(* ========================================================================= *) (* Definition by primitive recursion and other tools for inductive types. *) (* *) (* John Harrison, University of Cambridge Computer Laboratory *) (* *) (* (c) Copyright, University of Cambridge 1998 *) (* (c) Copyright, John Harrison 1998-2007 *) (* ========================================================================= *) needs "nums.ml";; (* ------------------------------------------------------------------------- *) (* Prove existence of recursive function. The inner "raw" version requires *) (* exact correspondence with recursion theorem; "canon" requires the *) (* PR argument to come first in the arg list; the outer one is more general. *) (* ------------------------------------------------------------------------- *) let prove_recursive_functions_exist = let prove_raw_recursive_functions_exist ax tm = let rawcls = conjuncts tm in let spcls = map (snd o strip_forall) rawcls in let lpats = map (strip_comb o lhand) spcls in let ufns = itlist (insert o fst) lpats [] in let axth = SPEC_ALL ax in let exvs,axbody = strip_exists (concl axth) in let axcls = conjuncts axbody in let f = fst o dest_const o repeat rator o rand o lhand o snd o strip_forall in let findax = C assoc (map (fun t -> f t,t) axcls) in let raxs = map (findax o fst o dest_const o repeat rator o hd o snd) lpats in let axfns = map (repeat rator o lhand o snd o strip_forall) raxs in let urfns = map (fun v -> assocd v (setify (zip axfns (map fst lpats))) v) exvs in let axtm = list_mk_exists(exvs,list_mk_conj raxs) and urtm = list_mk_exists(urfns,tm) in let insts = term_match [] axtm urtm in let ixth = INSTANTIATE insts axth in let ixvs,ixbody = strip_exists (concl ixth) in let ixtm = subst (zip urfns ixvs) ixbody in let ixths = CONJUNCTS (ASSUME ixtm) in let rixths = map (fun t -> find (aconv t o concl) ixths) rawcls in let rixth = itlist SIMPLE_EXISTS ufns (end_itlist CONJ rixths) in PROVE_HYP ixth (itlist SIMPLE_CHOOSE urfns rixth) in let canonize t = let avs,bod = strip_forall t in let l,r = dest_eq bod in let fn,args = strip_comb l in let rarg = hd args and vargs = tl args in let l' = mk_comb(fn,rarg) and r' = list_mk_abs(vargs,r) in let fvs = frees rarg in let def = ASSUME(list_mk_forall(fvs,mk_eq(l',r'))) in GENL avs (RIGHT_BETAS vargs (SPECL fvs def)) in let prove_canon_recursive_functions_exist ax tm = let ths = map canonize (conjuncts tm) in let atm = list_mk_conj (map (hd o hyp) ths) in let aths = CONJUNCTS(ASSUME atm) in let rth = end_itlist CONJ (map2 PROVE_HYP aths ths) in(* ------------------------------------------------------------------------- *) (* Version that defines function(s). *) (* ------------------------------------------------------------------------- *) let new_recursive_definition = let the_recursive_definitions = ref [] in let find_redefinition tm th = let th' = PART_MATCH I th tm in ignore(PART_MATCH I th' (concl th)); th' in fun ax tm -> try let th = tryfind (find_redefinition tm) (!the_recursive_definitions) in warn true "Benign redefinition of recursive function"; th with Failure _ -> let rawcls = conjuncts tm in let spcls = map (snd o strip_forall) rawcls in let lpats = map (strip_comb o lhand) spcls in let ufns = itlist (insert o fst) lpats [] in let fvs = map (fun t -> subtract (frees t) ufns) rawcls in let gcls = map2 (curry list_mk_forall) fvs rawcls inlet eth = prove_raw_recursive_functions_exist ax atm in let evs = fst(strip_exists(concl eth)) in PROVE_HYP eth (itlist SIMPLE_CHOOSE evs (itlist SIMPLE_EXISTS evs rth)) in let reshuffle fn args acc = let args' = uncurry (C (@)) (partition is_var args) in if args = args' then acc else let gvs = map (genvar o type_of) args in let gvs' = map (C assoc (zip args gvs)) args' in let lty = itlist (mk_fun_ty o type_of) gvs' (funpow (length gvs) (hd o tl o snd o dest_type) (type_of fn)) in let fn' = genvar lty in let def = mk_eq(fn,list_mk_abs(gvs,list_mk_comb(fn',gvs'))) in (ASSUME def)::acc and scrub_def t th = let l,r = dest_eq t in MP (INST [r,l] (DISCH t th)) (REFL r) in fun ax tm -> let rawcls = conjuncts tm in let spcls = map (snd o strip_forall) rawcls in let lpats = map (strip_comb o lhand) spcls in let ufns = itlist (insert o fst) lpats [] in let uxargs = map (C assoc lpats) ufns in let trths = itlist2 reshuffle ufns uxargs [] in let tth = GEN_REWRITE_CONV REDEPTH_CONV (BETA_THM::trths) tm in let eth = prove_canon_recursive_functions_exist ax (rand(concl tth)) in let evs,ebod = strip_exists(concl eth) in let fth = itlist SIMPLE_EXISTS ufns (EQ_MP (SYM tth) (ASSUME ebod)) in let gth = itlist scrub_def (map concl trths) fth in PROVE_HYP eth (itlist SIMPLE_CHOOSE evs gth);;let eth = prove_recursive_functions_exist ax (list_mk_conj gcls) in let evs,bod = strip_exists(concl eth) in let dth = new_specification (map (fst o dest_var) evs) eth in let dths = map2 SPECL fvs (CONJUNCTS dth) in let th = end_itlist CONJ dths in the_recursive_definitions := th::(!the_recursive_definitions); th;;