let near_ring_axioms = `(!x. 0 + x = x) /\ (!x. neg x + x = 0) /\ (!x y z. (x + y) + z = x + y + z) /\ (!x y z. (x * y) * z = x * y * z) /\ (!x y z. (x + y) * z = (x * z) + (y * z))`;; (**** Works eventually but takes a very long time MESON[] `(!x. 0 + x = x) /\ (!x. neg x + x = 0) /\ (!x y z. (x + y) + z = x + y + z) /\ (!x y z. (x * y) * z = x * y * z) /\ (!x y z. (x + y) * z = (x * z) + (y * z)) ==> !a. 0 * a = 0`;; ****) let is_realvar w x = is_var x & not(mem x w);; let rec real_strip w tm = if mem tm w then tm,[] else let l,r = dest_comb tm in let f,args = real_strip w l in f,args@[r];; let weight lis (f,n) (g,m) = let i = index f lis and j = index g lis in i > j or i = j & n > m;; let rec lexord ord l1 l2 = match (l1,l2) with (h1::t1,h2::t2) -> if ord h1 h2 then length t1 = length t2 else h1 = h2 & lexord ord t1 t2 | _ -> false;; let rec lpo_gt w s t = if is_realvar w t then not(s = t) & mem t (frees s) else if is_realvar w s or is_abs s or is_abs t then false else let f,fargs = real_strip w s and g,gargs = real_strip w t in exists (fun si -> lpo_ge w si t) fargs or forall (lpo_gt w s) gargs & (f = g & lexord (lpo_gt w) fargs gargs or weight w (f,length fargs) (g,length gargs)) and lpo_ge w s t = (s = t) or lpo_gt w s t;; let rec istriv w env x t = if is_realvar w t then t = x or defined env t & istriv w env x (apply env t) else if is_const t then false else let f,args = strip_comb t in exists (istriv w env x) args & failwith "cyclic";; let rec unify w env tp = match tp with ((Var(_,_) as x),t) | (t,(Var(_,_) as x)) when not(mem x w) -> if defined env x then unify w env (apply env x,t) else if istriv w env x t then env else (x|->t) env | (Comb(f,x),Comb(g,y)) -> unify w (unify w env (x,y)) (f,g) | (s,t) -> if s = t then env else failwith "unify: not unifiable";; let fullunify w (s,t) = let env = unify w undefined (s,t) in let th = map (fun (x,t) -> (t,x)) (graph env) in let rec subs t = let t' = vsubst th t in if t' = t then t else subs t' in map (fun (t,x) -> (subs t,x)) th;; let rec listcases fn rfn lis acc = match lis with [] -> acc | h::t -> fn h (fun i h' -> rfn i (h'::map REFL t)) @ listcases fn (fun i t' -> rfn i (REFL h::t')) t acc;; let LIST_MK_COMB f ths = rev_itlist (fun s t -> MK_COMB(t,s)) ths (REFL f);; let rec overlaps w th tm rfn = let l,r = dest_eq(concl th) in if not (is_comb tm) then [] else let f,args = strip_comb tm in listcases (overlaps w th) (fun i a -> rfn i (LIST_MK_COMB f a)) args (try [rfn (fullunify w (l,tm)) th] with Failure _ -> []);; let crit1 w eq1 eq2 = let l1,r1 = dest_eq(concl eq1) and l2,r2 = dest_eq(concl eq2) in overlaps w eq1 l2 (fun i th -> TRANS (SYM(INST i th)) (INST i eq2));; let fixvariables s th = let fvs = subtract (frees(concl th)) (freesl(hyp th)) in let gvs = map2 (fun v n -> mk_var(s^string_of_int n,type_of v)) fvs (1--length fvs) in INST (zip gvs fvs) th;; let renamepair (th1,th2) = fixvariables "x" th1,fixvariables "y" th2;; let critical_pairs w tha thb = let th1,th2 = renamepair (tha,thb) in crit1 w th1 th2 @ crit1 w th2 th1;; let normalize_and_orient w eqs th = let th' = GEN_REWRITE_RULE TOP_DEPTH_CONV eqs th in let s',t' = dest_eq(concl th') in if lpo_ge w s' t' then th' else if lpo_ge w t' s' then SYM th' else failwith "Can't orient equation";; let status(eqs,crs) eqs0 = if eqs = eqs0 & (length crs) mod 1000 <> 0 then () else (print_string(string_of_int(length eqs)^" equations and "^ string_of_int(length crs)^" pending critical pairs"); print_newline());; let left_reducible eqs eq = can (CHANGED_CONV(GEN_REWRITE_CONV (LAND_CONV o ONCE_DEPTH_CONV) eqs)) (concl eq);; let rec complete w (eqs,crits) = match crits with (eq::ocrits) -> let trip = try let eq' = normalize_and_orient w eqs eq in let s',t' = dest_eq(concl eq') in if s' = t' then (eqs,ocrits) else let crits',eqs' = partition(left_reducible [eq']) eqs in let eqs'' = eq'::eqs' in eqs'', ocrits @ crits' @ itlist ((@) o critical_pairs w eq') eqs'' [] with Failure _ -> if exists (can (normalize_and_orient w eqs)) ocrits then (eqs,ocrits@[eq]) else failwith "complete: no orientable equations" in status trip eqs; complete w trip | [] -> eqs;; let complete_equations wts eqs = let eqs' = map (normalize_and_orient wts []) eqs in complete wts ([],eqs');; complete_equations [`1`; `( * ):num->num->num`; `i:num->num`] [SPEC_ALL(ASSUME `!a b. i(a) * a * b = b`)];; complete_equations [`c:A`; `f:A->A`] (map SPEC_ALL (CONJUNCTS (ASSUME `((f(f(f(f(f c))))) = c:A) /\ (f(f(f c)) = c)`)));; let eqs = map SPEC_ALL (CONJUNCTS (ASSUME `(!x. 1 * x = x) /\ (!x. i(x) * x = 1) /\ (!x y z. (x * y) * z = x * y * z)`)) in map concl (complete_equations [`1`; `( * ):num->num->num`; `i:num->num`] eqs);; let COMPLETE_TAC w th = let eqs = map SPEC_ALL (CONJUNCTS(SPEC_ALL th)) in let eqs' = complete_equations w eqs in MAP_EVERY (ASSUME_TAC o GEN_ALL) eqs';; g `(!x. 1 * x = x) /\ (!x. i(x) * x = 1) /\ (!x y z. (x * y) * z = x * y * z) ==> !x y. i(y) * i(i(i(x * i(y)))) * x = 1`;; e (DISCH_THEN(COMPLETE_TAC [`1`; `( * ):num->num->num`; `i:num->num`]));; e(ASM_REWRITE_TAC[]);; g `(!x. 0 + x = x) /\ (!x. neg x + x = 0) /\ (!x y z. (x + y) + z = x + y + z) /\ (!x y z. (x * y) * z = x * y * z) /\ (!x y z. (x + y) * z = (x * z) + (y * z)) ==> (neg 0 * (x * y + z + neg(neg(w + z))) + neg(neg b + neg a) = a + b)`;; e (DISCH_THEN(COMPLETE_TAC [`0`; `(+):num->num->num`; `neg:num->num`; `( * ):num->num->num`]));; e(ASM_REWRITE_TAC[]);; (**** Could have done this instead e (DISCH_THEN(COMPLETE_TAC [`0`; `(+):num->num->num`; `( * ):num->num->num`; `neg:num->num`]));; ****)