(* ========================================================================= *)
(* Boolean theory including (intuitionistic) defs of logical connectives. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2006 *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Set up parse status of basic and derived logical constants. *)
(* ------------------------------------------------------------------------- *)
parse_as_prefix "~";;
map parse_as_binder ["\\"; "!"; "?"; "?!"];;
map parse_as_infix ["==>",(4,"right"); "\\/",(6,"right"); "/\\",(8,"right")];;
(* ------------------------------------------------------------------------- *)
(* Set up more orthodox notation for equations and equivalence. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("<=>",(2,"right"));;
override_interface ("<=>",`(=):bool->bool->bool`);;
parse_as_infix("=",(12,"right"));;
(* ------------------------------------------------------------------------- *)
(* Special syntax for Boolean equations (IFF). *)
(* ------------------------------------------------------------------------- *)
let is_iff tm =
match tm with
Comb(Comb(Const("=",Tyapp("fun",[Tyapp("bool",[]);_])),l),r) -> true
| _ -> false;;
let dest_iff tm =
match tm with
Comb(Comb(Const("=",Tyapp("fun",[Tyapp("bool",[]);_])),l),r) -> (l,r)
| _ -> failwith "dest_iff";;
let mk_iff =
let eq_tm = `(<=>)` in
fun (l,r) -> mk_comb(mk_comb(eq_tm,l),r);;
(* ------------------------------------------------------------------------- *)
(* Rule allowing easy instantiation of polymorphic proformas. *)
(* ------------------------------------------------------------------------- *)
let PINST tyin tmin =
let iterm_fn = INST (map (I F_F (inst tyin)) tmin)
and itype_fn = INST_TYPE tyin in
fun th -> try iterm_fn (itype_fn th)
with Failure _ -> failwith "PINST";;
(* ------------------------------------------------------------------------- *)
(* Useful derived deductive rule. *)
(* ------------------------------------------------------------------------- *)
let PROVE_HYP ath bth =
if exists (aconv (concl ath)) (hyp bth)
then EQ_MP (DEDUCT_ANTISYM_RULE ath bth) ath
else bth;;
(* ------------------------------------------------------------------------- *)
(* Rules for T *)
(* ------------------------------------------------------------------------- *)
let T_DEF = new_basic_definition
`T = ((\p:bool. p) = (\p:bool. p))`;;
let TRUTH = EQ_MP (SYM T_DEF) (REFL `\p:bool. p`);;
let EQT_ELIM th =
try EQ_MP (SYM th) TRUTH
with Failure _ -> failwith "EQT_ELIM";;
let EQT_INTRO =
let t = `t:bool` and T = `T` in
let pth =
let th1 = DEDUCT_ANTISYM_RULE (ASSUME t) TRUTH in
let th2 = EQT_ELIM(ASSUME(concl th1)) in
DEDUCT_ANTISYM_RULE th2 th1 in
fun th -> EQ_MP (INST[concl th,t] pth) th;;
(* ------------------------------------------------------------------------- *)
(* Rules for /\ *)
(* ------------------------------------------------------------------------- *)
let AND_DEF = new_basic_definition
`(/\) = \p q. (\f:bool->bool->bool. f p q) = (\f. f T T)`;;
