ocaml #use "hol.ml";; #load "unix.cma";; loadt "miz3/miz3.ml";; reset_miz3 0;; verbose := true;; report_timing := true;; Theorem/Proof templates: let = theorem `; proof qed; `;; interactive_goal `; `;; interactive_proof `; `;; interactive_proof `; `;; interactive_proof `; `;; interactive_proof `; `;; interactive_proof `; `;; ∉ |- ∀ a l. a ∉ l ⇔ ¬(a ∈ l) Interval_DEF |- ∀ A B X. open (A,B) = {X | Between A X B} Collinear_DEF |- ∀ A B C. Collinear A B C ⇔ ∃ l. Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l SameSide_DEF |- ∀ l A B. A,B same_side l ⇔ Line l ∧ ¬ ∃ X. X ∈ l ∧ X ∈ open (A,B) Ray_DEF |- ∀ A B. ray A B = {X | ¬(A = B) ∧ Collinear A B X ∧ A ∉ open (X,B)} Ordered_DEF |- ∀ A C B D. ordered A B C D ⇔ B ∈ open (A,C) ∧ B ∈ open (A,D) ∧ C ∈ open (A,D) ∧ C ∈ open (B,D) InteriorAngle_DEF |- ∀ A O B. int_angle A O B = {P | ¬Collinear A O B ∧ ∃ a b. Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ P ∉ a ∧ P ∉ b ∧ P,B same_side a ∧ P,A same_side b} InteriorTriangle_DEF |- ∀ A B C. int_triangle A B C = {P | P ∈ int_angle A B C ∧ P ∈ int_angle B C A ∧ P ∈ int_angle C A B} Tetralateral_DEF |- ∀ C D A B. Tetralateral A B C D ⇔ ¬(A = B) ∧ ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D) ∧ ¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B Quadrilateral_DEF |- ∀ B C D A. Quadrilateral A B C D ⇔ Tetralateral A B C D ∧ open (A,B) ∩ open (C,D) = ∅ ∧ open (B,C) ∩ open (D,A) = ∅ ConvexQuad_DEF |- ∀ D A B C. ConvexQuadrilateral A B C D ⇔ Quadrilateral A B C D ∧ A ∈ int_angle B C D ∧ B ∈ int_angle C D A ∧ C ∈ int_angle D A B ∧ D ∈ int_angle A B C Segment_DEF |- ∀ A B. seg A B = {A, B} ∪ open (A,B) SEGMENT |- ∀ s. Segment s ⇔ ∃ A B. s = seg A B ∧ ¬(A = B) SegmentOrdering_DEF |- ∀ t s. s <__ t ⇔ Segment s ∧ ∃ C D X. t = seg C D ∧ X ∈ open (C,D) ∧ s ≡ seg C X Angle_DEF |- ∀ A O B. ∡ A O B = ray O A ∪ ray O B ANGLE |- ∀ α. Angle α ⇔ ∃ A O B. α = ∡ A O B ∧ ¬Collinear A O B AngleOrdering_DEF |- ∀ β α. α <_ang β ⇔ Angle α ∧ ∃ A O B G. ¬Collinear A O B ∧ β = ∡ A O B ∧ G ∈ int_angle A O B ∧ α ≡ ∡ A O G RAY |- ∀ r. Ray r ⇔ ∃ O A. ¬(O = A) ∧ r = ray O A TriangleCong_DEF |- ∀ A B C A' B' C'. A,B,C ≅ A',B',C' ⇔ ¬Collinear A B C ∧ ¬Collinear A' B' C' ∧ seg A B ≡ seg A' B' ∧ seg A C ≡ seg A' C' ∧ seg B C ≡ seg B' C' ∧ ∡ A B C ≡ ∡ A' B' C' ∧ ∡ B C A ≡ ∡ B' C' A' ∧ ∡ C A B ≡ ∡ C' A' B' SupplementaryAngles_DEF |- ∀α β. α suppl β ⇔ ∃ A O B A'. ¬Collinear A O B ∧ O ∈ open (A,A') ∧ α = ∡ A O B ∧ β = ∡ B O A' RightAngle_DEF |- ∀α. Right α ⇔ ∃ β. α suppl β ∧ α ≡ β PlaneComplement_DEF |- ∀ α. complement α = {P | P ∉ α} CONVEX |- ∀α. Convex α ⇔ ∀ A B. A ∈ α ∧ B ∈ α ⇒ open (A,B) ⊂ α PARALLEL |- ∀ l k. l ∥ k ⇔ Line l ∧ Line k ∧ l ∩ k = ∅ Parallelogram_DEF |- ∀ A B C D. Parallelogram A B C D ⇔ Quadrilateral A B C D ∧ ∃ a b c d. Line a ∧ A ∈ a ∧ B ∈ a ∧ Line b ∧ B ∈ b ∧ C ∈ b ∧ Line c ∧ C ∈ c ∧ D ∈ d ∧ Line d ∧ D ∈ d ∧ A ∈ d ∧ a ∥ c ∧ b ∥ d InteriorCircle_DEF |- ∀ O R. int_circle O R = {P | ¬(O = R) ∧ (P = O ∨ seg O P <__ seg O R)} I1 |- ∀ A B. ¬(A = B) ⇒ (∃! l. Line l ∧ A ∈ l ∧ B ∈ l) I2 |- ∀ l. Line l ⇒ (∃ A B. A ∈ l ∧ B ∈ l ∧ ¬(A = B)) I3 |- ∃ A B C. ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ ¬Collinear A B C B1 |- ∀ A B C. Between A B C ⇒ ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Between C B A ∧ Collinear A B C B2 |- ∀ A B. ¬(A = B) ⇒ ∃C. Between A B C B3 |- ∀ A B C. ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Collinear A B C ⇒ (Between A B C ∨ Between B C A ∨ Between C A B) ∧ ¬(Between A B C ∧ Between B C A) ∧ ¬(Between A B C ∧ Between C A B) ∧ ¬(Between B C A ∧ Between C A B) B4 |- ∀ l A B C. Line l ∧ ¬Collinear A B C ∧ A ∉ l ∧ B ∉ l ∧ C ∉ l ∧ (∃X. X ∈ l ∧ Between A X C) ⇒ (∃ Y. Y ∈ l ∧ Between A Y B) ∨ (∃ Y. Y ∈ l ∧ Between B Y C) C1 |- ∀ s O Z. Segment s ∧ ¬(O = Z) ⇒ ∃! P. P ∈ ray O Z ━ O ∧ seg O P ≡ s C2Reflexive |- Segment s ⇒ s ≡ s C2Symmetric |- Segment s ∧ Segment t ∧ s ≡ t ⇒ t ≡ s C2Transitive |- Segment s ∧ Segment t ∧ Segment u ∧ s ≡ t ∧ t ≡ u ⇒ s ≡ u C3 |- ∀ A B C A' B' C'. B ∈ open (A,C) ∧ B' ∈ open (A',C') ∧ seg A B ≡ seg A' B' ∧ seg B C ≡ seg B' C' ⇒ seg A C ≡ seg A' C' C4 |- ∀ α O A l Y. Angle α ∧ ¬(O = A) ∧ Line l ∧ O ∈ l ∧ A ∈ l ∧ Y ∉ l ⇒ ∃! r. Ray r ∧ ∃ B. ¬(O = B) ∧ r = ray O B ∧ B ∉ l ∧ B,Y same_side l ∧ ∡ A O B ≡ α C5Reflexive |- Angle α ⇒ α ≡ α C5Symmetric |- Angle α ∧ Angle β ∧ α ≡ β ⇒ β ≡ α C5Transitive |- Angle α ∧ Angle β ∧ Angle γ ∧ α ≡ β ∧ β ≡ γ ⇒ α ≡ γ C6 |- ∀A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C' ∧ seg B A ≡ seg B' A' ∧ seg B C ≡ seg B' C' ∧ ∡ A B C ≡ ∡ A' B' C' ⇒ ∡ B C A ≡ ∡ B' C' A' IN_Interval |- ∀ A B X. X ∈ open (A,B) ⇔ Between A X B IN_Ray |- ∀ A B X. X ∈ ray A B ⇔ ¬(A = B) ∧ Collinear A B X ∧ A ∉ open (X,B) IN_InteriorAngle |- ∀A O B P. P ∈ int_angle A O B ⇔ ¬Collinear A O B ∧ ∃ a b. Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ P ∉ a ∧ P ∉ b ∧ P,B same_side a ∧ P,A same_side b IN_InteriorTriangle |- ∀A B C P. P ∈ int_triangle A B C ⇔ P ∈ int_angle A B C ∧ P ∈ int_angle B C A ∧ P ∈ int_angle C A B IN_PlaneComplement |- ∀α P. P ∈ complement α ⇔ P ∉ α IN_InteriorCircle |- ∀ O R P. P ∈ int_circle O R ⇔ ¬(O = R) ∧ (P = O ∨ seg O P <__ seg O R) B1' |- ∀ A B C. B ∈ open (A,C) ⇒ ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ B ∈ open (C,A) ∧ Collinear A B C B2' |- ∀ A B. ¬(A = B) ⇒ (∃ C. B ∈ open (A,C)) B3' |- ∀ A B C. ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Collinear A B C ⇒ (B ∈ open (A,C) ∨ C ∈ open (B,A) ∨ A ∈ open (C,B)) ∧ ¬(B ∈ open (A,C) ∧ C ∈ open (B,A)) ∧ ¬(B ∈ open (A,C) ∧ A ∈ open (C,B)) ∧ ¬(C ∈ open (B,A) ∧ A ∈ open (C,B)) B4' |- ∀ l A B C. Line l ∧ ¬Collinear A B C ∧ A ∉ l ∧ B ∉ l ∧ C ∉ l ∧ (∃ X. X ∈ l ∧ X ∈ open (A,C)) ⇒ (∃ Y. Y ∈ l ∧ Y ∈ open (A,B)) ∨ (∃ Y. Y ∈ l ∧ Y ∈ open (B,C)) B4'' |- ∀ l A B C. Line l ∧ ¬Collinear A B C ∧ A ∉ l ∧ B ∉ l ∧ C ∉ l ∧ A,B same_side l ∧ B,C same_side l ⇒ A,C same_side l DisjointOneNotOther |- ∀ l m. (∀x. x ∈ m ⇒ x ∉ l) ⇔ l ∩ m = ∅ EquivIntersectionHelp |- ∀ e x l m. (l ∩ m = {x} ∨ m ∩ l = {x}) ∧ e ∈ m ━ x ⇒ e ∉ l CollinearSymmetry |- ∀ A B C. Collinear A B C ⇒ Collinear A C B ∧ Collinear B A C ∧ Collinear B C A ∧ Collinear C A B ∧ Collinear C B A ExistsNewPointOnLine |- ∀ P l. Line l ∧ P ∈ l ⇒ ∃ Q. Q ∈ l ∧ ¬(P = Q) ExistsPointOffLine |- ∀ l. Line l ⇒ ∃ Q. Q ∉ l BetweenLinear |- ∀ A B C m. Line m ∧ A ∈ m ∧ C ∈ m ∧ B ∈ open (A,C) ∨ C ∈ open (B,A) ∨ A ∈ open (C,B) ⇒ B ∈ m CollinearLinear |- ∀ A B C m. Line m ∧ A ∈ m ∧ C ∈ m ∧ ¬(A = C) ∧ Collinear A B C ∨ Collinear B C A ∨ Collinear C A B ⇒ B ∈ m NonCollinearImpliesDistinct |- ∀ A B C. ¬Collinear A B C ⇒ ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) NonCollinearRaa |- ∀A B C l. ¬(A = C) ∧ Line l ∧ A ∈ l ∧ C ∈ l ∧ B ∉ l ⇒ ¬Collinear A B C TwoSidesTriangle1Intersection |- ∀A B C Y. ¬Collinear A B C ∧ Collinear B C Y ∧ Collinear A C Y ⇒ Y = C OriginInRay |- ∀ O Q. ¬(Q = O) ⇒ O ∈ ray O Q EndpointInRay |- ∀ O Q. ¬(Q = O) ⇒ Q ∈ ray O Q I1Uniqueness |- ∀ X l m. Line l ∧ Line m ∧ ¬(l = m) ∧ X ∈ l ∧ X ∈ m ⇒ l ∩ m = {X} EquivIntersection |- ∀ A B X l m. Line l ∧ Line m ∧ l ∩ m = {X} ∧ A ∈ m ━ X ∧ B ∈ m ━ X ∧ X ∉ open (A,B) ⇒ A,B same_side l RayLine |- ∀ O P l. Line l ∧ O ∈ l ∧ P ∈ l ⇒ ray O P ⊂ l RaySameSide |- ∀ l O A P. Line l ∧ O ∈ l ∧ A ∉ l ∧ P ∈ ray O A ━ O ⇒ P ∉ l ∧ P,A same_side l IntervalRayEZ |- ∀ A B C. B ∈ open (A,C) ⇒ B ∈ ray A C ━ A ∧ C ∈ ray A B ━ A NoncollinearityExtendsToLine |- ∀ A O B X. ¬Collinear A O B ∧ Collinear O B X ∧ ¬(X = O) ⇒ ¬Collinear A O X SameSideReflexive |- ∀ l A. Line l ∧ A ∉ l ⇒ A,A same_side l SameSideSymmetric |- ∀ l A B. Line l ∧ A ∉ l ∧ B ∉ l ∧ A,B same_side l ⇒ B,A same_side l SameSideTransitive |- ∀l A B C. Line l ∧ A ∉ l ∧ B ∉ l ∧ C ∉ l ∧ A,B same_side l ∧ B,C same_side l ⇒ A,C same_side l ConverseCrossbar |- ∀ O A B G. ¬Collinear A O B ∧ G ∈ open (A,B) ⇒ G ∈ int_angle A O B InteriorUse |- ∀ A O B P a b. Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ P ∈ int_angle A O B ⇒ P ∉ a ∧ P ∉ b ∧ P,B same_side a ∧ P,A same_side b InteriorEZHelp |- ∀ A O B P. P ∈ int_angle A O B ⇒ ¬(P = A) ∧ ¬(P = O) ∧ ¬(P = B) ∧ ¬Collinear A O P InteriorAngleSymmetry |- ∀ A O B P. P ∈ int_angle A O B ⇒ P ∈ int_angle B O A InteriorWellDefined |- ∀ A O B X P. P ∈ int_angle A O B ∧ X ∈ ray O B ━ O ⇒ P ∈ int_angle A O X WholeRayInterior |- ∀A O B X P. X ∈ int_angle A O B ∧ P ∈ ray O X ━ O ⇒ P ∈ int_angle A O B AngleOrdering |- ∀ O A P Q a. ¬(O = A) ∧ Line a ∧ O ∈ a ∧ A ∈ a ∧ P ∉ a ∧ Q ∉ a ∧ P,Q same_side a ∧ ¬Collinear P O Q ⇒ P ∈ int_angle Q O A ∨ Q ∈ int_angle P O A