(* ========================================================================= *)
(* (c) Copyright, Bill Richter 2013 *)
(* Distributed under the same license as HOL Light *)
(* *)
(* Proof of the Bug Puzzle conjecture of the HOL Light tutorial: Any two *)
(* triples of points in the plane with the same oriented area can be *)
(* connected in 5 moves or less (FivemovesOrLess). Much of the code is *)
(* due to John Harrison: a proof (NOTENOUGH_4) showing this is the best *)
(* possible result; an early version of Noncollinear_2Span; the *)
(* definition of move, which defines a closed subset *)
(* {(A,B,C,A',B',C') | move (A,B,C) (A',B',C')} of R^6 x R^6, *)
(* i.e. the zero set of a continuous function; FivemovesOrLess_STRONG, *)
(* which handles the degenerate case (collinear or non-distinct triples), *)
(* giving a satisfying answer using this "closed" definition of move. *)
(* *)
(* The mathematical proofs are essentially due to Tom Hales. *)
(* ========================================================================= *)
needs "Multivariate/determinants.ml";;
needs "RichterHilbertAxiomGeometry/readable.ml";;
new_type_abbrev("triple",`:real^2#real^2#real^2`);;
let VEC2_TAC =
SIMP_TAC[CART_EQ; LAMBDA_BETA; FORALL_2; SUM_2; DIMINDEX_2; VECTOR_2;
vector_add; vec; dot; orthogonal; basis;
vector_neg; vector_sub; vector_mul; ARITH] THEN
CONV_TAC REAL_RING;;
let move = new_definition
`!A B C A' B' C':real^2. move (A,B,C) (A',B',C') <=>
(B = B' /\ C = C' /\ collinear {vec 0,C - B,A' - A} \/
A = A' /\ C = C' /\ collinear {vec 0,C - A,B' - B} \/
A = A' /\ B = B' /\ collinear {vec 0,B - A,C' - C})`;;
let reachable = new_definition
`!p p'.
reachable p p' <=> ?n. ?s. s 0 = p /\ s n = p' /\
(!m. 0 <= m /\ m < n ==> move (s m) (s (SUC m)))`;;
let move2Cond = new_definition
`! A B A' B':real^2. move2Cond A B A' B' <=>
~collinear {B,A,A'} /\ ~collinear {A',B,B'} \/
~collinear {A,B,B'} /\ ~collinear {B',A,A'}`;;
let oriented_areaSymmetry = theorem `;
oriented_area (A,B,C) = oriented_area(A',B',C') â
oriented_area (B,C,A) = oriented_area (B',C',A') â§
oriented_area (C,A,B) = oriented_area (C',A',B') â§
oriented_area (A,C,B) = oriented_area (A',C',B') â§
oriented_area (B,A,C) = oriented_area (B',A',C') â§
oriented_area (C,B,A) = oriented_area (C',B',A')
proof
REWRITE_TAC oriented_area; VEC2_TAC;
qed;
`;;
let COLLINEAR_3_2Dzero = theorem `;
ây z:real^2. collinear{vec 0,y,z} â
z$1 * y$2 = y$1 * z$2
proof
REWRITE_TAC COLLINEAR_3_2D; VEC2_TAC;
qed;
`;;
let Noncollinear_3ImpliesDistinct = theorem `;
¬collinear {a,b,c} â ¬(a = b) ⧠¬(a = c) ⧠¬(b = c)
proof
fol COLLINEAR_BETWEEN_CASES BETWEEN_REFL;
qed;
`;;
let collinearSymmetry = theorem `;
collinear {A,B,C}
â collinear {A,C,B} ⧠collinear {B,A,C} â§
collinear {B,C,A} ⧠collinear {C,A,B} ⧠collinear {C,B,A}
proof
{A,C,B} â {A,B,C} ⧠{B,A,C} â {A,B,C} â§
