(* ========================================================================== *)
(* FLYSPECK - BOOK FORMALIZATION                                              *)
(*                                                                            *)
(* General Utility                                                            *)
(* Author: Thomas C. Hales                                                    *)
(* Date: 2010-02-11                                                           *)
(* ========================================================================== *)


(* ------------------------------------------------------------------ *)
(* LOCAL DEFINITIONS , from Jordan curve lib_ext.ml *)
(* ------------------------------------------------------------------ *)



module type Local_definition_type = sig


end;;


module Local_definition  : Local_definition_type = struct

let local_defs = ref ([]:(string * (string * term)) list);;

let add_interface (sym,tm) =
  if (can (assoc sym) (!the_overload_skeletons)) then
    (overload_interface (sym,tm))
  else (override_interface(sym,tm));;

let local_definition package_name tm =
  let list_mk_forall(vars,bod) = itlist (curry mk_forall) vars bod in
  let avs,bod = strip_forall tm in
  let l,r = try dest_eq bod
    with Failure _ -> failwith "new_local_definition: Not an equation" in
  let lv,largs = strip_comb l in
  let cname,ty = dest_var lv in
  let cname' = package_name^"'"^cname in
  let lv' = mk_var(cname',ty) in
  let l' = list_mk_comb(lv',largs) in
  let bod' = mk_eq(l',r) in
  let tm'= list_mk_forall(avs,bod') in
  
let thm = new_definition tm' in
  let _ = (local_defs := (package_name,(cname,lv'))::(!local_defs)) in
  let _ = add_interface(cname,lv') in
  thm;;
let reduce_local_interface(package_name) = map (reduce_interface o snd) (filter (fun x -> ((fst x) = package_name)) !local_defs);; let mk_local_interface(package_name) = map (add_interface o snd) (filter (fun x -> ((fst x) = package_name)) !local_defs);; (* adapted from HOL Light code, true if it is a local def. *) let is_benign = fun tm -> let tm' = snd(strip_forall tm) in try let th,th' = tryfind (fun th -> th,PART_MATCH I th tm') (!the_definitions) in (can (PART_MATCH I th') (concl th)) with Failure _ -> false;; end;;