(* ========================================================================= *) (* (c) Copyright, Bill Richter 2013 *) (* Distributed under the same license as HOL Light *) (* *) (* Proof of the Bug Puzzle conjecture of the HOL Light tutorial: Any two *) (* triples of points in the plane with the same oriented area can be *) (* connected in 5 moves or less (FivemovesOrLess). Much of the code is *) (* due to John Harrison: a proof (NOTENOUGH_4) showing this is the best *) (* possible result; an early version of Noncollinear_2Span; the *) (* definition of move, which defines a closed subset *) (* {(A,B,C,A',B',C') | move (A,B,C) (A',B',C')} of R^6 x R^6, *) (* i.e. the zero set of a continuous function; FivemovesOrLess_STRONG, *) (* which handles the degenerate case (collinear or non-distinct triples), *) (* giving a satisfying answer using this "closed" definition of move. *) (* *) (* The mathematical proofs are essentially due to Tom Hales. *) (* ========================================================================= *) needs "Multivariate/determinants.ml";; needs "RichterHilbertAxiomGeometry/readable.ml";; new_type_abbrev("triple",`:real^2#real^2#real^2`);; let VEC2_TAC = SIMP_TAC[CART_EQ; LAMBDA_BETA; FORALL_2; SUM_2; DIMINDEX_2; VECTOR_2; vector_add; vec; dot; orthogonal; basis; vector_neg; vector_sub; vector_mul; ARITH] THEN CONV_TAC REAL_RING;; let oriented_area = new_definition `oriented_area (a:real^2,b:real^2,c:real^2) = ((b$1 - a$1) * (c$2 - a$2) - (c$1 - a$1) * (b$2 - a$2)) / &2`;; let move = NewDefinition `; ∀A B C A' B' C':real^2. move (A,B,C) (A',B',C') ⇔ (B = B' ∧ C = C' ∧ collinear {vec 0,C - B,A' - A} ∨ A = A' ∧ C = C' ∧ collinear {vec 0,C - A,B' - B} ∨ A = A' ∧ B = B' ∧ collinear {vec 0,B - A,C' - C})`;; let reachable = NewDefinition `; ∀p p'. reachable p p' ⇔ ∃n. ∃s. s 0 = p ∧ s n = p' ∧ (∀m. 0 <= m ∧ m < n ⇒ move (s m) (s (SUC m)))`;; let reachableN = NewDefinition `; ∀p p'. ∀n. reachableN p p' n ⇔ ∃s. s 0 = p ∧ s n = p' ∧ (∀m. 0 <= m ∧ m < n ⇒ move (s m) (s (SUC m)))`;; let move2Cond = NewDefinition `; ∀ A B A' B':real^2. move2Cond A B A' B' ⇔ ¬collinear {B,A,A'} ∧ ¬collinear {A',B,B'} ∨ ¬collinear {A,B,B'} ∧ ¬collinear {B',A,A'}`;; let oriented_areaSymmetry = theorem `; oriented_area (A,B,C) = oriented_area(A',B',C') ⇒ oriented_area (B,C,A) = oriented_area (B',C',A') ∧ oriented_area (C,A,B) = oriented_area (C',A',B') ∧ oriented_area (A,C,B) = oriented_area (A',C',B') ∧ oriented_area (B,A,C) = oriented_area (B',A',C') ∧ oriented_area (C,B,A) = oriented_area (C',B',A') proof rewrite oriented_area; VEC2_TAC; qed; `;; let COLLINEAR_3_2Dzero = theorem `; ∀y z:real^2. collinear{vec 0,y,z} ⇔ z$1 * y$2 = y$1 * z$2 proof rewrite COLLINEAR_3_2D; VEC2_TAC; qed; `;; let Noncollinear_3ImpliesDistinct = theorem `; ¬collinear {a,b,c} ⇒ ¬(a = b) ∧ ¬(a = c) ∧ ¬(b = c) by fol COLLINEAR_BETWEEN_CASES BETWEEN_REFL`;; let collinearSymmetry = theorem `; collinear {A,B,C} ⇒ collinear {A,C,B} ∧ collinear {B,A,C} ∧ collinear {B,C,A} ∧ collinear {C,A,B} ∧ collinear {C,B,A} proof {A,C,B} ⊂ {A,B,C} ∧ {B,A,C} ⊂ {A,B,C} ∧ {B,C,A} ⊂ {A,B,C} ∧ {C,A,B} ⊂ {A,B,C} ∧ {C,B,A} ⊂ {A,B,C} [] by set; fol - COLLINEAR_SUBSET; qed; `;; let Noncollinear_2Span = theorem `; ∀u v w:real^2. ¬collinear {vec 0,v,w} ⇒ ∃ s t. s % v + t % w = u proof intro_TAC ∀u v w, H1; ¬(v$1 * w$2 - w$1 * v$2 = &0) [H1'] by fol H1 COLLINEAR_3_2Dzero REAL_SUB_0; consider M such that M = transp(vector[v;w]):real^2^2 [Mexists] by fol -; ¬(det M = &0) ∧ (∀ x. (M ** x)$1 = v$1 * x$1 + w$1 * x$2 ∧ (M ** x)$2 = v$2 * x$1 + w$2 * x$2) [MatMult] by simplify H1' Mexists matrix_vector_mul DIMINDEX_2 SUM_2 TRANSP_COMPONENT VECTOR_2 LAMBDA_BETA ARITH CART_EQ FORALL_2 DET_2; ∀ r n. ¬(r < n) ∧ r <= MIN n n ⇒ r = n [] by arithmetic; consider x such that M ** x = u [xDef] by fol MatMult - DET_EQ_0_RANK RANK_BOUND MATRIX_FULL_LINEAR_EQUATIONS; exists_TAC x$1; exists_TAC x$2; x$1 * v$1 + x$2 * w$1 = u$1 ∧ x$1 * v$2 + x$2 * w$2 = u$2 [xDef] by fol MatMult xDef REAL_MUL_SYM; simplify - CART_EQ LAMBDA_BETA FORALL_2 SUM_2 DIMINDEX_2 VECTOR_2 vector_add vector_mul ARITH; qed; `;; let moveInvariant = theorem `; ∀p p'. move p p' ⇒ oriented_area p = oriented_area p' proof rewrite FORALL_PAIR_THM move oriented_area COLLINEAR_LEMMA vector_mul; VEC2_TAC; qed; `;; let ReachLemma = theorem `; ∀p p'. reachable p p' ⇔ ∃n. reachableN p p' n proof rewrite reachable reachableN; qed; `;; let reachableN_CLAUSES = theorem `; ∀ p p'. (reachableN p p' 0 ⇔ p = p') ∧ ∀ n. reachableN p p' (SUC n) ⇔ ∃ q. reachableN p q n ∧ move q p' proof intro_TAC ∀p p'; consider s0 such that s0 = λm:num. p:triple [s0exists] by fol; reachableN p p' 0 ⇔ p = p' [0CLAUSE] by fol s0exists LE_0 reachableN LT; ∀ n. reachableN p p' (SUC n) ⇒ ∃ q. reachableN p q n ∧ move q p' [Imp1] proof intro_TAC ∀n, H1; consider s such that s 0 = p ∧ s (SUC n) = p' ∧ ∀m. m < SUC n ⇒ move (s m) (s (SUC m)) [sDef] by fol H1 LE_0 reachableN; consider q such that q = s n [qDef] by fol; fol