needs "../formal_lp/formal_interval/m_taylor_arith.hl";;
needs "../formal_lp/formal_interval/m_verifier.hl";;
needs "../formal_lp/arith/informal/informal_m_verifier.hl";;
let reset_all () =
Arith_cache.reset_stat();
Arith_cache.reset_cache();
Arith_float.reset_stat();
Arith_float.reset_cache();;
let dest_int int =
let f1, f2 = Informal_interval.dest_interval int in
Informal_float.dest_float f1, Informal_float.dest_float f2;;
let dest_f = Informal_float.dest_float;;
let dest_dom dom =
map dest_f dom.Informal_taylor.lo,
map dest_f dom.Informal_taylor.hi,
map dest_f dom.Informal_taylor.y,
map dest_f dom.Informal_taylor.w;;
let dest_ti ti =
dest_int ti.Informal_taylor.f,
map dest_int ti.Informal_taylor.df,
map (map dest_int) ti.Informal_taylor.ddf;;
(******************************)
(* dummy functions *)
let eval_d0 i pp t1 t2 = failwith "eval_d0";;
let eval_dd0 i j pp t1 t2 = failwith "eval_dd0";;
let eval_0 pp t1 t2 = failwith "eval_0";;
let eval_diff2 t1 t2 = failwith "eval_diff2";;
(********************************)
(* ArcProperties.hl inequality *)
let n = 2;;
let p_split = 8 and
p_min = 1 and
p_max = 10;;
let poly1 = `\x:real^2. x$1 * x$1 + x$2 * x$2 - &2 * &2`;;
let poly2 = `\x:real^2. &2 * x$1 * x$2`;;
let lm2_poly = `\x:real^2. (#2.52 - x$1 * inv(&2)) * inv(#2.52 - &1)`;;
let eval1, tf1, ti1 =
mk_verification_functions p_split poly1 false `&0`;;
let eval2, tf2, ti2 =
mk_verification_functions p_split poly2 false `&0`;;
let eval_lm2, tf_lm2, ti_lm2 =
mk_verification_functions p_split lm2_poly false `&0`;;
(* arc *)
open Univariate;;
let tf_arc =
let r = Product (tf1, Uni_compose (uinv, tf2)) in
Uni_compose (uacos, r);;
let eval_arc p_lin p_second th =
let inv, acs, ( * ) =
eval_m_taylor_inv n p_lin p_second, eval_m_taylor_acs n p_lin p_second,
eval_m_taylor_mul n p_lin p_second in
let r1 = eval1.taylor p_lin p_second th and
r2 = eval2.taylor p_lin p_second th in
acs (r1 * inv r2);;
let ti_arc p_lin p_second dom =
let inv, acs, ( * ) =
Informal_taylor.eval_m_taylor_inv p_lin p_second, Informal_taylor.eval_m_taylor_acs p_lin p_second,
Informal_taylor.eval_m_taylor_mul p_lin p_second in
let r1 = ti1.Informal_verifier.taylor p_lin p_second dom and
r2 = ti2.Informal_verifier.taylor p_lin p_second dom in
acs (r1 * inv r2);;
(*********************)
let eval_ineq p_lin p_second th =
let arc = eval_arc p_lin p_second
Sphere.lmfun;;
let eval_taylor =
{taylor = eval_dih_y_hi; f = eval_0; df = eval_d0; ddf = eval_dd0; diff2_f = eval_diff2};;
let ti =
{Informal_verifier.taylor = ti_dih_y_hi;
Informal_verifier.f = eval_0;
Informal_verifier.df = eval_d0;
Informal_verifier.ddf = eval_dd0};;
(************)
(* Small domain *)
let xx_s = `[&2; &2; &2; &2; &2; &2]` and
zz_s = `[#2.1; #2.1; #2.1; #2.1; #2.1; #2.1]`;;
let domain_th =
let xx1_s = convert_to_float_list pp true xx_s and
zz1_s = convert_to_float_list pp false zz_s in
mk_m_center_domain n pp xx1_s zz1_s;;
let dom =
let xx2_s = Informal_taylor.convert_to_float_list pp true xx_s and
zz2_s = Informal_taylor.convert_to_float_list pp false zz_s in
Informal_taylor.mk_m_center_domain pp xx2_s zz2_s;;
(* 10: 9.121 (pp = 15) *)
(* 300: 5.5 (pp = 8) *)
(* 100 (cached, float_cached, pp = 8): 2.68 *)
reset_all();;
test 1 (eval_dih_y_hi pp pp) domain_th;;
(* 100: 1.668 *)
test 1 (eval_dih_y_hi pp pp) domain_th;;
(* 100: 0.088 *)
test 1 (ti_dih_y_hi pp pp) dom;;
Arith_cache.print_stat();;
