(******************************************************************************) (* FILE : definitions.ml *) (* DESCRIPTION : Using definitions. *) (* *) (* READS FILES : <none> *) (* WRITES FILES : <none> *) (* *) (* AUTHOR : R.J.Boulton *) (* DATE : 6th June 1991 *) (* *) (* LAST MODIFIED : R.J.Boulton *) (* DATE : 3rd August 1992 *) (* *) (* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) (* DATE : 2008 *) (******************************************************************************) (*----------------------------------------------------------------------------*) (* recursive_calls : string -> term -> term list *) (* *) (* Function to compute the occurrences of applications of a constant in a *) (* term. The first argument is the name of the constant. The second argument *) (* is the term to be examined. If there are no occurrences, an empty list is *) (* returned. The function assumes that the term does not contain *) (* abstractions. *) (*----------------------------------------------------------------------------*) let rec recursive_calls name tm = try (let (f,args) = strip_comb tm in if (try(fst (dest_const f) = name) with Failure _ -> false) then [tm] else itlist List.append (map (recursive_calls name) args) []) with Failure _ -> [];; (*----------------------------------------------------------------------------*) (* is_subterm : term -> term -> bool *) (* *) (* Function to compute whether one term is a subterm of another. *) (*----------------------------------------------------------------------------*) let rec is_subterm subterm tm = try( if (tm = subterm) then true else ((is_subterm subterm (rator tm)) or (is_subterm subterm (rand tm))) )with Failure _ -> false;; (*----------------------------------------------------------------------------*) (* no_new_terms : term -> term -> bool *) (* *) (* Function to determine whether all of the arguments of an application *) (* "f x1 ... xn" are subterms of a term. *) (*----------------------------------------------------------------------------*) let no_new_terms app tm = try (let args = snd (strip_comb app) in itlist (fun x y -> x & y) (map (fun arg -> is_subterm arg tm) args) true ) with Failure _ -> failwith "no_new_terms";; (*----------------------------------------------------------------------------*) (* hide_fun_call : term -> term -> term *) (* *) (* Function to replace occurrences of a particular function call in a term *) (* with a genvar, so that `no_new_terms' can be used to look for arguments in *) (* a term less the original call. *) (*----------------------------------------------------------------------------*) let hide_fun_call app tm = let var = genvar (type_of app) in subst [(var,app)] tm;; (*----------------------------------------------------------------------------*) (* is_explicit_value : term -> bool *) (* *) (* Function to compute whether a term is an explicit value. An explicit value *) (* is either T or F or an application of a shell constructor to explicit *) (* values. A `bottom object' corresponds to an application to no arguments. *) (* I have also made numeric constants explicit values, since they are *) (* equivalent to some number of applications of SUC to 0. *) (*----------------------------------------------------------------------------*) let is_explicit_value tm = let rec is_explicit_value' constructors tm = (is_T tm) or (is_F tm) or ((is_const tm) & (type_of tm = `:num`)) or (let (f,args) = strip_comb tm in (try(mem (fst (dest_const f)) constructors) with Failure _ -> false) & (forall (is_explicit_value' constructors) args)) in is_explicit_value' (all_constructors ()) tm;; (*----------------------------------------------------------------------------*) (* more_explicit_values : term -> term -> bool *) (* *) (* Returns true if and only if a new function call (second argument) has more *) (* arguments that are explicit values than the old function call (first *) (* argument). *) (*----------------------------------------------------------------------------*) let more_explicit_values old_call new_call = try (let (f1,args1) = strip_comb old_call and (f2,args2) = strip_comb new_call in if (f1 = f2) then let n1 = length (filter is_explicit_value args1) and n2 = length (filter is_explicit_value args2) in n2 > n1 else failwith "" ) with Failure _ -> failwith "more_explicit_values";; (*----------------------------------------------------------------------------*) (* good_properties : term list -> term -> term -> term -> bool *) (* *) (* Function to determine whether the recursive calls in the expansion of a *) (* function call have good properties. The first argument is a list of *) (* assumptions currently being made. The second argument is the original *) (* call. The third argument is the (simplified) expansion of the call, and *) (* the fourth argument is the term currently being processed and which *) (* contains the function call. *) (*----------------------------------------------------------------------------*) (*< Boyer and Moore's heuristic let good_properties assumps call body_of_call tm = let rec in_assumps tm assumps = if (assumps = []) then false else if (is_subterm tm (hd assumps)) then true else in_assumps tm (tl assumps) in (let name = fst (dest_const (fst (strip_comb call))) and body_less_call = hide_fun_call call tm in let rec_calls = recursive_calls name body_of_call in let bools = map (fun rc -> (no_new_terms rc body_less_call) or (in_assumps rc assumps) or (more_explicit_values call rc)) rec_calls in itlist (fun x y -> x & y) bools true ) with Failure _ -> failwith "good_properties";; >*) (* For HOL implementation, the restricted form of definitions allows all *) (* recursive calls to be considered to have good properties. *) let good_properties assumps call body_of_call tm = true;;