needs "Tutorial/Vectors.ml";;
let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir")
 (MESON[LEMMA_0] `?x:real^3. ~(x = vec 0)`);;
parse_as_infix("||",(11,"right"));;
parse_as_infix("_|_",(11,"right"));;
let DIRECTION_CLAUSES = prove
 (`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\
   ((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`,
  MESON_TAC[direction_tybij]);;
 
let DIRECTION_AXIOM_1 = prove
 (`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\
                             !l'. p _|_ l' /\ p' _|_ l' ==> l' || l`,
  REWRITE_TAC[perpdir; pardir; 
DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`p:real^3`; `p':real^3`] 
NORMAL_EXISTS) THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
 
let DIRECTION_AXIOM_3 = prove
 (`?p p' p''.
        ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
        ~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`,
  REWRITE_TAC[perpdir; pardir; 
DIRECTION_CLAUSES] THEN
  MAP_EVERY (fun t -> EXISTS_TAC t THEN REWRITE_TAC[LEMMA_0])
   [`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN
  VEC3_TAC);;
 
let DIRECTION_AXIOM_4_WEAK = prove
 (`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`,
  REWRITE_TAC[
DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\
    ~((l cross basis 1) cross (l cross basis 2) = vec 0) \/
    orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\
    ~((l cross basis 1) cross (l cross basis 3) = vec 0) \/
    orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\
    ~((l cross basis 2) cross (l cross basis 3) = vec 0)`
  MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[
CROSS_0]]);;
 
let ORTHOGONAL_COMBINE = prove
 (`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b)
           ==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`,
  REWRITE_TAC[
DIRECTION_CLAUSES; pardir; perpdir] THEN
  REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
 
let DIRECTION_AXIOM_4 = prove
 (`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
                  p _|_ l /\ p' _|_ l /\ p'' _|_ l`,
 
let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;;let POINT_CLAUSES = prove
 (`((p = p') <=> (dest_point p = dest_point p')) /\
   ((!p. P (dest_point p)) <=> (!l. P l)) /\
   ((?p. P (dest_point p)) <=> (?l. P l))`,
  MESON_TAC[point_tybij]);;
 
let AXIOM_1 = prove
 (`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\
          !l'. p on l' /\ p' on l' ==> (l' = l)`,
  POINT_TAC LINE_AXIOM_1);;
 
let AXIOM_2 = prove
 (`!l l'. ?p. p on l /\ p on l'`,
  POINT_TAC LINE_AXIOM_2);;
 
let AXIOM_3 = prove
 (`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
    ~(?l. p on l /\ p' on l /\ p'' on l)`,
  POINT_TAC LINE_AXIOM_3);;
 
let AXIOM_4 = prove
 (`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
    p on l /\ p' on l /\ p'' on l`,
  POINT_TAC LINE_AXIOM_4);;