g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;;
e DISCH_TAC;;
b();;
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));;
e(SIMP_TAC[]);;
e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);;
e DISCH_TAC;;
e(ASM_REWRITE_TAC[]);;
e(CONV_TAC ARITH_RULE);;
let trivial = top_thm();;
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;;
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));;
e(SIMP_TAC[]);;
e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);;
e DISCH_TAC;;
e(ASM_REWRITE_TAC[]);;
e(CONV_TAC ARITH_RULE);;
let trivial = top_thm();;
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;;
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN
SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);;
let trivial = top_thm();;
let trivial = prove
(`2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`,
CONV_TAC(REWRITE_CONV[
LE_ANTISYM]) THEN
SIMP_TAC[] THEN ONCE_REWRITE_TAC[
EQ_SYM_EQ] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);;
let trivial = prove
(`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`,
REPEAT GEN_TAC THEN MP_TAC(SPECL [`--x`; `y:real`]
REAL_LE_MUL) THEN
MP_TAC(SPECL [`x:real`; `--y`]
REAL_LE_MUL) THEN REAL_ARITH_TAC);;