sDef qDef LE_0 reachableN LT; qed; ∀n. (∃ q. reachableN p q n ∧ move q p') ⇒ reachableN p p' (SUC n) [Imp2] proof intro_TAC ∀n; rewrite IMP_CONJ LEFT_IMP_EXISTS_THM; intro_TAC ∀q, nReach, move_qp'; consider s such that s 0 = p ∧ s n = q ∧ ∀m. m < n ⇒ move (s m) (s (SUC m)) [sDef] by fol nReach reachableN LT LE_0; rewrite reachableN LT LE_0; exists_TAC λm. if m < SUC n then s m else p'; fol sDef move_qp' LT_0 LT_REFL LT LT_SUC; qed; fol 0CLAUSE Imp1 Imp2; qed; `;; let reachableInvariant = theorem `; ∀p p'. reachable p p' ⇒ oriented_area p = oriented_area p' proof simplify ReachLemma LEFT_IMP_EXISTS_THM SWAP_FORALL_THM; MATCH_MP_TAC num_INDUCTION; simplify reachableN_CLAUSES; intro_TAC ∀n, nStep; fol nStep moveInvariant; qed; `;; let reachableN_One = theorem `; reachableN P0 P1 1 ⇔ move P0 P1 by fol ONE reachableN reachableN_CLAUSES`;; let reachableN_Two = theorem `; reachableN P0 P2 2 ⇔ ∃P1. move P0 P1 ∧ move P1 P2 by fol TWO reachableN_One reachableN_CLAUSES`;; let reachableN_Three = theorem `; reachableN P0 P3 3 ⇔ ∃P1 P2. move P0 P1 ∧ move P1 P2 ∧ move P2 P3 by fol ARITH_RULE [3 = SUC 2] reachableN_Two reachableN_CLAUSES`;; let reachableN_Four = theorem `; reachableN P0 P4 4 ⇔ ∃P1 P2 P3. move P0 P1 ∧ move P1 P2 ∧ move P2 P3 ∧ move P3 P4 by fol ARITH_RULE [4 = SUC 3] reachableN_Three reachableN_CLAUSES`;; let reachableN_Five = theorem `; reachableN P0 P5 5 ⇔ ∃P1 P2 P3 P4. move P0 P1 ∧ move P1 P2 ∧ move P2 P3 ∧ move P3 P4 ∧ move P4 P5 proof rewrite ARITH_RULE [5 = SUC 4] reachableN_CLAUSES; fol reachableN_Four; qed; `;; let moveSymmetry = theorem `; move (A,B,C) (A',B',C') ⇒ move (B,C,A) (B',C',A') ∧ move (C,A,B) (C',A',B') ∧ move (A,C,B) (A',C',B') ∧ move (B,A,C) (B',A',C') ∧ move (C,B,A) (C',B',A') proof ∀X Y Z X':real^2. collinear {vec 0, Z - Y, X' - X} ⇒ collinear {vec 0, Y - Z, X' - X} [] proof rewrite COLLINEAR_3_2Dzero; VEC2_TAC; qed; MP_TAC -; rewrite move; ∀X Y Z X':real^2. collinear {vec 0, Z - Y, X' - X} ⇒ collinear {vec 0, Y - Z, X' - X} [] proof rewrite COLLINEAR_3_2Dzero; VEC2_TAC; qed; MP_TAC -; rewrite move; fol; qed; `;; let reachableNSymmetry = theorem `; ∀ n. ∀ A B C A' B' C'. reachableN (A,B,C) (A',B',C') n ⇒ reachableN (B,C,A) (B',C',A') n ∧ reachableN (C,A,B) (C',A',B') n ∧ reachableN (A,C,B) (A',C',B') n ∧ reachableN (B,A,C) (B',A',C') n ∧ reachableN (C,B,A) (C',B',A') n proof MATCH_MP_TAC num_INDUCTION; rewrite reachableN_CLAUSES; simplify PAIR_EQ; intro_TAC ∀n, nStep, ∀A B C A' B' C'; rewrite LEFT_IMP_EXISTS_THM