(* ========================================================================= *) (* Complete HOL kernel of types, terms and theorems. *) (* *) (* John Harrison, University of Cambridge Computer Laboratory *) (* *) (* (c) Copyright, University of Cambridge 1998 *) (* (c) Copyright, John Harrison 1998-2007 *) (* ========================================================================= *) #load "unix.cma";; needs "lib.ml";; unset_jrh_lexer;; let doappend ap = (if ap then Unix.O_APPEND else Unix.O_TRUNC) ::[Unix.O_WRONLY; Unix.O_CREAT];; set_jrh_lexer;; module type Hol_kernel = sig type hol_type = private Tyvar of string | Tyapp of string * hol_type list type term = private Var of string * hol_type | Const of string * hol_type | Comb of term * term | Abs of term * term type thm val read_hashes : unit -> unit val open_deps : bool -> unit val close_deps : unit -> unit val types: unit -> (string * int)list val get_type_arity : string -> int val new_type : (string * int) -> unit val mk_type: (string * hol_type list) -> hol_type val mk_vartype : string -> hol_type val dest_type : hol_type -> (string * hol_type list) val dest_vartype : hol_type -> string val is_type : hol_type -> bool val is_vartype : hol_type -> bool val tyvars : hol_type -> hol_type list val type_subst : (hol_type * hol_type)list -> hol_type -> hol_type val bool_ty : hol_type val aty : hol_type val constants : unit -> (string * hol_type) list val get_const_type : string -> hol_type val new_constant : string * hol_type -> unit val type_of : term -> hol_type val alphaorder : term -> term -> int val is_var : term -> bool val is_const : term -> bool val is_abs : term -> bool val is_comb : term -> bool val mk_var : string * hol_type -> term val mk_const : string * (hol_type * hol_type) list -> term val mk_abs : term * term -> term val mk_comb : term * term -> term val dest_var : term -> string * hol_type val dest_const : term -> string * hol_type val dest_comb : term -> term * term val dest_abs : term -> term * term val frees : term -> term list val freesl : term list -> term list val freesin : term list -> term -> bool val vfree_in : term -> term -> bool val type_vars_in_term : term -> hol_type list val variant : term list -> term -> term val vsubst : (term * term) list -> term -> term val inst : (hol_type * hol_type) list -> term -> term val rand: term -> term val rator: term -> term val dest_eq: term -> term * term val dest_thm : thm -> term list * term val hyp : thm -> term list val concl : thm -> term val REFL : term -> thm val TRANS : thm -> thm -> thm val MK_COMB : thm * thm -> thm val ABS : term -> thm -> thm val BETA : term -> thm val ASSUME : term -> thm val EQ_MP : thm -> thm -> thm val DEDUCT_ANTISYM_RULE : thm -> thm -> thm val INST_TYPE : (hol_type * hol_type) list -> thm -> thm val INST : (term * term) list -> thm -> thm val axioms : unit -> thm list val new_axiom : term -> thm val definitions : unit -> thm list val new_basic_definition : term -> thm val new_basic_type_definition : string -> string * string -> thm -> thm * thm end;; (* ------------------------------------------------------------------------- *) (* This is the implementation of those primitives. *) (* ------------------------------------------------------------------------- *) module Hol : Hol_kernel = struct type hol_type = Tyvar of string | Tyapp of string * hol_type list type term = Var of string * hol_type | Const of string * hol_type | Comb of term * term | Abs of term * term type thm = Sequent of (term list * term * string list option) (* DEPRECORD BEGIN *) let tshs = Hashtbl.create 20000;; let read_hashes () = let hdir = try (Sys.getenv "EVAL") with _ -> "HH" in let inc = open_in (hdir ^ "/hashes") in let l = ((input_value inc) : ((term list * term) * string) list) in close_in inc; print_endline ("Read in: " ^ string_of_int (List.length l)); List.iter (fun (tp, s) -> Hashtbl.replace tshs tp s) l ;; read_hashes ();; let oc = ref stdout;; let hsth = Hashtbl.create 20000;; let open_deps append = let hdir = try (Sys.getenv "EVAL") with _ -> "HH" in oc := Unix.out_channel_of_descr (Unix.openfile (hdir ^ "/deps.human") (doappend append) 0o644) ;; let close_deps () = close_out !oc; oc := stdout;; open_deps false;; let comb_deps sofar dep = match sofar with None -> None | Some s -> match dep with None -> None | Some d -> Some (union s d) ;; let rec conjuncts = function Comb (Comb (Const ("/\\",_), l), r) -> conjuncts l @ conjuncts r | x -> [x];; let conjunctsp (a,c) = List.map (fun c -> (a,c)) (conjuncts c);; let fof_no_need = ref [ "a43cd4681dbe776f013b32f4075d8077" (*T_DEF*); "73d942f4151839788716e38ba3405649" (*AND_DEF*); "75d7449b878984be8c06c276b6448aaf" (*IMP_DEF*); "5c7af4e53bf129f5bc477d46c470f10b" (*FORALL_DEF*); "361e3597815c34ee6ab041ea98daf123" (*EXISTS_DEF*); "754e12aec7b4aa193961b03fe8f9c785" (*OR_DEF*); "0962b85c0b98bb66a33d2a3afd640ba3" (*F_DEF*); "465d510669c9fc4145d8988bd6053bf7" (*NOT_DEF*); "0864b4c13fddfd286c4a8aa7d03954f5" (*EXCLUDED_MIDDLE*) ];; let proof_DEPS ps th = if Hashtbl.mem tshs th then begin let ths = conjunctsp th in let process_th th = let s = Hashtbl.find tshs th in try Hashtbl.find hsth s with Not_found -> let de = match List.fold_left comb_deps (Some []) ps with None -> "!" | Some l -> String.concat " " l in Printf.fprintf !oc "%s:%s\n%!" s de; if de = "" then fof_no_need := s :: !fof_no_need else (); let ret = if List.mem s !fof_no_need then Some [] else Some [s] in Hashtbl.add hsth s ret; ret in List.fold_left comb_deps (Some []) (List.map process_th ths) end else List.fold_left comb_deps (Some []) ps;; let proof_AXIOM th = try let s = Hashtbl.find tshs th in try Hashtbl.find hsth s with Not_found -> Printf.fprintf !oc "%s:-\n%!" s; let ret = if List.mem s !fof_no_need then Some [] else Some [s] in Hashtbl.add hsth s ret; ret with Not_found -> None (* PROOFRECORDING END *) (* ------------------------------------------------------------------------- *) (* List of current type constants with their arities. *) (* *) (* Initially we just have the boolean type and the function space *) (* constructor. Later on we add as primitive the type of individuals. *) (* All other new types result from definitional extension. *) (* ------------------------------------------------------------------------- *) let the_type_constants = ref ["bool",0; "fun",2] (* ------------------------------------------------------------------------- *) (* Return all the defined types. *) (* ------------------------------------------------------------------------- *) let types() = !the_type_constants (* ------------------------------------------------------------------------- *) (* Lookup function for type constants. Returns arity if it succeeds. *) (* ------------------------------------------------------------------------- *) let get_type_arity s = assoc s (!the_type_constants) (* ------------------------------------------------------------------------- *) (* Declare a new type. *) (* ------------------------------------------------------------------------- *) let new_type(name,arity) = if can get_type_arity name then failwith ("new_type: type "^name^" has already been declared") else the_type_constants := (name,arity)::(!the_type_constants) (* ------------------------------------------------------------------------- *) (* Basic type constructors. *) (* ------------------------------------------------------------------------- *) let mk_type(tyop,args) = let arity = try get_type_arity tyop with Failure _ -> failwith ("mk_type: type "^tyop^" has not been defined") in if arity = length args then Tyapp(tyop,args) else