in α s) ⇒ open_in α (UNIONS k) by fol OpenInCLAUSES`;; let OpenInTopspace = theorem `; ∀α. open_in α (topspace α) by fol OpenInCLAUSES`;; let OPEN_IN_UNION = theorem `; ∀α s t. open_in α s ∧ open_in α t ⇒ open_in α (s ∪ t) proof intro_TAC ∀α s t, H; ∀x. x ∈ {s, t} ⇔ x = s ∨ x = t [] by fol IN_INSERT NOT_IN_EMPTY; fol - UNIONS_2 H OPEN_IN_UNIONS; qed; `;; let OPEN_IN_TOPSPACE = theorem `; ∀α. open_in α (topspace α) by fol OpenInCLAUSES`;; let OPEN_IN_INTERS = theorem `; ∀α s. FINITE s ∧ ¬(s = ∅) ∧ (∀t. t ∈ s ⇒ open_in α t) ⇒ open_in α (INTERS s) proof intro_TAC ∀α; rewrite IMP_CONJ; MATCH_MP_TAC FINITE_INDUCT; rewrite INTERS_INSERT NOT_INSERT_EMPTY FORALL_IN_INSERT; intro_TAC ∀x s, H1, xWorks sWorks; assume ¬(s = ∅) [Nonempty] by simplify INTERS_0 INTER_UNIV xWorks; fol xWorks Nonempty H1 sWorks OPEN_IN_INTER; qed; `;; let OPEN_IN_SUBOPEN = theorem `; ∀α s. open_in α s ⇔ ∀x. x ∈ s ⇒ ∃t. open_in α t ∧ x ∈ t ∧ t ⊂ s proof intro_TAC ∀α s; eq_tac [Left] by set; intro_TAC ALLtExist; consider f such that ∀x. x ∈ s ⇒ open_in α (f x) ∧ x ∈ f x ∧ f x ⊂ s [fExists] by fol ALLtExist SKOLEM_THM_GEN; s = UNIONS (IMAGE f s) [] by set -; fol - fExists FORALL_IN_IMAGE OPEN_IN_UNIONS; qed; `;; let closed_in = NewDefinition `; ∀α s. closed_in α s ⇔ s ⊂ topspace α ∧ open_in α (topspace α ━ s)`;; let CLOSED_IN_SUBSET = theorem `; ∀α s. closed_in α s ⇒ s ⊂ topspace α by fol closed_in`;; let CLOSED_IN_EMPTY = theorem `; ∀α. closed_in α ∅ by fol closed_in EMPTY_SUBSET DIFF_EMPTY OPEN_IN_TOPSPACE`;; let CLOSED_IN_TOPSPACE = theorem `; ∀α. closed_in α (topspace α) by fol closed_in SUBSET_REFL DIFF_EQ_EMPTY OPEN_IN_EMPTY`;; let CLOSED_IN_UNION = theorem `; ∀α s t. closed_in α s ∧ closed_in α t ⇒ closed_in α (s ∪ t) proof intro_TAC ∀α s t, Hst; fol Hst closed_in DIFF_UNION UNION_SUBSET OPEN_IN_INTER; qed; `;; let CLOSED_IN_INTERS = theorem `; ∀α k. ¬(k = ∅) ∧ (∀s. s ∈ k ⇒ closed_in α s) ⇒ closed_in α (INTERS k) proof intro_TAC ∀α k, H1 H2; consider X such that X = topspace α [Xdef] by fol; simplify GSYM Xdef closed_in DIFF_INTERS SIMPLE_IMAGE; fol H1 H2 Xdef INTERS_SUBSET closed_in FORALL_IN_IMAGE OPEN_IN_UNIONS; qed; `;; let CLOSED_IN_FORALL_IN = theorem `; ∀α P Q. ¬(P = ∅) ∧ (∀a. P a ⇒ closed_in α {x | Q a x}) ⇒ closed_in α {x | ∀a. P a ⇒ Q a x} proof intro_TAC ∀α P Q, Pnonempty H1; consider f such that f = {{x | Q a x} | P a} [fDef] by fol; ¬(f = ∅) [fNonempty] by set fDef Pnonempty; (∀a. P a ⇒ closed_in α {x | Q a x}) ⇔ (∀s. s ∈ f ⇒ closed_in α s) [] by simplify fDef FORALL_IN_GSPEC; closed_in α (INTERS f) [] by fol fNonempty H1 - CLOSED_IN_INTERS; MP_TAC -; {x | ∀a. P a ⇒ x ∈ {x | Q a x}} = {x | ∀a. P a ⇒ Q a x} [] by set; simplify fDef INTERS_GSPEC -; qed; `;; let CLOSED_IN_INTER = theorem `; ∀α s t. closed_in α s ∧ closed_in α t ⇒ closed_in α (s ∩ t) proof intro_TAC ∀α s t, Hs Ht; rewrite GSYM INTERS_2; MATCH_MP_TAC CLOSED_IN_INTERS; set Hs Ht; qed; `;; let OPEN_IN_CLOSED_IN_EQ = theorem `; ∀α s. open_in α s ⇔ s ⊂ topspace α ∧ closed_in α (topspace α ━ s) proof intro_TAC ∀α s; simplify closed_in SUBSET_DIFF OPEN_IN_SUBSET; fol SET_RULE [X ━ (X ━ s) = X ∩ s ∧ (s ⊂ X ⇒ X ∩ s = s)] OPEN_IN_SUBSET; qed; `;; let OPEN_IN_CLOSED_IN = theorem `; ∀s. s ⊂ topspace α ⇒ (open_in α s ⇔ closed_in α (topspace α ━ s)) by fol OPEN_IN_CLOSED_IN_EQ`;; let OPEN_IN_DIFF = theorem `; ∀α s t. open_in α s ∧ closed_in α t ⇒ open_in α (s ━ t) proof intro_TAC ∀α s t, H1 H2; consider X such that X = topspace α [Xdef] by fol; fol COMPLEMENT_INTER_DIFF OPEN_IN_SUBSET - H1 H2 closed_in OPEN_IN_INTER; qed; `;; let CLOSED_IN_DIFF = theorem `; ∀α s t. closed_in α s ∧ open_in α t ⇒ closed_in α (s ━ t) proof intro_TAC ∀α s t, H1 H2; consider X such that X = topspace α [Xdef] by fol; fol COMPLEMENT_INTER_DIFF H1 - OPEN_IN_SUBSET SUBSET_DIFF DIFF_REFL H2 closed_in CLOSED_IN_INTER; qed; `;; let CLOSED_IN_UNIONS = theorem `; ∀α s. FINITE s ∧ (∀t. t ∈ s ⇒ closed_in α t) ⇒ closed_in α (UNIONS s) proof intro_TAC ∀α; rewrite IMP_CONJ; MATCH_MP_TAC FINITE_INDUCT; fol UNIONS_INSERT UNIONS_0 CLOSED_IN_EMPTY IN_INSERT CLOSED_IN_UNION; qed; `;; let subtopology = NewDefinition `; ∀α u. subtopology α u = mk_topology (u, {s ∩ u | open_in α s})`;; let IstopologySubtopology = theorem `; ∀α u:A->bool. u ⊂ topspace α ⇒ istopology (u, {s ∩ u | open_in α s}) proof intro_TAC ∀α u, H1; ∅ = ∅ ∩ u ∧ open_in α ∅ [emptysetOpen] by fol INTER_EMPTY OPEN_IN_EMPTY; u = topspace α ∩ u ∧ open_in α (topspace α) [uOpen] by fol OPEN_IN_TOPSPACE H1 INTER_COMM SUBSET_INTER_ABSORPTION; ∀s' s. open_in α s' ∧ open_in α s ⇒ open_in α (s' ∩ s) ∧ (s' ∩ u) ∩ (s ∩ u) = (s' ∩ s) ∩ u [interOpen] proof intro_TAC ∀s' s, H1 H2; set MESON [H1; H2; OPEN_IN_INTER] [open_in α (s' ∩ s)]; qed; ∀k. k ⊂ {s | open_in α s} ⇒ open_in α (UNIONS k) ∧ UNIONS (IMAGE (λs. s ∩ u) k) = (UNIONS k) ∩ u [unionsOpen] proof intro_TAC ∀k, kProp; open_in α (UNIONS k) [] by fol kProp SUBSET IN_ELIM_THM OPEN_IN_UNIONS; simplify - UNIONS_IMAGE UNIONS_GSPEC INTER_UNIONS; qed; {s ∩ u | open_in α s} = IMAGE (λs. s ∩ u) {s | open_in α s} [] by set; simplify istopology IN_SET_FUNCTION_PREDICATE LEFT_IMP_EXISTS_THM INTER_SUBSET - FORALL_SUBSET_IMAGE; fol emptysetOpen uOpen interOpen unionsOpen; qed; `;; let OpenInSubtopology = theorem `; ∀α u s. u ⊂ topspace α ⇒ (open_in (subtopology α u) s ⇔ ∃t. open_in α t ∧ s = t ∩ u) proof intro_TAC ∀α u s, H1; open_in (subtopology α u) = OpenSets (u,{s ∩ u | open_in α s}) [] by fol subtopology H1 IstopologySubtopology topology_tybij OpenIn; rewrite - OpenSets PAIR_EQ SND EXTENSION IN_ELIM_THM; qed; `;; let TopspaceSubtopology = theorem `; ∀α u. u ⊂ topspace α ⇒ topspace (subtopology α u) = u proof intro_TAC ∀α u , H1; topspace (subtopology α u) = UnderlyingSpace (u,{s ∩ u | open_in α s}) [] by fol subtopology H1 IstopologySubtopology topology_tybij topspace; rewrite - UnderlyingSpace PAIR_EQ FST; fol INTER_COMM H1 SUBSET_INTER_ABSORPTION; qed; `;; let OpenInRefl = theorem `; ∀α s. s ⊂ topspace α ⇒ open_in (subtopology α s) s by fol TopspaceSubtopology OPEN_IN_TOPSPACE`;; let ClosedInRefl = theorem `; ∀α s. s ⊂ topspace α ⇒ closed_in (subtopology α s) s by fol TopspaceSubtopology CLOSED_IN_TOPSPACE`;; let ClosedInSubtopology = theorem `; ∀α u C. u ⊂ topspace α ⇒ (closed_in (subtopology α u) C ⇔ ∃D. closed_in α D ∧ C = D ∩ u) proof intro_TAC ∀α u C, H1; consider X such that X = topspace α ∧ u ⊂ X [Xdef] by fol H1; closed_in (subtopology α u) C ⇔ ∃t. C ⊂ u ∧ t ⊂ X ∧ open_in α t ∧ u ━ C = t ∩ u [] by fol closed_in H1 Xdef OpenInSubtopology OPEN_IN_SUBSET TopspaceSubtopology; closed_in (subtopology α u) C ⇔ ∃D. C ⊂ u ∧ D ⊂ X ∧ open_in α (X ━ D) ∧ u ━ C = (X ━ D) ∩ u [] proof rewrite -; eq_tac [Left] proof STRIP_TAC; exists_TAC X ━ t; ASM_SIMP_TAC H1 OPEN_IN_SUBSET DIFF_REFL SUBSET_DIFF; qed; STRIP_TAC; exists_TAC X ━ D; ASM_SIMP_TAC SUBSET_DIFF; qed; simplify - GSYM Xdef H1 closed_in; ∀D C. C ⊂ u ∧ u ━ C = (X ━ D) ∩ u ⇔ C = D ∩ u [] by set Xdef DIFF_REFL INTER_SUBSET; fol -; qed; `;; let OPEN_IN_SUBTOPOLOGY_EMPTY = theorem `; ∀α s. open_in (subtopology α ∅) s ⇔ s = ∅ proof simplify EMPTY_SUBSET OpenInSubtopology INTER_EMPTY; fol OPEN_IN_EMPTY; qed; `;; let CLOSED_IN_SUBTOPOLOGY_EMPTY = theorem `; ∀α s. closed_in (subtopology α ∅) s ⇔ s = ∅ proof simplify EMPTY_SUBSET ClosedInSubtopology INTER_EMPTY; fol CLOSED_IN_EMPTY; qed; `;; let SUBTOPOLOGY_TOPSPACE = theorem `; ∀α. subtopology α (topspace α) = α proof intro_TAC ∀α; topspace (subtopology α (topspace α)) = topspace α [topXsub] by simplify SUBSET_REFL TopspaceSubtopology; simplify topXsub GSYM Topology_Eq; fol MESON [SUBSET_REFL] [topspace α ⊂ topspace α] OpenInSubtopology OPEN_IN_SUBSET SUBSET_INTER_ABSORPTION; qed; `;; let OpenInImpSubset = theorem `; ∀α s t. s ⊂ topspace α ⇒ open_in (subtopology α s) t ⇒ t ⊂ s by fol OpenInSubtopology INTER_SUBSET`;; let ClosedInImpSubset = theorem `; ∀α s t. s ⊂ topspace α ⇒ closed_in (subtopology α s) t ⇒ t ⊂ s by fol ClosedInSubtopology INTER_SUBSET`;; let OpenInSubtopologyUnion = theorem `; ∀α s t u. t ⊂ topspace α ∧ u ⊂ topspace α ⇒ open_in (subtopology α t) s ∧ open_in (subtopology α u) s ⇒ open_in (subtopology α (t ∪ u)) s proof intro_TAC ∀α s t u, Ht Hu; simplify Ht Hu Ht Hu UNION_SUBSET OpenInSubtopology; intro_TAC sOpenSub_t sOpenSub_u; consider a b such that open_in α a ∧ s = a ∩ t ∧ open_in α b ∧ s = b ∩ u [abExist] by fol sOpenSub_t sOpenSub_u; exists_TAC a ∩ b; set MESON [abExist; OPEN_IN_INTER] [open_in α (a ∩ b)] abExist; qed; `;; let ClosedInSubtopologyUnion = theorem `; ∀α s t u. t ⊂ topspace α ∧ u ⊂ topspace α ⇒ closed_in (subtopology α t) s ∧ closed_in (subtopology α u) s ⇒ closed_in (subtopology α (t ∪ u)) s proof intro_TAC ∀α s t u, Ht Hu; simplify Ht Hu Ht Hu UNION_SUBSET ClosedInSubtopology; intro_TAC sClosedSub_t sClosedSub_u; consider a b such that closed_in α a ∧ s = a ∩ t ∧ closed_in α b ∧ s = b ∩ u [abExist] by fol sClosedSub_t sClosedSub_u; exists_TAC a ∩ b; set MESON [abExist; CLOSED_IN_INTER] [closed_in α (a ∩ b)] abExist; qed; `;; let OpenInSubtopologyInterOpen = theorem `; ∀α s t u. u ⊂ topspace α ⇒ open_in (subtopology α u) s ∧ open_in α t ⇒ open_in (subtopology α u) (s ∩ t) proof intro_TAC ∀α s t u, H1, sOpenSub_t tOpen; consider a b such that open_in α a ∧ s = a ∩ u ∧ b = a ∩ t [aExists] by fol sOpenSub_t H1 OpenInSubtopology; fol - tOpen OPEN_IN_INTER INTER_ACI H1 OpenInSubtopology; qed; `;; let OpenInOpenInter = theorem `; ∀α u s. u ⊂ topspace α ⇒ open_in α s ⇒ open_in (subtopology α u) (u ∩ s) by fol INTER_COMM OpenInSubtopology`;; let OpenOpenInTrans = theorem `; ∀α s t. open_in α s ∧ open_in α t ∧ t ⊂ s ⇒ open_in (subtopology α s) t by fol OPEN_IN_SUBSET SUBSET_INTER_ABSORPTION OpenInSubtopology`;; let ClosedClosedInTrans = theorem `; ∀α s t. closed_in α s ∧ closed_in α t ∧ t ⊂ s ⇒ closed_in (subtopology α s) t by fol CLOSED_IN_SUBSET SUBSET_INTER_ABSORPTION ClosedInSubtopology`;; let OpenSubset = theorem `; ∀α s t. t ⊂ topspace α ⇒ s ⊂ t ∧ open_in α s ⇒ open_in (subtopology α t) s by fol OpenInSubtopology SUBSET_INTER_ABSORPTION`;; let ClosedSubsetEq = theorem `; ∀α u s. u ⊂ topspace α ⇒ closed_in α s ⇒ (closed_in (subtopology α u) s ⇔ s ⊂ u) by fol ClosedInSubtopology INTER_SUBSET SUBSET_INTER_ABSORPTION`;; let ClosedInInterClosed = theorem `; ∀α s t u. u ⊂ topspace α ⇒ closed_in (subtopology α u) s ∧ closed_in α t ⇒ closed_in (subtopology α u) (s ∩ t) proof intro_TAC ∀α s t u, H1, sClosedSub_t tClosed; consider a b such that closed_in α a ∧ s = a ∩ u ∧ b = a ∩ t [aExists] by fol sClosedSub_t H1 ClosedInSubtopology; fol - tClosed CLOSED_IN_INTER INTER_ACI H1 ClosedInSubtopology; qed; `;; let ClosedInClosedInter = theorem `; ∀α u s. u ⊂ topspace α ⇒ closed_in α s ⇒ closed_in (subtopology α u) (u ∩ s) by fol INTER_COMM ClosedInSubtopology`;; let ClosedSubset = theorem `; ∀α s t. t ⊂ topspace α ⇒ s ⊂ t ∧ closed_in α s ⇒ closed_in (subtopology α t) s by fol ClosedInSubtopology SUBSET_INTER_ABSORPTION`;; let OpenInSubsetTrans = theorem `; ∀α s t u. u ⊂ topspace α ∧ t ⊂ topspace α ⇒ open_in (subtopology α u) s ∧ s ⊂ t ∧ t ⊂ u ⇒ open_in (subtopology α t) s proof intro_TAC ∀α s t u, uSubset tSubset; simplify uSubset tSubset OpenInSubtopology; intro_TAC sOpen_u s_t t_u; consider a such that open_in α a ∧ s = a ∩ u [aExists] by fol uSubset sOpen_u OpenInSubtopology; set aExists s_t t_u; qed; `;; let ClosedInSubsetTrans = theorem `; ∀α s t u. u ⊂ topspace α ∧ t ⊂ topspace α ⇒ closed_in (subtopology α u) s ∧ s ⊂ t ∧ t ⊂ u ⇒ closed_in (subtopology α t) s proof intro_TAC ∀α s t u, uSubset tSubset; simplify uSubset tSubset ClosedInSubtopology; intro_TAC sClosed_u s_t t_u; consider a such that closed_in α a ∧ s = a ∩ u [aExists] by fol uSubset sClosed_u ClosedInSubtopology; set aExists s_t t_u; qed; `;; let OpenInTrans = theorem `; ∀α s t u. t ⊂ topspace α ∧ u ⊂ topspace α ⇒ open_in (subtopology α t) s ∧ open_in (subtopology α u) t ⇒ open_in (subtopology α u) s proof intro_TAC ∀α s t u, H1 H2; simplify H1 H2 OpenInSubtopology; fol H1 H2 OpenInSubtopology OPEN_IN_INTER INTER_ASSOC; qed; `;; let OpenInTransEq = theorem `; ∀α s t. t ⊂ topspace α ∧ s ⊂ topspace α ⇒ ((∀u. open_in (subtopology α t) u ⇒ open_in (subtopology α s) t) ⇔ open_in (subtopology α s) t) by fol OpenInTrans OpenInRefl`;; let OpenInOpenTrans = theorem `; ∀α u s. u ⊂ topspace α ⇒ open_in (subtopology α u) s ∧ open_in α u ⇒ open_in α s by fol OpenInSubtopology OPEN_IN_INTER`;; let OpenInSubtopologyTrans = theorem `; ∀α s t u. t ⊂ topspace α ∧ u ⊂ topspace α ⇒ open_in (subtopology α t) s ∧ open_in (subtopology α u) t ⇒ open_in (subtopology α u) s proof simplify OpenInSubtopology; fol OPEN_IN_INTER INTER_ASSOC; qed; `;; let SubtopologyOpenInSubopen = theorem `; ∀α u s. u ⊂ topspace α ⇒ (open_in (subtopology α u) s ⇔ s ⊂ u ∧ ∀x. x ∈ s ⇒ ∃t. open_in α t ∧ x ∈ t ∧ t ∩ u ⊂ s) proof intro_TAC ∀α u s, H1; rewriteL OPEN_IN_SUBOPEN; simplify H1 OpenInSubtopology; eq_tac [Right] by fol SUBSET IN_INTER; intro_TAC H2; conj_tac [Left] proof simplify SUBSET; fol H2 IN_INTER; qed; intro_TAC ∀x, xs; consider t such that open_in α t ∧ x ∈ t ∩ u ∧ t ∩ u ⊂ s [tExists] by fol H2 xs; fol - IN_INTER; qed; `;; let ClosedInSubtopologyTrans = theorem `; ∀α s t u. t ⊂ topspace α ∧ u ⊂ topspace α ⇒ closed_in (subtopology α t) s ∧ closed_in (subtopology α u) t ⇒ closed_in (subtopology α u) s proof simplify ClosedInSubtopology; fol CLOSED_IN_INTER INTER_ASSOC; qed; `;; let ClosedInSubtopologyTransEq = theorem `; ∀α s t. t ⊂ topspace α ∧ s ⊂ topspace α ⇒ ((∀u. closed_in (subtopology α t) u ⇒ closed_in (subtopology α s) t) ⇔ closed_in (subtopology α s) t) proof intro_TAC ∀α s t, H1 H2; fol H1 H2 ClosedInSubtopologyTrans CLOSED_IN_TOPSPACE; qed; `;; let ClosedInClosedTrans = theorem `; ∀α s t. u ⊂ topspace α ⇒ closed_in (subtopology α u) s ∧ closed_in α u ⇒ closed_in α s by fol ClosedInSubtopology CLOSED_IN_INTER`;; let OpenInSubtopologyInterSubset = theorem `; ∀α s u v. u ⊂ topspace α ∧ v ⊂ topspace α ⇒ open_in (subtopology α u) (u ∩ s) ∧ v ⊂ u ⇒ open_in (subtopology α v) (v ∩ s) proof simplify OpenInSubtopology; set; qed; `;; let OpenInOpenEq = theorem `; ∀α s t. s ⊂ topspace α ⇒ open_in α s ⇒ (open_in (subtopology α s) t ⇔ open_in α t ∧ t ⊂ s) by fol OpenOpenInTrans OPEN_IN_SUBSET TopspaceSubtopology OpenInOpenTrans`;; let ClosedInClosedEq = theorem `; ∀α s t. s ⊂ topspace α ⇒ closed_in α s ⇒ (closed_in (subtopology α s) t ⇔ closed_in α t ∧ t ⊂ s) by fol ClosedClosedInTrans CLOSED_IN_SUBSET TopspaceSubtopology ClosedInClosedTrans`;; let OpenImpliesSubtopologyInterOpen = theorem `; ∀α u s. u ⊂ topspace α ⇒ open_in α s ⇒ open_in (subtopology α u) (u ∩ s) by fol OpenInSubtopology INTER_COMM`;; let OPEN_IN_EXISTS_IN = theorem `; ∀α P Q. (∀a. P a ⇒ open_in α {x | Q a x}) ⇒ open_in α {x | ∃a. P a ∧ Q a x} proof intro_TAC ∀α P Q, H1; consider f such that f = {{x | Q a x} | P a} [fDef] by fol; (∀a. P a ⇒ open_in α {x | Q a x}) ⇔ (∀s. s ∈ f ⇒ open_in α s) [] by simplify fDef FORALL_IN_GSPEC; MP_TAC MESON [H1; -; OPEN_IN_UNIONS] [open_in α (UNIONS f)]; simplify fDef UNIONS_GSPEC; set; qed; `;; let Connected_DEF = NewDefinition `; ∀α. Connected α ⇔ ¬(∃e1 e2. open_in α e1 ∧ open_in α e2 ∧ topspace α = e1 ∪ e2 ∧ e1 ∩ e2 = ∅ ∧ ¬(e1 = ∅) ∧ ¬(e2 = ∅))`;; let ConnectedClosedHelp = theorem `; ∀α e1 e2. topspace α = e1 ∪ e2 ∧ e1 ∩ e2 = ∅ ⇒ (closed_in α e1 ∧ closed_in α e2 ⇔ open_in α e1 ∧ open_in α e2) proof intro_TAC ∀α e1 e2, H1 H2; e1 = topspace α ━ e2 ∧ e2 = topspace α ━ e1 [e12Complements] by set H1 H2; fol H1 SUBSET_UNION e12Complements OPEN_IN_CLOSED_IN_EQ; qed; `;; let ConnectedClosed = theorem `; ∀α. Connected α ⇔ ¬(∃e1 e2. closed_in α e1 ∧ closed_in α e2 ∧ topspace α = e1 ∪ e2 ∧ e1 ∩ e2 = ∅ ∧ ¬(e1 = ∅) ∧ ¬(e2 = ∅)) proof rewrite Connected_DEF; fol ConnectedClosedHelp; qed; `;; let ConnectedOpenIn = theorem `; ∀α s. s ⊂ topspace α ⇒ (Connected (subtopology α s) ⇔ ¬(∃e1 e2. open_in (subtopology α s) e1 ∧ open_in (subtopology α s) e2 ∧ s ⊂ e1 ∪ e2 ∧ e1 ∩ e2 = ∅ ∧ ¬(e1 = ∅) ∧ ¬(e2 = ∅))) proof simplify Connected_DEF TopspaceSubtopology; fol SUBSET_REFL OpenInImpSubset UNION_SUBSET SUBSET_ANTISYM; qed; `;; let ConnectedClosedIn = theorem `; ∀α s. s ⊂ topspace α ⇒ (Connected (subtopology α s) ⇔ ¬(∃e1 e2. closed_in (subtopology α s) e1 ∧ closed_in (subtopology α s) e2 ∧ s ⊂ e1 ∪ e2 ∧ e1 ∩ e2 = ∅ ∧ ¬(e1 = ∅) ∧ ¬(e2 = ∅))) proof simplify ConnectedClosed TopspaceSubtopology; fol SUBSET_REFL ClosedInImpSubset UNION_SUBSET SUBSET_ANTISYM; qed; `;; let ConnectedSubtopology = theorem `; ∀α s. s ⊂ topspace α ⇒ (Connected (subtopology α s) ⇔ ¬(∃e1 e2. open_in α e1 ∧ open_in α e2 ∧ s ⊂ e1 ∪ e2 ∧ e1 ∩ e2 ∩ s = ∅ ∧ ¬(e1 ∩ s = ∅) ∧ ¬(e2 ∩ s = ∅))) proof intro_TAC ∀α s, H1; simplify H1 Connected_DEF OpenInSubtopology TopspaceSubtopology; AP_TERM_TAC; eq_tac [Left] proof intro_TAC H2; consider t1 t2 such that open_in α t1 ∧ open_in α t2 ∧ s = (t1 ∩ s) ∪ (t2 ∩ s) ∧ (t1 ∩ s) ∩ (t2 ∩ s) = ∅ ∧ ¬(t1 ∩ s = ∅) ∧ ¬(t2 ∩ s = ∅) [t12Exist] by fol H2; s ⊂ t1 ∪ t2 ∧ t1 ∩ t2 ∩ s = ∅ [] by set t12Exist; fol t12Exist -; qed; rewrite LEFT_IMP_EXISTS_THM; intro_TAC ∀e1 e2, e12Exist; exists_TAC e1 ∩ s; exists_TAC e2 ∩ s; set e12Exist; qed; `;; let ConnectedSubtopology_ALT = theorem `; ∀α s. s ⊂ topspace α ⇒ (Connected (subtopology α s) ⇔ ∀e1 e2. open_in α e1 ∧ open_in α e2 ∧ s ⊂ e1 ∪ e2 ∧ e1 ∩ e2 ∩ s = ∅ ⇒ e1 ∩ s = ∅ ∨ e2 ∩ s = ∅) proof simplify ConnectedSubtopology; fol; qed; `;; let ConnectedClosedSubtopology = theorem `; ∀α s. s ⊂ topspace α ⇒ (Connected (subtopology α s) ⇔ ¬(∃e1 e2. closed_in α e1 ∧ closed_in α e2 ∧ s ⊂ e1 ∪ e2 ∧ e1 ∩ e2 ∩ s = ∅ ∧ ¬(e1 ∩ s = ∅) ∧ ¬(e2 ∩ s = ∅))) proof intro_TAC ∀α s, H1; simplify H1 ConnectedSubtopology; AP_TERM_TAC; eq_tac [Left] proof rewrite LEFT_IMP_EXISTS_THM; intro_TAC ∀e1 e2, e12Exist; exists_TAC topspace α ━ e2; exists_TAC topspace α ━ e1; simplify OPEN_IN_SUBSET H1 SUBSET_DIFF DIFF_REFL closed_in e12Exist; set H1 e12Exist; qed; rewrite LEFT_IMP_EXISTS_THM; intro_TAC ∀e1 e2, e12Exist; exists_TAC topspace α ━ e2; exists_TAC topspace α ━ e1; e1 ⊂ topspace α ∧ e2 ⊂ topspace α [e12Top] by fol closed_in e12Exist; simplify DIFF_REFL SUBSET_DIFF e12Top OPEN_IN_CLOSED_IN; set H1 e12Exist; qed; `;; let ConnectedClosedSubtopology_ALT = theorem `; ∀α s. s ⊂ topspace α ⇒ (Connected (subtopology α s) ⇔ ∀e1 e2. closed_in α e1 ∧ closed_in α e2 ∧ s ⊂ e1 ∪ e2 ∧ e1 ∩ e2 ∩ s = ∅ ⇒ e1 ∩ s = ∅ ∨ e2 ∩ s = ∅) proof simplify ConnectedClosedSubtopology; fol; qed; `;; let ConnectedClopen = theorem `; ∀α. Connected α ⇔ ∀t. open_in α t ∧ closed_in α t ⇒ t = ∅ ∨ t = topspace α proof intro_TAC ∀α; simplify Connected_DEF closed_in TAUT [(¬a ⇔ b) ⇔ (a ⇔ ¬b)] NOT_FORALL_THM NOT_IMP DE_MORGAN_THM; eq_tac [Left] proof rewrite LEFT_IMP_EXISTS_THM; intro_TAC ∀e1 e2, H1 H2 H3 H4 H5 H6; exists_TAC e1; e1 ⊂ topspace α ∧ e2 = topspace α ━ e1 ∧ ¬(e1 = topspace alpha) [] by set H3 H4 H6; fol H1 - H2 H5; qed; rewrite LEFT_IMP_EXISTS_THM; intro_TAC ∀t, H1; exists_TAC t; exists_TAC topspace α ━ t; set H1; qed; `;; let ConnectedClosedSet = theorem `; ∀α s. s ⊂ topspace α ⇒ closed_in α s ⇒ (Connected (subtopology α s) ⇔ ¬(∃e1 e2. closed_in α e1 ∧ closed_in α e2 ∧ ¬(e1 = ∅) ∧ ¬(e2 = ∅) ∧ e1 ∪ e2 = s ∧ e1 ∩ e2 = ∅)) proof intro_TAC ∀α s, H1, H2; simplify H1 ConnectedClosedSubtopology; AP_TERM_TAC; eq_tac [Left] proof rewrite LEFT_IMP_EXISTS_THM; intro_TAC ∀e1 e2, H3 H4 H5 H6 H7 H8; exists_TAC e1 ∩ s; exists_TAC e2 ∩ s; simplify H2 H3 H4 H7 H8 CLOSED_IN_INTER; set H5 H6; qed; rewrite LEFT_IMP_EXISTS_THM; intro_TAC ∀e1 e2, H3 H4 H5 H6 H7 H8; exists_TAC e1; exists_TAC e2; set H3 H4 H7 H8 H5 H6; qed; `;; let ConnectedOpenSet = theorem `; ∀α s. open_in α s ⇒ (Connected (subtopology α s) ⇔ ¬(∃e1 e2. open_in α e1 ∧ open_in α e2 ∧ ¬(e1 = ∅) ∧ ¬(e2 = ∅) ∧ e1 ∪ e2 = s ∧ e1 ∩ e2 = ∅)) proof intro_TAC ∀α s, H1; simplify H1 OPEN_IN_SUBSET ConnectedSubtopology; AP_TERM_TAC; eq_tac [Left] proof rewrite LEFT_IMP_EXISTS_THM; intro_TAC ∀e1 e2, H3 H4 H5 H6 H7 H8; exists_TAC e1 ∩ s; exists_TAC e2 ∩ s; e1 ⊂ topspace α ∧ e2 ⊂ topspace α [e12Subsets] by fol H3 H4 OPEN_IN_SUBSET; simplify H1 H3 H4 OPEN_IN_INTER H7 H8; set e12Subsets H5 H6; qed; rewrite LEFT_IMP_EXISTS_THM; intro_TAC ∀e1 e2, H3 H4 H5 H6 H7 H8; exists_TAC e1; exists_TAC e2; set H3 H4 H7 H8 H5 H6; qed; `;; let ConnectedEmpty = theorem `; ∀α. Connected (subtopology α ∅) proof simplify Connected_DEF INTER_EMPTY EMPTY_SUBSET TopspaceSubtopology; fol UNION_SUBSET SUBSET_EMPTY; qed; `;; let ConnectedSing = theorem `; ∀α a. a ∈ topspace α ⇒ Connected (subtopology α {a}) proof simplify Connected_DEF SING_SUBSET TopspaceSubtopology; set; qed; `;; let ConnectedUnions = theorem `; ∀α P. (∀s. s ∈ P ⇒ s ⊂ topspace α) ⇒ (∀s. s ∈ P ⇒ Connected (subtopology α s)) ∧ ¬(INTERS P = ∅) ⇒ Connected (subtopology α (UNIONS P)) proof intro_TAC ∀α P, H1; simplify H1 ConnectedSubtopology UNIONS_SUBSET NOT_EXISTS_THM; intro_TAC allConnected PnotDisjoint, ∀[d/e1] [e/e2]; consider a such that ∀t. t ∈ P ⇒ a ∈ t [aInterP] by fol PnotDisjoint MEMBER_NOT_EMPTY IN_INTERS; ONCE_REWRITE_TAC TAUT [∀p. ¬p ⇔ p ⇒ F]; intro_TAC dOpen eOpen Pde deDisjoint dNonempty eNonempty; a ∈ d ∨ a ∈ e [adORae] by set aInterP Pde dNonempty; consider s x t y such that s ∈ P ∧ x ∈ d ∩ s ∧ t ∈ P ∧ y ∈ e ∩ t [xdsANDyet] by set dNonempty eNonempty; d ∩ e ∩ s = ∅ ∧ d ∩ e ∩ t = ∅ [] by set - deDisjoint; (d ∩ s = ∅ ∨ e ∩ s = ∅) ∧ (d ∩ t = ∅ ∨ e ∩ t = ∅) [] by fol xdsANDyet allConnected dOpen eOpen Pde -; set adORae xdsANDyet aInterP -; qed; `;; let ConnectedUnion = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ∧ ¬(s ∩ t = ∅) ∧ Connected (subtopology α s) ∧ Connected (subtopology α t) ⇒ Connected (subtopology α (s ∪ t)) proof rewrite GSYM UNIONS_2 GSYM INTERS_2; intro_TAC ∀α s t, H1 H2 H3 H4 H5; ∀u. u ∈ {s, t} ⇒ u ⊂ topspace α [stEuclidean] by set H1 H2; ∀u. u ∈ {s, t} ⇒ Connected (subtopology α u) [] by set H4 H5; fol stEuclidean - H3 ConnectedUnions; qed; `;; let ConnectedDiffOpenFromClosed = theorem `; ∀α s t u. u ⊂ topspace α ⇒ s ⊂ t ∧ t ⊂ u ∧ open_in α s ∧ closed_in α t ∧ Connected (subtopology α u) ∧ Connected (subtopology α (t ━ s)) ⇒ Connected (subtopology α (u ━ s)) proof ONCE_REWRITE_TAC TAUT [∀a b c d e f g. (a ∧ b ∧ c ∧ d ∧ e ∧ f ⇒ g) ⇔ (a ∧ b ∧ c ∧ d ⇒ ¬g ⇒ f ⇒ ¬e)]; intro_TAC ∀α s t u, uSubset, st tu sOpen tClosed; t ━ s ⊂ topspace α ∧ u ━ s ⊂ topspace α [] by fol uSubset sOpen OPEN_IN_SUBSET tClosed closed_in SUBSET_DIFF SUBSET_TRANS; simplify uSubset - ConnectedSubtopology; rewrite LEFT_IMP_EXISTS_THM; intro_TAC ∀[v/e1] [w/e2]; intro_TAC vOpen wOpen u_sDisconnected vwDisjoint vNonempty wNonempty; rewrite NOT_EXISTS_THM; intro_TAC t_sConnected; t ━ s ⊂ v ∪ w ∧ v ∩ w ∩ (t ━ s) = ∅ [] by set tu u_sDisconnected vwDisjoint; v ∩ (t ━ s) = ∅ ∨ w ∩ (t ━ s) = ∅ [] by fol t_sConnected vOpen wOpen -; case_split vEmpty | wEmpty by fol -; suppose v ∩ (t ━ s) = ∅; exists_TAC w ∪ s; exists_TAC v ━ t; simplify vOpen wOpen sOpen tClosed OPEN_IN_UNION OPEN_IN_DIFF; set st tu u_sDisconnected vEmpty vwDisjoint wNonempty vNonempty; end; suppose w ∩ (t ━ s) = ∅; exists_TAC v ∪ s; exists_TAC w ━ t; simplify vOpen wOpen sOpen tClosed OPEN_IN_UNION OPEN_IN_DIFF; set st tu u_sDisconnected wEmpty vwDisjoint wNonempty vNonempty; end; qed; `;; let ConnectedDisjointUnionsOpenUniquePart1 = theorem `; ∀α f f' s t a. pairwise DISJOINT f ∧ pairwise DISJOINT f' ∧ (∀s. s ∈ f ⇒ open_in α s ∧ Connected (subtopology α s) ∧ ¬(s = ∅)) ∧ (∀s. s ∈ f' ⇒ open_in α s ∧ Connected (subtopology α s) ∧ ¬(s = ∅)) ∧ UNIONS f = UNIONS f' ∧ s ∈ f ∧ t ∈ f' ∧ a ∈ s ∧ a ∈ t ⇒ s ⊂ t proof intro_TAC ∀α f f' s t a, pDISJf pDISJf' fConn f'Conn Uf_Uf' sf tf' a_s a_t; ∀s. s ∈ f ⇒ s ⊂ topspace α [fTop] by fol fConn OPEN_IN_SUBSET; ∀s. s ∈ f' ⇒ s ⊂ topspace α [f'Top] by fol f'Conn OPEN_IN_SUBSET; rewrite SUBSET; X_genl_TAC b; intro_TAC bs; assume ¬(b ∈ t) [Contradiction] by fol; ∃e1 e2. open_in α e1 ∧ open_in α e2 ∧ e1 ∩ e2 ∩ s = ∅ ∧ s ⊂ e1 ∪ e2 ∧ ¬(e1 ∩ s = ∅) ∧ ¬(e2 ∩ s = ∅) [] proof exists_TAC t; exists_TAC UNIONS (f' DELETE t); simplify tf' f'Conn IN_DELETE OPEN_IN_UNIONS; conj_tac [Right] by set sf Uf_Uf' a_s a_t sf bs Contradiction; MATCH_MP_TAC SET_RULE [∀s t u. t ∩ u = ∅ ⇒ t ∩ u ∩ s = ∅]; rewrite INTER_UNIONS EMPTY_UNIONS FORALL_IN_GSPEC; rewrite IN_DELETE GSYM DISJOINT; fol pDISJf' tf' pairwise; qed; fol - sf fTop fConn ConnectedSubtopology; qed; `;; let ConnectedDisjointUnionsOpenUnique = theorem `; ∀α f f'. pairwise DISJOINT f ∧ pairwise DISJOINT f' ∧ (∀s. s ∈ f ⇒ open_in α s ∧ Connected (subtopology α s) ∧ ¬(s = ∅)) ∧ (∀s. s ∈ f' ⇒ open_in α s ∧ Connected (subtopology α s) ∧ ¬(s = ∅)) ∧ UNIONS f = UNIONS f' ⇒ f = f' proof MATCH_MP_TAC MESON [SUBSET_ANTISYM] [(∀α s t. P α s t ⇒ P α t s) ∧ (∀α s t. P α s t ⇒ s ⊂ t) ⇒ (∀α s t. P α s t ⇒ s = t)]; conj_tac [Left] by fol; intro_TAC ∀α f f', pDISJf pDISJf' fConn f'Conn Uf_Uf'; rewrite SUBSET; X_genl_TAC s; intro_TAC sf; consider t a such that t ∈ f' ∧ a ∈ s ∧ a ∈ t [taExist] by set sf fConn Uf_Uf'; MP_TAC ISPECL [α; f; f'; s; t] ConnectedDisjointUnionsOpenUniquePart1; MP_TAC ISPECL [α; f'; f; t; s] ConnectedDisjointUnionsOpenUniquePart1; fol pDISJf pDISJf' fConn f'Conn Uf_Uf' sf taExist SUBSET_ANTISYM taExist; qed; `;; let ConnectedFromClosedUnionAndInter = theorem `; ∀α s t. s ∪ t ⊂ topspace α ∧ closed_in α s ∧ closed_in α t ∧ Connected (subtopology α (s ∪ t)) ∧ Connected (subtopology α (s ∩ t)) ⇒ Connected (subtopology α s) ∧ Connected (subtopology α t) proof MATCH_MP_TAC MESON [] [(∀α s t. P α s t ⇒ P α t s) ∧ (∀α s t. P α s t ⇒ Q α s) ⇒ ∀α s t. P α s t ⇒ Q α s ∧ Q α t]; conj_tac [Left] by fol UNION_COMM INTER_COMM; ONCE_REWRITE_TAC TAUT [∀a b c d e f. a ∧ b ∧ c ∧ d ∧ e ⇒ f ⇔ a ∧ b ∧ c ∧ e ∧ ¬f ⇒ ¬d]; intro_TAC ∀α s t, stUnionTop sClosed tClosed stInterConn NOTsConn; s ⊂ topspace α ∧ t ⊂ topspace α ∧ s ∩ t ⊂ topspace α [stTop] by fol stUnionTop UNION_SUBSET INTER_SUBSET SUBSET_TRANS; simplify stUnionTop ConnectedClosedSubtopology; consider u v such that closed_in α u ∧ closed_in α v ∧ ¬(u = ∅) ∧ ¬(v = ∅) ∧ u ∪ v = s ∧ u ∩ v = ∅ [sDisConn] proof MP_TAC ISPECL [α; s] ConnectedClosedSet; simplify stTop sClosed NOTsConn; qed; s ∩ t ⊂ u ∪ v ∧ u ∩ v ∩ (s ∩ t) = ∅ [stuvProps] by set sDisConn; u ∩ (s ∩ t) = ∅ ∨ v ∩ (s ∩ t) = ∅ [] by fol stTop stInterConn sDisConn - ConnectedClosedSubtopology_ALT; case_split vstEmpty | ustEmpty by fol -; suppose v ∩ (s ∩ t) = ∅; exists_TAC t ∪ u; exists_TAC v; simplify tClosed sDisConn CLOSED_IN_UNION; set stuvProps sDisConn vstEmpty; end; suppose u ∩ (s ∩ t) = ∅; exists_TAC t ∪ v; exists_TAC u; simplify tClosed sDisConn CLOSED_IN_UNION; set stuvProps sDisConn ustEmpty; end; qed; `;; let ConnectedFromOpenUnionAndInter = theorem `; ∀α s t. s ∪ t ⊂ topspace α ∧ open_in α s ∧ open_in α t ∧ Connected (subtopology α (s ∪ t)) ∧ Connected (subtopology α (s ∩ t)) ⇒ Connected (subtopology α s) ∧ Connected (subtopology α t) proof MATCH_MP_TAC MESON [] [(∀α s t. P α s t ⇒ P α t s) ∧ (∀α s t. P α s t ⇒ Q α s) ⇒ ∀α s t. P α s t ⇒ Q α s ∧ Q α t]; conj_tac [Left] by fol UNION_COMM INTER_COMM; ONCE_REWRITE_TAC TAUT [∀a b c d e f. a ∧ b ∧ c ∧ d ∧ e ⇒ f ⇔ a ∧ b ∧ c ∧ e ∧ ¬f ⇒ ¬d]; intro_TAC ∀α s t, stUnionTop sOpen tOpen stInterConn NOTsConn; s ⊂ topspace α ∧ t ⊂ topspace α ∧ s ∩ t ⊂ topspace α [stTop] by fol stUnionTop UNION_SUBSET INTER_SUBSET SUBSET_TRANS; simplify stUnionTop ConnectedSubtopology; consider u v such that open_in α u ∧ open_in α v ∧ ¬(u = ∅) ∧ ¬(v = ∅) ∧ u ∪ v = s ∧ u ∩ v = ∅ [sDisConn] proof MP_TAC ISPECL [α; s] ConnectedOpenSet; simplify stTop sOpen NOTsConn; qed; s ∩ t ⊂ u ∪ v ∧ u ∩ v ∩ (s ∩ t) = ∅ [stuvProps] by set sDisConn; u ∩ (s ∩ t) = ∅ ∨ v ∩ (s ∩ t) = ∅ [] by fol stTop stInterConn sDisConn - ConnectedSubtopology_ALT; case_split vstEmpty | ustEmpty by fol -; suppose v ∩ (s ∩ t) = ∅; exists_TAC t ∪ u; exists_TAC v; simplify tOpen sDisConn OPEN_IN_UNION; set stuvProps sDisConn vstEmpty; end; suppose u ∩ (s ∩ t) = ∅; exists_TAC t ∪ v; exists_TAC u; simplify tOpen sDisConn OPEN_IN_UNION; set stuvProps sDisConn ustEmpty; end; qed; `;; let ConnectedInduction = theorem `; ∀α P Q s. s ⊂ topspace α ⇒ Connected (subtopology α s) ∧ (∀t a. open_in (subtopology α s) t ∧ a ∈ t ⇒ ∃z. z ∈ t ∧ P z) ∧ (∀a. a ∈ s ⇒ ∃t. open_in (subtopology α s) t ∧ a ∈ t ∧ ∀x y. x ∈ t ∧ y ∈ t ∧ P x ∧ P y ∧ Q x ⇒ Q y) ⇒ ∀a b. a ∈ s ∧ b ∈ s ∧ P a ∧ P b ∧ Q a ⇒ Q b proof intro_TAC ∀α P Q s, sTop, sConn atOpenImplies_ztPz asImplies_atOpen_xytPxPyQxasImpliesQy, ∀a b, aINs bINs Pa Pb Qa; assume ¬Q b [NotQb] by fol; ¬Connected (subtopology α s) [] proof simplify sTop ConnectedOpenIn; exists_TAC {b | ∃t. open_in (subtopology α s) t ∧ b ∈ t ∧ ∀x. x ∈ t ∧ P x ⇒ Q x}; exists_TAC {b | ∃t. open_in (subtopology α s) t ∧ b ∈ t ∧ ∀x. x ∈ t ∧ P x ⇒ ¬(Q x)}; conj_tac [Left] proof ONCE_REWRITE_TAC OPEN_IN_SUBOPEN; X_genl_TAC c; rewrite IN_ELIM_THM; MATCH_MP_TAC MONO_EXISTS; set atOpenImplies_ztPz; qed; conj_tac [Left] proof ONCE_REWRITE_TAC OPEN_IN_SUBOPEN; X_genl_TAC c; rewrite IN_ELIM_THM; MATCH_MP_TAC MONO_EXISTS; set atOpenImplies_ztPz; qed; conj_tac [Left] proof rewrite SUBSET IN_ELIM_THM IN_UNION; X_genl_TAC c; intro_TAC cs; MP_TAC SPECL [c] asImplies_atOpen_xytPxPyQxasImpliesQy; set cs; qed; conj_tac [Right] by set aINs bINs Qa NotQb asImplies_atOpen_xytPxPyQxasImpliesQy Pa Pb; rewrite EXTENSION IN_INTER NOT_IN_EMPTY IN_ELIM_THM; X_genl_TAC c; ONCE_REWRITE_TAC TAUT [∀p. ¬p ⇔ p ⇒ F]; intro_TAC Qx NotQx; consider t such that open_in (subtopology α s) t ∧ c ∈ t ∧ (∀x. x ∈ t ∧ P x ⇒ Q x) [tExists] by fol Qx; consider u such that open_in (subtopology α s) u ∧ c ∈ u ∧ (∀x. x ∈ u ∧ P x ⇒ ¬Q x) [uExists] by fol NotQx; MP_TAC SPECL [t ∩ u; c] atOpenImplies_ztPz; simplify tExists uExists OPEN_IN_INTER; set tExists uExists; qed; fol sConn -; qed; `;; let ConnectedEquivalenceRelationGen = theorem `; ∀α P R s. s ⊂ topspace α ⇒ Connected (subtopology α s) ∧ (∀x y z. R x y ∧ R y z ⇒ R x z) ∧ (∀t a. open_in (subtopology α s) t ∧ a ∈ t ⇒ ∃z. z ∈ t ∧ P z) ∧ (∀a. a ∈ s ⇒ ∃t. open_in (subtopology α s) t ∧ a ∈ t ∧ ∀x y. x ∈ t ∧ y ∈ t ∧ P x ∧ P y ⇒ R x y) ⇒ ∀a b. a ∈ s ∧ b ∈ s ∧ P a ∧ P b ⇒ R a b proof intro_TAC ∀α P R s, sTop, sConn Rtrans atOpenImplies_ztPz asImplies_atOpen_xytPxPyImpliesRxy, ∀a b, aINs bINs Pa Pb; ∀a. a ∈ s ∧ P a ⇒ ∀b c. b ∈ s ∧ c ∈ s ∧ P b ∧ P c ∧ R a b ⇒ R a c [] proof intro_TAC ∀[p/a], pINs Pp; MP_TAC ISPECL [α; P; λx. R p x; s] ConnectedInduction; rewrite sTop sConn atOpenImplies_ztPz; fol asImplies_atOpen_xytPxPyImpliesRxy Rtrans; qed; fol aINs Pa bINs Pb asImplies_atOpen_xytPxPyImpliesRxy -; qed; `;; let ConnectedInductionSimple = theorem `; ∀α P s. s ⊂ topspace α ⇒ Connected (subtopology α s) ∧ (∀a. a ∈ s ⇒ ∃t. open_in (subtopology α s) t ∧ a ∈ t ∧ ∀x y. x ∈ t ∧ y ∈ t ∧ P x ⇒ P y) ⇒ ∀a b. a ∈ s ∧ b ∈ s ∧ P a ⇒ P b proof intro_TAC ∀α P s, sTop; MP_TAC ISPECL [α; (λx. T ∨ x ∈ s); P; s] ConnectedInduction; fol sTop; qed; `;; let ConnectedEquivalenceRelation = theorem `; ∀α R s. s ⊂ topspace α ⇒ Connected (subtopology α s)∧ (∀x y. R x y ⇒ R y x) ∧ (∀x y z. R x y ∧ R y z ⇒ R x z) ∧ (∀a. a ∈ s ⇒ ∃t. open_in (subtopology α s) t ∧ a ∈ t ∧ ∀x. x ∈ t ⇒ R a x) ⇒ ∀a b. a ∈ s ∧ b ∈ s ⇒ R a b proof intro_TAC ∀α R s, sTop, sConn Rcomm Rtrans asImplies_atOpen_xtImpliesRax; ∀a. a ∈ s ⇒ ∀b c. b ∈ s ∧ c ∈ s ∧ R a b ⇒ R a c [] proof intro_TAC ∀[p/a], pINs; MP_TAC ISPECL [α; λx. R p x; s] ConnectedInductionSimple; rewrite sTop sConn; fol asImplies_atOpen_xtImpliesRax Rcomm Rtrans; qed; fol asImplies_atOpen_xtImpliesRax -; qed; `;; let LimitPointOf = NewDefinition `; ∀α s. LimitPointOf α s = {x | s ⊂ topspace α ∧ x ∈ topspace α ∧ ∀t. x ∈ t ∧ open_in α t ⇒ ∃y. ¬(y = x) ∧ y ∈ s ∧ y ∈ t}`;; let IN_LimitPointOf = theorem `; ∀α s x. s ⊂ topspace α ⇒ (x ∈ LimitPointOf α s ⇔ x ∈ topspace α ∧ ∀t. x ∈ t ∧ open_in α t ⇒ ∃y. ¬(y = x) ∧ y ∈ s ∧ y ∈ t) by simplify IN_ELIM_THM LimitPointOf`;; let NotLimitPointOf = theorem `; ∀α s x. s ⊂ topspace α ∧ x ∈ topspace α ⇒ (x ∉ LimitPointOf α s ⇔ ∃t. x ∈ t ∧ open_in α t ∧ s ∩ (t ━ {x}) = ∅) proof ONCE_REWRITE_TAC TAUT [∀a b. (a ⇔ b) ⇔ (¬a ⇔ ¬b)]; simplify ∉ NOT_EXISTS_THM IN_LimitPointOf TAUT [∀a b. ¬(a ∧ b ∧ c) ⇔ a ∧ b ⇒ ¬c] GSYM MEMBER_NOT_EMPTY IN_INTER IN_DIFF IN_SING; fol; qed; `;; let LimptSubset = theorem `; ∀α s t. t ⊂ topspace α ⇒ s ⊂ t ⇒ LimitPointOf α s ⊂ LimitPointOf α t proof intro_TAC ∀α s t, tTop, st; s ⊂ topspace α [sTop] by fol tTop st SUBSET_TRANS; simplify tTop sTop IN_LimitPointOf SUBSET; fol st SUBSET; qed; `;; let ClosedLimpt = theorem `; ∀α s. s ⊂ topspace α ⇒ (closed_in α s ⇔ LimitPointOf α s ⊂ s) proof intro_TAC ∀α s, H1; simplify H1 closed_in; ONCE_REWRITE_TAC OPEN_IN_SUBOPEN; simplify H1 IN_LimitPointOf SUBSET IN_DIFF; AP_TERM_TAC; ABS_TAC; fol OPEN_IN_SUBSET SUBSET; qed; `;; let LimptEmpty = theorem `; ∀α x. x ∈ topspace α ⇒ x ∉ LimitPointOf α ∅ by fol EMPTY_SUBSET IN_LimitPointOf OPEN_IN_TOPSPACE NOT_IN_EMPTY ∉`;; let NoLimitPointImpClosed = theorem `; ∀α s. s ⊂ topspace α ⇒ (∀x. x ∉ LimitPointOf α s) ⇒ closed_in α s by fol ClosedLimpt SUBSET ∉`;; let LimitPointUnion = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ LimitPointOf α (s ∪ t) = LimitPointOf α s ∪ LimitPointOf α t proof intro_TAC ∀α s t, H1; s ⊂ topspace α ∧ t ⊂ topspace α [stTop] by fol H1 UNION_SUBSET; rewrite EXTENSION IN_UNION; intro_TAC ∀x; assume x ∈ topspace α [xTop] by fol H1 stTop IN_LimitPointOf; ONCE_REWRITE_TAC TAUT [∀a b. (a ⇔ b) ⇔ (¬a ⇔ ¬b)]; simplify GSYM NOTIN DE_MORGAN_THM H1 stTop NotLimitPointOf xTop; eq_tac [Left] by set; MATCH_MP_TAC ExistsTensorInter; simplify IN_INTER OPEN_IN_INTER; set; qed; `;; let Interior_DEF = NewDefinition `; ∀α s. Interior α s = {x | s ⊂ topspace α ∧ ∃t. open_in α t ∧ x ∈ t ∧ t ⊂ s}`;; let Interior_THM = theorem `; ∀α s. s ⊂ topspace α ⇒ Interior α s = {x | s ⊂ topspace α ∧ ∃t. open_in α t ∧ x ∈ t ∧ t ⊂ s} by fol Interior_DEF`;; let IN_Interior = theorem `; ∀α s x. s ⊂ topspace α ⇒ (x ∈ Interior α s ⇔ ∃t. open_in α t ∧ x ∈ t ∧ t ⊂ s) by simplify Interior_THM IN_ELIM_THM`;; let InteriorEq = theorem `; ∀α s. s ⊂ topspace α ⇒ (open_in α s ⇔ s = Interior α s) proof intro_TAC ∀α s, H1; rewriteL OPEN_IN_SUBOPEN; simplify EXTENSION H1 IN_Interior; set; qed; `;; let InteriorOpen = theorem `; ∀α s. open_in α s ⇒ Interior α s = s by fol OPEN_IN_SUBSET InteriorEq`;; let InteriorEmpty = theorem `; ∀α. Interior α ∅ = ∅ by fol OPEN_IN_EMPTY EMPTY_SUBSET InteriorOpen`;; let InteriorUniv = theorem `; ∀α. Interior α (topspace α) = topspace α by simplify OpenInTopspace InteriorOpen`;; let OpenInterior = theorem `; ∀α s. s ⊂ topspace α ⇒ open_in α (Interior α s) proof ONCE_REWRITE_TAC OPEN_IN_SUBOPEN; fol IN_Interior SUBSET; qed; `;; let InteriorInterior = theorem `; ∀α s. s ⊂ topspace α ⇒ Interior α (Interior α s) = Interior α s by fol OpenInterior InteriorOpen`;; let InteriorSubset = theorem `; ∀α s. s ⊂ topspace α ⇒ Interior α s ⊂ s proof intro_TAC ∀α s, H1; simplify SUBSET Interior_DEF IN_ELIM_THM; fol H1 SUBSET; qed; `;; let InteriorTopspace = theorem `; ∀α s. s ⊂ topspace α ⇒ Interior α s ⊂ topspace α by fol SUBSET_TRANS InteriorSubset`;; let SubsetInterior = theorem `; ∀α s t. t ⊂ topspace α ⇒ s ⊂ t ⇒ Interior α s ⊂ Interior α t by fol SUBSET_TRANS SUBSET IN_Interior SUBSET`;; let InteriorMaximal = theorem `; ∀α s t. s ⊂ topspace α ⇒ t ⊂ s ∧ open_in α t ⇒ t ⊂ Interior α s by fol SUBSET IN_Interior SUBSET`;; let InteriorMaximalEq = theorem `; ∀s t. t ⊂ topspace α ⇒ open_in α s ⇒ (s ⊂ Interior α t ⇔ s ⊂ t) by fol InteriorMaximal SUBSET_TRANS InteriorSubset`;; let InteriorUnique = theorem `; ∀α s t. s ⊂ topspace α ⇒ t ⊂ s ∧ open_in α t ∧ (∀t'. t' ⊂ s ∧ open_in α t' ⇒ t' ⊂ t) ⇒ Interior α s = t by fol SUBSET_ANTISYM InteriorSubset OpenInterior InteriorMaximal`;; let OpenSubsetInterior = theorem `; ∀α s t. t ⊂ topspace α ⇒ open_in α s ⇒ (s ⊂ Interior α t ⇔ s ⊂ t) by fol InteriorMaximal InteriorSubset SUBSET_TRANS`;; let InteriorInter = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ Interior α (s ∩ t) = Interior α s ∩ Interior α t proof intro_TAC ∀α s t, sTop tTop; rewrite GSYM SUBSET_ANTISYM_EQ SUBSET_INTER; conj_tac [Left] by fol sTop tTop SubsetInterior INTER_SUBSET; s ∩ t ⊂ topspace α [] by fol sTop INTER_SUBSET SUBSET_TRANS; fol - sTop tTop OpenInterior OPEN_IN_INTER InteriorSubset InteriorMaximal INTER_TENSOR; qed; `;; let InteriorFiniteInters = theorem `; ∀α s. FINITE s ⇒ ¬(s = ∅) ⇒ (∀t. t ∈ s ⇒ t ⊂ topspace α) ⇒ Interior α (INTERS s) = INTERS (IMAGE (Interior α) s) proof intro_TAC ∀α; MATCH_MP_TAC FINITE_INDUCT; rewrite INTERS_INSERT IMAGE_CLAUSES IN_INSERT; intro_TAC ∀x s, sCase, xsNonempty, sSetOfSubsets; assume ¬(s = ∅) [sNonempty] by simplify INTERS_0 INTER_UNIV IMAGE_CLAUSES; simplify INTERS_SUBSET sSetOfSubsets InteriorInter sNonempty sSetOfSubsets sCase; qed; `;; let InteriorIntersSubset = theorem `; ∀α f. ¬(f = ∅) ∧ (∀t. t ∈ f ⇒ t ⊂ topspace α) ⇒ Interior α (INTERS f) ⊂ INTERS (IMAGE (Interior α) f) proof intro_TAC ∀α f, H1 H2; INTERS f ⊂ topspace α [] by set H1 H2; simplify SUBSET IN_INTERS FORALL_IN_IMAGE - H2 IN_Interior; fol; qed; `;; let UnionInteriorSubset = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ Interior α s ∪ Interior α t ⊂ Interior α (s ∪ t) proof intro_TAC ∀α s t, sTop tTop; s ∪ t ⊂ topspace α [] by fol sTop tTop UNION_SUBSET; fol sTop tTop - OpenInterior OPEN_IN_UNION InteriorMaximal UNION_TENSOR InteriorSubset; qed; `;; let InteriorEqEmpty = theorem `; ∀α s. s ⊂ topspace α ⇒ (Interior α s = ∅ ⇔ ∀t. open_in α t ∧ t ⊂ s ⇒ t = ∅) by fol InteriorMaximal SUBSET_EMPTY OpenInterior SUBSET_REFL InteriorSubset`;; let InteriorEqEmptyAlt = theorem `; ∀α s. s ⊂ topspace α ⇒ (Interior α s = ∅ ⇔ ∀t. open_in α t ∧ ¬(t = ∅) ⇒ ¬(t ━ s = ∅)) proof simplify InteriorEqEmpty; set; qed; `;; let InteriorUnionsOpenSubsets = theorem `; ∀α s. s ⊂ topspace α ⇒ UNIONS {t | open_in α t ∧ t ⊂ s} = Interior α s proof intro_TAC ∀α s, H1; consider t such that t = UNIONS {f | open_in α f ∧ f ⊂ s} [tDef] by fol; t ⊂ s ∧ ∀f. f ⊂ s ∧ open_in α f ⇒ f ⊂ t [] by set tDef; simplify H1 tDef - OPEN_IN_UNIONS IN_ELIM_THM InteriorUnique; qed; `;; let InteriorClosedUnionEmptyInterior = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ closed_in α s ∧ Interior α t = ∅ ⇒ Interior α (s ∪ t) = Interior α s proof intro_TAC ∀α s t, H1 H2, H3 H4; s ∪ t ⊂ topspace α [stTop] by fol H1 H2 UNION_SUBSET; Interior α (s ∪ t) ⊂ s [] proof simplify SUBSET stTop IN_Interior LEFT_IMP_EXISTS_THM; X_genl_TAC y O; intro_TAC openO yO Os_t; consider O' such that O' = (topspace α ━ s) ∩ O [O'def] by fol -; O' ⊂ t [O't] by set O'def Os_t; assume y ∉ s [yNOTs] by fol ∉; y ∈ topspace α ━ s [] by fol openO OPEN_IN_SUBSET yO SUBSET yNOTs IN_DIFF ∉; y ∈ O' ∧ open_in α O' [] by fol O'def - yO IN_INTER H3 closed_in openO OPEN_IN_INTER; fol O'def - O't H2 IN_Interior SUBSET MEMBER_NOT_EMPTY H4; qed; fol SUBSET_ANTISYM H1 stTop OpenInterior - InteriorMaximal SUBSET_UNION SubsetInterior; qed; `;; let InteriorUnionEqEmpty = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ closed_in α s ∨ closed_in α t ⇒ (Interior α (s ∪ t) = ∅ ⇔ Interior α s = ∅ ∧ Interior α t = ∅) proof intro_TAC ∀α s t, H1, H2; s ⊂ topspace α ∧ t ⊂ topspace α [] by fol H1 UNION_SUBSET; eq_tac [Left] by fol - H1 SUBSET_UNION SubsetInterior SUBSET_EMPTY; fol UNION_COMM - H2 InteriorClosedUnionEmptyInterior; qed; `;; let Closure_DEF = NewDefinition `; ∀α s. Closure α s = s ∪ LimitPointOf α s`;; let Closure_THM = theorem `; ∀α s. s ⊂ topspace α ⇒ Closure α s = s ∪ LimitPointOf α s by fol Closure_DEF`;; let IN_Closure = theorem `; ∀α s x. s ⊂ topspace α ⇒ (x ∈ Closure α s ⇔ x ∈ topspace α ∧ ∀t. x ∈ t ∧ open_in α t ⇒ ∃y. y ∈ s ∧ y ∈ t) proof intro_TAC ∀α s x, H1; simplify H1 Closure_THM IN_UNION IN_LimitPointOf; fol H1 SUBSET; qed; `;; let ClosureSubset = theorem `; ∀α s. s ⊂ topspace α ⇒ s ⊂ Closure α s by fol SUBSET IN_Closure`;; let ClosureTopspace = theorem `; ∀α s. s ⊂ topspace α ⇒ Closure α s ⊂ topspace α by fol SUBSET IN_Closure`;; let ClosureInterior = theorem `; ∀α s. s ⊂ topspace α ⇒ Closure α s = topspace α ━ (Interior α (topspace α ━ s)) proof intro_TAC ∀α s, H1; simplify H1 EXTENSION IN_Closure IN_DIFF IN_Interior SUBSET; fol OPEN_IN_SUBSET SUBSET; qed; `;; let InteriorClosure = theorem `; ∀α s. s ⊂ topspace α ⇒ Interior α s = topspace α ━ (Closure α (topspace α ━ s)) by fol SUBSET_DIFF InteriorTopspace DIFF_REFL ClosureInterior`;; let ClosedClosure = theorem `; ∀α s. s ⊂ topspace α ⇒ closed_in α (Closure α s) by fol closed_in ClosureInterior DIFF_REFL SUBSET_DIFF InteriorTopspace OpenInterior`;; let SubsetClosure = theorem `; ∀α s t. t ⊂ topspace α ⇒ s ⊂ t ⇒ Closure α s ⊂ Closure α t proof intro_TAC ∀α s t, tSubset, st; s ⊂ topspace α [] by fol tSubset st SUBSET_TRANS; simplify tSubset - Closure_THM st LimptSubset UNION_TENSOR; qed; `;; let ClosureHull = theorem `; ∀α s. s ⊂ topspace α ⇒ Closure α s = (closed_in α) hull s proof intro_TAC ∀α s, H1; MATCH_MP_TAC GSYM HULL_UNIQUE; simplify H1 ClosureSubset ClosedClosure Closure_THM UNION_SUBSET; fol LimptSubset CLOSED_IN_SUBSET ClosedLimpt SUBSET_TRANS; qed; `;; let ClosureEq = theorem `; ∀α s. s ⊂ topspace α ⇒ (Closure α s = s ⇔ closed_in α s) by fol ClosedClosure ClosedLimpt Closure_THM SUBSET_UNION_ABSORPTION