FORALL_PAIR_THM; X_genl_TAC X Y Z; intro_TAC XYZexists; rewrite RIGHT_AND_EXISTS_THM LEFT_AND_EXISTS_THM; exists_TAC (Y,Z,X); exists_TAC (Z,X,Y); exists_TAC (X,Z,Y); exists_TAC (Y,X,Z); exists_TAC (Z,Y,X); simplify nStep XYZexists moveSymmetry; qed; `;; let ORIENTED_AREA_COLLINEAR_CONG = theorem `; ∀ A B C A' B' C. oriented_area (A,B,C) = oriented_area (A',B',C') ⇒ (collinear {A,B,C} ⇔ collinear {A',B',C'}) proof rewrite COLLINEAR_3_2D oriented_area; real_ring; qed; `;; let Basic2move_THM = theorem `; ∀ A B C A'. ¬collinear {A,B,C} ∧ ¬collinear {B,A,A'} ⇒ ∃X. move (A,B,C) (A,B,X) ∧ move (A,B,X) (A',B,X) proof intro_TAC ∀A B C A', H1 H2; ∀r. r % (A - B) = (--r) % (B - A) ∧ r % (A - B) = r % (A - B) + &0 % (C - B) [add0vector_mul] by VEC2_TAC; ¬ ∃ r. A' - A = r % (A - B) [H2'] by fol - H2 COLLINEAR_3 COLLINEAR_LEMMA; consider r t such that A' - A = r % (A - B) + t % (C - B) [rExists] by fol - H1 COLLINEAR_3 Noncollinear_2Span; ¬(t = &0) [tNonzero] by fol - add0vector_mul H2'; consider s X such that s = r / t ∧ X = C + s % (A - B) [Xexists] by fol rExists; A' - A = (t * s) % (A - B) + t % (C - B) [] by fol - rExists tNonzero REAL_DIV_LMUL; A' - A = t % (X - B) ∧ X - C = (-- s) % (B - A) [] proof rewrite - Xexists; VEC2_TAC; qed; collinear {vec 0,B - A,X - C} ∧ collinear {vec 0,X - B,A' - A} [] by fol - COLLINEAR_LEMMA; fol - move; qed; `;; let FourStepMoveAB = theorem `; ∀A B C A' B'. ¬collinear {A,B,C} ⇒ ¬collinear {B,A,A'} ∧ ¬collinear {A',B,B'} ⇒ ∃ X Y. move (A,B,C) (A,B,X) ∧ move (A,B,X) (A',B,X) ∧ move (A',B,X) (A',B,Y) ∧ move (A',B,Y) (A',B',Y) proof intro_TAC ∀A B C A' B', H1, H2; consider X such that move (A,B,C) (A,B,X) ∧ move (A,B,X) (A',B,X) [ABX] by fol H1 H2 Basic2move_THM; ¬collinear {A,B,X} ∧ ¬collinear {A',B,X} [] by fol - H1 moveInvariant ORIENTED_AREA_COLLINEAR_CONG; ¬collinear {B,A',X} [] by fol - collinearSymmetry; consider Y such that move (B,A',X) (B,A',Y) ∧ move (B,A',Y) (B',A',Y) [BA'Y] by fol - H2 Basic2move_THM; move (A',B,X) (A',B,Y) ∧ move (A',B,Y) (A',B',Y) [] by fol - BA'Y moveSymmetry; fol - ABX; qed; `;; let FourStepMoveABBAreach = theorem `; ∀A B C A' B'. ¬collinear {A,B,C} ∧ move2Cond A B A' B' ⇒ ∃ Y. reachableN (A,B,C) (A',B',Y) 4 proof intro_TAC ∀A B C A' B', H1 H2; case_split Case1 | Case2 by fol - H2 move2Cond; suppose ¬collinear {B,A,A'} ∧ ¬collinear {A',B,B'}; fol - H1 FourStepMoveAB reachableN_Four; end; suppose ¬collinear {A,B,B'} ∧ ¬collinear {B',A,A'}; ¬collinear {B,A,C} [] by fol H1 