Arith_float.print_stat();;
(***)
let th1 = eval_4y1_delta_y.taylor pp pp domain_th;;
let th2 = eval_neg_delta_y4.taylor pp pp domain_th;;
let pi2_th = eval_pi2_plus.taylor pp pp domain_th;;
let r1 = eval_m_taylor_sqrt n pp th1;;
let r2 = eval_m_taylor_inv n pp r1;;
let r3 = eval_m_taylor_mul n pp th2 r2;;
let r4 = eval_m_taylor_atn n pp r3;;
let r5 = eval_m_taylor_add n pp pi2_th r4;;
reset_all();;
(* 100: 0.264 (second: 0.084) *)
test 1 (eval_4y1_delta_y.taylor pp pp) domain_th;;
(* 100: 0.032 (second: 0.020) *)
test 1 (eval_neg_delta_y4.taylor pp pp) domain_th;;
(* 100: 0.000 (second: 0.000) *)
test 1 (eval_pi2_plus.taylor pp pp) domain_th;;
(* 100: 0.444 (second: 0.280) *)
test 1 (eval_m_taylor_sqrt n pp) th1;;
(* 100: 0.496 (second: 0.284) *)
test 1 (eval_m_taylor_inv n pp) r1;;
(* 100: 0.512 (second: 0.396) *)
test 1 (eval_m_taylor_mul n pp th2) r2;;
(* 100: 0.780 (second: 0.444) *)
test 1 (eval_m_taylor_atn n pp) r3;;
(* 100: 0.264 (second: 0.256) *)
test 1 (eval_m_taylor_add n pp pi2_th) r4;;
(***)
let xx = `[&2; &2; &2; &2; &2; &2]` and
zz = `[#2.52; #2.52; #2.52; #2.52; #2.52; #2.52]`;;
let xx_s = `[&2; &2; &2; &2; &2; &2]` and
zz_s = `[#2.52; #2.1; #2.1; #2.1; #2.1; #2.1]`;;
let xx_s2 = `[&2; &2; &2; &2; &2; &2]` and
zz_s2 = `[#2.52; #2.2; #2.2; #2.2; #2.2; #2.2]`;;
let pp0 = 3;;
let xx1 = convert_to_float_list pp0 true xx and
zz1 = convert_to_float_list pp0 false zz and
xx1_s = convert_to_float_list pp0 true xx_s and
zz1_s = convert_to_float_list pp0 false zz_s and
xx1_s2 = convert_to_float_list pp0 true xx_s2 and
zz1_s2 = convert_to_float_list pp0 false zz_s2;;
let xx2 = Informal_taylor.convert_to_float_list pp0 true xx and
zz2 = Informal_taylor.convert_to_float_list pp0 false zz and
xx2_s = Informal_taylor.convert_to_float_list pp0 true xx_s and
zz2_s = Informal_taylor.convert_to_float_list pp0 false zz_s and
xx2_s2 = Informal_taylor.convert_to_float_list pp0 true xx_s2 and
zz2_s2 = Informal_taylor.convert_to_float_list pp0 false zz_s2;;
let xx_float, zz_float, xx_s_float, zz_s_float, xx_s2_float, zz_s2_float =
let pad = replicate 0.0 (8 - length (dest_list xx1)) in
map float_of_float_tm (dest_list xx1) @ pad,
map float_of_float_tm (dest_list zz1) @ pad,
map float_of_float_tm (dest_list xx1_s) @ pad,
map float_of_float_tm (dest_list zz1_s) @ pad,
map float_of_float_tm (dest_list xx1_s2) @ pad,
map float_of_float_tm (dest_list zz1_s2) @ pad;;
(***)
let c_dih_y_s = run_test tf_dih_y_hi xx_s_float zz_s_float false 0.0 true false true false 0.0;;
let c_dih_y_s2 = run_test tf_dih_y_hi xx_s2_float zz_s2_float false 0.0 true false true false 0.0;;
let c_dih_y0 = run_test tf_dih_y_hi xx_float zz_float false 0.0 true false false false 0.0;;
(* pass = 4 *)
result_stat c_dih_y_s;;
(* pass = 63 *)
result_stat c_dih_y_s2;;
(* pass = 4294, mono = 10 *)
result_stat c_dih_y0;;
let p_split = pp and
p_min = 1 and
p_max = pp;;
let cp_s = Informal_verifier.m_verify_raw0 p_split p_min p_max ti c_dih_y_s xx2_s zz2_s;;
let cp_s2 = Informal_verifier.m_verify_raw0 p_split p_min p_max ti c_dih_y_s2 xx2_s2 zz2_s2;;
(*********************)
reset_all();;
(* 10 (pp = 15): 38.418 *)
(* 300 (pp = 8): 22.289 *)
(* 100 (cached, float_cached, pp = 8): 12.229 *)
let _ =
let start = Sys.time() in
let result = m_verify_raw0 n pp eval_taylor c_dih_y_s xx1_s zz1_s in
let finish = Sys.time() in
let _ = report
(sprintf "Verification time: %f" (finish -. start)) in
result;;