let mk_conj = mk_binary "/\\";;
let list_mk_conj = end_itlist (curry mk_conj);;
let CONJ =
let f = `f:bool->bool->bool`
and p = `p:bool`
and q = `q:bool` in
let pth =
let pth = ASSUME p
and qth = ASSUME q in
let th1 = MK_COMB(AP_TERM f (EQT_INTRO pth),EQT_INTRO qth) in
let th2 = ABS f th1 in
let th3 = BETA_RULE (AP_THM (AP_THM AND_DEF p) q) in
EQ_MP (SYM th3) th2 in
fun th1 th2 -> substitute_proof (
let th = INST [concl th1,p; concl th2,q] pth in
PROVE_HYP th2 (PROVE_HYP th1 th))
(proof_CONJ (proof_of th1) (proof_of th2));;
let CONJUNCT1 =
let P = `P:bool` and Q = `Q:bool` in
let pth =
let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM AND_DEF `P:bool`) in
let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in
let th3 = EQ_MP th2 (ASSUME `P /\ Q`) in
EQT_ELIM(BETA_RULE (AP_THM th3 `\(p:bool) (q:bool). p`)) in
fun th -> substitute_proof (
try let l,r = dest_conj(concl th) in
PROVE_HYP th (INST [l,P; r,Q] pth)
with Failure _ -> failwith "CONJUNCT1") (proof_CONJUNCT1 (proof_of th));;
let CONJUNCT2 =
let P = `P:bool` and Q = `Q:bool` in
let pth =
let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM AND_DEF `P:bool`) in
let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in
let th3 = EQ_MP th2 (ASSUME `P /\ Q`) in
EQT_ELIM(BETA_RULE (AP_THM th3 `\(p:bool) (q:bool). q`)) in
fun th -> substitute_proof (
try let l,r = dest_conj(concl th) in
PROVE_HYP th (INST [l,P; r,Q] pth)
with Failure _ -> failwith "CONJUNCT2") (proof_CONJUNCT2 (proof_of th));;
let CONJ_PAIR th =
try CONJUNCT1 th,CONJUNCT2 th
with Failure _ -> failwith "CONJ_PAIR: Not a conjunction";;
let CONJUNCTS = striplist CONJ_PAIR;;
(* ------------------------------------------------------------------------- *)
(* Rules for ==> *)
(* ------------------------------------------------------------------------- *)
let IMP_DEF = new_basic_definition
`(==>) = \p q. p /\ q <=> p`;;
let mk_imp = mk_binary "==>";;
let MP =
let p = `p:bool`
and q = `q:bool` in
let pth =
let th1 = BETA_RULE (AP_THM (AP_THM IMP_DEF p) q) in
let th2 = EQ_MP th1 (ASSUME `p ==> q`) in
CONJUNCT2 (EQ_MP (SYM th2) (ASSUME `p:bool`)) in
fun ith th ->
let ant,con = dest_imp (concl ith) in
if aconv ant (concl th) then
PROVE_HYP th (PROVE_HYP ith (INST [ant,p; con,q] pth))
else failwith "MP: theorems do not agree";;
let DISCH =
let p = `p:bool`
and q = `q:bool` in
let pth = SYM(BETA_RULE (AP_THM (AP_THM IMP_DEF p) q)) in
fun a th -> substitute_proof (
let th1 = CONJ (ASSUME a) th in
let th2 = CONJUNCT1 (ASSUME (concl th1)) in
let th3 = DEDUCT_ANTISYM_RULE th1 th2 in
let th4 = INST [a,p; concl th,q] pth in
EQ_MP th4 th3) (proof_DISCH (proof_of th) a);;
let rec DISCH_ALL th =
try DISCH_ALL (DISCH (hd (hyp th)) th)
with Failure _ -> th;;
let UNDISCH th =
try MP th (ASSUME(rand(rator(concl th))))
with Failure _ -> failwith "UNDISCH";;
let rec UNDISCH_ALL th =
if is_imp (concl th) then UNDISCH_ALL (UNDISCH th)
else th;;
let IMP_ANTISYM_RULE th1 th2 =
substitute_proof (DEDUCT_ANTISYM_RULE (UNDISCH th2) (UNDISCH th1))