UNION_COMM`;; let ClosureClosed = theorem `; ∀α s. closed_in α s ⇒ Closure α s = s by fol closed_in ClosureEq`;; let ClosureClosure = theorem `; ∀α s. s ⊂ topspace α ⇒ Closure α (Closure α s) = Closure α s by fol ClosureTopspace ClosureHull HULL_HULL`;; let ClosureUnion = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ Closure α (s ∪ t) = Closure α s ∪ Closure α t proof intro_TAC ∀α s t, H1; s ⊂ topspace α ∧ t ⊂ topspace α [stTop] by fol H1 UNION_SUBSET; simplify H1 stTop Closure_THM LimitPointUnion; set; qed; `;; let ClosureInterSubset = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ Closure α (s ∩ t) ⊂ Closure α s ∩ Closure α t by fol SUBSET_INTER INTER_SUBSET SubsetClosure`;; let ClosureIntersSubset = theorem `; ∀α f. (∀s. s ∈ f ⇒ s ⊂ topspace α) ⇒ Closure α (INTERS f) ⊂ INTERS (IMAGE (Closure α) f) proof intro_TAC ∀α f, H1; rewrite SET_RULE [s ⊂ INTERS f ⇔ ∀t. t ∈ f ⇒ s ⊂ t] FORALL_IN_IMAGE; X_genl_TAC s; intro_TAC sf; s ⊂ topspace α ∧ INTERS f ⊂ s ∧ INTERS f ⊂ topspace α [] by set H1 sf; fol SubsetClosure -; qed; `;; let ClosureMinimal = theorem `; ∀α s t. s ⊂ t ∧ closed_in α t ⇒ Closure α s ⊂ t by fol closed_in SubsetClosure ClosureClosed`;; let ClosureMinimalEq = theorem `; ∀α s t. s ⊂ topspace α ⇒ closed_in α t ⇒ (Closure α s ⊂ t ⇔ s ⊂ t) by fol closed_in SUBSET_TRANS ClosureSubset ClosureMinimal`;; let ClosureUnique = theorem `; ∀α s t. s ⊂ t ∧ closed_in α t ∧ (∀u. s ⊂ u ∧ closed_in α u ⇒ t ⊂ u) ⇒ Closure α s = t by fol closed_in SUBSET_ANTISYM_EQ ClosureMinimal SUBSET_TRANS ClosureSubset ClosedClosure`;; let ClosureUniv = theorem `; ∀α. Closure α (topspace α) = topspace α by simplify SUBSET_REFL CLOSED_IN_TOPSPACE ClosureEq`;; let ClosureEmpty = theorem `; Closure α ∅ = ∅ by fol EMPTY_SUBSET CLOSED_IN_EMPTY ClosureClosed`;; let ClosureUnions = theorem `; ∀α f. FINITE f ⇒ (∀ t. t ∈ f ⇒ t ⊂ topspace α) ⇒ Closure α (UNIONS f) = UNIONS {Closure α t | t ∈ f} proof intro_TAC ∀α; MATCH_MP_TAC FINITE_INDUCT; rewrite UNIONS_0 SET_RULE [{f x | x ∈ ∅} = ∅] ClosureEmpty UNIONS_INSERT SET_RULE [{f x | x ∈ a INSERT t} = (f a) INSERT {f x | x ∈ t}] IN_INSERT; fol UNION_SUBSET UNIONS_SUBSET IN_UNIONS ClosureUnion; qed; `;; let ClosureEqEmpty = theorem `; ∀α s. s ⊂ topspace α ⇒ (Closure α s = ∅ ⇔ s = ∅) by fol ClosureEmpty ClosureSubset SUBSET_EMPTY`;; let ClosureSubsetEq = theorem `; ∀α s. s ⊂ topspace α ⇒ (Closure α s ⊂ s ⇔ closed_in α s) by fol ClosureEq ClosureSubset SUBSET_ANTISYM`;; let OpenInterClosureEqEmpty = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ open_in α s ⇒ (s ∩ Closure α t = ∅ ⇔ s ∩ t = ∅) proof intro_TAC ∀α s t, H1 H2, H3; eq_tac [Left] by fol H2 ClosureSubset INTER_TENSOR SUBSET_REFL SUBSET_EMPTY; intro_TAC stDisjoint; s ⊂ Interior α (topspace α ━ t) [] by fol H2 SUBSET_DIFF H3 H1 H2 stDisjoint SUBSET_COMPLEMENT OpenSubsetInterior; fol H1 H2 InteriorTopspace - COMPLEMENT_DISJOINT H2 ClosureInterior; qed; `;; let OpenInterClosureSubset = theorem `; ∀α s t. t ⊂ topspace α ⇒ open_in α s ⇒ s ∩ Closure α t ⊂ Closure α (s ∩ t) proof intro_TAC ∀α s t, tTop, sOpen; s ⊂ topspace α [sTop] by fol OPEN_IN_SUBSET sOpen; s ∩ t ⊂ topspace α [stTop] by fol sTop sTop INTER_SUBSET SUBSET_TRANS; simplify tTop - Closure_THM UNION_OVER_INTER SUBSET_UNION SUBSET_UNION; s ∩ LimitPointOf α t ⊂ LimitPointOf α (s ∩ t) [] proof simplify SUBSET IN_INTER tTop stTop IN_LimitPointOf; X_genl_TAC x; intro_TAC xs xTop xLIMt; X_genl_TAC O; intro_TAC xO Oopen; x ∈ O ∩ s ∧ open_in α (O ∩ s) [xOsOpen] by fol xs xO IN_INTER Oopen sOpen OPEN_IN_INTER; fol xOsOpen xLIMt IN_INTER; qed; simplify - UNION_TENSOR SUBSET_REFL; qed; `;; let ClosureOpenInterSuperset = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ open_in α s ∧ s ⊂ Closure α t ⇒ Closure α (s ∩ t) = Closure α s proof intro_TAC ∀α s t, sTop tTop, sOpen sSUBtC; s ∩ t ⊂ topspace α [stTop] by fol INTER_SUBSET sTop SUBSET_TRANS; MATCH_MP_TAC SUBSET_ANTISYM; conj_tac [Left] by fol sTop INTER_SUBSET SubsetClosure; s ⊂ Closure α (s ∩ t) [] by fol tTop sOpen OpenInterClosureSubset SUBSET_REFL sSUBtC SUBSET_INTER SUBSET_TRANS; fol stTop - ClosedClosure ClosureMinimal; qed; `;; let ClosureComplement = theorem `; ∀α s. s ⊂ topspace α ⇒ Closure α (topspace α ━ s) = topspace α ━ Interior α s by fol InteriorClosure SUBSET_DIFF ClosureTopspace DIFF_REFL`;; let InteriorComplement = theorem `; ∀α s. s ⊂ topspace α ⇒ Interior α (topspace α ━ s) = topspace α ━ Closure α s by fol SUBSET_DIFF InteriorTopspace DIFF_REFL ClosureInterior DIFF_REFL`;; let ClosureInteriorComplement = theorem `; ∀α s. s ⊂ topspace α ⇒ topspace α ━ Closure α (Interior α s) = Interior α (Closure α (topspace α ━ s)) by fol InteriorTopspace InteriorComplement ClosureComplement`;; let InteriorClosureComplement = theorem `; ∀α s. s ⊂ topspace α ⇒ topspace α ━ Interior α (Closure α s) = Closure α (Interior α (topspace α ━ s)) by fol ClosureTopspace SUBSET_TRANS InteriorComplement ClosureComplement`;; let ConnectedIntermediateClosure = theorem `; ∀α s t. s ⊂ topspace α ⇒ Connected (subtopology α s) ∧ s ⊂ t ∧ t ⊂ Closure α s ⇒ Connected (subtopology α t) proof intro_TAC ∀α s t, sTop, sCon st tCs; t ⊂ topspace α [tTop] by fol tCs sTop ClosureTopspace SUBSET_TRANS; simplify tTop ConnectedSubtopology_ALT; X_genl_TAC u v; intro_TAC uOpen vOpen t_uv uvtEmpty; u ⊂ topspace α ∧ v ⊂ topspace α [uvTop] by fol uOpen vOpen OPEN_IN_SUBSET; u ∩ s = ∅ ∨ v ∩ s = ∅ [] by fol sTop uvTop uOpen vOpen st t_uv uvtEmpty SUBSET_TRANS SUBSET_REFL INTER_TENSOR SUBSET_EMPTY sCon ConnectedSubtopology_ALT; s ⊂ topspace α ━ u ∨ s ⊂ topspace α ━ v [] by fol - sTop uvTop INTER_COMM SUBSET_COMPLEMENT; t ⊂ topspace α ━ u ∨ t ⊂ topspace α ━ v [] by fol SUBSET_DIFF - uvTop uOpen vOpen OPEN_IN_CLOSED_IN ClosureMinimal tCs SUBSET_TRANS; fol tTop uvTop - SUBSET_COMPLEMENT INTER_COMM; qed; `;; let ConnectedClosure = theorem `; ∀α s. s ⊂ topspace α ⇒ Connected (subtopology α s) ⇒ Connected (subtopology α (Closure α s)) by fol ClosureTopspace ClosureSubset SUBSET_REFL ConnectedIntermediateClosure`;; let ConnectedUnionStrong = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ Connected (subtopology α s) ∧ Connected (subtopology α t) ∧ ¬(Closure α s ∩ t = ∅) ⇒ Connected (subtopology α (s ∪ t)) proof intro_TAC ∀α s t, sTop tTop, H2 H3 H4; consider p s' such that p ∈ Closure α s ∧ p ∈ t ∧ s' = p ╪ s [pCst] by fol H4 MEMBER_NOT_EMPTY IN_INTER; s ⊂ s' ∧ s' ⊂ Closure α s [s_ps_Cs] by fol IN_INSERT SUBSET pCst sTop ClosureSubset INSERT_SUBSET; Connected (subtopology α (s')) [s'Con] by fol sTop H2 s_ps_Cs ConnectedIntermediateClosure; s ∪ t = s' ∪ t ∧ ¬(s' ∩ t = ∅) [] by fol pCst INSERT_UNION IN_INSERT IN_INTER MEMBER_NOT_EMPTY; fol s_ps_Cs sTop ClosureTopspace SUBSET_TRANS tTop - s'Con H3 ConnectedUnion; qed; `;; let InteriorDiff = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ Interior α (s ━ t) = Interior α s ━ Closure α t by fol ClosureTopspace InteriorTopspace COMPLEMENT_INTER_DIFF InteriorComplement SUBSET_DIFF InteriorInter`;; let ClosedInLimpt = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ (closed_in (subtopology α t) s ⇔ s ⊂ t ∧ LimitPointOf α s ∩ t ⊂ s) proof intro_TAC ∀α s t, H1 H2; simplify H2 ClosedInSubtopology; eq_tac [Right] proof intro_TAC sSUBt LIMstSUBs; exists_TAC Closure α s; simplify H1 ClosedClosure Closure_THM INTER_COMM UNION_OVER_INTER; set sSUBt LIMstSUBs; qed; rewrite LEFT_IMP_EXISTS_THM; X_genl_TAC D; intro_TAC Dexists; LimitPointOf α (D ∩ t) ⊂ D [] by fol Dexists CLOSED_IN_SUBSET INTER_SUBSET LimptSubset ClosedLimpt SUBSET_TRANS; fol Dexists INTER_SUBSET - SUBSET_REFL INTER_TENSOR; qed; `;; let ClosedInLimpt_ALT = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ (closed_in (subtopology α t) s ⇔ s ⊂ t ∧ ∀x. x ∈ LimitPointOf α s ∧ x ∈ t ⇒ x ∈ s) by simplify SUBSET IN_INTER ClosedInLimpt`;; let ClosedInInterClosure = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ (closed_in (subtopology α s) t ⇔ s ∩ Closure α t = t) proof simplify Closure_THM ClosedInLimpt; set; qed; `;; let InteriorClosureIdemp = theorem `; ∀α s. s ⊂ topspace α ⇒ Interior α (Closure α (Interior α (Closure α s))) = Interior α (Closure α s) proof intro_TAC ∀α s, H1; consider IC CIC such that IC = Interior α (Closure α s) ∧ CIC = Closure α IC [CICdef] by fol; Closure α s ⊂ topspace α [Ctop] by fol H1 ClosureTopspace; IC ⊂ topspace α [ICtop] by fol CICdef - H1 InteriorTopspace; CIC ⊂ topspace α [CICtop] by fol CICdef - ClosureTopspace; IC ⊂ CIC [ICsubCIC] by fol CICdef ICtop ClosureSubset; ∀u. u ⊂ CIC ∧ open_in α u ⇒ u ⊂ IC [] by fol CICdef Ctop InteriorSubset SubsetClosure H1 ClosureClosure SUBSET_TRANS OpenSubsetInterior; fol CICdef CICtop ICsubCIC Ctop OpenInterior - InteriorUnique; qed; `;; let InteriorClosureIdemp = theorem `; ∀α s. s ⊂ topspace α ⇒ Interior α (Closure α (Interior α (Closure α s))) = Interior α (Closure α s) proof intro_TAC ∀α s, H1; Closure α s ⊂ topspace α [Ctop] by fol H1 ClosureTopspace; consider IC CIC such that IC = Interior α (Closure α s) ∧ CIC = Closure α IC [ICdefs] by fol; IC ⊂ topspace α [] by fol - Ctop H1 InteriorTopspace; CIC ⊂ topspace α ∧ IC ⊂ CIC ∧ ∀u. u ⊂ CIC ∧ open_in α u ⇒ u ⊂ IC [] by fol ICdefs Ctop - ClosureTopspace ClosureSubset InteriorSubset SubsetClosure H1 ClosureClosure SUBSET_TRANS OpenSubsetInterior; fol ICdefs - Ctop OpenInterior InteriorUnique; qed; `;; let ClosureInteriorIdemp = theorem `; ∀α s. s ⊂ topspace α ⇒ Closure α (Interior α (Closure α (Interior α s))) = Closure α (Interior α s) proof intro_TAC ∀α s, H1; consider t such that t = topspace α ━ s [tDef] by fol; t ⊂ topspace α ∧ s = topspace α ━ t [tProps] by fol - H1 SUBSET_DIFF DIFF_REFL; Interior α (Closure α t) ⊂ topspace α [] by fol - ClosureTopspace InteriorTopspace; simplify tProps - GSYM InteriorClosureComplement InteriorClosureIdemp; qed; `;; let InteriorClosureDiffSpaceEmpty = theorem `; ∀α s. s ⊂ topspace α ⇒ Interior α (Closure α s ━ s) = ∅ proof intro_TAC ∀α s, H1; Closure α s ━ s ⊂ topspace α [Cs_sTop] by fol H1 ClosureTopspace SUBSET_DIFF SUBSET_TRANS; assume ¬(Interior α (Closure α s ━ s) = ∅) [Contradiction] by fol; consider x such that x ∈ (Interior α (Closure α s ━ s)) [xExists] by fol - MEMBER_NOT_EMPTY; consider t such that open_in α t ∧ x ∈ t ∧ t ⊂ (s ∪ LimitPointOf α s) ━ s [tProps] by fol - Cs_sTop IN_Interior Closure_DEF; t ⊂ LimitPointOf α s ∧ s ∩ (t ━ {x}) = ∅ [tSubLIMs] by set -; x ∈ LimitPointOf α s ∧ x ∉ s [xLims] by fol tProps - SUBSET IN_DIFF ∉; fol H1 xLims IN_LimitPointOf tProps tSubLIMs NotLimitPointOf ∉; qed; `;; let NowhereDenseUnion = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ (Interior α (Closure α (s ∪ t)) = ∅ ⇔ Interior α (Closure α s) = ∅ ∧ Interior α (Closure α t) = ∅) proof intro_TAC ∀α s t, H1; s ⊂ topspace α ∧ t ⊂ topspace α [] by fol H1 UNION_SUBSET; simplify H1 - ClosureUnion ClosureTopspace UNION_SUBSET ClosedClosure InteriorUnionEqEmpty; qed; `;; let NowhereDense = theorem `; ∀α s. s ⊂ topspace α ⇒ (Interior α (Closure α s) = ∅ ⇔ ∀t. open_in α t ∧ ¬(t = ∅) ⇒ ∃u. open_in α u ∧ ¬(u = ∅) ∧ u ⊂ t ∧ u ∩ s = ∅) proof intro_TAC ∀α s, H1; simplify H1 ClosureTopspace InteriorEqEmptyAlt; eq_tac [Left] proof intro_TAC H2; X_genl_TAC t; intro_TAC tOpen tNonempty; exists_TAC t ━ Closure α s; fol tOpen H1 ClosedClosure OPEN_IN_DIFF tOpen tNonempty H2 SUBSET_DIFF H1 ClosureSubset SET_RULE [∀s t A. s ⊂ t ⇒ (A ━ t) ∩ s = ∅]; qed; intro_TAC H2; X_genl_TAC t; intro_TAC tOpen tNonempty; consider u such that open_in α u ∧ ¬(u = ∅) ∧ u ⊂ t ∧ u ∩ s = ∅ [uExists] by simplify tOpen tNonempty H2; MP_TAC ISPECL [α; u; s] OpenInterClosureEqEmpty; simplify uExists OPEN_IN_SUBSET H1; set uExists; qed; `;; let InteriorClosureInterOpen = theorem `; ∀α s t. open_in α s ∧ open_in α t ⇒ Interior α (Closure α (s ∩ t)) = Interior α (Closure α s) ∩ Interior α (Closure α t) proof intro_TAC ∀α s t, sOpen tOpen; s ⊂ topspace α [sTop] by fol sOpen OPEN_IN_SUBSET; t ⊂ topspace α [tTop] by fol tOpen OPEN_IN_SUBSET; rewrite SET_RULE [∀s t u. u = s ∩ t ⇔ s ∩ t ⊂ u ∧ u ⊂ s ∧ u ⊂ t]; simplify sTop tTop INTER_SUBSET SubsetClosure ClosureTopspace SubsetInterior; s ∩ t ⊂ topspace α [stTop] by fol INTER_SUBSET sTop SUBSET_TRANS; Closure α s ⊂ topspace α ∧ Closure α t ⊂ topspace α [CsCtTop] by fol sTop tTop ClosureTopspace; Closure α s ∩ Closure α t ⊂ topspace α [CsIntCtTop] by fol - INTER_SUBSET SUBSET_TRANS; Closure α s ━ s ∪ Closure α t ━ t ⊂ topspace α [Cs_sUNIONCt_tTop] by fol CsCtTop SUBSET_DIFF UNION_SUBSET SUBSET_TRANS; simplify CsCtTop GSYM InteriorInter; Interior α (Closure α s ∩ Closure α t) ⊂ Closure α (s ∩ t) [] proof simplify CsIntCtTop InteriorTopspace ISPECL [topspace α] COMPLEMENT_DISJOINT stTop ClosureTopspace GSYM ClosureComplement GSYM InteriorComplement CsIntCtTop SUBSET_DIFF GSYM InteriorInter; closed_in α (Closure α s ━ s) ∧ closed_in α (Closure α t ━ t) [] by fol sTop tTop ClosedClosure sOpen tOpen CLOSED_IN_DIFF; Interior α (Closure α s ━ s ∪ Closure α t ━ t) = ∅ [IntEmpty] by fol Cs_sUNIONCt_tTop - sTop tTop InteriorClosureDiffSpaceEmpty InteriorUnionEqEmpty; Closure α s ∩ Closure α t ∩ (topspace α ━ (s ∩ t)) ⊂ Closure α s ━ s ∪ Closure α t ━ t [] by set; fol Cs_sUNIONCt_tTop - SubsetInterior IntEmpty INTER_ACI SUBSET_EMPTY; qed; fol stTop ClosureTopspace - CsIntCtTop OpenInterior InteriorMaximal; qed; `;; let ClosureInteriorUnionClosed = theorem `; ∀α s t. closed_in α s ∧ closed_in α t ⇒ Closure α (Interior α (s ∪ t)) = Closure α (Interior α s) ∪ Closure α (Interior α t) proof rewrite closed_in; intro_TAC ∀α s t, sClosed tClosed; simplify sClosed tClosed ClosureTopspace UNION_SUBSET InteriorTopspace ISPECL [topspace α] COMPLEMENT_DUALITY_UNION; simplify sClosed tClosed UNION_SUBSET ClosureTopspace