failwith ("mk_type: wrong number of arguments to "^tyop) let mk_vartype v = Tyvar(v) (* ------------------------------------------------------------------------- *) (* Basic type destructors. *) (* ------------------------------------------------------------------------- *) let dest_type = function (Tyapp (s,ty)) -> s,ty | (Tyvar _) -> failwith "dest_type: type variable not a constructor" let dest_vartype = function (Tyapp(_,_)) -> failwith "dest_vartype: type constructor not a variable" | (Tyvar s) -> s (* ------------------------------------------------------------------------- *) (* Basic type discriminators. *) (* ------------------------------------------------------------------------- *) let is_type = can dest_type let is_vartype = can dest_vartype (* ------------------------------------------------------------------------- *) (* Return the type variables in a type and in a list of types. *) (* ------------------------------------------------------------------------- *) let rec tyvars = function (Tyapp(_,args)) -> itlist (union o tyvars) args [] | (Tyvar v as tv) -> [tv] (* ------------------------------------------------------------------------- *) (* Substitute types for type variables. *) (* *) (* NB: non-variables in subst list are just ignored (a check would be *) (* repeated many times), as are repetitions (first possibility is taken). *) (* ------------------------------------------------------------------------- *) let rec type_subst i ty = match ty with Tyapp(tycon,args) -> let args' = qmap (type_subst i) args in if args' == args then ty else Tyapp(tycon,args') | _ -> rev_assocd ty i ty let bool_ty = Tyapp("bool",[]) let aty = Tyvar "A" (* ------------------------------------------------------------------------- *) (* List of term constants and their types. *) (* *) (* We begin with just equality (over all types). Later, the Hilbert choice *) (* operator is added. All other new constants are defined. *) (* ------------------------------------------------------------------------- *) let the_term_constants = ref ["=",Tyapp("fun",[aty;Tyapp("fun",[aty;bool_ty])])] (* ------------------------------------------------------------------------- *) (* Return all the defined constants with generic types. *) (* ------------------------------------------------------------------------- *) let constants() = !the_term_constants (* ------------------------------------------------------------------------- *) (* Gets type of constant if it succeeds. *) (* ------------------------------------------------------------------------- *) let get_const_type s = assoc s (!the_term_constants) (* ------------------------------------------------------------------------- *) (* Declare a new constant. *) (* ------------------------------------------------------------------------- *) let new_constant(name,ty) = if can get_const_type name then failwith ("new_constant: constant "^name^" has already been declared") else the_term_constants := (name,ty)::(!the_term_constants) (* ------------------------------------------------------------------------- *) (* Finds the type of a term (assumes it is well-typed). *) (* ------------------------------------------------------------------------- *) let rec type_of tm = match tm with Var(_,ty) -> ty | Const(_,ty) -> ty | Comb(s,_) -> hd(tl(snd(dest_type(type_of s)))) | Abs(Var(_,ty),t) -> Tyapp("fun",[ty;type_of t]) (* ------------------------------------------------------------------------- *) (* Primitive discriminators. *) (* ------------------------------------------------------------------------- *) let is_var = function (Var(_,_)) -> true | _ -> false let is_const = function (Const(_,_)) -> true | _ -> false let is_abs = function (Abs(_,_)) -> true | _ -> false let is_comb = function (Comb(_,_)) -> true | _ -> false (* ------------------------------------------------------------------------- *) (* Primitive constructors. *) (* ------------------------------------------------------------------------- *) let mk_var(v,ty) = Var(v,ty) let mk_const(name,theta) = let uty = try get_const_type name with Failure _ -> failwith "mk_const: not a constant name" in Const(name,type_subst theta uty) let mk_abs(bvar,bod) = match bvar with Var(_,_) -> Abs(bvar,bod) | _ -> failwith "mk_abs: not a variable" let mk_comb(f,a) = match type_of f with Tyapp("fun",[ty;_]) when Pervasives.compare ty (type_of a) = 0 -> Comb(f,a) | _ -> failwith "mk_comb: types do not agree" (* ------------------------------------------------------------------------- *) (* Primitive destructors. *) (* ------------------------------------------------------------------------- *) let dest_var = function (Var(s,ty)) -> s,ty | _ -> failwith "dest_var: not a variable" let dest_const = function (Const(s,ty)) -> s,ty | _ -> failwith "dest_const: not a constant" let dest_comb = function (Comb(f,x)) -> f,x | _ -> failwith "dest_comb: not a combination" let dest_abs = function (Abs(v,b)) -> v,b | _ -> failwith "dest_abs: not an abstraction" (* ------------------------------------------------------------------------- *) (* Finds the variables free in a term (list of terms). *) (* ------------------------------------------------------------------------- *) let rec frees tm = match tm with Var(_,_) -> [tm] | Const(_,_) -> [] | Abs(bv,bod) -> subtract (frees bod) [bv] | Comb(s,t) -> union (frees s) (frees t) let freesl tml = itlist (union o frees) tml [] (* ------------------------------------------------------------------------- *) (* Whether all free variables in a term appear in a list. *) (* ------------------------------------------------------------------------- *) let rec freesin acc tm = match tm with Var(_,_) -> mem tm acc | Const(_,_) -> true | Abs(bv,bod) -> freesin (bv::acc) bod | Comb(s,t) -> freesin acc s & freesin acc t (* ------------------------------------------------------------------------- *) (* Whether a variable (or constant in fact) is free in a term. *) (* ------------------------------------------------------------------------- *) let rec vfree_in v tm = match tm with Abs(bv,bod) -> v <> bv & vfree_in v bod | Comb(s,t) -> vfree_in v s or vfree_in v t | _ -> Pervasives.compare tm v = 0 (* ------------------------------------------------------------------------- *) (* Finds the type variables (free) in a term. *) (* ------------------------------------------------------------------------- *) let rec type_vars_in_term tm = match tm with Var(_,ty) -> tyvars ty | Const(_,ty) -> tyvars ty | Comb(s,t) -> union (type_vars_in_term s) (type_vars_in_term t) | Abs(Var(_,ty),t) -> union (tyvars ty) (type_vars_in_term t) (* ------------------------------------------------------------------------- *) (* For name-carrying syntax, we need this early. *) (* ------------------------------------------------------------------------- *) let rec variant avoid v = if not(exists (vfree_in v) avoid) then v else match v with Var(s,ty) -> variant avoid (Var(s^"'",ty)) | _ -> failwith "variant: not a variable" (* ------------------------------------------------------------------------- *) (* Substitution primitive (substitution for variables only!) *) (* ------------------------------------------------------------------------- *) let vsubst = let rec vsubst ilist tm = match tm with Var(_,_) -> rev_assocd tm ilist tm | Const(_,_) -> tm | Comb(s,t) -> let s' = vsubst ilist s and t' = vsubst ilist t in if s' == s & t' == t then tm else Comb(s',t') | Abs(v,s) -> let ilist' = filter (fun (t,x) -> x <> v) ilist in if ilist' = [] then tm else let s' = vsubst ilist' s in if s' == s then tm else if exists (fun (t,x) -> vfree_in v t & vfree_in x s) ilist' then let v' = variant [s'] v in Abs(v',vsubst ((v',v)::ilist') s) else Abs(v,s') in fun theta -> if theta = [] then (fun tm -> tm) else if forall (fun (t,x) -> type_of t = snd(dest_var x)) theta then vsubst theta else failwith "vsubst: Bad substitution list" (* ------------------------------------------------------------------------- *) (* Type instantiation primitive. *) (* ------------------------------------------------------------------------- *) exception Clash of term let inst = let rec inst env tyin tm = match tm with Var(n,ty) -> let ty' = type_subst tyin ty in let tm' = if ty' == ty then tm else Var(n,ty') in if Pervasives.compare (rev_assocd tm' env tm) tm = 0 then tm' else raise (Clash tm') | Const(c,ty) -> let ty' = type_subst tyin ty in if ty' == ty then tm else Const(c,ty') | Comb(f,x) -> let f' = inst env tyin f and x' = inst env tyin x in if f' == f & x' == x then tm else Comb(f',x') | Abs(y,t) -> let y' = inst [] tyin y in let env' = (y,y')::env in try let t' = inst env' tyin t in if y' == y & t' == t then tm else Abs(y',t') with (Clash(w') as ex) -> if w' <> y' then raise ex else let ifrees = map (inst [] tyin) (frees t) in let y'' = variant ifrees y' in let z = Var(fst(dest_var y''),snd(dest_var y)) in inst env tyin (Abs(z,vsubst[z,y] t)) in fun tyin -> if tyin = [] then fun tm -> tm else inst [] tyin (* ------------------------------------------------------------------------- *) (* A few bits of general derived syntax. *) (* ------------------------------------------------------------------------- *) let rator tm = match tm with Comb(l,r) -> l | _ -> failwith "rator: Not a combination" let rand tm = match tm with Comb(l,r) -> r | _ -> failwith "rand: Not a combination" (* ------------------------------------------------------------------------- *) (* Syntax operations for equations. *) (* ------------------------------------------------------------------------- *) let safe_mk_eq l r = let ty = type_of l in Comb(Comb(Const("=",Tyapp("fun",[ty;Tyapp("fun",[ty;bool_ty])])),l),r) let dest_eq tm = match tm with Comb(Comb(Const("=",_),l),r) -> l,r | _ -> failwith "dest_eq" (* ------------------------------------------------------------------------- *) (* Useful to have term union modulo alpha-conversion for assumption lists. *) (* ------------------------------------------------------------------------- *) let rec ordav env x1 x2 = match env with [] -> Pervasives.compare x1 x2 | (t1,t2)::oenv -> if Pervasives.compare x1 t1 = 0 then if Pervasives.compare x2 t2 = 0 then 0 else -1 else if Pervasives.compare x2 t2 = 0 then 1 else ordav oenv x1 x2 let rec orda env tm1 tm2 = if tm1 == tm2 & forall (fun (x,y) -> x = y) env then 0 else match (tm1,tm2) with Var(x1,ty1),Var(x2,ty2) -> ordav env tm1 tm2 | Const(x1,ty1),Const(x2,ty2) -> Pervasives.compare tm1 tm2 | Comb(s1,t1),Comb(s2,t2) -> let c = orda env s1 s2 in if c <> 0 then c else orda env t1 t2 | Abs(Var(_,ty1) as x1,t1),Abs(Var(_,ty2) as x2,t2) -> let c = Pervasives.compare ty1 ty2 in if c <> 0 then c else orda ((x1,x2)::env) t1 t2 | Const(_,_),_ -> -1 | _,Const(_,_) -> 1 | Var(_,_),_ -> -1 | _,Var(_,_) -> 1 | Comb(_,_),_ -> -1 | _,Comb(_,_) -> 1 let alphaorder = orda [] let rec term_union l1 l2 = match (l1,l2) with ([],l2) -> l2 | (l1,[]) -> l1 | (h1::t1,h2::t2) -> let c = alphaorder h1 h2 in if c = 0 then h1::(term_union t1 t2) else if c < 0 then h1::(term_union t1 l2) else h2::(term_union l1 t2) let rec term_remove t l = match l with s::ss -> let c = alphaorder t s in if c > 0 then let ss' = term_remove t ss in if ss' == ss then l else s::ss' else if c = 0 then ss else l | [] -> l let rec term_image f l = match l with h::t -> let h' = f h and t' = term_image f t in if h' == h & t' == t then l else term_union [h'] t' | [] -> l (* ------------------------------------------------------------------------- *) (* Basic theorem destructors. *) (* ------------------------------------------------------------------------- *) let dest_thm (Sequent(asl,c,_)) = (asl,c) let hyp (Sequent(asl,c,_)) = asl let concl (Sequent(asl,c,_)) = c (* ------------------------------------------------------------------------- *) (* Basic equality properties; TRANS is derivable but included for efficiency *) (* ------------------------------------------------------------------------- *) let REFL tm = let eq = safe_mk_eq tm tm in Sequent([],eq,proof_DEPS [] ([], eq)) let TRANS (Sequent(asl1,c1,p1)) (Sequent(asl2,c2,p2)) = match (c1,c2) with Comb((Comb(Const("=",_),_) as eql),m1),Comb(Comb(Const("=",_),m2),r) when alphaorder m1 m2 = 0 -> let (a, g) = (term_union asl1 asl2,Comb(eql,r)) in Sequent (a, g, proof_DEPS [p1; p2] (a, g)) | _ -> failwith "TRANS" (* ------------------------------------------------------------------------- *) (* Congruence properties of equality. *) (* ------------------------------------------------------------------------- *) let MK_COMB((Sequent(asl1,c1,p1)),(Sequent(asl2,c2,p2))) = match (c1,c2) with Comb(Comb(Const("=",_),l1),r1),Comb(Comb(Const("=",_),l2),r2) -> (match type_of l1 with Tyapp("fun",[ty;_]) when Pervasives.compare ty (type_of l2) = 0 -> let (a, g) = (term_union asl1 asl2, safe_mk_eq (Comb(l1,l2)) (Comb(r1,r2))) in Sequent (a, g, proof_DEPS [p1; p2] (a, g)) | _ -> failwith "MK_COMB: types do not agree") | _ -> failwith "MK_COMB: not both equations" let ABS v (Sequent(asl,c,p)) = match (v,c) with Var(_,_),Comb(Comb(Const("=",_),l),r) when not(exists (vfree_in v) asl) -> let eq = safe_mk_eq (Abs(v,l)) (Abs(v,r)) in Sequent (asl,eq,proof_DEPS [p] (asl,eq)) | _ -> failwith "ABS";; (* ------------------------------------------------------------------------- *) (* Trivial case of lambda calculus beta-conversion. *) (* ------------------------------------------------------------------------- *) let BETA tm = match tm with Comb(Abs(v,bod),arg) when Pervasives.compare arg v = 0 -> let eq = safe_mk_eq tm bod in Sequent([],eq,proof_DEPS [] ([], eq)) | _ -> failwith "BETA: not a trivial beta-redex" (* ------------------------------------------------------------------------- *) (* Rules connected with deduction. *) (* ------------------------------------------------------------------------- *) let ASSUME tm = if Pervasives.compare (type_of tm) bool_ty = 0 then Sequent([tm],tm,proof_DEPS [] ([tm], tm)) else failwith "ASSUME: not a proposition" let EQ_MP (Sequent(asl1,eq,p1)) (Sequent(asl2,c,p2)) = match eq with Comb(Comb(Const("=",_),l),r) when alphaorder l c = 0 -> let t = term_union asl1 asl2 in Sequent(t,r,proof_DEPS [p1; p2] (t,r)) | _ -> failwith "EQ_MP" let DEDUCT_ANTISYM_RULE (Sequent(asl1,c1,p1)) (Sequent(asl2,c2,p2)) = let asl1' = term_remove c2 asl1 and asl2' = term_remove c1 asl2 in let a = term_union asl1' asl2' and g = safe_mk_eq c1 c2 in Sequent (a, g, proof_DEPS [p1; p2] (a, g)) (* ------------------------------------------------------------------------- *) (* Type and term instantiation. *) (* ------------------------------------------------------------------------- *) let INST_TYPE theta (Sequent(asl,c,p)) = let inst_fn = inst theta in let (a, g) = (term_image inst_fn asl,inst_fn c) in Sequent(a,g, proof_DEPS [p] (a,g)) let INST theta (Sequent(asl,c,p)) = let inst_fun = vsubst theta in let (a, g) = (term_image inst_fun asl,inst_fun c) in Sequent(a, g, proof_DEPS [p] (a,g)) (* ------------------------------------------------------------------------- *) (* Handling of axioms. *) (* ------------------------------------------------------------------------- *) let the_axioms = ref ([]:thm list) let axioms() = !the_axioms let new_axiom tm = if Pervasives.compare (type_of tm) bool_ty = 0 then let th = Sequent([],tm,proof_AXIOM ([],tm)) in (the_axioms := th::(!the_axioms); th) else failwith "new_axiom: Not a proposition" (* ------------------------------------------------------------------------- *) (* Handling of (term) definitions. *) (* ------------------------------------------------------------------------- *) let the_definitions = ref ([]:thm list) let definitions() = !the_definitions let new_basic_definition tm = match tm with Comb(Comb(Const("=",_),Var(cname,ty)),r) -> if not(freesin [] r) then failwith "new_definition: term not closed" else if not (subset (type_vars_in_term r) (tyvars ty)) then failwith "new_definition: Type variables not reflected in constant" else let c = new_constant(cname,ty); Const(cname,ty) in let concl = safe_mk_eq c r in let dth = Sequent([],concl, proof_AXIOM ([],concl)) in the_definitions := dth::(!the_definitions); dth | _ -> failwith "new_basic_definition" (* ------------------------------------------------------------------------- *) (* Handling of type definitions. *) (* *) (* This function now involves no logical constants beyond equality. *) (* *) (* |- P t *) (* --------------------------- *) (* |- abs(rep a) = a *) (* |- P r = (rep(abs r) = r) *) (* *) (* Where "abs" and "rep" are new constants with the nominated names. *) (* ------------------------------------------------------------------------- *) let new_basic_type_definition tyname (absname,repname) (Sequent(asl,c,p)) = if exists (can get_const_type) [absname; repname] then failwith "new_basic_type_definition: Constant(s) already in use" else if not (asl = []) then failwith "new_basic_type_definition: Assumptions in theorem" else let P,x = try dest_comb c with Failure _ -> failwith "new_basic_type_definition: Not a combination" in if not(freesin [] P) then failwith "new_basic_type_definition: Predicate is not closed" else let tyvars = sort (<=) (type_vars_in_term P) in let _ = try new_type(tyname,length tyvars) with Failure _ -> failwith "new_basic_type_definition: Type already defined" in let aty = Tyapp(tyname,tyvars) and rty = type_of x in let absty = Tyapp("fun",[rty;aty]) and repty = Tyapp("fun",[aty;rty]) in let abs = (new_constant(absname,absty); Const(absname,absty)) and rep = (new_constant(repname,repty); Const(repname,repty)) in let a = Var("a",aty) and r = Var("r",rty) in let ax1 = safe_mk_eq (Comb(abs,mk_comb(rep,a))) a and ax2 = safe_mk_eq (Comb(P,r)) (safe_mk_eq (mk_comb(rep,mk_comb(abs,r))) r) in Sequent([],ax1,proof_AXIOM ([],ax1)), Sequent([],ax2,proof_AXIOM ([],ax2)) end;; include Hol;; (* ------------------------------------------------------------------------- *) (* Stuff that didn't seem worth putting in. *) (* ------------------------------------------------------------------------- *) let mk_fun_ty ty1 ty2 = mk_type("fun",[ty1; ty2]);; let bty = mk_vartype "B";; let is_eq tm = match tm with Comb(Comb(Const("=",_),_),_) -> true | _ -> false;; let mk_eq = let eq = mk_const("=",[]) in fun (l,r) -> try let ty = type_of l in let eq_tm = inst [ty,aty] eq in mk_comb(mk_comb(eq_tm,l),r) with Failure _ -> failwith "mk_eq";; (* ------------------------------------------------------------------------- *) (* Tests for alpha-convertibility (equality ignoring names in abstractions). *) (* ------------------------------------------------------------------------- *) let aconv s t = alphaorder s t = 0;; (* ------------------------------------------------------------------------- *) (* Comparison function on theorems. Currently the same as equality, but *) (* it's useful to separate because in the proof-recording version it isn't. *) (* ------------------------------------------------------------------------- *) let equals_thm th th' = dest_thm th = dest_thm th';;