(* ------------------------------------------------------------------------- *)
(* Bug puzzle.                                                               *)
(* ------------------------------------------------------------------------- *)

prioritize_real();;

let move = new_definition
 `move ((ax,ay),(bx,by),(cx,cy)) ((ax',ay'),(bx',by'),(cx',cy')) <=>
        (?a. ax' = ax + a * (cx - bx) /\ ay' = ay + a * (cy - by) /\
             bx' = bx /\ by' = by /\ cx' = cx /\ cy' = cy) \/
        (?b. bx' = bx + b * (ax - cx) /\ by' = by + b * (ay - cy) /\
             ax' = ax /\ ay' = ay /\ cx' = cx /\ cy' = cy) \/
        (?c. ax' = ax /\ ay' = ay /\ bx' = bx /\ by' = by /\
             cx' = cx + c * (bx - ax) /\ cy' = cy + c * (by - ay))`;;
let reachable_RULES,reachable_INDUCT,reachable_CASES = new_inductive_definition `(!p. reachable p p) /\ (!p q r. move p q /\ reachable q r ==> reachable p r)`;;
let oriented_area = new_definition
 `oriented_area ((ax,ay),(bx,by),(cx,cy)) =
      ((bx - ax) * (cy - ay) - (cx - ax) * (by - ay)) / &2`;;
let MOVE_INVARIANT = 
prove (`!p p'. move p p' ==> oriented_area p = oriented_area p'`,
REWRITE_TAC[FORALL_PAIR_THM; move; oriented_area] THEN CONV_TAC REAL_RING);;
let REACHABLE_INVARIANT = 
prove (`!p p'. reachable p p' ==> oriented_area p = oriented_area p'`,
MATCH_MP_TAC reachable_INDUCT THEN MESON_TAC[MOVE_INVARIANT]);;
let IMPOSSIBILITY_B = 
prove (`~(reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(&2,&5),(-- &2,&3)) \/ reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(-- &2,&3),(&2,&5)) \/ reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(&1,&2),(-- &2,&3)) \/ reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(-- &2,&3),(&1,&2)) \/ reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&1,&2),(&2,&5)) \/ reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&2,&5),(&1,&2)))`,
STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REACHABLE_INVARIANT) THEN REWRITE_TAC[oriented_area] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Verification of a simple concurrent program. *) (* ------------------------------------------------------------------------- *)
let init = new_definition
 `init (x,y,pc1,pc2,sem) <=>
        pc1 = 10 /\ pc2 = 10 /\ x = 0 /\ y = 0 /\ sem = 1`;;
let trans = new_definition
 `trans (x,y,pc1,pc2,sem) (x',y',pc1',pc2',sem') <=>
        pc1 = 10 /\ sem > 0 /\ pc1' = 20 /\ sem' = sem - 1 /\
                   (x',y',pc2') = (x,y,pc2) \/
        pc2 = 10 /\ sem > 0 /\ pc2' = 20 /\ sem' = sem - 1 /\
                   (x',y',pc1') = (x,y,pc1) \/
        pc1 = 20 /\ pc1' = 30 /\ x' = x + 1 /\
                   (y',pc2',sem') = (y,pc2,sem) \/
        pc2 = 20 /\ pc2' = 30 /\ y' = y + 1 /\ x' = x /\
                   pc1' = pc1 /\ sem' = sem \/
        pc1 = 30 /\ pc1' = 10 /\ sem' = sem + 1 /\
                   (x',y',pc2') = (x,y,pc2) \/
        pc2 = 30 /\ pc2' = 10 /\ sem' = sem + 1 /\
                   (x',y',pc1') = (x,y,pc1)`;;
let mutex = new_definition
 `mutex (x,y,pc1,pc2,sem) <=> pc1 = 10 \/ pc2 = 10`;;
let indinv = new_definition
 `indinv (x:num,y:num,pc1,pc2,sem) <=>
        sem + (if pc1 = 10 then 0 else 1) + (if pc2 = 10 then 0 else 1) = 1`;;
needs "Library/rstc.ml";;
let INDUCTIVE_INVARIANT = 
prove (`!init invariant transition P. (!s. init s ==> invariant s) /\ (!s s'. invariant s /\ transition s s' ==> invariant s') /\ (!s. invariant s ==> P s) ==> !s s':A. init s /\ RTC transition s s' ==> P s'`,
REPEAT GEN_TAC THEN MP_TAC(ISPECL [`transition:A->A->bool`; `\s s':A. invariant s ==> invariant s'`] RTC_INDUCT) THEN MESON_TAC[]);;
let MUTEX = 
prove (`!s s'. init s /\ RTC trans s s' ==> mutex s'`,
MATCH_MP_TAC INDUCTIVE_INVARIANT THEN EXISTS_TAC `indinv` THEN REWRITE_TAC[init; trans; indinv; mutex; FORALL_PAIR_THM; PAIR_EQ] THEN ARITH_TAC);;