(proof_IMPAS (proof_of th2) (proof_of th1));;
let ADD_ASSUM tm th = MP (DISCH tm th) (ASSUME tm);;
let EQ_IMP_RULE th =
try let l,r = dest_eq(concl th) in
DISCH l (EQ_MP th (ASSUME l)), DISCH r (EQ_MP(SYM th)(ASSUME r))
with Failure _ -> failwith "EQ_IMP_RULE";;
let IMP_TRANS th1 th2 =
try let ant = rand(rator(concl th1)) in
DISCH ant (MP th2 (MP th1 (ASSUME ant)))
with Failure _ -> failwith "IMP_TRANS";;
(* ------------------------------------------------------------------------- *)
(* Rules for ! *)
(* ------------------------------------------------------------------------- *)
let FORALL_DEF = new_basic_definition
`(!) = \P:A->bool. P = \x. T`;;
let mk_forall = mk_binder "!";;
let list_mk_forall(vs,bod) = itlist (curry mk_forall) vs bod;;
let SPEC =
let P = `P:A->bool`
and x = `x:A` in
let pth =
let th1 = EQ_MP(AP_THM FORALL_DEF `P:A->bool`) (ASSUME `(!)(P:A->bool)`) in
let th2 = AP_THM (CONV_RULE BETA_CONV th1) `x:A` in
let th3 = CONV_RULE (RAND_CONV BETA_CONV) th2 in
DISCH_ALL (EQT_ELIM th3) in
fun tm th ->
(substitute_proof (try let abs = rand(concl th) in
CONV_RULE BETA_CONV
(MP (PINST [snd(dest_var(bndvar abs)),aty] [abs,P; tm,x] pth) th)
with Failure _ -> failwith "SPEC") (proof_SPEC tm (proof_of th)));;
let SPECL tms th =
try rev_itlist SPEC tms th
with Failure _ -> failwith "SPECL";;
let SPEC_VAR th =
let bv = variant (thm_frees th) (bndvar(rand(concl th))) in
bv,SPEC bv th;;
let rec SPEC_ALL th =
if is_forall(concl th) then SPEC_ALL(snd(SPEC_VAR th)) else th;;
let ISPEC t th =
let x,_ = try dest_forall(concl th) with Failure _ ->
failwith "ISPEC: input theorem not universally quantified" in
let tyins = try type_match (snd(dest_var x)) (type_of t) [] with Failure _ ->
failwith "ISPEC can't type-instantiate input theorem" in
try SPEC t (INST_TYPE tyins th)
with Failure _ -> failwith "ISPEC: type variable(s) free in assumptions";;
let ISPECL tms th =
try if tms = [] then th else
let avs = fst (chop_list (length tms) (fst(strip_forall(concl th)))) in
let tyins = itlist2 type_match (map (snd o dest_var) avs)
(map type_of tms) [] in
SPECL tms (INST_TYPE tyins th)
with Failure _ -> failwith "ISPECL";;
let GEN =
let P = `P:A->bool` and true_tm = `T` in
let pth =
let th1 = ASSUME `P = \x:A. T` in
let th2 = AP_THM FORALL_DEF `P:A->bool` in
DISCH_ALL (EQ_MP (SYM(CONV_RULE(RAND_CONV BETA_CONV) th2)) th1) in
fun x th -> substitute_proof (
try let th1 = ABS x (EQT_INTRO th) in
let tm1 = mk_abs(mk_var("x",type_of x),true_tm) in
let th2 = TRANS th1 (REFL tm1) in
let th3 = PINST [snd(dest_var x),aty] [rand(rator(concl th1)),P] pth in
MP th3 th2
with Failure _ -> failwith "GEN") (proof_GEN (proof_of th) x);;
let GENL = itlist GEN;;
let GEN_ALL th =
let asl,c = dest_thm th in
let vars = subtract (frees c) (freesl asl) in
GENL vars th;;
(* ------------------------------------------------------------------------- *)
(* Rules for ? *)
(* ------------------------------------------------------------------------- *)
let EXISTS_DEF = new_basic_definition
`(?) = \P:A->bool. !q. (!x. P x ==> q) ==> q`;;