InteriorTopspace ClosureInteriorComplement DIFF_UNION SUBSET_DIFF InteriorClosureInterOpen; qed; `;; let RegularOpenInter = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ Interior α (Closure α s) = s ∧ Interior α (Closure α t) = t ⇒ Interior α (Closure α (s ∩ t)) = s ∩ t by fol ClosureTopspace OpenInterior InteriorClosureInterOpen`;; let RegularClosedUnion = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ Closure α (Interior α s) = s ∧ Closure α (Interior α t) = t ⇒ Closure α (Interior α (s ∪ t)) = s ∪ t by fol InteriorTopspace ClosureInteriorUnionClosed ClosedClosure`;; let DiffClosureSubset = theorem `; ∀α s t. s ⊂ topspace α ∧ t ⊂ topspace α ⇒ Closure α s ━ Closure α t ⊂ Closure α (s ━ t) proof intro_TAC ∀α s t, sTop tTop; Closure α s ━ Closure α t ⊂ Closure α (s ━ Closure α t) [] by fol sTop ClosureTopspace tTop ClosedClosure tTop closed_in OpenInterClosureSubset INTER_COMM COMPLEMENT_INTER_DIFF; fol - tTop ClosureSubset SUBSET_DUALITY sTop SUBSET_DIFF SUBSET_TRANS SubsetClosure; qed; `;; let Frontier_DEF = NewDefinition `; ∀α s. Frontier α s = Closure α s ━ Interior α s`;; let Frontier_THM = theorem `; ∀α s. s ⊂ topspace α ⇒ Frontier α s = Closure α s ━ Interior α s by fol Frontier_DEF`;; let FrontierTopspace = theorem `; ∀α s. s ⊂ topspace α ⇒ Frontier α s ⊂ topspace α by fol Frontier_THM SUBSET_DIFF ClosureTopspace SUBSET_TRANS`;; let FrontierClosed = theorem `; ∀α s. s ⊂ topspace α ⇒ closed_in α (Frontier α s) by simplify Frontier_THM ClosedClosure OpenInterior CLOSED_IN_DIFF`;; let FrontierClosures = theorem `; ∀s. s ⊂ topspace α ⇒ Frontier α s = (Closure α s) ∩ (Closure α (topspace α ━ s)) by simplify SET_RULE [∀A s t. s ⊂ A ∧ t ⊂ A ⇒ s ━ (A ━ t) = s ∩ t] Frontier_THM InteriorClosure ClosureTopspace SUBSET_DIFF`;; let FrontierStraddle = theorem `; ∀α a s. s ⊂ topspace α ⇒ (a ∈ Frontier α s ⇔ a ∈ topspace α ∧ ∀t. open_in α t ∧ a ∈ t ⇒ (∃x. x ∈ s ∧ x ∈ t) ∧ (∃x. ¬(x ∈ s) ∧ x ∈ t)) proof simplify SUBSET_DIFF FrontierClosures IN_INTER SUBSET_DIFF IN_Closure IN_DIFF; fol OPEN_IN_SUBSET SUBSET; qed; `;; let FrontierSubsetClosed = theorem `; ∀α s. closed_in α s ⇒ (Frontier α s) ⊂ s by fol closed_in Frontier_THM ClosureClosed SUBSET_DIFF`;; let FrontierEmpty = theorem `; ∀α. Frontier α ∅ = ∅ by fol Frontier_THM EMPTY_SUBSET ClosureEmpty EMPTY_DIFF`;; let FrontierUniv = theorem `; ∀α. Frontier α (topspace α) = ∅ by fol Frontier_DEF ClosureUniv InteriorUniv DIFF_EQ_EMPTY`;; let FrontierSubsetEq = theorem `; ∀α s. s ⊂ topspace α ⇒ ((Frontier α s) ⊂ s ⇔ closed_in α s) proof intro_TAC ∀α s, sTop; eq_tac [Right] by fol FrontierSubsetClosed; simplify sTop Frontier_THM ; fol sTop InteriorSubset SET_RULE [∀s t u. s ━ t ⊂ u ∧ t ⊂ u ⇒ s ⊂ u] ClosureSubsetEq; qed; `;; let FrontierComplement = theorem `; ∀α s. s ⊂ topspace α ⇒ Frontier α (topspace α ━ s) = Frontier α s proof intro_TAC ∀α s, sTop; simplify sTop SUBSET_DIFF Frontier_THM ClosureComplement InteriorComplement; fol sTop InteriorTopspace ClosureTopspace SET_RULE [∀ Top Int Clo. Int ⊂ Top ∧ Clo ⊂ Top ⇒ Top ━ Int ━ (Top ━ Clo) = Clo ━ Int]; qed; `;; let FrontierComplement = theorem `; ∀α s. s ⊂ topspace α ⇒ Frontier α (topspace α ━ s) = Frontier α s proof intro_TAC ∀α s, sTop; simplify sTop SUBSET_DIFF Frontier_THM ClosureComplement InteriorComplement; fol sTop InteriorTopspace ClosureTopspace SET_RULE [∀ Top Int Clo. Int ⊂ Top ∧ Clo ⊂ Top ⇒ Top ━ Int ━ (Top ━ Clo) = Clo ━ Int]; qed; `;; let FrontierDisjointEq = theorem `; ∀α s. s ⊂ topspace α ⇒ ((Frontier α s) ∩ s = ∅ ⇔ open_in α s) proof intro_TAC ∀α s, sTop; topspace α ━ s ⊂ topspace α [COMPsTop] by fol sTop SUBSET_DIFF; simplify sTop GSYM FrontierComplement OPEN_IN_CLOSED_IN; fol COMPsTop GSYM FrontierSubsetEq FrontierTopspace SUBSET_COMPLEMENT; qed; `;; let FrontierInterSubset = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ Frontier α (s ∩ t) ⊂ Frontier α s ∪ Frontier α t proof intro_TAC ∀α s t, H1; s ⊂ topspace α ∧ t ⊂ topspace α ∧ s ∩ t ⊂ topspace α [] by fol H1 SUBSET_UNION INTER_SUBSET SUBSET_TRANS; simplify - Frontier_THM InteriorInter DIFF_INTER INTER_SUBSET SubsetClosure DIFF_SUBSET UNION_TENSOR; qed; `;; let FrontierUnionSubset = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ Frontier α (s ∪ t) ⊂ Frontier α s ∪ Frontier α t proof intro_TAC ∀α s t, H1; s ⊂ topspace α ∧ t ⊂ topspace α [stTop] by fol H1 SUBSET_UNION SUBSET_TRANS; simplify H1 - GSYM FrontierComplement DIFF_UNION; topspace α ━ s ∪ topspace α ━ t ⊂ topspace α [] by fol SUBSET_DIFF UNION_SUBSET SUBSET_TRANS; fol - FrontierInterSubset; qed; `;; let FrontierInteriors = theorem `; ∀α s. s ⊂ topspace α ⇒ Frontier α s = topspace α ━ Interior α s ━ Interior α (topspace α ━ s) by simplify Frontier_THM ClosureInterior DOUBLE_DIFF_UNION UNION_COMM`;; let FrontierFrontierSubset = theorem `; ∀α s. s ⊂ topspace α ⇒ Frontier α (Frontier α s) ⊂ Frontier α s by fol FrontierTopspace Frontier_THM FrontierClosed ClosureClosed SUBSET_DIFF`;; let InteriorFrontier = theorem `; ∀α s. s ⊂ topspace α ⇒ Interior α (Frontier α s) = Interior α (Closure α s) ━ Closure α (Interior α s) proof intro_TAC ∀α s, sTop; Frontier α s = Closure α s ∩ (topspace α ━ Interior α s) [] by fol sTop Frontier_THM ClosureTopspace COMPLEMENT_INTER_DIFF; Interior α (Frontier α s) = Interior α (Closure α s) ∩ (topspace α ━ Closure α (Interior α s)) [] by fol - sTop ClosureTopspace InteriorTopspace SUBSET_DIFF InteriorInter InteriorComplement; fol - sTop ClosureTopspace InteriorTopspace COMPLEMENT_INTER_DIFF; qed; `;; let InteriorFrontierEmpty = theorem `; ∀α s. open_in α s ∨ closed_in α s ⇒ Interior α (Frontier α s) = ∅ by fol InteriorFrontier SET_RULE [∀s t. s ━ t = ∅ ⇔ s ⊂ t] OPEN_IN_SUBSET closed_in InteriorOpen ClosureTopspace InteriorSubset ClosureClosed InteriorTopspace ClosureSubset`;; let FrontierFrontier = theorem `; ∀α s. open_in α s ∨ closed_in α s ⇒ Frontier α (Frontier α s) = Frontier α s proof intro_TAC ∀α s, openORclosed; s ⊂ topspace α [sTop] by fol openORclosed OPEN_IN_SUBSET closed_in; Frontier α (Frontier α s) = Closure α (Frontier α s) [] by fol sTop FrontierTopspace Frontier_THM openORclosed InteriorFrontierEmpty DIFF_EMPTY; fol - sTop FrontierClosed ClosureClosed; qed; `;; let UnionFrontierPart1 = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ Frontier α s ∩ Interior α t ⊂ Frontier α (s ∩ t) proof intro_TAC ∀α s t, H1; s ⊂ topspace α ∧ t ⊂ topspace α ∧ s ∩ t ⊂ topspace α [stTop] by fol H1 SUBSET_UNION INTER_SUBSET SUBSET_TRANS; rewrite SUBSET IN_INTER; X_genl_TAC a; intro_TAC aFs aIt; consider O such that open_in α O ∧ a ∈ O ∧ O ⊂ t [aOs] by fol aIt stTop IN_Interior; a ∈ topspace α [] by fol stTop aFs FrontierTopspace SUBSET; simplify stTop FrontierStraddle -; X_genl_TAC P; intro_TAC Popen aP; a ∈ O ∩ P ∧ open_in α (O ∩ P) [aOPopen] by fol aOs aP IN_INTER Popen OPEN_IN_INTER; consider x y such that x ∈ s ∧ x ∈ O ∩ P ∧ ¬(y ∈ s) ∧ y ∈ O ∩ P [xExists] by fol aOs Popen OPEN_IN_INTER aOPopen stTop aFs FrontierStraddle; fol xExists aOs IN_INTER SUBSET; qed; `;; let UnionFrontierPart2 = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ Frontier α s ━ Frontier α t ⊂ Frontier α (s ∩ t) ∪ Frontier α (s ∪ t) proof intro_TAC ∀α s t, stTop; s ⊂ topspace α ∧ t ⊂ topspace α [] by fol stTop SUBSET_UNION INTER_SUBSET SUBSET_TRANS; Frontier α s ━ Frontier α t = Frontier α s ∩ Interior α t ∪ Frontier α (topspace α ━ s) ∩ Interior α (topspace α ━ t) [] by fol - FrontierTopspace FrontierInteriors FrontierComplement SET_RULE [∀A s t u. s ⊂ A ⇒ s ━ (A ━ t ━ u) = s ∩ t ∪ s ∩ u]; Frontier α s ━ Frontier α t ⊂ Frontier α (s ∩ t) ∪ Frontier α (topspace α ━ (s ∪ t)) [] by simplify - stTop UnionFrontierPart1 UNION_TENSOR SUBSET_DIFF UNION_SUBSET DIFF_UNION; fol - stTop FrontierComplement; qed; `;; let UnionFrontierPart3 = theorem `; ∀α s t a. s ∪ t ⊂ topspace α ⇒ a ∈ Frontier α s ∧ a ∉ Frontier α t ⇒ a ∈ Frontier α (s ∩ t) ∨ a ∈ Frontier α (s ∪ t) proof intro_TAC ∀α s t a, H1; rewrite ∉ GSYM IN_INTER GSYM IN_DIFF GSYM IN_UNION; fol H1 UnionFrontierPart2 SUBSET; qed; `;; let UnionFrontier = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ Frontier α s ∪ Frontier α t = Frontier α (s ∪ t) ∪ Frontier α (s ∩ t) ∪ Frontier α s ∩ Frontier α t proof intro_TAC ∀α s t, H1; s ⊂ topspace α ∧ t ⊂ topspace α [stTop] by fol H1 SUBSET_UNION INTER_SUBSET SUBSET_TRANS; rewrite GSYM SUBSET_ANTISYM_EQ; conj_tac [Right] by fol SET_RULE [∀s t. s ∩ t ⊂ s ∪ t] stTop FrontierUnionSubset UNION_SUBSET FrontierInterSubset; rewrite SUBSET IN_INTER IN_UNION; fol H1 UnionFrontierPart3 INTER_COMM UNION_COMM ∉; qed; `;; let ConnectedInterFrontier = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ Connected (subtopology α s) ∧ ¬(s ∩ t = ∅) ∧ ¬(s ━ t = ∅) ⇒ ¬(s ∩ Frontier α t = ∅) proof intro_TAC ∀α s t, H1; s ⊂ topspace α ∧ t ⊂ topspace α [stTop] by fol H1 SUBSET_UNION SUBSET_TRANS; ONCE_REWRITE_TAC TAUT [∀a b c d. a ∧ b ∧ c ⇒ ¬d ⇔ b ∧ c ∧ d ⇒ ¬a]; intro_TAC sINTERtNonempty sDIFFtNonempty sInterFtEmpty; simplify stTop ConnectedOpenIn; exists_TAC s ∩ Interior α t; exists_TAC s ∩ Interior α (topspace α ━ t); simplify stTop SUBSET_DIFF OpenInterior OpenInOpenInter; Interior α t ⊂ t ∧ Interior α (topspace α ━ t) ⊂ topspace α ━ t [IntSubs] by fol stTop SUBSET_DIFF InteriorSubset; s ⊂ Interior α t ∪ Interior α (topspace α ━ t) [] by fol stTop sInterFtEmpty FrontierInteriors DOUBLE_DIFF_UNION COMPLEMENT_DISJOINT; set sDIFFtNonempty sINTERtNonempty IntSubs -; qed; `;; let InteriorClosedEqEmptyAsFrontier = theorem `; ∀α s. s ⊂ topspace α ⇒ (closed_in α s ∧ Interior α s = ∅ ⇔ ∃t. open_in α t ∧ s = Frontier α t) proof intro_TAC ∀α s, sTop; eq_tac [Right] by fol OPEN_IN_SUBSET FrontierClosed InteriorFrontierEmpty; intro_TAC sClosed sEmptyInt; exists_TAC topspace α ━ s; fol sClosed closed_in sTop FrontierComplement Frontier_THM sEmptyInt DIFF_EMPTY ClosureClosed; qed; `;; let ClosureUnionFrontier = theorem `; ∀α s. s ⊂ topspace α ⇒ Closure α s = s ∪ Frontier α s proof intro_TAC ∀α s, sTop; simplify sTop Frontier_THM; s ⊂ Closure α s ∧ Interior α s ⊂ s [] by fol sTop ClosureSubset InteriorSubset; set -; qed; `;; let FrontierInteriorSubset = theorem `; ∀α s. s ⊂ topspace α ⇒ Frontier α (Interior α s) ⊂ Frontier α s by simplify InteriorTopspace Frontier_THM InteriorInterior InteriorSubset SubsetClosure DIFF_SUBSET`;; let FrontierClosureSubset = theorem `; ∀α s. s ⊂ topspace α ⇒ Frontier α (Closure α s) ⊂ Frontier α s by simplify ClosureTopspace Frontier_THM ClosureClosure ClosureTopspace ClosureSubset SubsetInterior SUBSET_DUALITY`;; let SetDiffFrontier = theorem `; ∀α s. s ⊂ topspace α ⇒ s ━ Frontier α s = Interior α s proof intro_TAC ∀α s, sTop; simplify sTop Frontier_THM; s ⊂ Closure α s ∧ Interior α s ⊂ s [] by fol sTop ClosureSubset InteriorSubset; set -; qed; `;; let FrontierInterSubsetInter = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ Frontier α (s ∩ t) ⊂ Closure α s ∩ Frontier α t ∪ Frontier α s ∩ Closure α t proof intro_TAC ∀α s t, H1; s ⊂ topspace α ∧ t ⊂ topspace α ∧ s ∩ t ⊂ topspace α [stTop] by fol H1 SUBSET_UNION INTER_SUBSET SUBSET_TRANS; simplify H1 stTop Frontier_THM InteriorInter; Closure α (s ∩ t) ⊂ Closure α s ∩ Closure α t [] by fol stTop ClosureInterSubset; set -; qed; `;; let FrontierUnionPart1 = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ Closure α s ∩ Closure α t = ∅ ⇒ Frontier α s ∩ Interior α (s ∪ t) = ∅ proof intro_TAC ∀α s t, H1, CsCtDisjoint; s ⊂ topspace α ∧ t ⊂ topspace α ∧ s ∩ t ⊂ topspace α [stTop] by fol H1 SUBSET_UNION INTER_SUBSET SUBSET_TRANS; Frontier α s ∩ Interior α (s ∪ t) ⊂ topspace α [FIstTop] by fol stTop FrontierTopspace INTER_SUBSET SUBSET_TRANS; Frontier α s ∩ Interior α (s ∪ t) ∩ (topspace α ━ Closure α t) = ∅ [] proof simplify stTop GSYM InteriorComplement H1 SUBSET_DIFF InteriorInter Frontier_THM; Interior α (s ∪ t) ∩ Interior α (topspace α ━ t) ⊂ Interior α s [] by fol SET_RULE [∀A s t. s ⊂ A ⇒ (s ∪ t) ∩ (A ━ t) = s ━ t] H1 SUBSET_DIFF InteriorInter stTop SubsetInterior; set -; qed; Frontier α s ∩ Interior α (s ∪ t) ⊂ Closure α t [] by fol H1 CsCtDisjoint - FIstTop COMPLEMENT_DISJOINT INTER_ACI; fol SET_RULE [∀ s t F I. s ∩ t = ∅ ∧ F ⊂ s ∧ F ∩ I ⊂ t ⇒ F ∩ I = ∅] CsCtDisjoint stTop Frontier_THM SUBSET_DIFF -; qed; `;; let FrontierUnion = theorem `; ∀α s t. s ∪ t ⊂ topspace α ⇒ Closure α s ∩ Closure α t = ∅ ⇒ Frontier α (s ∪ t) = Frontier α s ∪ Frontier α t proof intro_TAC ∀α s t, H1, CsCtDisjoint; s ⊂ topspace α ∧ t ⊂ topspace α ∧ s ∩ t ⊂ topspace α [stTop] by fol H1 SUBSET_UNION INTER_SUBSET SUBSET_TRANS; MATCH_MP_TAC SUBSET_ANTISYM; simplify H1 FrontierUnionSubset Frontier_THM; Frontier α s ∩ Interior α (s ∪ t) = ∅ ∧ Frontier α t ∩ Interior α (s ∪ t) = ∅ [usePart1] by fol H1 CsCtDisjoint FrontierUnionPart1 INTER_COMM UNION_COMM; Frontier α s ⊂ Closure α (s ∪ t) ∧ Frontier α t ⊂ Closure α (s ∪ t) [] by fol stTop Frontier_THM SUBSET_DIFF H1 SUBSET_UNION SubsetClosure SUBSET_TRANS; set usePart1 -; qed; `;; (* ------------------------------------------------------------------------- *) (* The universal Euclidean versions are what we use most of the time. *) (* ------------------------------------------------------------------------- *) let open_def = NewDefinition `; open s ⇔ ∀x. x ∈ s ⇒ ∃e. &0 < e ∧ ∀x'. dist(x',x) < e ⇒ x' ∈ s`;; let closed = NewDefinition `; closed s ⇔ open (UNIV ━ s)`;; let euclidean = new_definition `euclidean = mk_topology (UNIV, open)`;; let OPEN_EMPTY = theorem `; open ∅ by rewrite open_def NOT_IN_EMPTY`;; let OPEN_UNIV = theorem `; open UNIV by fol open_def IN_UNIV REAL_LT_01`;; let OPEN_INTER = theorem `; ∀s t. open s ∧ open t ⇒ open (s ∩ t) proof intro_TAC ∀s t, sOpen tOpen; rewrite open_def IN_INTER; intro_TAC ∀x, xs xt; consider d1 such that &0 < d1 ∧ ∀x'. dist (x',x) < d1 ⇒ x' ∈ s [d1Exists] by fol sOpen xs open_def; consider d2 such that &0 < d2 ∧ ∀x'. dist (x',x) < d2 ⇒ x' ∈ t [d2Exists] by fol tOpen xt open_def; consider e such that &0 < e /\ e < d1 /\ e < d2 [eExists] by fol d1Exists d2Exists REAL_DOWN2; fol - d1Exists d2Exists REAL_LT_TRANS; qed; `;; let OPEN_UNIONS = theorem `; (∀s. s ∈ f ⇒ open s) ⇒ open (UNIONS f) by fol open_def IN_UNIONS`;; let IstopologyEuclidean = theorem `; istopology (UNIV, open) by simplify istopology IN IN_UNIV SUBSET OPEN_EMPTY OPEN_UNIV OPEN_INTER OPEN_UNIONS`;; let OPEN_IN = theorem `; open = open_in euclidean by fol euclidean topology_tybij IstopologyEuclidean TopologyPAIR PAIR_EQ`;; let TOPSPACE_EUCLIDEAN = theorem `; topspace euclidean = UNIV by fol euclidean IstopologyEuclidean topology_tybij TopologyPAIR PAIR_EQ`;; let OPEN_EXISTS_IN = theorem `; ∀P Q. (∀a. P a ⇒ open {x | Q a x}) ⇒ open {x | ∃a. P a ∧ Q a x} by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN OPEN_IN_EXISTS_IN`;; let OPEN_EXISTS = theorem `; ∀Q. (∀a. open {x | Q a x}) ⇒ open {x | ∃a. Q a x} proof intro_TAC ∀Q; (∀a. T ⇒ open {x | Q a x}) ⇒ open {x | ∃a. T ∧ Q a x} [] by simplify OPEN_EXISTS_IN; MP_TAC -; fol; qed; `;; let TOPSPACE_EUCLIDEAN_SUBTOPOLOGY = theorem `; ∀s. topspace (subtopology euclidean s) = s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN TopspaceSubtopology`;; let OPEN_IN_REFL = theorem `; ∀s. open_in (subtopology euclidean s) s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInRefl`;; let CLOSED_IN_REFL = theorem `; ∀s. closed_in (subtopology euclidean s) s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosedInRefl`;; let CLOSED_IN = theorem `; ∀s. closed = closed_in euclidean by fol closed closed_in TOPSPACE_EUCLIDEAN OPEN_IN SUBSET_UNIV EXTENSION IN`;; let OPEN_UNION = theorem `; ∀s t. open s ∧ open t ⇒ open(s ∪ t) by fol OPEN_IN OPEN_IN_UNION`;; let OPEN_SUBOPEN = theorem `; ∀s. open s ⇔ ∀x. x ∈ s ⇒ ∃t. open t ∧ x ∈ t ∧ t ⊂ s by fol OPEN_IN OPEN_IN_SUBOPEN`;; let CLOSED_EMPTY = theorem `; closed ∅ by fol CLOSED_IN CLOSED_IN_EMPTY`;; let CLOSED_UNIV = theorem `; closed UNIV by fol CLOSED_IN TOPSPACE_EUCLIDEAN CLOSED_IN_TOPSPACE`;; let CLOSED_UNION = theorem `; ∀s t. closed s ∧ closed t ⇒ closed(s ∪ t) by fol CLOSED_IN CLOSED_IN_UNION`;; let CLOSED_INTER = theorem `; ∀s t. closed s ∧ closed t ⇒ closed(s ∩ t) by fol CLOSED_IN CLOSED_IN_INTER`;; let CLOSED_INTERS = theorem `; ∀f. (∀s. s ∈ f ⇒ closed s) ⇒ closed (INTERS f) by fol CLOSED_IN CLOSED_IN_INTERS INTERS_0 CLOSED_UNIV`;; let CLOSED_FORALL_IN = theorem `; ∀P Q. (∀a. P a ⇒ closed {x | Q a x}) ⇒ closed {x | ∀a. P a ⇒ Q a x} proof intro_TAC ∀P Q; case_split Pnonempty | Pempty by fol; suppose ¬(P = ∅); simplify CLOSED_IN Pnonempty CLOSED_IN_FORALL_IN; end; suppose P = ∅; {x | ∀a. P a ⇒ Q a x} = UNIV [] by set Pempty; simplify - CLOSED_UNIV; end; qed; `;; let CLOSED_FORALL = theorem `; ∀Q. (∀a. closed {x | Q a x}) ⇒ closed {x | ∀a. Q a x} proof intro_TAC ∀Q; (∀a. T ⇒ closed {x | Q a x}) ⇒ closed {x | ∀a. T ⇒ Q a x} [] by simplify CLOSED_FORALL_IN; MP_TAC -; fol; qed; `;; let OPEN_CLOSED = theorem `; ∀s. open s ⇔ closed(UNIV ━ s) by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN CLOSED_IN OPEN_IN_CLOSED_IN`;; let OPEN_DIFF = theorem `; ∀s t. open s ∧ closed t ⇒ open(s ━ t) by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN CLOSED_IN OPEN_IN_DIFF`;; let CLOSED_DIFF = theorem `; ∀s t. closed s ∧ open t ⇒ closed (s ━ t) by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN CLOSED_IN CLOSED_IN_DIFF`;; let OPEN_INTERS = theorem `; ∀s. FINITE s ∧ (∀t. t ∈ s ⇒ open t) ⇒ open (INTERS s) by fol OPEN_IN OPEN_IN_INTERS INTERS_0 OPEN_UNIV`;; let CLOSED_UNIONS = theorem `; ∀s. FINITE s ∧ (∀t. t ∈ s ⇒ closed t) ⇒ closed (UNIONS s) by fol CLOSED_IN CLOSED_IN_UNIONS`;; (* ------------------------------------------------------------------------- *) (* Open and closed balls and spheres. *) (* ------------------------------------------------------------------------- *) let ball = new_definition `ball(x,e) = {y | dist(x,y) < e}`;; let cball = new_definition `cball(x,e) = {y | dist(x,y) <= e}`;; let IN_BALL = theorem `; ∀x y e. y ∈ ball(x,e) ⇔ dist(x,y) < e by rewrite ball IN_ELIM_THM`;; let IN_CBALL = theorem `; ∀x y e. y ∈ cball(x, e) ⇔ dist(x, y) <= e by rewrite cball IN_ELIM_THM`;; let BALL_SUBSET_CBALL = theorem `; ∀x e. ball (x,e) ⊂ cball (x, e) proof rewrite IN_BALL IN_CBALL SUBSET; real_arithmetic; qed; `;; let OPEN_BALL = theorem `; ∀x e. open (ball (x,e)) proof rewrite open_def ball IN_ELIM_THM; fol DIST_SYM REAL_SUB_LT REAL_LT_SUB_LADD REAL_ADD_SYM REAL_LET_TRANS DIST_TRIANGLE; qed; `;; let CENTRE_IN_BALL = theorem `; ∀x e. x ∈ ball(x,e) ⇔ &0 < e by fol IN_BALL DIST_REFL`;; let OPEN_CONTAINS_BALL = theorem `; ∀s. open s ⇔ ∀x. x ∈ s ⇒ ∃e. &0 < e ∧ ball(x,e) ⊂ s by rewrite open_def SUBSET IN_BALL DIST_SYM`;; let HALF_CBALL_IN_BALL = theorem `; ∀e. &0 < e ⇒ &0 < e/ &2 ∧ e / &2 < e ∧ cball (x, e/ &2) ⊂ ball (x, e) proof intro_TAC ∀e, H1; &0 < e/ &2 ∧ e / &2 < e [] by real_arithmetic H1; fol - SUBSET IN_CBALL IN_BALL REAL_LET_TRANS; qed; `;; let OPEN_IN_CONTAINS_CBALL_LEMMA = theorem `; ∀t s x. x ∈ s ⇒ ((∃e. &0 < e ∧ ball (x, e) ∩ t ⊂ s) ⇔ (∃e. &0 < e ∧ cball (x, e) ∩ t ⊂ s)) by fol BALL_SUBSET_CBALL HALF_CBALL_IN_BALL INTER_TENSOR SUBSET_REFL SUBSET_TRANS`;; (* ------------------------------------------------------------------------- *) (* Basic "localization" results are handy for connectedness. *) (* ------------------------------------------------------------------------- *) let OPEN_IN_OPEN = theorem `; ∀s u. open_in (subtopology euclidean u) s ⇔ ∃t. open t ∧ (s = u ∩ t) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN OpenInSubtopology INTER_COMM`;; let OPEN_IN_INTER_OPEN = theorem `; ∀s t u. open_in (subtopology euclidean u) s ∧ open t ⇒ open_in (subtopology euclidean u) (s ∩ t) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN OpenInSubtopologyInterOpen`;; let OPEN_IN_OPEN_INTER = theorem `; ∀u s. open s ⇒ open_in (subtopology euclidean u) (u ∩ s) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN OpenInOpenInter`;; let OPEN_OPEN_IN_TRANS = theorem `; ∀s t. open s ∧ open t ∧ t ⊂ s ⇒ open_in (subtopology euclidean s) t by fol OPEN_IN OpenOpenInTrans`;; let OPEN_SUBSET = theorem `; ∀s t. s ⊂ t ∧ open s ⇒ open_in (subtopology euclidean t) s by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN OpenSubset`;; let CLOSED_IN_CLOSED = theorem `; ∀s u. closed_in (subtopology euclidean u) s ⇔ ∃t. closed t ∧ (s = u ∩ t) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN ClosedInSubtopology INTER_COMM`;; let CLOSED_SUBSET_EQ = theorem `; ∀u s. closed s ⇒ (closed_in (subtopology euclidean u) s ⇔ s ⊂ u) by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN ClosedSubsetEq`;; let CLOSED_IN_INTER_CLOSED = theorem `; ∀s t u. closed_in (subtopology euclidean u) s ∧ closed t ⇒ closed_in (subtopology euclidean u) (s ∩ t) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN ClosedInInterClosed`;; let CLOSED_IN_CLOSED_INTER = theorem `; ∀u s. closed s ⇒ closed_in (subtopology euclidean u) (u ∩ s) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN ClosedInClosedInter`;; let CLOSED_SUBSET = theorem `; ∀s t. s ⊂ t ∧ closed s ⇒ closed_in (subtopology euclidean t) s by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN ClosedSubset`;; let OPEN_IN_SUBSET_TRANS = theorem `; ∀s t u. open_in (subtopology euclidean u) s ∧ s ⊂ t ∧ t ⊂ u ⇒ open_in (subtopology euclidean t) s by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN OpenInSubsetTrans`;; let CLOSED_IN_SUBSET_TRANS = theorem `; ∀s t u. closed_in (subtopology euclidean u) s ∧ s ⊂ t ∧ t ⊂ u ⇒ closed_in (subtopology euclidean t) s by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN ClosedInSubsetTrans`;; let OPEN_IN_CONTAINS_BALL_LEMMA = theorem `; ∀t s x. x ∈ s ⇒ ((∃E. open E ∧ x ∈ E ∧ E ∩ t ⊂ s) ⇔ (∃e. &0 < e ∧ ball (x,e) ∩ t ⊂ s)) proof intro_TAC ∀ t s x, xs; eq_tac [Right] by fol CENTRE_IN_BALL OPEN_BALL; intro_TAC H2; consider a such that open a ∧ x ∈ a ∧ a ∩ t ⊂ s [aExists] by fol H2; consider e such that &0 < e ∧ ball(x,e) ⊂ a [eExists] by fol - OPEN_CONTAINS_BALL; fol aExists - INTER_SUBSET GSYM SUBSET_INTER SUBSET_TRANS; qed; `;; let OPEN_IN_CONTAINS_BALL = theorem `; ∀s t. open_in (subtopology euclidean t) s ⇔ s ⊂ t ∧ ∀x. x ∈ s ⇒ ∃e. &0 < e ∧ ball(x,e) ∩ t ⊂ s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN SubtopologyOpenInSubopen GSYM OPEN_IN GSYM OPEN_IN_CONTAINS_BALL_LEMMA`;; let OPEN_IN_CONTAINS_CBALL = theorem `; ∀s t. open_in (subtopology euclidean t) s ⇔ s ⊂ t ∧ ∀x. x ∈ s ⇒ ∃e. &0 < e ∧ cball(x,e) ∩ t ⊂ s by fol OPEN_IN_CONTAINS_BALL OPEN_IN_CONTAINS_CBALL_LEMMA`;; let open_in = theorem `; ∀u s. open_in (subtopology euclidean u) s ⇔ s ⊂ u ∧ ∀x. x ∈ s ⇒ ∃e. &0 < e ∧ ∀x'. x' ∈ u ∧ dist(x',x) < e ⇒ x' ∈ s by rewrite OPEN_IN_CONTAINS_BALL IN_INTER SUBSET IN_BALL CONJ_SYM DIST_SYM`;; (* ------------------------------------------------------------------------- *) (* These "transitivity" results are handy too. *) (* ------------------------------------------------------------------------- *) let OPEN_IN_TRANS = theorem `; ∀s t u. open_in (subtopology euclidean t) s ∧ open_in (subtopology euclidean u) t ⇒ open_in (subtopology euclidean u) s proof intro_TAC ∀s t u; t ⊂ topspace euclidean ∧ u ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; fol - OPEN_IN OpenInTrans; qed; `;; let OPEN_IN_TRANS_EQ = theorem `; ∀s t. (∀u. open_in (subtopology euclidean t) u ⇒ open_in (subtopology euclidean s) t) ⇔ open_in (subtopology euclidean s) t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInTransEq`;; let OPEN_IN_OPEN_TRANS = theorem `; ∀u s. open_in (subtopology euclidean u) s ∧ open u ⇒ open s proof intro_TAC ∀u s, H1; u ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; fol - H1 OPEN_IN OpenInOpenTrans; qed; `;; let CLOSED_IN_TRANS = theorem `; ∀s t u. closed_in (subtopology euclidean t) s ∧ closed_in (subtopology euclidean u) t ⇒ closed_in (subtopology euclidean u) s proof intro_TAC ∀s t u; t ⊂ topspace euclidean ∧ u ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; fol - ClosedInSubtopologyTrans; qed; `;; let CLOSED_IN_TRANS_EQ = theorem `; ∀s t. (∀u. closed_in (subtopology euclidean t) u ⇒ closed_in (subtopology euclidean s) t) ⇔ closed_in (subtopology euclidean s) t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosedInSubtopologyTransEq`;; let CLOSED_IN_CLOSED_TRANS = theorem `; ∀s u. closed_in (subtopology euclidean u) s ∧ closed u ⇒ closed s proof intro_TAC ∀u s; u ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; fol - CLOSED_IN ClosedInClosedTrans; qed; `;; let OPEN_IN_SUBTOPOLOGY_INTER_SUBSET = theorem `; ∀s u v. open_in (subtopology euclidean u) (u ∩ s) ∧ v ⊂ u ⇒ open_in (subtopology euclidean v) (v ∩ s) by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInSubtopologyInterSubset`;; let OPEN_IN_OPEN_EQ = theorem `; ∀s t. open s ⇒ (open_in (subtopology euclidean s) t ⇔ open t ∧ t ⊂ s) by fol OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInOpenEq`;; let CLOSED_IN_CLOSED_EQ = theorem `; ∀s t. closed s ⇒ (closed_in (subtopology euclidean s) t ⇔ closed t ∧ t ⊂ s) by fol CLOSED_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosedInClosedEq`;; (* ------------------------------------------------------------------------- *) (* Also some invariance theorems for relative topology. *) (* ------------------------------------------------------------------------- *) let OPEN_IN_INJECTIVE_LINEAR_IMAGE = theorem `; ∀f s t. linear f ∧ (∀x y. f x = f y ⇒ x = y) ⇒ (open_in (subtopology euclidean (IMAGE f t)) (IMAGE f s) ⇔ open_in (subtopology euclidean t) s) proof rewrite open_in FORALL_IN_IMAGE IMP_CONJ SUBSET; intro_TAC ∀f s t, H1, H2; ∀x s. f x ∈ IMAGE f s ⇔ x ∈ s [fInjMap] by set H2; rewrite -; ∀x y. f x - f y = f (x - y) [fSubLinear] by fol H1 LINEAR_SUB; consider B1 such that &0 < B1 ∧ ∀x. norm (f x) <= B1 * norm x [B1exists] by fol H1 LINEAR_BOUNDED_POS; consider B2 such that &0 < B2 ∧ ∀x. norm x * B2 <= norm (f x) [B2exists] by fol H1 H2 LINEAR_INJECTIVE_BOUNDED_BELOW_POS; AP_TERM_TAC; eq_tac [Left] proof intro_TAC H3, ∀x, xs; consider e such that &0 < e ∧ ∀x'. x' ∈ t ⇒ dist (f x',f x) < e ⇒ x' ∈ s [eExists] by fol H3 xs; exists_TAC e / B1; simplify REAL_LT_DIV eExists B1exists; intro_TAC ∀x', x't; ∀x. norm(f x) <= B1 * norm(x) ∧ norm(x) * B1 < e ⇒ norm(f x) < e [normB1] by real_arithmetic; simplify fSubLinear B1exists H3 eExists x't normB1 dist REAL_LT_RDIV_EQ; qed; intro_TAC H3, ∀x, xs; consider e such that &0 < e ∧ ∀x'. x' ∈ t ⇒ dist (x',x) < e ⇒ x' ∈ s [eExists] by fol H3 xs; exists_TAC e * B2; simplify REAL_LT_MUL eExists B2exists; intro_TAC ∀x', x't; ∀x. norm x <= norm (f x) / B2 ∧ norm(f x) / B2 < e ⇒ norm x < e [normB2] by real_arithmetic; simplify fSubLinear B2exists H3 eExists x't normB2 dist REAL_LE_RDIV_EQ REAL_LT_LDIV_EQ; qed; `;; add_linear_invariants [OPEN_IN_INJECTIVE_LINEAR_IMAGE];; let CLOSED_IN_INJECTIVE_LINEAR_IMAGE = theorem `; ∀f s t. linear f ∧ (∀x y. f x = f y ⇒ x = y) ⇒ (closed_in (subtopology euclidean (IMAGE f t)) (IMAGE f s) ⇔ closed_in (subtopology euclidean t) s) proof rewrite closed_in TOPSPACE_EUCLIDEAN_SUBTOPOLOGY; GEOM_TRANSFORM_TAC[]; qed; `;; add_linear_invariants [CLOSED_IN_INJECTIVE_LINEAR_IMAGE];; (* ------------------------------------------------------------------------- *) (* Subspace topology results only proved for Euclidean space. *) (* ------------------------------------------------------------------------- *) (* ISTOPLOGY_SUBTOPOLOGY can not be proved, as