(* ------------------------------------------------------------------------- *) (* From Multivariate/misc.ml *) (* ------------------------------------------------------------------------- *) prioritize_real();; let REAL_POW_LBOUND = prove (`!x n. &0 <= x ==> &1 + &n * x <= (&1 + x) pow n`, GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_ADD_RID; REAL_LE_REFL] THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(&1 + x) * (&1 + &n * x)` THEN ASM_SIMP_TAC[REAL_LE_LMUL; REAL_ARITH `&0 <= x ==> &0 <= &1 + x`] THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_POS; REAL_ARITH `&1 + (n + &1) * x <= (&1 + x) * (&1 + n * x) <=> &0 <= n * x * x`]);; let REAL_ARCH_POW = prove (`!x y. &1 < x ==> ?n. y < x pow n`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `x - &1` REAL_ARCH) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN DISCH_THEN(MP_TAC o SPEC `y:real`) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&1 + &n * (x - &1)` THEN ASM_SIMP_TAC[REAL_ARITH `x < y ==> x < &1 + y`] THEN ASM_MESON_TAC[REAL_POW_LBOUND; REAL_SUB_ADD2; REAL_ARITH `&1 < x ==> &0 <= x - &1`]);; let ABS_CASES = thm `; !x. x = &0 \/ &0 < abs(x)`;; let LL = REAL_ARITH `&1 < k ==> &0 < k`;; (* ------------------------------------------------------------------------- *) (* Miz3 solutions to IMO problem from ICMS 2006. *) (* ------------------------------------------------------------------------- *) horizon := 0;; let IMO_1 = thm `; !k. &1 < k ==> &0 < k [LL] by REAL_ARITH; now let f g be real->real; let x be real; assume !x y. f (x + y) + f (x - y) = &2 * f x * g y [1]; assume ~(!x. f x = &0) [2]; assume !x. abs (f x) <= &1 [3]; now let k be real; assume sup (IMAGE (\x. abs (f x)) (:real)) = k [4]; ~(IMAGE (\x. abs (f x)) (:real) = {}) /\ (?b. !x. abs (f x) <= b) [5] by ASM SET_TAC[],-,3; now assume !x. abs (f x) <= k [6]; assume !b. (!x. abs (f x) <= b) ==> k <= b [7]; now let y be real; assume &1 < abs (g y) [8]; !x. abs (f x) <= k / abs (g y) [9] by ASM_MESON_TAC[REAL_LE_RDIV_EQ; REAL_ABS_MUL; LL; REAL_ARITH (parse_term "u + v = &2 * z /\\ abs u <= k /\\ abs v <= k ==> abs z <= k") ],-,1,6; ~(k <= k / abs (g y)) by TIMED_TAC 2 (ASM_MESON_TAC[REAL_NOT_LE; REAL_LT_LDIV_EQ; REAL_LT_LMUL; REAL_MUL_RID; LL; REAL_ARITH (parse_term "~(z = &0) /\\ abs z <= k ==> &0 < k") ]),LL,2,6,8; (!x. abs (f x) <= k / abs (g y)) /\ ~(k <= k / abs (g y)) by CONJ_TAC,-,9; ((!x. abs (f x) <= k / abs (g y)) ==> k <= k / abs (g y)) ==> F by SIMP_TAC[NOT_IMP; NOT_FORALL_THM],-; thus F by FIRST_X_ASSUM(MP_TAC o SPEC (parse_term "k / abs(g(y:real))")),-,7; end; ~(?y. &1 < abs (g y)) by STRIP_TAC,-; thus !y. abs (g y) <= &1 by SIMP_TAC[GSYM REAL_NOT_LT; GSYM NOT_EXISTS_THM],-; end; (!x. abs (f x) <= k) /\ (!b. (!x. abs (f x) <= b) ==> k <= b) ==> (!y. abs (g y) <= &1) by STRIP_TAC,-; (~(IMAGE (\x. abs (f