let mk_exists = mk_binder "?";;
let list_mk_exists(vs,bod) = itlist (curry mk_exists) vs bod;;
let EXISTS =
let P = `P:A->bool` and x = `x:A` and PX = `(P:A->bool) x` in
let pth =
let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM EXISTS_DEF P) in
let th2 = SPEC `x:A` (ASSUME `!x:A. P x ==> Q`) in
let th3 = DISCH `!x:A. P x ==> Q` (MP th2 (ASSUME `(P:A->bool) x`)) in
DISCH_ALL (EQ_MP (SYM th1) (GEN `Q:bool` th3)) in
fun (etm,stm) th -> substitute_proof (
try let qf,abs = dest_comb etm in
let bth = BETA_CONV(mk_comb(abs,stm)) in
let cth = PINST [type_of stm,aty] [abs,P; stm,x] pth in
MP cth (EQ_MP (SYM bth) th)
with Failure _ -> failwith "EXISTS") (proof_EXISTS etm stm (proof_of th));;
let SIMPLE_EXISTS v th =
EXISTS (mk_exists(v,concl th),v) th;;
let CHOOSE =
let P = `P:A->bool` and Q = `Q:bool` in
let pth =
let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM EXISTS_DEF P) in
let th2 = SPEC `Q:bool` (UNDISCH(fst(EQ_IMP_RULE th1))) in
DISCH_ALL (DISCH `(?) (P:A->bool)` (UNDISCH th2)) in
fun (v,th1) th2 -> substitute_proof (
try let abs = rand(concl th1) in
let bv,bod = dest_abs abs in
let cmb = mk_comb(abs,v) in
let pat = vsubst[v,bv] bod in
let th3 = CONV_RULE BETA_CONV (ASSUME cmb) in
let th4 = GEN v (DISCH cmb (MP (DISCH pat th2) th3)) in
let th5 = PINST [snd(dest_var v),aty] [abs,P; concl th2,Q] pth in
MP (MP th5 th4) th1
with Failure _ -> failwith "CHOOSE")
(proof_CHOOSE v (proof_of th1) (proof_of th2));;
let SIMPLE_CHOOSE v th =
CHOOSE(v,ASSUME (mk_exists(v,hd(hyp th)))) th;;
(* ------------------------------------------------------------------------- *)
(* Rules for \/ *)
(* ------------------------------------------------------------------------- *)
let OR_DEF = new_basic_definition
`(\/) = \p q. !r. (p ==> r) ==> (q ==> r) ==> r`;;
let mk_disj = mk_binary "\\/";;
let list_mk_disj = end_itlist (curry mk_disj);;
let DISJ1 =
let P = `P:bool` and Q = `Q:bool` in
let pth =
let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM OR_DEF `P:bool`) in
let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in
let th3 = MP (ASSUME `P ==> t`) (ASSUME `P:bool`) in
let th4 = GEN `t:bool` (DISCH `P ==> t` (DISCH `Q ==> t` th3)) in
DISCH_ALL (EQ_MP (SYM th2) th4) in
fun th tm -> substitute_proof (
try MP (INST [concl th,P; tm,Q] pth) th
with Failure _ -> failwith "DISJ1") (proof_DISJ1 (proof_of th) tm);;
let DISJ2 =
let P = `P:bool` and Q = `Q:bool` in
let pth =
let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM OR_DEF `P:bool`) in
let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in
let th3 = MP (ASSUME `Q ==> t`) (ASSUME `Q:bool`) in
let th4 = GEN `t:bool` (DISCH `P ==> t` (DISCH `Q ==> t` th3)) in
DISCH_ALL (EQ_MP (SYM th2) th4) in
fun tm th -> substitute_proof (
try MP (INST [tm,P; concl th,Q] pth) th
with Failure _ -> failwith "DISJ2") (proof_DISJ2 (proof_of th) tm);;
let DISJ_CASES =
let P = `P:bool` and Q = `Q:bool` and R = `R:bool` in
let pth =
let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM OR_DEF `P:bool`) in