InteriorsDisjointSupplement |- ∀A O B A'. ¬Collinear A O B ∧ O ∈ open (A,A') ⇒ int_angle A O B ∩ int_angle B O A' = ∅ InteriorReflectionInterior |- ∀ A O B D A'. O ∈ open (A,A') ∧ D ∈ int_angle A O B ⇒ B ∈ int_angle D O A' Crossbar_THM |- ∀ O A B D. D ∈ int_angle A O B ⇒ ∃ G. G ∈ open (A,B) ∧ G ∈ ray O D ━ O AlternateConverseCrossbar |- ∀ O A B G. Collinear A G B ∧ G ∈ int_angle A O B ⇒ G ∈ open (A,B) InteriorOpposite |- ∀ A O B P p. P ∈ int_angle A O B ∧ Line p ∧ O ∈ p ∧ P ∈ p ⇒ ¬(A,B same_side p) IntervalTransitivity |- ∀ O P Q R m. Line m ∧ O ∈ m ∧ P ∈ m ━ O ∧ Q ∈ m ━ O ∧ R ∈ m ━ O ∧ O ∉ open (P,Q) ∧ O ∉ open (Q,R) ⇒ O ∉ open (P,R) RayWellDefinedHalfway |- ∀ O P Q. ¬(Q = O) ∧ P ∈ ray O Q ━ O ⇒ ray O P ⊂ ray O Q RayWellDefined |- ∀ O P Q. ¬(Q = O) ∧ P ∈ ray O Q ━ O ⇒ ray O P = ray O Q OppositeRaysIntersect1pointHelp |- ∀ A O B X. O ∈ open (A,B) ∧ X ∈ ray O B ━ O ⇒ X ∉ ray O A ∧ O ∈ open (X,A) OppositeRaysIntersect1point |- ∀ A O B. O ∈ open (A,B) ⇒ ray O A ∩ ray O B = {O} IntervalRay |- ∀ A B C. B ∈ open (A,C) ⇒ ray A B = ray A C Reverse4Order |- ∀ A B C D. ordered A B C D ⇒ ordered D C B A TransitivityBetweennessHelp |- ∀ A B C D. B ∈ open (A,C) ∧ C ∈ open (B,D) ⇒ B ∈ open (A,D) TransitivityBetweenness |- ∀ A B C D. B ∈ open (A,C) ∧ C ∈ open (B,D) ⇒ ordered A B C D IntervalsAreConvex |- ∀ A B C. B ∈ open (A,C) ⇒ open (A,B) ⊂ open (A,C) TransitivityBetweennessVariant |- ∀ A X B C. X ∈ open (A,B) ∧ B ∈ open (A,C) ⇒ ordered A X B C Interval2sides2aLineHelp |- ∀ A B C X. B ∈ open (A,C) ⇒ X ∉ open (A,B) ∨ X ∉ open (B,C) Interval2sides2aLine |- ∀ A B C X. Collinear A B C ⇒ X ∉ open (A,B) ∨ X ∉ open (A,C) ∨ X ∉ open (B,C) TwosidesTriangle2aLine |- ∀A B C Y l m. Line l ∧ ¬Collinear A B C ∧ A ∉ l ∧ B ∉ l ∧ C ∉ l ∧ Line m ∧ A ∈ m ∧ C ∈ m ∧ Y ∈ l ∧ Y ∈ m ∧ ¬(A,B same_side l) ∧ ¬(B,C same_side l) ⇒ A,C same_side l LineUnionOf2Rays |- ∀ A O B l. Line l ∧ A ∈ l ∧ B ∈ l ∧ O ∈ open (A,B) ⇒ l = ray O A ∪ ray O B AtMost2Sides |- ∀ A B C l. Line l ∧ A ∉ l ∧ B ∉ l ∧ C ∉ l ⇒ A,B same_side l ∨ A,C same_side l ∨ B,C same_side l FourPointsOrder |- ∀ A B C X l. Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l ∧ X ∈ l ∧ B ∈ open (A,C) ∧ ¬(X = A) ∧ ¬(X = B) ∧ ¬(X = C) ⇒ ordered X A B C ∨ ordered A X B C ∨ ordered A B X C ∨ ordered A B C X HilbertAxiomRedundantByMoore |- ∀ A B C D l. Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l ∧ D ∈ l ∧ ¬(A = B) ∧ ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D) ⇒ ordered D A B C ∨ ordered A D B C ∨ ordered A B D C ∨ ordered A B C D ∨ ordered D A C B ∨ ordered A D C B ∨ ordered A C D B ∨ ordered A C B D ∨ ordered D C A B ∨ ordered C D A B ∨ ordered C A D B ∨ ordered C A B D InteriorTransitivity |- ∀A O B F G. G ∈ int_angle A O B ∧ F ∈ int_angle A O G ⇒ F ∈ int_angle A O B HalfPlaneConvexNonempty |- ∀l H A. Line l ∧ A ∉ l ∧ H = {X | X ∉ l ∧ X,A same_side l} ⇒ ¬(H = ∅) ∧ H ⊂ complement l ∧ Convex H PlaneSeparation |- ∀ l. Line l ⇒ ∃ H1 H2. H1 ∩ H2 = ∅ ∧ ¬(H1 = ∅) ∧ ¬(H2 = ∅) ∧ Convex H1 ∧ Convex H2 ∧ complement l = H1 ∪ H2 ∧ ∀ P Q. P ∈ H1 ∧ Q ∈ H2 ⇒ ¬(P,Q same_side l) TetralateralSymmetry |- ∀ A B C D. Tetralateral A B C D ⇒ Tetralateral B C D A ∧ Tetralateral A B D C EasyEmptyIntersectionsTetralateralHelp |- ∀ A B C D. Tetralateral A B C D ⇒ open (A,B) ∩ open (B,C) = ∅ EasyEmptyIntersectionsTetralateral |- ∀ A B C D. Tetralateral A B C D ⇒ open (A,B) ∩ open (B,C) = ∅ ∧ open (B,C) ∩ open (C,D) = ∅ ∧ open (C,D) ∩ open (D,A) = ∅ ∧ open (D,A) ∩ open (A,B) = ∅ SegmentSameSideOppositeLine |- ∀ A B C D a c. Quadrilateral A B C D ∧ Line a ∧ A ∈ a ∧ B ∈ a ∧ Line c ∧ C ∈ c ∧ D ∈ c ⇒ A,B same_side c ∨ C,D same_side a ConvexImpliesQuad |- ∀ A B C D. Tetralateral A B C D ∧ C ∈ int_angle D A B ∧ D ∈ int_angle A B C ⇒ Quadrilateral A B C D DiagonalsIntersectImpliesConvexQuad |- ∀ A B C D G. ¬Collinear B C D ∧ G ∈ open (A,C) ∧ G ∈ open (B,D) ⇒ ConvexQuadrilateral A B C D DoubleNotSimImpliesDiagonalsIntersect |- ∀ A B C D l m. Line l ∧ A ∈ l ∧ C ∈ l ∧ Line m ∧ B ∈ m ∧ D ∈ m ∧ Tetralateral A B C D ∧ ¬(B,D same_side l) ∧ ¬(A,C same_side m) ⇒ (∃ G. G ∈ open (A,C) ∩ open (B,D)) ∧ ConvexQuadrilateral A B C D ConvexQuadImpliesDiagonalsIntersect |- ∀ A B C D l m. Line l ∧ A ∈ l ∧ C ∈ l ∧ Line m ∧ B ∈ m ∧ D ∈ m ∧ ConvexQuadrilateral A B C D ⇒ ¬(B,D same_side l) ∧ ¬(A,C same_side m) ∧ (∃ G. G ∈ open (A,C) ∩ open (B,D)) ∧ ¬Quadrilateral A B D C FourChoicesTetralateralHelp |- ∀ A B C D. Tetralateral A B C D ∧ C ∈ int_angle D A B ⇒ ConvexQuadrilateral A B C D ∨ C ∈ int_triangle D A B InteriorTriangleSymmetry |- ∀ A B C P. P ∈ int_triangle A B C ⇒ P ∈ int_triangle B C A FourChoicesTetralateral |- ∀ A B C D a. Tetralateral A B C D ∧ Line a ∧ A ∈ a ∧ B ∈ a ∧ C,D same_side a ⇒ ConvexQuadrilateral A B C D ∨ ConvexQuadrilateral A B D C ∨ D ∈ int_triangle A B C ∨ C ∈ int_triangle D A B QuadrilateralSymmetry |- ∀ A B C D. Quadrilateral A B C D ⇒ Quadrilateral B C D A ∧ Quadrilateral C D A B ∧ Quadrilateral D A B C FiveChoicesQuadrilateral |- ∀ A B C D l m. Quadrilateral A B C D ∧ Line l ∧ A ∈ l ∧ C ∈ l ∧ Line m ∧ B ∈ m ∧ D ∈ m ⇒ (ConvexQuadrilateral A B C D ∨ A ∈ int_triangle B C D ∨ B ∈ int_triangle C D A ∨ C ∈ int_triangle D A B ∨ D ∈ int_triangle A B C) ∧ (¬(B,D same_side l) ∨ ¬(A,C same_side m)) IntervalSymmetry |- ∀ A B. open (A,B) = open (B,A) SegmentSymmetry |- ∀ A B. seg A B = seg B A C1OppositeRay |- ∀ O P s. Segment s ∧ ¬(O = P) ⇒ ∃ Q. P ∈ open (O,Q) ∧ seg P Q ≡ s OrderedCongruentSegments |- ∀ A B C D F. ¬(A = C) ∧ ¬(D = F) ∧ seg A C ≡ seg D F ∧ B ∈ open (A,C) ⇒ ∃ E. E ∈ open (D,F) ∧ seg A B ≡ seg D E SegmentSubtraction |- ∀ A B C A' B' C'. B ∈ open (A,C) ∧ B' ∈ open (A',C') ∧ seg A B ≡ seg A' B' ∧ seg A C ≡ seg A' C' ⇒ seg B C ≡ seg B' C' SegmentOrderingUse |- ∀A B s. Segment s ∧ ¬(A = B) ∧ s <__ seg A B ⇒ ∃ G. G ∈ open (A,B) ∧ s ≡ seg A G SegmentTrichotomy1 |- ∀ s t. s <__ t ⇒ ¬(s ≡ t) SegmentTrichotomy2 |- ∀ s t u. s <__ t ∧ Segment u ∧ t ≡ u ⇒ s <__ u SegmentOrderTransitivity |- ∀ s t u. s <__ t ∧ t <__ u ⇒ s <__ u SegmentTrichotomy |- ∀ s t. Segment s ∧ Segment t ⇒ (s ≡ t ∨ s <__ t ∨ t <__ s) ∧ ¬(s ≡ t ∧ s <__ t) ∧ ¬(s ≡ t ∧ t <__ s) ∧ ¬(s <__ t ∧ t <__ s) C4Uniqueness |- ∀ O A B P l. Line l ∧ O ∈ l ∧ A ∈ l ∧ ¬(O = A) ∧ B ∉ l ∧ P ∉ l ∧ P,B same_side l ∧ ∡ A O P ≡ ∡ A O B ⇒ ray O B = ray O P AngleSymmetry |- ∀ A O B. ∡ A O B = ∡ B O A TriangleCongSymmetry |- ∀ A B C A' B' C'. A,B,C ≅ A',B',C' ⇒ A,C,B ≅ A',C',B' ∧ B,A,C ≅ B',A',C' ∧ B,C,A ≅ B',C',A' ∧ C,A,B ≅ C',A',B' ∧ C,B,A ≅ C',B',A' SAS |- ∀ A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C' ∧ seg B A ≡ seg B' A' ∧ seg B C ≡ seg B' C' ∧ ∡ A B C ≡ ∡ A' B' C' ⇒ A,B,C ≅ A',B',C' ASA |- ∀ A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C' ∧ seg A C ≡ seg A' C' ∧ ∡ C A B ≡ ∡ C' A' B' ∧ ∡ B C A ≡ ∡ B' C' A' ⇒ A,B,C ≅ A',B',C' AngleSubtraction |- ∀ A O B A' O' B' G G'. G ∈ int_angle A O B ∧ G' ∈ int_angle A' O' B' ∧ ∡ A O B ≡ ∡ A' O' B' ∧ ∡ A O G ≡ ∡ A' O' G' ⇒ ∡ G O B ≡ ∡ G' O' B' OrderedCongruentAngles |- ∀ A O B A' O' B' G. ¬Collinear A' O' B' ∧ ∡ A O B ≡ ∡ A' O' B' ∧ G ∈ int_angle A O B ⇒ ∃ G'. G' ∈ int_angle A' O' B' ∧ ∡ A O G ≡ ∡ A' O' G' AngleAddition |- ∀ A O B A' O' B' G G'. G ∈ int_angle A O B ∧ G' ∈ int_angle A' O' B' ∧ ∡ A O G ≡ ∡ A' O' G' ∧ ∡ G O B ≡ ∡ G' O' B' ∧ ⇒ ∡ A O B ≡ ∡ A' O' B' AngleOrderingUse |- ∀ A O B α. Angle α ∧ ¬Collinear A O B ∧ α <_ang ∡ A O B ⇒ (∃ G. G ∈ int_angle A O B ∧ α ≡ ∡ A O G) AngleTrichotomy1 |- ∀ α β. α <_ang β ⇒ ¬(α ≡ β) AngleTrichotomy2 |- ∀ α β γ. α <_ang β ∧ Angle γ ∧ β ≡ γ ⇒ α <_ang γ AngleOrderTransitivity |- ∀α β γ. α <_ang β ∧ β <_ang γ ⇒ α <_ang γ AngleTrichotomy |- ∀ α β. Angle α ∧ Angle β ⇒ (α ≡ β ∨ α <_ang β ∨ β <_ang α) ∧ ¬(α ≡ β ∧ α <_ang β) ∧ ¬(α ≡ β ∧ β <_ang α) ∧ ¬(α <_ang β ∧ β <_ang α) SupplementExists |- ∀ α. Angle α ⇒ ∃ α'. α suppl α' SupplementImpliesAngle |- ∀ α β. α suppl β ⇒ Angle α ∧ Angle β RightImpliesAngle |- ∀ α. Right α ⇒ Angle α SupplementSymmetry |- ∀ α β. α suppl β ⇒ β suppl α SupplementsCongAnglesCong |- ∀ α β α' β'. α suppl α' ∧ β suppl β' ∧ α ≡ β ⇒ α' ≡ β' SupplementUnique |- ∀ α β β'. α suppl β ∧ α suppl β' ⇒ β ≡ β' CongRightImpliesRight |- ∀ α β. Angle α ∧ Right β ∧ α ≡ β ⇒ Right α RightAnglesCongruentHelp |- ∀ A O B A' P a. ¬Collinear A O B ∧ O ∈ open (A,A') Right (∡ A O B) ∧ Right (∡ A O P) ⇒ P ∉ int_angle A O B RightAnglesCongruent |- ∀ α β. Right α ∧ Right β ⇒ α ≡ β OppositeRightAnglesLinear |- ∀ A B O H h. ¬Collinear A O H ∧ ¬Collinear H O B ∧ Right (∡ A O H) ∧ Right (∡ H O B) ∧ Line h ∧ O ∈ h ∧ H ∈ h ∧ ¬(A,B same_side h) ⇒ O ∈ open (A,B) RightImpliesSupplRight |- ∀ A O B A'. ¬Collinear A O B ∧ O ∈ open (A,A') ∧ Right (∡ A O B) ⇒ Right (∡ B O A') IsoscelesCongBaseAngles |- ∀ A B C. ¬Collinear A B C ∧ seg B A ≡ seg B C ⇒ ∡ C A B ≡ ∡ A C B C4withC1 |- ∀ α l O A Y P Q. Angle α ∧ ¬(O = A) ∧ ¬(P = Q) ∧ Line l ∧ O ∈ l ∧ A ∈ l ∧ Y ∉ l ⇒ ∃ N. ¬(O = N) ∧ N ∉ l ∧ N,Y same_side l ∧ seg O N ≡ seg P Q ∧ ∡ A O N ≡ α C4OppositeSide |- ∀ α l O A Z P Q. Angle α ∧ ¬(O = A) ∧ ¬(P = Q) ∧ Line l ∧ O ∈ l ∧ A ∈ l ∧ Z ∉ l ⇒ ∃ N. ¬(O = N) ∧ N ∉ l ∧ ¬(Z,N same_side l) ∧ seg O N ≡ seg P Q ∧ ∡ A O N ≡ α SSS |- ∀ A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C' ∧ seg A B ≡ seg A' B' ∧ seg A C ≡ seg A' C' ∧ seg B C ≡ seg B' C' ⇒ A,B,C ≅ A',B',C' AngleBisector |- ∀ A B C. ¬Collinear B A C ⇒ ∃ F. F ∈ int_angle B A C ∧ ∡ B A F ≡ ∡ F A C EuclidPropositionI_6 |- ∀ A B C. ¬Collinear A B C ∧ ∡ B A C ≡ ∡ B C A ⇒ seg B A ≡ seg B C IsoscelesExists |- ∀ A B. ¬(A = B) ⇒ ∃ D. ¬Collinear A D B ∧ seg D A ≡ seg D B MidpointExists |- ∀ A B. ¬(A = B) ⇒ ∃ M. M ∈ open (A,B) ∧ seg A M ≡ seg M B EuclidPropositionI_7short |- ∀ A B C D a. ¬(A = B) ∧ Line a ∧ A ∈ a ∧ B ∈ a ∧ ¬(C = D) ∧ C ∉ a ∧ D ∉ a ∧ C,D same_side a ∧ seg A C ≡ seg A D ⇒ ¬(seg B C ≡ seg B D) EuclidPropI_7Help |- ∀ A B C D a. ¬(A = B) ∧ Line a ∧ A ∈ a ∧ B ∈ a ∧ ¬(C = D) ∧ C ∉ a ∧ D ∉ a ∧ C,D same_side a ∧ seg A C ≡ seg A D ∧ (C ∈ int_triangle D A B ∨ ConvexQuadrilateral A B C D) ⇒ ¬(seg B C ≡ seg B D) EuclidPropositionI_7 |- ∀ A B C D a. ¬(A = B) ∧ Line a ∧ A ∈ a ∧ B ∈ a ∧ ¬(C = D) ∧ C ∉ a ∧ D ∉ a ∧ C,D same_side a ∧ seg A C ≡ seg A D ⇒ ¬(seg B C ≡ seg B D) EuclidPropositionI_11 |- ∀A B. ¬(A = B) ⇒ ∃ F. Right (∡ A B F) DropPerpendicularToLine |- ∀ P l. Line l ∧ P ∉ l ⇒ ∃ E Q. E ∈ l ∧ Q ∈ l ∧ Right (∡ P Q E) EuclidPropositionI_14 |- ∀ A B C D l. Line l ∧ A ∈ l ∧ B ∈ l ∧ ¬(A = B) ∧ C ∉ l ∧ D ∉ l ∧ ¬(C,D same_side l) ∧ ∡ C B A suppl ∡ A B D ⇒ B ∈ open (C,D) VerticalAnglesCong |- ∀ A B O A' B'. ¬Collinear A O B ∧ O ∈ open (A,A') ∧ O ∈ open (B,B') ⇒ ∡ B O A' ≡ ∡ B' O A EuclidPropositionI_16 |- ∀ A B C D. ¬Collinear A B C ∧ C ∈ open (B,D) ⇒ ∡ B A C <_ang ∡ D C A ExteriorAngle |- ∀ A B C D. ¬Collinear A B C ∧ C ∈ open (B,D) ⇒ ∡ A B C <_ang ∡ A C D EuclidPropositionI_17 |- ∀ A B C α β γ. ¬Collinear A B C ∧ α = ∡ A B C ∧ β = ∡ B C A ∧ β suppl γ ⇒ α <_ang γ EuclidPropositionI_18 |- ∀ A B C. ¬Collinear A B C ∧ seg A C <__ seg A B ⇒ ∡ A B C <_ang ∡ B C A EuclidPropositionI_19 |- ∀ A B C. ¬Collinear A B C ∧ ∡ A B C <_ang ∡ B C A ⇒ seg A C <__ seg A B EuclidPropositionI_20 |- ∀ A B C D. ¬Collinear A B C ∧ A ∈ open (B,D) ∧ seg A D ≡ seg A C ⇒ seg B C <__ seg B D EuclidPropositionI_21 |- ∀ A B C D. ¬Collinear A B C ∧ D ∈ int_triangle A B C ⇒ ∡ A B C <_ang ∡ C D A AngleTrichotomy3 |- ∀ α β γ. α <_ang β ∧ Angle γ ∧ γ ≡ α ⇒ γ <_ang β InteriorCircleConvexHelp |- ∀ O A B C. ¬Collinear