{B,C,A} â {A,B,C} ⧠{C,A,B} â {A,B,C} ⧠{C,B,A} â {A,B,C} [] by set_RULE;
fol - COLLINEAR_SUBSET;
qed;
`;;
let Noncollinear_2Span = theorem `;
âu v w:real^2. ¬collinear {vec 0,v,w} â â s t. s % v + t % w = u
proof
intro_TAC âu v w, H1;
¬(v$1 * w$2 - w$1 * v$2 = &0) [H1'] by fol H1 COLLINEAR_3_2Dzero REAL_SUB_0;
consider M such that
M = transp(vector[v;w]):real^2^2 [Mexists] by fol -;
¬(det M = &0) â§
(â x. (M ** x)$1 = v$1 * x$1 + w$1 * x$2 â§
(M ** x)$2 = v$2 * x$1 + w$2 * x$2) [MatMult] by SIMP_TAC H1' Mexists matrix_vector_mul DIMINDEX_2 SUM_2
TRANSP_COMPONENT VECTOR_2 LAMBDA_BETA ARITH CART_EQ FORALL_2 DET_2;
â r n. ¬(r < n) ⧠r <= MIN n n â r = n [] by arithmetic;
consider x such that M ** x = u [xDef] by fol MatMult - DET_EQ_0_RANK RANK_BOUND MATRIX_FULL_LINEAR_EQUATIONS;
exists_TAC x$1;
exists_TAC x$2;
x$1 * v$1 + x$2 * w$1 = u$1 â§
x$1 * v$2 + x$2 * w$2 = u$2 [xDef] by fol MatMult xDef REAL_MUL_SYM;
SIMP_TAC - CART_EQ LAMBDA_BETA FORALL_2 SUM_2 DIMINDEX_2 VECTOR_2 vector_add vector_mul ARITH;
qed;
`;;
let moveInvariant = theorem `;
âp p'. move p p' â oriented_area p = oriented_area p'
proof
REWRITE_TAC FORALL_PAIR_THM move oriented_area COLLINEAR_LEMMA vector_mul; VEC2_TAC;
qed;
`;;
let ReachLemma = theorem `;
âp p'. reachable p p' â ân. reachableN p p' n
proof
REWRITE_TAC reachable reachableN;
qed;
`;;
let reachableN_CLAUSES = theorem `;
â p p'. (reachableN p p' 0 â p = p') â§
â n. reachableN p p' (SUC n) â â q. reachableN p q n ⧠move q p'
proof
intro_TAC âp p';
consider s0 such that s0 = λm:num. p:triple [s0exists] by fol;
reachableN p p' 0 â p = p' [0CLAUSE] by fol s0exists LE_0 reachableN LT;
â n. reachableN p p' (SUC n) â â q. reachableN p q n ⧠move q p' [Imp1]
proof
intro_TAC ân, H1;
consider s such that
s 0 = p ⧠s (SUC n) = p' ⧠âm. m < SUC n â move (s m) (s (SUC m)) [sDef] by fol H1 LE_0 reachableN;
consider q such that q = s n [qDef] by fol;
fol sDef qDef LE_0 reachableN LT;
qed;
ân. (â q. reachableN p q n ⧠move q p') â reachableN p p' (SUC n) [Imp2]
proof
intro_TAC ân;
REWRITE_TAC IMP_CONJ LEFT_IMP_EXISTS_THM;
intro_TAC âq, nReach, move_qp';
consider s such that
s 0 = p ⧠s n = q ⧠âm. m < n â move (s m) (s (SUC m)) [sDef] by fol nReach reachableN LT LE_0;
REWRITE_TAC reachableN LT LE_0;
exists_TAC λm. if m < SUC n then s m else p';
fol sDef move_qp' LT_0 LT_REFL LT LT_SUC;
qed;
fol 0CLAUSE Imp1 Imp2;
qed;
`;;
let reachableInvariant = theorem `;
âp p'. reachable p p' â oriented_area p = oriented_area p'
proof
SIMP_TAC ReachLemma LEFT_IMP_EXISTS_THM SWAP_FORALL_THM;
MATCH_MP_TAC num_INDUCTION;
SIMP_TAC reachableN_CLAUSES;
intro_TAC ân, nStep;
fol nStep moveInvariant;
qed;
`;;
let reachableN_One = theorem `;
reachableN P0 P1 1 â move P0 P1
proof
fol ONE reachableN reachableN_CLAUSES;
qed;
`;;
let reachableN_Two = theorem `;