let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in
let th3 = SPEC `R:bool` (EQ_MP th2 (ASSUME `P \/ Q`)) in
UNDISCH (UNDISCH th3) in
fun th0 th1 th2 -> substitute_proof (
try let c1 = concl th1 and c2 = concl th2 in
if not (aconv c1 c2) then failwith "DISJ_CASES" else
let l,r = dest_disj (concl th0) in
let th = INST [l,P; r,Q; c1,R] pth in
PROVE_HYP (DISCH r th2) (PROVE_HYP (DISCH l th1) (PROVE_HYP th0 th))
with Failure _ -> failwith "DISJ_CASES")
(proof_DISJCASES (proof_of th0) (proof_of th1) (proof_of th2));;
let SIMPLE_DISJ_CASES th1 th2 =
DISJ_CASES (ASSUME(mk_disj(hd(hyp th1),hd(hyp th2)))) th1 th2;;
(* ------------------------------------------------------------------------- *)
(* Rules for negation and falsity. *)
(* ------------------------------------------------------------------------- *)
let F_DEF = new_basic_definition
`F = !p:bool. p`;;
let NOT_DEF = new_basic_definition
`(~) = \p. p ==> F`;;
let mk_neg =
let neg_tm = `(~)` in
fun tm -> try mk_comb(neg_tm,tm)
with Failure _ -> failwith "mk_neg";;
let NOT_ELIM =
let P = `P:bool` in
let pth = CONV_RULE(RAND_CONV BETA_CONV) (AP_THM NOT_DEF P) in
fun th -> substitute_proof (
try EQ_MP (INST [rand(concl th),P] pth) th
with Failure _ -> failwith "NOT_ELIM") (proof_NOTE (proof_of th));;
let NOT_INTRO =
let P = `P:bool` in
let pth = SYM(CONV_RULE(RAND_CONV BETA_CONV) (AP_THM NOT_DEF P)) in
fun th -> substitute_proof (
try EQ_MP (INST [rand(rator(concl th)),P] pth) th
with Failure _ -> failwith "NOT_ELIM") (proof_NOTI (proof_of th));;
let EQF_INTRO =
let P = `P:bool` in
let pth =
let th1 = NOT_ELIM (ASSUME `~ P`)
and th2 = DISCH `F` (SPEC P (EQ_MP F_DEF (ASSUME `F`))) in
DISCH_ALL (IMP_ANTISYM_RULE th1 th2) in
fun th ->
try MP (INST [rand(concl th),P] pth) th
with Failure _ -> failwith "EQF_INTRO";;
let EQF_ELIM =
let P = `P:bool` in
let pth =
let th1 = EQ_MP (ASSUME `P = F`) (ASSUME `P:bool`) in
let th2 = DISCH P (SPEC `F` (EQ_MP F_DEF th1)) in
DISCH_ALL (NOT_INTRO th2) in
fun th ->
try MP (INST [rand(rator(concl th)),P] pth) th
with Failure _ -> failwith "EQF_ELIM";;
let CONTR =
let P = `P:bool` and f_tm = `F` in
let pth = SPEC P (EQ_MP F_DEF (ASSUME `F`)) in
fun tm th -> substitute_proof (
if concl th <> f_tm then failwith "CONTR"
else PROVE_HYP th (INST [tm,P] pth)) (proof_CONTR (proof_of th) tm);;
(* ------------------------------------------------------------------------- *)
(* Rules for unique existence. *)
(* ------------------------------------------------------------------------- *)
let EXISTS_UNIQUE_DEF = new_basic_definition
`(?!) = \P:A->bool. ((?) P) /\ (!x y. P x /\ P y ==> x = y)`;;
let mk_uexists = mk_binder "?!";;
let EXISTENCE =
let P = `P:A->bool` in
let pth =
let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM EXISTS_UNIQUE_DEF P) in
let th2 = UNDISCH (fst(EQ_IMP_RULE th1)) in
DISCH_ALL (CONJUNCT1 th2) in
fun th ->
try let abs = rand(concl th) in
let ty = snd(dest_var(bndvar abs)) in
MP (PINST [ty,aty] [abs,P] pth) th
with Failure _ -> failwith "EXISTENCE";;