collinearSymmetry; consider X Y such that move (B,A,C) (B,A,X) ∧ move (B,A,X) (B',A,X) ∧ move (B',A,X) (B',A,Y) ∧ move (B',A,Y) (B',A',Y) [BAX] by fol Case2 - FourStepMoveAB; fol - moveSymmetry reachableN_Four; end; qed; `;; let NotMove2ImpliesCollinear = theorem `; ∀A B C A' B' C'. ¬collinear {A,B,C} ∧ ¬collinear {A',B',C'} ∧ ¬(A = A') ∧ ¬(B = B') ∧ ¬move2Cond A B A' B' ⇒ collinear {A,B,A',B'} proof intro_TAC ∀A B C A' B' C', H1 H1' H2 H2' H3; ¬(A = B) ∧ ¬(A' = B') [Distinct] by fol H1 H1' Noncollinear_3ImpliesDistinct; {A,B,A',B'} ⊂ {A,A',B,B'} ∧ {A,B,A',B'} ⊂ {B,B',A',A} ∧ {A,B,A',B'} ⊂ {A',B',B,A} [set4symmetry] by SET_TAC; case_split Case1 | Case2 | Case3 | Case4 by fol H3 move2Cond; suppose collinear {B,A,A'} ∧ collinear {A,B,B'}; fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET; end; suppose collinear {B,A,A'} ∧ collinear {B',A,A'}; fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET; end; suppose collinear {A',B,B'} ∧ collinear {A,B,B'}; fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET; end; suppose collinear {A',B,B'} ∧ collinear {B',A,A'}; fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET; end; qed; `;; let NotMove2ImpliesCollinear = theorem `; ∀A B C A' B' C'. ¬collinear {A,B,C} ∧ ¬collinear {A',B',C'} ∧ ¬(A = A') ∧ ¬(B = B') ∧ ¬move2Cond A B A' B' ⇒ collinear {A,B,A',B'} proof intro_TAC ∀A B C A' B' C', H1 H1' H2 H2' H3; ¬(A = B) ∧ ¬(A' = B') [Distinct] by fol H1 H1' Noncollinear_3ImpliesDistinct; {A,B,A',B'} ⊂ {A,A',B,B'} ∧ {A,B,A',B'} ⊂ {B,B',A',A} ∧ {A,B,A',B'} ⊂ {A',B',B,A} [set4symmetry] by SET_TAC; collinear {B,A,A'} ∧ collinear {A,B,B'} ∨ collinear {B,A,A'} ∧ collinear {B',A,A'} ∨ collinear {A',B,B'} ∧ collinear {A,B,B'} ∨ collinear {A',B,B'} ∧ collinear {B',A,A'} [] by fol H3 move2Cond; fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET; qed; `;; let DistinctImplies2moveable = theorem `; ∀A B C A' B' C'. ¬collinear {A,B,C} ∧ ¬collinear {A',B',C'} ∧ ¬(A = A') ∧ ¬(B = B') ∧ ¬(C = C') ⇒ move2Cond A B A' B' ∨ move2Cond B C B' C' proof intro_TAC ∀A B C A' B' C', H1 H1' H2a H2b H2c; {A,B,B'} ⊂ {A,B,A',B'} ∧ {B,B',C} ⊂ {B,C,B',C'} [3subset4] by SET_TAC; assume ¬move2Cond A B A' B' ∧ ¬move2Cond B C B' C' [Con] by fol; collinear {A,B,A',B'} ∧ collinear {B,C,B',C'} [] by fol - H1 H1' H2a H2b H2c collinearSymmetry NotMove2ImpliesCollinear; collinear {A,B,C} [] by fol - 3subset4 H2a H2b H2c COLLINEAR_SUBSET COLLINEAR_3_TRANS; fol - H1 H1'; qed; `;; let SameCdiffAB = theorem `; ∀A B C A' B' C'. ¬collinear {A,B,C} ∧ ¬collinear {A',B',C'} ⇒ C = C' ∧ ¬(A = A') ∧ ¬(B = B') ⇒ ∃ Y. reachableN (A,B,C) (Y,B',C') 2 ∨ reachableN (A,B,C) (A',B',Y) 4 proof intro_TAC ∀A B C A' B' C', H1, H2; {B,B',A} ⊂ {A,B,A',B'} ∧ {A,B,C} ⊂ {B,B',A,C} [easy_set] by SET_TAC; case_split Ncol | move | col_Nmove by fol; suppose ¬collinear {C,B,B'}; consider X such that move (B,C,A) (B,C,X) ∧ move (B,C,X) (B',C',X) [BCX] by fol - easy_set H1 H2 collinearSymmetry Basic2move_THM; fol BCX reachableN_Two reachableNSymmetry; end; suppose move2Cond A B A' B'; fol - H1 FourStepMoveABBAreach; end; suppose collinear {C,B,B'} ∧ ¬move2Cond A B A' B'; collinear {B,B',A} ∧ collinear {B,B',C} [] by fol - H1 H2 easy_set NotMove2ImpliesCollinear COLLINEAR_SUBSET collinearSymmetry; fol - H2 easy_set H1 COLLINEAR_4_3 COLLINEAR_SUBSET; end; qed; `;; let FourMovesToCorrectTwo = theorem `; ∀A B C A' B' C'. ¬collinear {A,B,C} ∧ ¬collinear {A',B',C'} ⇒ ∃ n. n < 5 ∧ ∃ Y. reachableN (A,B,C) (A',B',Y) n ∨ reachableN (A,B,C) (A',Y,C') n ∨ reachableN (A,B,C) (Y,B',C') n proof intro_TAC ∀A B C A' B' C', H1; ¬collinear {B,C,A} ∧ ¬collinear{B',C',A'} ∧ ¬collinear {C,A,B} ∧ ¬collinear {C',A',B'} [H1'] by fol H1 collinearSymmetry; 0 < 5 ∧ 2 < 5 ∧ 3 < 5 ∧ 4 < 5 [easy_arith] by ARITH_TAC; case_split case01 | case2 | case3 by fol; suppose A = A' ∧ B = B' ∧ C = C' ∨ A = A' ∧ B = B' ∧ ¬(C = C') ∨ A = A' ∧ ¬(B = B') ∧ C = C' ∨ ¬(A = A') ∧ B = B' ∧ C = C'; fol - easy_arith reachableN_CLAUSES; end; suppose A = A' ∧ ¬(B = B') ∧ ¬(C = C') ∨ ¬(A = A') ∧ B = B' ∧ ¬(C = C') ∨ ¬(A = A') ∧ ¬(B = B') ∧ C = C'; fol - H1 H1' easy_arith SameCdiffAB reachableNSymmetry; end; suppose ¬(A = A') ∧ ¬(B = B') ∧ ¬(C = C'); exists_TAC 4; simplify easy_arith reachableN_CLAUSES; fol - H1 H1' DistinctImplies2moveable FourStepMoveABBAreach reachableNSymmetry reachableN_Four; end; qed; `;; let CorrectFinalPoint = theorem `; oriented_area (A,B,C) = oriented_area (A,B,C') ⇒ move (A,B,C) (A,B,C') proof rewrite move oriented_area COLLINEAR_3_2Dzero; VEC2_TAC; qed; `;; let FiveMovesOrLess = theorem `; ∀A B C A' B' C'. ¬collinear {A,B,C} ∧ oriented_area (A,B,C) = oriented_area (A',B',C') ⇒ ∃ n. n <= 5 ∧ reachableN (A,B,C) (A',B',C') n proof intro_TAC ∀A B C A' B' C', H1 H2; ¬collinear {A',B',C'} [H1'] by fol H1 H2 ORIENTED_AREA_COLLINEAR_CONG; ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ ¬(A' = B') ∧ ¬(A' = C') ∧ ¬(B' = C') [Distinct] by fol - H1 Noncollinear_3ImpliesDistinct; consider n Y such that n < 5 ∧ (reachableN (A,B,C) (A',B',Y) n ∨ reachableN (A,B,C) (A',Y,C') n ∨ reachableN (A,B,C) (Y,B',C') n) [2Correct] by fol H1 H1' FourMovesToCorrectTwo; case_split A'B'Y | A'YC' | YB'C' by fol 2Correct; suppose reachableN (A,B,C) (A',B',Y) n; oriented_area (A',B',Y) = oriented_area (A',B',C') [] by fol - H2 ReachLemma reachableInvariant; move (A',B',Y) (A',B',C') [] by fol - Distinct CorrectFinalPoint; fol A'B'Y - 2Correct reachableN_CLAUSES LE_SUC_LT; end; suppose reachableN (A,B,C) (A',Y,C') n; oriented_area (A',C',Y) = oriented_area (A',C',B') [] by fol H2 - ReachLemma reachableInvariant oriented_areaSymmetry; move (A',Y,C') (A',B',C') [] by fol - Distinct CorrectFinalPoint moveSymmetry; fol A'YC' - 2Correct reachableN_CLAUSES LE_SUC_LT; end; suppose reachableN (A,B,C) (Y,B',C') n; oriented_area (B',C',Y) = oriented_area (B',C',A') [] by fol H2 - ReachLemma reachableInvariant oriented_areaSymmetry; move (Y,B',C') (A',B',C') [] by fol - Distinct CorrectFinalPoint moveSymmetry; fol YB'C' - 2Correct reachableN_CLAUSES LE_SUC_LT; end; qed; `;; let NOTENOUGH_4 = theorem `; ∃p0 p4. oriented_area p0 = oriented_area p4 ∧ ¬reachableN p0 p4 4 proof consider p0 p4 such that p0:triple = vector [&0;&0],vector [&0;&1],vector [&1;&0] ∧ p4:triple = vector [&1;&1],vector [&1;&2],vector [&2;&1] [p04Def] by fol; oriented_area p0 = oriented_area p4 [equal_areas] proof rewrite - oriented_area; VEC2_TAC; qed; ¬reachableN p0 p4 4 [] proof rewrite p04Def reachableN_Four NOT_EXISTS_THM FORALL_PAIR_THM move COLLINEAR_3_2Dzero FORALL_VECTOR_2; VEC2_TAC; qed; fol - equal_areas; qed; `;; let FiveMovesOrLess_STRONG = theorem `; ∀A B C A' B' C'. oriented_area (A,B,C) = oriented_area (A',B',C') ⇒ ∃n. n <= 5 ∧ reachableN (A,B,C) (A',B',C') n proof intro_TAC ∀A B C A' B' C', H1; (∀X Y:real^2. collinear {X,Y,Y}) ∧ (∀A B A'. move (A,B,B) (A',B,B)) ∧ ∀A B C B'. (collinear {A,B,C} ∧ collinear {A,B',C} ⇒ move (A,B,C) (A,B',C)) [EZcollinear] proof rewrite move COLLINEAR_3_2D; VEC2_TAC; qed; case_split ABCncol | ABCcol by fol ; suppose ¬collinear {A,B,C}; fol - H1 FiveMovesOrLess; end; suppose collinear {A,B,C}; collinear {A',B',C'} [A'B'C'col] by fol - H1 ORIENTED_AREA_COLLINEAR_CONG; consider P1 P2 P3 P4 such that P1 = A,C,C ∧ P2 = B',C,C ∧ P3 = B',B',C ∧ P4 = B',B',C' [P1234exist] by fol; move (A,B,C) P1 ∧ move P1 P2 ∧ move P2 P3 ∧ move P3 P4 ∧ move P4 (A',B',C') [] by fol ABCcol A'B'C'col EZcollinear P1234exist collinearSymmetry moveSymmetry; fol - reachableN_Five LE_REFL; end; qed; `;;