(******************************************************************************) (* FILE : main.ml *) (* DESCRIPTION : The main functions for the Boyer-Moore-style prover. *) (* *) (* READS FILES : <none> *) (* WRITES FILES : <none> *) (* *) (* AUTHOR : R.J.Boulton *) (* DATE : 27th June 1991 *) (* *) (* LAST MODIFIED : R.J.Boulton *) (* DATE : 13th October 1992 *) (* *) (* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) (* DATE : July 2009 *) (******************************************************************************) (*----------------------------------------------------------------------------*) (* BOYER_MOORE : conv *) (* *) (* Boyer-Moore-style automatic theorem prover. *) (* Given a term "tm", attempts to prove |- tm. *) (*----------------------------------------------------------------------------*) let BOYER_MOORE_MESON tm = my_gen_terms := []; counterexamples := 0; proof_print_depth := 0; bm_steps := (0,0); try (proof_print_newline (FILTERED_WATERFALL [taut_heuristic; clausal_form_heuristic; setify_heuristic; meson_heuristic; subst_heuristic; HL_simplify_heuristic; use_equality_heuristic; generalize_heuristic_ext; irrelevance_heuristic] induction_heuristic [] (tm,false)) ) with Failure _ -> failwith "BOYER_MOORE";; let BOYER_MOORE_GEN tm = my_gen_terms := []; counterexamples := 0; proof_print_depth := 0; bm_steps := (0,0); try (proof_print_newline (FILTERED_WATERFALL [taut_heuristic; clausal_form_heuristic; setify_heuristic; subst_heuristic; HL_simplify_heuristic; use_equality_heuristic; generalize_heuristic_ext; irrelevance_heuristic] induction_heuristic [] (tm,false)) ) with Failure _ -> failwith "BOYER_MOORE";; let BOYER_MOORE_EXT tm = my_gen_terms := []; counterexamples := 0; proof_print_depth := 0; bm_steps := (0,0); try (proof_print_newline (FILTERED_WATERFALL [taut_heuristic; clausal_form_heuristic; setify_heuristic; subst_heuristic; use_equality_heuristic; HL_simplify_heuristic; (* meson_heuristic; *) generalize_heuristic; irrelevance_heuristic] induction_heuristic [] (tm,false)) ) with Failure _ -> failwith "BOYER_MOORE";; let BOYER_MOORE tm = counterexamples := 0; my_gen_terms := []; proof_print_depth := 0; bm_steps := (0,0); try (proof_print_newline (WATERFALL [clausal_form_heuristic; subst_heuristic; simplify_heuristic; use_equality_heuristic; generalize_heuristic; irrelevance_heuristic] induction_heuristic (tm,false)) ) with Failure _ -> failwith "BOYER_MOORE";; (*----------------------------------------------------------------------------*) (* BOYER_MOORE_CONV : conv *) (* *) (* Boyer-Moore-style automatic theorem prover. *) (* Given a term "tm", attempts to prove |- tm = T. *) (*----------------------------------------------------------------------------*) let BOYER_MOORE_CONV tm = try (EQT_INTRO (BOYER_MOORE tm)) with Failure _ -> failwith "BOYER_MOORE_CONV";; (*----------------------------------------------------------------------------*) (* HEURISTIC_TAC : *) (* ((term # bool) -> ((term # bool) list # proof)) list -> tactic *) (* *) (* Tactic to do automatic proof using a list of heuristics. The tactic will *) (* fail if it thinks the goal is not a theorem. Otherwise it will either *) (* prove the goal, or return as subgoals the conjectures it couldn't handle. *) (* *) (* If the `proof_printing' flag is set to true, the tactic displays each new *) (* conjecture it generates, prints blank lines between subconjectures which *) (* resulted from a split, and prints a final blank line when it can do no *) (* more. *) (* *) (* Given a goal, the tactic constructs an implication from it, so that the *) (* hypotheses are made available. It then tries to prove this implication. *) (* When it can do no more, the function splits the clauses that it couldn't *) (* prove into disjuncts. The last disjunct is assumed to be a conclusion, and *) (* the rest are taken to be hypotheses. These new goals are returned together *) (* with a proof of the original goal. *) (* *) (* The proof takes a list of theorems for the subgoals and discharges the *) (* hypotheses so that the theorems are in clausal form. These clauses are *) (* then used to prove the implication that was constructed from the original *) (* goal. Finally the antecedants of this implication are undischarged to give *) (* a theorem for the original goal. *) (*----------------------------------------------------------------------------*) let HEURISTIC_TAC heuristics (asl,w) = proof_print_depth := 0; try (let negate tm = if (is_neg tm) then (rand tm) else (mk_neg tm) and NEG_DISJ_DISCH tm th = if (is_neg tm) then DISJ_DISCH (rand tm) th else CONV_RULE (REWR_CONV IMP_DISJ_THM) (DISCH tm th) in let tm = list_mk_imp (asl,w) in let tree = proof_print_newline (waterfall (clausal_form_heuristic::heuristics) (tm,false)) in let tml = map fst (fringe_of_clause_tree tree) in let disjsl = map disj_list tml in let goals = map (fun disjs -> (map negate (butlast disjs),last disjs)) disjsl in let proof thl = let thl' = map (fun (th,goal)-> itlist NEG_DISJ_DISCH (fst goal) th) (lcombinep (thl,goals)) in funpow (length asl) UNDISCH (prove_clause_tree tree thl') in (goals,proof) ) with Failure _ -> failwith "HEURISTIC_TAC";; (*----------------------------------------------------------------------------*) (* BOYER_MOORE_TAC : tactic *) (* *) (* Tactic to do automatic proof using Boyer & Moore's heuristics. The tactic *) (* will fail if it thinks the goal is not a theorem. Otherwise it will either *) (* prove the goal, or return as subgoals the conjectures it couldn't handle. *) (*----------------------------------------------------------------------------*) let BOYER_MOORE_TAC aslw = try (HEURISTIC_TAC [subst_heuristic; simplify_heuristic; use_equality_heuristic; generalize_heuristic; irrelevance_heuristic; induction_heuristic] aslw ) with Failure _ -> failwith "BOYER_MOORE_TAC";; (*----------------------------------------------------------------------------*) (* BM_SIMPLIFY_TAC : tactic *) (* *) (* Tactic to do automatic simplification using Boyer & Moore's heuristics. *) (* The tactic will fail if it thinks the goal is not a theorem. Otherwise, it *) (* will either prove the goal or return the simplified conjectures as *) (* subgoals. *) (*----------------------------------------------------------------------------*) let BM_SIMPLIFY_TAC aslw = try (HEURISTIC_TAC [subst_heuristic;simplify_heuristic] aslw ) with Failure _ -> failwith "BM_SIMPLIFY_TAC";; (*----------------------------------------------------------------------------*) (* BM_INDUCT_TAC : tactic *) (* *) (* Tactic which attempts to do a SINGLE induction using Boyer & Moore's *) (* heuristics. The cases of the induction are returned as subgoals. *) (*----------------------------------------------------------------------------*) let BM_INDUCT_TAC aslw = try (let induct = ref true in let once_induction_heuristic x = if !induct then (induct := false; induction_heuristic x) else failwith "" in HEURISTIC_TAC [once_induction_heuristic] aslw ) with Failure _ -> failwith "BM_INDUCT_TAC";;