x)) (:real) = {}) /\ (?b. !x. abs (f x) <= b) ==> (!x. abs (f x) <= k) /\ (!b. (!x. abs (f x) <= b) ==> k <= b)) ==> (!y. abs (g y) <= &1) by ANTS_TAC,-,5; (~(IMAGE (\x. abs (f x)) (:real) = {}) /\ (?b. !x. x IN IMAGE (\x. abs (f x)) (:real) ==> x <= b) ==> (!x. x IN IMAGE (\x. abs (f x)) (:real) ==> x <= sup (IMAGE (\x. abs (f x)) (:real))) /\ (!b. (!x. x IN IMAGE (\x. abs (f x)) (:real) ==> x <= b) ==> sup (IMAGE (\x. abs (f x)) (:real)) <= b)) ==> (!y. abs (g y) <= &1) by ASM_SIMP_TAC[FORALL_IN_IMAGE; EXISTS_IN_IMAGE; IN_UNIV],-,4; thus !y. abs (g y) <= &1 by MP_TAC(SPEC (parse_term "IMAGE (\\x. abs(f(x))) (:real)") SUP),-; end; !y. abs (g y) <= &1 by ABBREV_TAC (parse_term "k = sup (IMAGE (\\x. abs(f(x))) (:real))"),-; thus abs (g x) <= &1 by SPEC_TAC ((parse_term "x:real"),(parse_term "y:real")),-; end; thus !f g. (!x y. f(x + y) + f(x - y) = &2 * f(x) * g(y)) /\ ~(!x. f(x) = &0) /\ (!x. abs(f(x)) <= &1) ==> !x. abs(g(x)) <= &1 by REPEAT STRIP_TAC,-`;; horizon := 1;; let IMO_2 = thm `; let f g be real->real; assume !x y. f (x + y) + f (x - y) = &2 * f x * g y [1]; assume ~(!x. f x = &0) [2]; assume !x. abs (f x) <= &1 [3]; thus !x. abs (g x) <= &1 proof set s = IMAGE (\x. abs (f x)) (:real); ~(s = {}) [4] by SET_TAC; !b. (!y. y IN s ==> y <= b) <=> (!x. abs (f x) <= b) by IN_IMAGE,IN_UNIV; set k = sup s; (!x. abs (f x) <= k) /\ !b. (!x. abs (f x) <= b) ==> k <= b [5] by 3,4,SUP; assume ~thesis; consider y such that &1 < abs (g y) [6] by REAL_NOT_LT; &0 < abs (g y) [7] by REAL_ARITH; !x. abs (f x) <= k / abs (g y) [8] proof let x be real; abs (f (x + y)) <= k /\ abs (f (x - y)) <= k /\ f (x + y) + f (x - y) = &2 * f x * g y by 1,5; abs (f x * g y) <= k by REAL_ARITH; qed by 7,REAL_ABS_MUL,REAL_LE_RDIV_EQ; consider x such that &0 < abs (f x) /\ abs (f x) <= k by 2,5,ABS_CASES; &0 < k by REAL_ARITH; k / abs (g y) < k by 6,7,REAL_LT_LMUL,REAL_MUL_RID,REAL_LT_LDIV_EQ; qed by 5,8,REAL_NOT_LE`;; let IMO_3 = thm `; let f g be real->real; assume !x y. f (x + y) + f (x - y) = &2 * f x * g y [1]; assume ~(!x. f x = &0) [2]; assume !x. abs (f x) <= &1 [3]; thus !x. abs (g x) <= &1 proof now [4] let y be real; !x. abs (f x * g y pow 0) <= &1 [5] by 3,real_pow,REAL_MUL_RID; now let l be num; assume !x. abs (f x * g y pow l) <= &1; let x be real; abs (f (x + y) * g y pow l) <= &1 /\ abs (f (x - y) * g y pow l) <= &1; abs ((f (x + y) + f (x - y)) * g y pow l) <= &2 by REAL_ARITH; abs ((&2 * f x * g y) * g y pow l) <= &2 by 1; abs (f x * g y * g y pow l) <= &1 by REAL_ARITH; thus abs (f x * g y pow SUC l) <= &1 by real_pow,REAL_MUL_RID; end; thus !l x. abs (f x * g y pow l) <= &1 by INDUCT_TAC,5; end; !x y. ~(x = &0) /\ &1 < abs(y) ==> ?n. &1 < abs(y pow n * x) by SIMP_TAC,REAL_ABS_MUL,REAL_ABS_POW,GSYM REAL_LT_LDIV_EQ, GSYM REAL_ABS_NZ,REAL_ARCH_POW; qed by 2,4,REAL_NOT_LE,REAL_MUL_SYM`;;