let fix ts = MAP_EVERY X_GEN_TAC ts;;
let assume lab t =
DISCH_THEN(fun th -> if concl th = t then LABEL_TAC lab th
else failwith "assume");;
let we're finished tac = tac;;
let suffices_to_prove q tac = SUBGOAL_THEN q (fun th -> MP_TAC th THEN tac);;
let note(lab,t) tac =
SUBGOAL_THEN t MP_TAC THENL [tac; ALL_TAC] THEN
DISCH_THEN(fun th -> LABEL_TAC lab th);;
let have t = note("",t);;
let cases (lab,t) tac =
SUBGOAL_THEN t MP_TAC THENL [tac; ALL_TAC] THEN
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN (LABEL_TAC lab));;
let consider (x,lab,t) tac =
let tm = mk_exists(x,t) in
SUBGOAL_THEN tm (X_CHOOSE_THEN x (LABEL_TAC lab)) THENL [tac; ALL_TAC];;
let trivial = MESON_TAC[];;
let algebra = CONV_TAC NUM_RING;;
let arithmetic = ARITH_TAC;;
let by labs tac = MAP_EVERY (fun l -> USE_THEN l MP_TAC) labs THEN tac;;
let using ths tac = MAP_EVERY MP_TAC ths THEN tac;;
let so constr arg tac = constr arg (FIRST_ASSUM MP_TAC THEN tac);;
let NSQRT_2 = prove
(`!p q. p * p = 2 * q * q ==> q = 0`,
suffices_to_prove
`!p. (!m. m < p ==> (!q. m * m = 2 * q * q ==> q = 0))
==> (!q. p * p = 2 * q * q ==> q = 0)`
(MATCH_ACCEPT_TAC
num_WF) THEN
fix [`p:num`] THEN
assume("A") `!m. m < p ==> !q. m * m = 2 * q * q ==> q = 0` THEN
fix [`q:num`] THEN
assume("B") `p * p = 2 * q * q` THEN
so have `
EVEN(p * p) <=>
EVEN(2 * q * q)` (trivial) THEN
so have `
EVEN(p)` (using [ARITH;
EVEN_MULT] trivial) THEN
so consider (`m:num`,"C",`p = 2 * m`) (using [
EVEN_EXISTS] trivial) THEN
cases ("D",`q < p \/ p <= q`) (arithmetic) THENL
[so have `q * q = 2 * m * m ==> m = 0` (by ["A"] trivial) THEN
so we're finished (by ["B";
"C"] algebra);
so have `p * p <= q * q` (using [LE_MULT2] trivial) THEN
so have `q * q = 0` (by ["B"] arithmetic) THEN
so we're finished (algebra)]);;