;
;
let fano_incidence =
[1,1; 1,2; 1,3; 2,1; 2,4; 2,5; 3,1; 3,6; 3,7; 4,2; 4,4;
4,6; 5,2; 5,5; 5,7; 6,3; 6,4; 6,7; 7,3; 7,5; 7,6];;
let fano_point i = mk_const("Point_"^string_of_int i,[]);;
let fano_line i = mk_const("Line_"^string_of_int i,[]);;
let p = `p:point` and l = `l:line` ;;
let fano_clause (i,j) = mk_conj(mk_eq(p,fano_point i),mk_eq(l,fano_line j));;
parse_as_infix("ON",(11,"right"));;
let ON = new_definition
(mk_eq(`((ON):point->line->bool) p l`,
list_mk_disj(map fano_clause fano_incidence)));;
let ON_CLAUSES = prove
(list_mk_conj(allpairs
(fun i j -> mk_eq(mk_comb(mk_comb(`(ON)`,fano_point i),fano_line j),
if mem (i,j) fano_incidence then `T` else `F`))
(1--7) (1--7)),
REWRITE_TAC[ON; distinctness "line";
distinctness "point"]);;
let FORALL_POINT = prove
(`(!p. P p) <=> P Point_1 /\ P Point_2 /\ P Point_3 /\ P Point_4 /\
P Point_5 /\ P Point_6 /\ P Point_7`,
EQ_TAC THENL [SIMP_TAC[]; REWRITE_TAC[point_INDUCT]]);;
let FORALL_LINE = prove
(`(!p. P p) <=> P Line_1 /\ P Line_2 /\ P Line_3 /\ P Line_4 /\
P Line_5 /\ P Line_6 /\ P Line_7`,
EQ_TAC THENL [SIMP_TAC[]; REWRITE_TAC[line_INDUCT]]);;
let EXISTS_POINT = prove
(`(?p. P p) <=> P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/
P Point_5 \/ P Point_6 \/ P Point_7`,
let EXISTS_LINE = prove
(`(?p. P p) <=> P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/
P Line_5 \/ P Line_6 \/ P Line_7`,
let FANO_TAC =
GEN_REWRITE_TAC DEPTH_CONV
[FORALL_POINT; EXISTS_LINE; EXISTS_POINT; FORALL_LINE] THEN
GEN_REWRITE_TAC DEPTH_CONV
(basic_rewrites() @
[ON_CLAUSES; distinctness "point"; distinctness "line"]);;
let FANO_RULE tm = prove(tm,FANO_TAC);;
let AXIOM_1 = FANO_RULE
`!p p'. ~(p = p') ==> ?l. p ON l /\ p' ON l /\
!l'. p ON l' /\ p' ON l' ==> l' = l`;;
let AXIOM_2 = FANO_RULE
`!l l'. ?p. p ON l /\ p ON l'`;;
let AXIOM_3 = FANO_RULE
`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p ON l /\ p' ON l /\ p'' ON l)`;;
let AXIOM_4 = FANO_RULE
`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p ON l /\ p' ON l /\ p'' ON l`;;