the definition of topology *) (* there is different from the one here. *) let OPEN_IN_SUBTOPOLOGY = theorem `; ∀u s. open_in (subtopology euclidean u) s ⇔ ∃t. open_in euclidean t ∧ s = t ∩ u by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInSubtopology`;; let TOPSPACE_SUBTOPOLOGY = theorem `; ∀u. topspace(subtopology euclidean u) = topspace euclidean ∩ u proof intro_TAC ∀u; u ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; fol - TopspaceSubtopology INTER_COMM SUBSET_INTER_ABSORPTION; qed; `;; let CLOSED_IN_SUBTOPOLOGY = theorem `; ∀u s. closed_in (subtopology euclidean u) s ⇔ ∃t. closed_in euclidean t ∧ s = t ∩ u by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closed_in ClosedInSubtopology`;; let OPEN_IN_SUBTOPOLOGY_REFL = theorem `; ∀u. open_in (subtopology euclidean u) u ⇔ u ⊂ topspace euclidean by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN_REFL`;; let CLOSED_IN_SUBTOPOLOGY_REFL = theorem `; ∀u. closed_in (subtopology euclidean u) u ⇔ u ⊂ topspace euclidean by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN_REFL`;; let SUBTOPOLOGY_UNIV = theorem `; subtopology euclidean UNIV = euclidean proof rewrite GSYM Topology_Eq; conj_tac [Left] by fol TOPSPACE_EUCLIDEAN TOPSPACE_EUCLIDEAN_SUBTOPOLOGY; rewrite GSYM OPEN_IN OPEN_IN_OPEN INTER_UNIV; fol; qed; `;; let SUBTOPOLOGY_SUPERSET = theorem `; ∀s. topspace euclidean ⊂ s ⇒ subtopology euclidean s = euclidean by simplify TOPSPACE_EUCLIDEAN UNIV_SUBSET SUBTOPOLOGY_UNIV`;; let OPEN_IN_IMP_SUBSET = theorem `; ∀s t. open_in (subtopology euclidean s) t ⇒ t ⊂ s by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInImpSubset`;; let CLOSED_IN_IMP_SUBSET = theorem `; ∀s t. closed_in (subtopology euclidean s) t ⇒ t ⊂ s by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosedInImpSubset`;; let OPEN_IN_SUBTOPOLOGY_UNION = theorem `; ∀s t u. open_in (subtopology euclidean t) s ∧ open_in (subtopology euclidean u) s ⇒ open_in (subtopology euclidean (t ∪ u)) s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInSubtopologyUnion`;; let CLOSED_IN_SUBTOPOLOGY_UNION = theorem `; ∀s t u. closed_in (subtopology euclidean t) s ∧ closed_in (subtopology euclidean u) s ⇒ closed_in (subtopology euclidean (t ∪ u)) s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosedInSubtopologyUnion`;; (* ------------------------------------------------------------------------- *) (* Connectedness. *) (* ------------------------------------------------------------------------- *) let connected_DEF = NewDefinition `; connected s ⇔ Connected (subtopology euclidean s)`;; let connected = theorem `; ∀s. connected s ⇔ ¬(∃e1 e2. open e1 ∧ open e2 ∧ s ⊂ e1 ∪ e2 ∧ e1 ∩ e2 ∩ s = ∅ ∧ ¬(e1 ∩ s = ∅) ∧ ¬(e2 ∩ s = ∅)) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF OPEN_IN ConnectedSubtopology`;; let CONNECTED_CLOSED = theorem `; ∀s. connected s ⇔ ¬(∃e1 e2. closed e1 ∧ closed e2 ∧ s ⊂ e1 ∪ e2 ∧ e1 ∩ e2 ∩ s = ∅ ∧ ¬(e1 ∩ s = ∅) ∧ ¬(e2 ∩ s = ∅)) by simplify connected_DEF CLOSED_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF CLOSED_IN ConnectedClosedSubtopology`;; let CONNECTED_OPEN_IN = theorem `; ∀s. connected s ⇔ ¬(∃e1 e2. open_in (subtopology euclidean s) e1 ∧ open_in (subtopology euclidean s) e2 ∧ s ⊂ e1 ∪ e2 ∧ e1 ∩ e2 = ∅ ∧ ¬(e1 = ∅) ∧ ¬(e2 = ∅)) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF OPEN_IN ConnectedOpenIn`;; let CONNECTED_OPEN_IN_EQ = theorem `; ∀s. connected s ⇔ ¬(∃e1 e2. open_in (subtopology euclidean s) e1 ∧ open_in (subtopology euclidean s) e2 ∧ e1 ∪ e2 = s ∧ e1 ∩ e2 = ∅ ∧ ¬(e1 = ∅) ∧ ¬(e2 = ∅)) by simplify connected_DEF Connected_DEF SUBSET_UNIV TOPSPACE_EUCLIDEAN TopspaceSubtopology EQ_SYM_EQ`;; let CONNECTED_CLOSED_IN = theorem `; ∀s. connected s ⇔ ¬(∃e1 e2. closed_in (subtopology euclidean s) e1 ∧ closed_in (subtopology euclidean s) e2 ∧ s ⊂ e1 ∪ e2 ∧ e1 ∩ e2 = ∅ ∧ ¬(e1 = ∅) ∧ ¬(e2 = ∅)) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF CLOSED_IN ConnectedClosedIn`;; let CONNECTED_CLOSED_IN_EQ = theorem `; ∀s. connected s ⇔ ¬(∃e1 e2. closed_in (subtopology euclidean s) e1 ∧ closed_in (subtopology euclidean s) e2 ∧ e1 ∪ e2 = s ∧ e1 ∩ e2 = ∅ ∧ ¬(e1 = ∅) ∧ ¬(e2 = ∅)) by simplify connected_DEF ConnectedClosed SUBSET_UNIV TOPSPACE_EUCLIDEAN TopspaceSubtopology EQ_SYM_EQ`;; let CONNECTED_CLOPEN = theorem `; ∀s. connected s ⇔ ∀t. open_in (subtopology euclidean s) t ∧ closed_in (subtopology euclidean s) t ⇒ t = ∅ ∨ t = s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF ConnectedClopen TopspaceSubtopology`;; let CONNECTED_CLOSED_SET = theorem `; ∀s. closed s ⇒ (connected s ⇔ ¬(∃e1 e2. closed e1 ∧ closed e2 ∧ ¬(e1 = ∅) ∧ ¬(e2 = ∅) ∧ e1 ∪ e2 = s ∧ e1 ∩ e2 = ∅)) by simplify connected_DEF CLOSED_IN closed_in ConnectedClosedSet`;; let CONNECTED_OPEN_SET = theorem `; ∀s. open s ⇒ (connected s ⇔ ¬(∃e1 e2. open e1 ∧ open e2 ∧ ¬(e1 = ∅) ∧ ¬(e2 = ∅) ∧ e1 ∪ e2 = s ∧ e1 ∩ e2 = ∅)) by simplify connected_DEF OPEN_IN ConnectedOpenSet`;; let CONNECTED_EMPTY = theorem `; connected ∅ by rewrite connected_DEF ConnectedEmpty`;; let CONNECTED_SING = theorem `; ∀a. connected {a} proof intro_TAC ∀a; a ∈ topspace euclidean [] by fol IN_UNIV TOPSPACE_EUCLIDEAN; fol - ConnectedSing connected_DEF; qed; `;; let CONNECTED_UNIONS = theorem `; ∀P. (∀s. s ∈ P ⇒ connected s) ∧ ¬(INTERS P = ∅) ⇒ connected(UNIONS P) proof intro_TAC ∀P; ∀s. s ∈ P ⇒ s ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; fol - connected_DEF ConnectedUnions; qed; `;; let CONNECTED_UNION = theorem `; ∀s t. connected s ∧ connected t ∧ ¬(s ∩ t = ∅) ⇒ connected (s ∪ t) proof intro_TAC ∀s t; s ⊂ topspace euclidean ∧ t ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; fol - connected_DEF ConnectedUnion; qed; `;; let CONNECTED_DIFF_OPEN_FROM_CLOSED = theorem `; ∀s t u. s ⊂ t ∧ t ⊂ u ∧ open s ∧ closed t ∧ connected u ∧ connected(t ━ s) ⇒ connected(u ━ s) by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF OPEN_IN CLOSED_IN ConnectedDiffOpenFromClosed`;; let CONNECTED_DISJOINT_UNIONS_OPEN_UNIQUE = theorem `; ∀f f'. pairwise DISJOINT f ∧ pairwise DISJOINT f' ∧ (∀s. s ∈ f ⇒ open s ∧ connected s ∧ ¬(s = ∅)) ∧ (∀s. s ∈ f' ⇒ open s ∧ connected s ∧ ¬(s = ∅)) ∧ UNIONS f = UNIONS f' ⇒ f = f' by rewrite connected_DEF OPEN_IN ConnectedDisjointUnionsOpenUnique`;; let CONNECTED_FROM_CLOSED_UNION_AND_INTER = theorem `; ∀s t. closed s ∧ closed t ∧ connected (s ∪ t) ∧ connected (s ∩ t) ⇒ connected s ∧ connected t proof intro_TAC ∀s t; s ∪ t ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; fol - connected_DEF CLOSED_IN ConnectedFromClosedUnionAndInter; qed; `;; let CONNECTED_FROM_OPEN_UNION_AND_INTER = theorem `; ∀s t. open s ∧ open t ∧ connected (s ∪ t) ∧ connected (s ∩ t) ⇒ connected s ∧ connected t proof intro_TAC ∀s t; s ∪ t ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; fol - connected_DEF OPEN_IN ConnectedFromOpenUnionAndInter; qed; `;; (* ------------------------------------------------------------------------- *) (* Sort of induction principle for connected sets. *) (* ------------------------------------------------------------------------- *) let CONNECTED_INDUCTION = theorem `; ∀P Q s. connected s ∧ (∀t a. open_in (subtopology euclidean s) t ∧ a ∈ t ⇒ ∃z. z ∈ t ∧ P z) ∧ (∀a. a ∈ s ⇒ ∃t. open_in (subtopology euclidean s) t ∧ a ∈ t ∧ ∀x y. x ∈ t ∧ y ∈ t ∧ P x ∧ P y ∧ Q x ⇒ Q y) ⇒ ∀a b. a ∈ s ∧ b ∈ s ∧ P a ∧ P b ∧ Q a ⇒ Q b proof intro_TAC ∀P Q s; s ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; MP_TAC -; rewrite connected_DEF ConnectedInduction; qed; `;; let CONNECTED_EQUIVALENCE_RELATION_GEN_LEMMA = theorem `; ∀P R s. connected s ∧ (∀x y z. R x y ∧ R y z ⇒ R x z) ∧ (∀t a. open_in (subtopology euclidean s) t ∧ a ∈ t ⇒ ∃z. z ∈ t ∧ P z) ∧ (∀a. a ∈ s ⇒ ∃t. open_in (subtopology euclidean s) t ∧ a ∈ t ∧ ∀x y. x ∈ t ∧ y ∈ t ∧ P x ∧ P y ⇒ R x y) ⇒ ∀a b. a ∈ s ∧ b ∈ s ∧ P a ∧ P b ⇒ R a b proof intro_TAC ∀P R s; s ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; MP_TAC -; rewrite connected_DEF ConnectedEquivalenceRelationGen; qed; `;; let CONNECTED_EQUIVALENCE_RELATION_GEN = theorem `; ∀P R s. connected s ∧ (∀x y. R x y ⇒ R y x) ∧ (∀x y z. R x y ∧ R y z ⇒ R x z) ∧ (∀t a. open_in (subtopology euclidean s) t ∧ a ∈ t ⇒ ∃z. z ∈ t ∧ P z) ∧ (∀a. a ∈ s ⇒ ∃t. open_in (subtopology euclidean s) t ∧ a ∈ t ∧ ∀x y. x ∈ t ∧ y ∈ t ∧ P x ∧ P y ⇒ R x y) ⇒ ∀a b. a ∈ s ∧ b ∈ s ∧ P a ∧ P b ⇒ R a b proof intro_TAC ∀P R s; MP_TAC ISPECL [P; R; s] CONNECTED_EQUIVALENCE_RELATION_GEN_LEMMA; fol; qed; `;; let CONNECTED_INDUCTION_SIMPLE = theorem `; ∀P s. connected s ∧ (∀a. a ∈ s ⇒ ∃t. open_in (subtopology euclidean s) t ∧ a ∈ t ∧ ∀x y. x ∈ t ∧ y ∈ t ∧ P x ⇒ P y) ⇒ ∀a b. a ∈ s ∧ b ∈ s ∧ P a ⇒ P b proof intro_TAC ∀P s; s ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; MP_TAC -; rewrite connected_DEF ConnectedInductionSimple; qed; `;; let CONNECTED_EQUIVALENCE_RELATION = theorem `; ∀R s. connected s ∧ (∀x y. R x y ⇒ R y x) ∧ (∀x y z. R x y ∧ R y z ⇒ R x z) ∧ (∀a. a ∈ s ⇒ ∃t. open_in (subtopology euclidean s) t ∧ a ∈ t ∧ ∀x. x ∈ t ⇒ R a x) ⇒ ∀a b. a ∈ s ∧ b ∈ s ⇒ R a b proof intro_TAC ∀R s; s ⊂ topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN; MP_TAC -; rewrite connected_DEF ConnectedEquivalenceRelation; qed; `;; (* ------------------------------------------------------------------------- *) (* Limit points. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("limit_point_of",(12,"right"));; let limit_point_of_DEF = NewDefinition `; x limit_point_of s ⇔ x ∈ LimitPointOf euclidean s`;; let limit_point_of = theorem `; x limit_point_of s ⇔ ∀t. x ∈ t ∧ open t ⇒ ∃y. ¬(y = x) ∧ y ∈ s ∧ y ∈ t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN IN_UNIV IN_LimitPointOf limit_point_of_DEF OPEN_IN`;; let LIMPT_SUBSET = theorem `; ∀x s t. x limit_point_of s ∧ s ⊂ t ⇒ x limit_point_of t by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN limit_point_of_DEF LimptSubset SUBSET`;; let CLOSED_LIMPT = theorem `; ∀s. closed s ⇔ ∀x. x limit_point_of s ⇒ x ∈ s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN IN_UNIV limit_point_of_DEF CLOSED_IN ClosedLimpt SUBSET`;; let LIMPT_EMPTY = theorem `; ∀x. ¬(x limit_point_of ∅) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN IN_UNIV limit_point_of_DEF GSYM ∉ LimptEmpty`;; let NO_LIMIT_POINT_IMP_CLOSED = theorem `; ∀s. ¬(∃x. x limit_point_of s) ⇒ closed s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN IN_UNIV limit_point_of_DEF CLOSED_IN NoLimitPointImpClosed NOT_EXISTS_THM ∉`;; let LIMIT_POINT_UNION = theorem `; ∀s t x. x limit_point_of (s ∪ t) ⇔ x limit_point_of s ∨ x limit_point_of t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN IN_UNIV limit_point_of_DEF LimitPointUnion EXTENSION IN_UNION`;; let LimitPointOf_euclidean = theorem `; ∀s. LimitPointOf euclidean s = {x | x limit_point_of s} by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN IN_UNIV limit_point_of_DEF LimitPointOf IN_ELIM_THM EXTENSION`;; (* ------------------------------------------------------------------------- *) (* Interior of a set. *) (* ------------------------------------------------------------------------- *) let interior_DEF = NewDefinition `; interior = Interior euclidean`;; let interior = theorem `; ∀s. interior s = {x | ∃t. open t ∧ x ∈ t ∧ t ⊂ s} by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF Interior_DEF OPEN_IN`;; let INTERIOR_EQ = theorem `; ∀s. interior s = s ⇔ open s by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorEq EQ_SYM_EQ`;; let INTERIOR_OPEN = theorem `; ∀s. open s ⇒ interior s = s by fol interior_DEF OPEN_IN InteriorOpen`;; let INTERIOR_EMPTY = theorem `; interior ∅ = ∅ by fol interior_DEF OPEN_IN InteriorEmpty`;; let INTERIOR_UNIV = theorem `; interior UNIV = UNIV by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF InteriorUniv`;; let OPEN_INTERIOR = theorem `; ∀s. open (interior s) by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInterior`;; let INTERIOR_INTERIOR = theorem `; ∀s. interior (interior s) = interior s by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorInterior`;; let INTERIOR_SUBSET = theorem `; ∀s. interior s ⊂ s by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorSubset`;; let SUBSET_INTERIOR = theorem `; ∀s t. s ⊂ t ⇒ interior s ⊂ interior t by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN SubsetInterior`;; let INTERIOR_MAXIMAL = theorem `; ∀s t. t ⊂ s ∧ open t ⇒ t ⊂ interior s by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorMaximal`;; let INTERIOR_MAXIMAL_EQ = theorem `; ∀s t. open s ⇒ (s ⊂ interior t ⇔ s ⊂ t) by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorMaximalEq`;; let INTERIOR_UNIQUE = theorem `; ∀s t. t ⊂ s ∧ open t ∧ (∀t'. t' ⊂ s ∧ open t' ⇒ t' ⊂ t) ⇒ interior s = t by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorUnique`;; let IN_INTERIOR = theorem `; ∀x s. x ∈ interior s ⇔ ∃e. &0 < e ∧ ball(x,e) ⊂ s proof simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF IN_Interior GSYM OPEN_IN; fol OPEN_CONTAINS_BALL SUBSET_TRANS CENTRE_IN_BALL OPEN_BALL; qed; `;; let OPEN_SUBSET_INTERIOR = theorem `; ∀s t. open s ⇒ (s ⊂ interior t ⇔ s ⊂ t) by fol interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenSubsetInterior`;; let INTERIOR_INTER = theorem `; ∀s t. interior (s ∩ t) = interior s ∩ interior t by simplify interior_DEF SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorInter`;; let INTERIOR_FINITE_INTERS = theorem `; ∀s. FINITE s ⇒ interior (INTERS s) = INTERS (IMAGE interior s) proof intro_TAC ∀s, H1; assume ¬(s = ∅) [sNonempty] by simplify INTERS_0 IMAGE_CLAUSES INTERIOR_UNIV; simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN H1 sNonempty interior_DEF InteriorFiniteInters; qed; `;; let INTERIOR_FINITE_INTERS = theorem `; ∀s. FINITE s ⇒ interior (INTERS s) = INTERS (IMAGE interior s) proof intro_TAC ∀s, H1; assume s = ∅ [sEmpty] by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN H1 interior_DEF InteriorFiniteInters; rewrite INTERS_0 IMAGE_CLAUSES sEmpty INTERIOR_UNIV; qed; `;; let INTERIOR_INTERS_SUBSET = theorem `; ∀f. interior (INTERS f) ⊂ INTERS (IMAGE interior f) proof intro_TAC ∀f; assume f = ∅ [fEmpty] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF InteriorIntersSubset; rewrite INTERS_0 IMAGE_CLAUSES - INTERIOR_UNIV SUBSET_REFL; qed; `;; let UNION_INTERIOR_SUBSET = theorem `; ∀s t. interior s ∪ interior t ⊂ interior(s ∪ t) by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF UnionInteriorSubset`;; let INTERIOR_EQ_EMPTY = theorem `; ∀s. interior s = ∅ ⇔ ∀t. open t ∧ t ⊂ s ⇒ t = ∅ by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF OPEN_IN InteriorEqEmpty`;; let INTERIOR_EQ_EMPTY_ALT = theorem `; ∀s. interior s = ∅ ⇔ ∀t. open t ∧ ¬(t = ∅) ⇒ ¬(t ━ s = ∅) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF OPEN_IN InteriorEqEmptyAlt`;; let INTERIOR_UNIONS_OPEN_SUBSETS = theorem `; ∀s. UNIONS {t | open t ∧ t ⊂ s} = interior s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF OPEN_IN InteriorUnionsOpenSubsets`;; (* ------------------------------------------------------------------------- *) (* Closure of a set. *) (* ------------------------------------------------------------------------- *) let closure_DEF = NewDefinition `; closure = Closure euclidean`;; let closure = theorem `; ∀s. closure s = s UNION {x | x limit_point_of s} by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF LimitPointOf_euclidean Closure_THM`;; let CLOSURE_INTERIOR = theorem `; ∀s. closure s = UNIV ━ interior (UNIV ━ s) proof rewrite closure_DEF GSYM TOPSPACE_EUCLIDEAN interior_DEF; simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosureInterior; qed; `;; let INTERIOR_CLOSURE = theorem `; ∀s. interior s = UNIV ━ (closure (UNIV ━ s)) proof rewrite closure_DEF GSYM TOPSPACE_EUCLIDEAN interior_DEF; simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorClosure; qed; `;; let CLOSED_CLOSURE = theorem `; ∀s. closed (closure s) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosedClosure`;; let CLOSURE_SUBSET = theorem `; ∀s. s ⊂ closure s by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureSubset`;; let SUBSET_CLOSURE = theorem `; ∀s t. s ⊂ t ⇒ closure s ⊂ closure t by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF SubsetClosure`;; let CLOSURE_HULL = theorem `; ∀s. closure s = closed hull s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureHull`;; let CLOSURE_EQ = theorem `; ∀s. closure s = s ⇔ closed s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureEq`;; let CLOSURE_CLOSED = theorem `; ∀s. closed s ⇒ closure s = s by fol CLOSED_IN closure_DEF ClosureClosed`;; let CLOSURE_CLOSURE = theorem `; ∀s. closure (closure s) = closure s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureClosure`;; let CLOSURE_UNION = theorem `; ∀s t. closure (s ∪ t) = closure s ∪ closure t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureUnion`;; let CLOSURE_INTER_SUBSET = theorem `; ∀s t. closure (s ∩ t) ⊂ closure s ∩ closure t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureInterSubset`;; let CLOSURE_INTERS_SUBSET = theorem `; ∀f. closure (INTERS f) ⊂ INTERS (IMAGE closure f) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureIntersSubset`;; let CLOSURE_MINIMAL = theorem `; ∀s t. s ⊂ t ∧ closed t ⇒ closure s ⊂ t by fol CLOSED_IN closure_DEF ClosureMinimal`;; let CLOSURE_MINIMAL_EQ = theorem `; ∀s t. closed t ⇒ (closure s ⊂ t ⇔ s ⊂ t) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureMinimalEq`;; let CLOSURE_UNIQUE = theorem `; ∀s t. s ⊂ t ∧ closed t ∧ (∀t'. s ⊂ t' ∧ closed t' ⇒ t ⊂ t') ⇒ closure s = t by fol CLOSED_IN closure_DEF ClosureUnique`;; let CLOSURE_EMPTY = theorem `; closure ∅ = ∅ by fol closure_DEF ClosureEmpty`;; let CLOSURE_UNIV = theorem `; closure UNIV = UNIV by fol TOPSPACE_EUCLIDEAN closure_DEF ClosureUniv`;; let CLOSURE_UNIONS = theorem `; ∀f. FINITE f ⇒ closure (UNIONS f) = UNIONS {closure s | s ∈ f} by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF ClosureUnions`;; let CLOSURE_EQ_EMPTY = theorem `; ∀s. closure s = ∅ ⇔ s = ∅ by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF ClosureEqEmpty`;; let CLOSURE_SUBSET_EQ = theorem `; ∀s. closure s ⊂ s ⇔ closed s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF CLOSED_IN ClosureSubsetEq`;; let OPEN_INTER_CLOSURE_EQ_EMPTY = theorem `; ∀s t. open s ⇒ (s ∩ closure t = ∅ ⇔ s ∩ t = ∅) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF OPEN_IN OpenInterClosureEqEmpty`;; let OPEN_INTER_CLOSURE_SUBSET = theorem `; ∀s t. open s ⇒ s ∩ closure t ⊂ closure (s ∩ t) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF OPEN_IN OpenInterClosureSubset`;; let CLOSURE_OPEN_INTER_SUPERSET = theorem `; ∀s t. open s ∧ s ⊂ closure t ⇒ closure (s ∩ t) = closure s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF OPEN_IN ClosureOpenInterSuperset`;; let CLOSURE_COMPLEMENT = theorem `; ∀s. closure (UNIV ━ s) = UNIV ━ interior s proof rewrite closure_DEF GSYM TOPSPACE_EUCLIDEAN interior_DEF; simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosureComplement; qed; `;; let INTERIOR_COMPLEMENT = theorem `; ∀s. interior (UNIV ━ s) = UNIV ━ closure s proof rewrite closure_DEF GSYM TOPSPACE_EUCLIDEAN interior_DEF; simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorComplement; qed; `;; let CONNECTED_INTERMEDIATE_CLOSURE = theorem `; ∀s t. connected s ∧ s ⊂ t ∧ t ⊂ closure s ⇒ connected t by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF connected_DEF ConnectedIntermediateClosure`;; let CONNECTED_CLOSURE = theorem `; ∀s. connected s ⇒ connected (closure s) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF connected_DEF ConnectedClosure`;; let CONNECTED_UNION_STRONG = theorem `; ∀s t. connected s ∧ connected t ∧ ¬(closure s ∩ t = ∅) ⇒ connected (s ∪ t) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF connected_DEF ConnectedUnionStrong`;; let INTERIOR_DIFF = theorem `; ∀s t. interior (s ━ t) = interior s ━ closure t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF interior_DEF InteriorDiff`;; let CLOSED_IN_LIMPT = theorem `; ∀s t. closed_in (subtopology euclidean t) s ⇔ s ⊂ t ∧ ∀x. x limit_point_of s ∧ x ∈ t ⇒ x ∈ s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF limit_point_of_DEF ClosedInLimpt_ALT`;; let CLOSED_IN_INTER_CLOSURE = theorem `; ∀s t. closed_in (subtopology euclidean s) t ⇔ s ∩ closure t = t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF limit_point_of_DEF ClosedInInterClosure`;; let INTERIOR_CLOSURE_IDEMP = theorem `; ∀s. interior (closure (interior (closure s))) = interior (closure s) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF interior_DEF InteriorClosureIdemp`;; let CLOSURE_INTERIOR_IDEMP = theorem `; ∀s. closure (interior (closure (interior s))) = closure (interior s) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF interior_DEF ClosureInteriorIdemp`;; let INTERIOR_CLOSED_UNION_EMPTY_INTERIOR = theorem `; ∀s t. closed s ∧ interior t = ∅ ⇒ interior (s ∪ t) = interior s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN interior_DEF InteriorClosedUnionEmptyInterior`;; let INTERIOR_UNION_EQ_EMPTY = theorem `; ∀s t. closed s ∨ closed t ⇒ (interior (s ∪ t) = ∅ ⇔ interior s = ∅ ∧ interior t = ∅) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN interior_DEF InteriorUnionEqEmpty`;; let NOWHERE_DENSE_UNION = theorem `; ∀s t. interior (closure (s ∪ t)) = ∅ ⇔ interior (closure s) = ∅ ∧ interior (closure t) = ∅ by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF interior_DEF NowhereDenseUnion`;; let NOWHERE_DENSE = theorem `; ∀s. interior (closure s) = ∅ ⇔ ∀t. open t ∧ ¬(t = ∅) ⇒ ∃u. open u ∧ ¬(u = ∅) ∧ u ⊂ t ∧ u ∩ s = ∅ by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF closure_DEF OPEN_IN NowhereDense`;; let INTERIOR_CLOSURE_INTER_OPEN = theorem `; ∀s t. open s ∧ open t ⇒ interior (closure (s ∩ t)) = interior(closure s) ∩ interior (closure t) by simplify interior_DEF closure_DEF OPEN_IN InteriorClosureInterOpen`;; let CLOSURE_INTERIOR_UNION_CLOSED = theorem `; ∀s t. closed s ∧ closed t ⇒ closure (interior (s ∪ t)) = closure (interior s) ∪ closure (interior t) by simplify interior_DEF closure_DEF CLOSED_IN ClosureInteriorUnionClosed`;; let REGULAR_OPEN_INTER = theorem `; ∀s t. interior (closure s) = s ∧ interior (closure t) = t ⇒ interior (closure (s ∩ t)) = s ∩ t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF closure_DEF RegularOpenInter`;; let REGULAR_CLOSED_UNION = theorem `; ∀s t. closure (interior s) = s ∧ closure (interior t) = t ⇒ closure (interior (s ∪ t)) = s ∪ t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF closure_DEF RegularClosedUnion`;; let DIFF_CLOSURE_SUBSET = theorem `; ∀s t. closure s ━ closure t ⊂ closure (s ━ t) by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF DiffClosureSubset`;; (* ------------------------------------------------------------------------- *) (* Frontier (aka boundary). *) (* ------------------------------------------------------------------------- *) let frontier_DEF = NewDefinition `; frontier = Frontier euclidean`;; let frontier = theorem `; ∀s. frontier s = (closure s) DIFF (interior s) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF closure_DEF interior_DEF Frontier_THM`;; let FRONTIER_CLOSED = theorem `; ∀s. closed (frontier s) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF CLOSED_IN FrontierClosed`;; let FRONTIER_CLOSURES = theorem `; ∀s. frontier s = (closure s) ∩ (closure (UNIV ━ s)) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF closure_DEF FrontierClosures`;; let FRONTIER_STRADDLE = theorem `; ∀a s. a ∈ frontier s ⇔ ∀e. &0 < e ⇒ (∃x. x ∈ s ∧ dist(a,x) < e) ∧ (∃x. ¬(x ∈ s) ∧ dist(a,x) < e) proof simplify SUBSET_UNIV IN_UNIV TOPSPACE_EUCLIDEAN frontier_DEF closure_DEF FrontierStraddle GSYM OPEN_IN; fol IN_BALL SUBSET OPEN_CONTAINS_BALL CENTRE_IN_BALL OPEN_BALL; qed; `;; let FRONTIER_SUBSET_CLOSED = theorem `; ∀s. closed s ⇒ (frontier s) ⊂ s by fol frontier_DEF CLOSED_IN FrontierSubsetClosed`;; let FRONTIER_EMPTY = theorem `; frontier ∅ = ∅ by fol frontier_DEF FrontierEmpty`;; let FRONTIER_UNIV = theorem `; frontier UNIV = ∅ by fol frontier_DEF TOPSPACE_EUCLIDEAN FrontierUniv`;; let FRONTIER_SUBSET_EQ = theorem `; ∀s. (frontier s) ⊂ s ⇔ closed s by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF CLOSED_IN FrontierSubsetEq`;; let FRONTIER_COMPLEMENT = theorem `; ∀s. frontier (UNIV ━ s) = frontier s by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF FrontierComplement`;; let FRONTIER_DISJOINT_EQ = theorem `; ∀s. (frontier s) ∩ s = ∅ ⇔ open s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF OPEN_IN FrontierDisjointEq`;; let FRONTIER_INTER_SUBSET = theorem `; ∀s t. frontier (s ∩ t) ⊂ frontier s ∪ frontier t by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF FrontierInterSubset`;; let FRONTIER_UNION_SUBSET = theorem `; ∀s t. frontier (s ∪ t) ⊂ frontier s ∪ frontier t by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF FrontierUnionSubset`;; let FRONTIER_INTERIORS = theorem `; frontier s = UNIV ━ interior(s) ━ interior(UNIV ━ s) by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF interior_DEF FrontierInteriors`;; let FRONTIER_FRONTIER_SUBSET = theorem `; ∀s. frontier (frontier s) ⊂ frontier s by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF FrontierFrontierSubset`;; let INTERIOR_FRONTIER = theorem `; ∀s. interior (frontier s) = interior (closure s) ━ closure (interior s) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF frontier_DEF closure_DEF InteriorFrontier`;; let INTERIOR_FRONTIER_EMPTY = theorem `; ∀s. open s ∨ closed s ⇒ interior (frontier s) = ∅ by fol OPEN_IN CLOSED_IN interior_DEF frontier_DEF InteriorFrontierEmpty`;; let UNION_FRONTIER = theorem `; ∀s t. frontier s ∪ frontier t = frontier (s ∪ t) ∪ frontier (s ∩ t) ∪ frontier s ∩ frontier t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF UnionFrontier`;; let CONNECTED_INTER_FRONTIER = theorem `; ∀s t. connected s ∧ ¬(s ∩ t = ∅) ∧ ¬(s ━ t = ∅) ⇒ ¬(s ∩ frontier t = ∅) by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF frontier_DEF ConnectedInterFrontier`;; let INTERIOR_CLOSED_EQ_EMPTY_AS_FRONTIER = theorem `; ∀s. closed s ∧ interior s = ∅ ⇔ ∃t. open t ∧ s = frontier t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN interior_DEF OPEN_IN frontier_DEF InteriorClosedEqEmptyAsFrontier`;; let FRONTIER_UNION = theorem `; ∀s t. closure s ∩ closure t = ∅ ⇒ frontier (s ∪ t) = frontier s ∪ frontier t by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF closure_DEF FrontierUnion`;; let CLOSURE_UNION_FRONTIER = theorem `; ∀s. closure s = s ∪ frontier s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF frontier_DEF ClosureUnionFrontier`;; let FRONTIER_INTERIOR_SUBSET = theorem `; ∀s. frontier (interior s) ⊂ frontier s by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF interior_DEF FrontierInteriorSubset`;; let FRONTIER_CLOSURE_SUBSET = theorem `; ∀s. frontier (closure s) ⊂ frontier s by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF closure_DEF FrontierClosureSubset`;; let SET_DIFF_FRONTIER = theorem `; ∀s. s ━ frontier s = interior s by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF interior_DEF SetDiffFrontier`;; let FRONTIER_INTER_SUBSET_INTER = theorem `; ∀s t. frontier (s ∩ t) ⊂ closure s ∩ frontier t ∪ frontier s ∩ closure t by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF closure_DEF FrontierInterSubsetInter`;;