needs "Tutorial/Vectors.ml";;

let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir")
 (MESON[LEMMA_0] `?x:real^3. ~(x = vec 0)`);;

parse_as_infix("||",(11,"right"));;
parse_as_infix("_|_",(11,"right"));;

let perpdir = new_definition
 `x _|_ y <=> orthogonal (dest_dir x) (dest_dir y)`;;
let pardir = new_definition
 `x || y <=> (dest_dir x) cross (dest_dir y) = vec 0`;;
let DIRECTION_CLAUSES = 
prove (`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\ ((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`,
MESON_TAC[direction_tybij]);;
let [PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS] = (CONJUNCTS o prove) (`(!x. x || x) /\ (!x y. x || y <=> y || x) /\ (!x y z. x || y /\ y || z ==> x || z)`, REWRITE_TAC[pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;
let DIRECTION_AXIOM_1 = 
prove (`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\ !l'. p _|_ l' /\ p' _|_ l' ==> l' || l`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`p:real^3`; `p':real^3`] NORMAL_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
let DIRECTION_AXIOM_2 = 
prove (`!l l'. ?p. p _|_ l /\ p _|_ l'`,
REWRITE_TAC[perpdir; DIRECTION_CLAUSES] THEN MESON_TAC[NORMAL_EXISTS; ORTHOGONAL_SYM]);;
let DIRECTION_AXIOM_3 = 
prove (`?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\ ~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN MAP_EVERY (fun t -> EXISTS_TAC t THEN REWRITE_TAC[LEMMA_0]) [`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN VEC3_TAC);;
let CROSS_0 = VEC3_RULE `x cross vec 0 = vec 0 /\ vec 0 cross x = vec 0`;;
let DIRECTION_AXIOM_4_WEAK = 
prove (`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`,
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\ ~((l cross basis 1) cross (l cross basis 2) = vec 0) \/ orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\ ~((l cross basis 1) cross (l cross basis 3) = vec 0) \/ orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\ ~((l cross basis 2) cross (l cross basis 3) = vec 0)` MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[CROSS_0]]);;
let ORTHOGONAL_COMBINE = 
prove (`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b) ==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`,
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
let DIRECTION_AXIOM_4 = 
prove (`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\ p _|_ l /\ p' _|_ l /\ p'' _|_ l`,
let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;;
let PERPDIR_WELLDEF = 
prove (`!x y x' y'. x || x' /\ y || y' ==> (x _|_ y <=> x' _|_ y')`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;
let perpl,perpl_th = lift_function (snd line_tybij) (PARDIR_REFL,PARDIR_TRANS) "perpl" PERPDIR_WELLDEF;; let line_lift_thm = lift_theorem line_tybij (PARDIR_REFL,PARDIR_SYM,PARDIR_TRANS) [perpl_th];; let LINE_AXIOM_1 = line_lift_thm DIRECTION_AXIOM_1;; let LINE_AXIOM_2 = line_lift_thm DIRECTION_AXIOM_2;; let LINE_AXIOM_3 = line_lift_thm DIRECTION_AXIOM_3;; let LINE_AXIOM_4 = line_lift_thm DIRECTION_AXIOM_4;; let point_tybij = new_type_definition "point" ("mk_point","dest_point") (prove(`?x:line. T`,REWRITE_TAC[]));; parse_as_infix("on",(11,"right"));;
let on = new_definition `p on l <=> perpl (dest_point p) l`;;
let POINT_CLAUSES = 
prove (`((p = p') <=> (dest_point p = dest_point p')) /\ ((!p. P (dest_point p)) <=> (!l. P l)) /\ ((?p. P (dest_point p)) <=> (?l. P l))`,
MESON_TAC[point_tybij]);;
let POINT_TAC th = REWRITE_TAC[on; POINT_CLAUSES] THEN ACCEPT_TAC th;;
let AXIOM_1 = 
prove (`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\ !l'. p on l' /\ p' on l' ==> (l' = l)`,
POINT_TAC LINE_AXIOM_1);;
let AXIOM_2 = 
prove (`!l l'. ?p. p on l /\ p on l'`,
POINT_TAC LINE_AXIOM_2);;
let AXIOM_3 = 
prove (`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ ~(?l. p on l /\ p' on l /\ p'' on l)`,
POINT_TAC LINE_AXIOM_3);;
let AXIOM_4 = 
prove (`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ p on l /\ p' on l /\ p'' on l`,
POINT_TAC LINE_AXIOM_4);;