A O C ∧ B ∈ open (A,C) ∧ seg O A <__ seg O C ∨ seg O A ≡ seg O C ⇒ seg O B <__ seg O C InteriorCircleConvex |- ∀ O R A B C. ¬(O = R) ∧ B ∈ open (A,C) ∧ A ∈ int_circle O R ∧ C ∈ int_circle O R ⇒ B ∈ int_circle O R SegmentTrichotomy3 |- ∀ s t u. s <__ t ∧ Segment u ∧ u ≡ s ⇒ u <__ t EuclidPropositionI_24Help |- ∀ O A C O' D F. ¬Collinear A O C ∧ ¬Collinear D O' F ∧ seg O' D ≡ seg O A ∧ seg O' F ≡ seg O C ∧ ∡ D O' F <_ang ∡ A O C ∧ seg O A <__ seg O C ∨ seg O A ≡ seg O C ⇒ seg D F <__ seg A C EuclidPropositionI_24 |- ∀ O A C O' D F. ¬Collinear A O C ∧ ¬Collinear D O' F ∧ seg O' D ≡ seg O A ∧ seg O' F ≡ seg O C ∧ ∡ D O' F <_ang ∡ A O C ⇒ seg D F <__ seg A C EuclidPropositionI_25 |- ∀ O A C O' D F. ¬Collinear A O C ∧ ¬Collinear D O' F ∧ seg O' D ≡ seg O A ∧ seg O' F ≡ seg O C ∧ seg D F <__ seg A C ⇒ ∡ D O' F <_ang ∡ A O C AAS |- ∀ A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C' ∧ ∡ A B C ≡ ∡ A' B' C' ∧ ∡ B C A ≡ ∡ B' C' A' ∧ seg A B ≡ seg A' B' ⇒ A,B,C ≅ A',B',C' ParallelSymmetry |- ∀ l k. l ∥ k ⇒ k ∥ l AlternateInteriorAngles |- ∀ A B C E l m t. Line l ∧ A ∈ l ∧ E ∈ l ∧ Line m ∧ B ∈ m ∧ C ∈ m ∧ Line t ∧ A ∈ t ∧ B ∈ t ∧ ¬(A = E) ∧ ¬(B = C) ∧ ¬(A = B) ∧ E ∉ t ∧ C ∉ t ∧ ¬(C,E same_side t) ∧ ∡ E A B ≡ ∡ C B A ⇒ l ∥ m EuclidPropositionI_28 |- ∀ A B C D E F G H l m t. Line l ∧ A ∈ l ∧ B ∈ l ∧ G ∈ l ∧ Line m ∧ C ∈ m ∧ D ∈ m ∧ H ∈ m ∧ Line t ∧ G ∈ t ∧ H ∈ t ∧ G ∉ m ∧ H ∉ l ∧ G ∈ open (A,B) ∧ H ∈ open (C,D) ∧ G ∈ open (E,H) ∧ H ∈ open (F,G) ∧ ¬(D,A same_side t) ∧ ∡ E G B ≡ ∡ G H D ∨ ∡ B G H suppl ∡ G H D ⇒ l ∥ m OppositeSidesCongImpliesParallelogram |- ∀ A B C D. Quadrilateral A B C D ∧ seg A B ≡ seg C D ∧ seg B C ≡ seg D A ⇒ Parallelogram A B C D OppositeAnglesCongImpliesParallelogramHelp |- ∀ A B C D a c. Quadrilateral A B C D ∧ ∡ A B C ≡ ∡ C D A ∧ ∡ D A B ≡ ∡ B C D ∧ Line a ∧ A ∈ a ∧ B ∈ a ∧ Line c ∧ C ∈ c ∧ D ∈ c ⇒ a ∥ c OppositeAnglesCongImpliesParallelogram |- ∀ A B C D. Quadrilateral A B C D ∧ ∡ A B C ≡ ∡ C D A ∧ ∡ D A B ≡ ∡ B C D ⇒ Parallelogram A B C D P |- ∀ P l. Line l ∧ P ∉ l ⇒ ∃! m. Line m ∧ P ∈ m ∧ m ∥ l AMa |- ∀ α. Angle α ⇒ &0 < μ α ∧ μ α < &180 AMb |- ∀ α. Right α ⇒ μ α = &90 AMc |- ∀ α β. Angle α ∧ Angle β ∧ α ≡ β ⇒ μ α = μ β AMd |- ∀ A O B P. P ∈ int_angle A O B ⇒ μ (∡ A O B) = μ (∡ A O P) + μ (∡ P O B) ConverseAlternateInteriorAngles |- ∀ A B C E l m t. Line l ∧ A ∈ l ∧ E ∈ l ∧ Line m ∧ B ∈ m ∧ C ∈ m ∧ Line t ∧ A ∈ t ∧ B ∈ t ∧ ¬(A = E) ∧ ¬(B = C) ∧ ¬(A = B) ∧ E ∉ t ∧ C ∉ t ∧ ¬(C,E same_side t) ∧ l ∥ m ⇒ ∡ E A B ≡ ∡ C B A HilbertTriangleSum |- ∀ A B C. ¬Collinear A B C ⇒ ∃ E F. B ∈ open (E,F) ∧ C ∈ int_angle A B F ∧ ∡ E B A ≡ ∡ C A B ∧ ∡ C B F ≡ ∡ B C A EuclidPropositionI_13 |- ∀A O B A'. ¬Collinear A O B ∧ O ∈ open (A,A') ⇒ μ (∡ A O B) + μ (∡ B O A') = &180 TriangleSum |- ∀ A B C. ¬Collinear A B C ⇒ μ (∡ A B C) + μ (∡ B C A) + μ (∡ C A B) = &180