reachableN P0 P2 2 â âP1. move P0 P1 ⧠move P1 P2
proof
fol TWO reachableN_One reachableN_CLAUSES;
qed;
`;;
let reachableN_Three = theorem `;
reachableN P0 P3 3 â âP1 P2. move P0 P1 ⧠move P1 P2 ⧠move P2 P3
proof
3 = SUC 2 [] by arithmetic;
fol - reachableN_Two reachableN_CLAUSES;
qed;
`;;
let reachableN_Four = theorem `;
reachableN P0 P4 4 â âP1 P2 P3. move P0 P1 ⧠move P1 P2 â§
move P2 P3 ⧠move P3 P4
proof
4 = SUC 3 [] by arithmetic;
fol - reachableN_Three reachableN_CLAUSES;
qed;
`;;
let reachableN_Five = theorem `;
reachableN P0 P5 5 â âP1 P2 P3 P4. move P0 P1 ⧠move P1 P2 â§
move P2 P3 ⧠move P3 P4 ⧠move P4 P5
proof
5 = SUC 4 [5SUC4] by arithmetic;
REWRITE_TAC 5SUC4 reachableN_CLAUSES; fol reachableN_Four;
qed;
`;;
let moveSymmetry = theorem `;
move (A,B,C) (A',B',C') â
move (B,C,A) (B',C',A') ⧠move (C,A,B) (C',A',B') â§
move (A,C,B) (A',C',B') ⧠move (B,A,C) (B',A',C') ⧠move (C,B,A) (C',B',A')
proof
âX Y Z X':real^2. collinear {vec 0, Z - Y, X' - X}
â collinear {vec 0, Y - Z, X' - X} []
proof REWRITE_TAC COLLINEAR_3_2Dzero; VEC2_TAC; qed;
REWRITE_TAC -- move;
âX Y Z X':real^2. collinear {vec 0, Z - Y, X' - X}
â collinear {vec 0, Y - Z, X' - X} []
proof REWRITE_TAC COLLINEAR_3_2Dzero; VEC2_TAC; qed;
REWRITE_TAC -- move;
fol;
qed;
`;;
let reachableNSymmetry = theorem `;
â n. â A B C A' B' C'. reachableN (A,B,C) (A',B',C') n â
reachableN (B,C,A) (B',C',A') n ⧠reachableN (C,A,B) (C',A',B') n â§
reachableN (A,C,B) (A',C',B') n ⧠reachableN (B,A,C) (B',A',C') n â§
reachableN (C,B,A) (C',B',A') n
proof
MATCH_MP_TAC num_INDUCTION;
REWRITE_TAC reachableN_CLAUSES; SIMP_TAC PAIR_EQ;
intro_TAC ân, nStep, âA B C A' B' C';
REWRITE_TAC LEFT_IMP_EXISTS_THM FORALL_PAIR_THM;
X_gen_TAC X; X_gen_TAC Y; X_gen_TAC Z;
intro_TAC XYZexists;
REWRITE_TAC RIGHT_AND_EXISTS_THM LEFT_AND_EXISTS_THM;
exists_TAC Y,Z,X;
exists_TAC Z,X,Y;
exists_TAC X,Z,Y;
exists_TAC Y,X,Z;
exists_TAC Z,Y,X;
SIMP_TAC nStep XYZexists moveSymmetry;
qed;
`;;
let ORIENTED_AREA_COLLINEAR_CONG = theorem `;
â A B C A' B' C.
oriented_area (A,B,C) = oriented_area (A',B',C')
â (collinear {A,B,C} â collinear {A',B',C'})
proof
REWRITE_TAC COLLINEAR_3_2D oriented_area; real_RING;
qed;
`;;
let Basic2move_THM = theorem `;
â A B C A'. ¬collinear {A,B,C} ⧠¬collinear {B,A,A'} â
âX. move (A,B,C) (A,B,X) ⧠move (A,B,X) (A',B,X)
proof
intro_TAC âA B C A', H1 H2;
âr. r % (A - B) = (--r) % (B - A) â§
r % (A - B) = r % (A - B) + &0 % (C - B) [add0vector_mul] by VEC2_TAC;
¬ â r. A' - A = r % (A - B) [H2'] by fol - H2 COLLINEAR_3 COLLINEAR_LEMMA;
consider r t such that A' - A = r % (A - B) + t % (C - B) [rExists] by fol - H1 COLLINEAR_3 Noncollinear_2Span;
¬(t = &0) [tNonzero] by fol - add0vector_mul H2';
consider s X such that s = r / t ⧠X = C + s % (A - B) [Xexists] by fol rExists;
A' - A = (t * s) % (A - B) + t % (C - B) [] by fol - rExists tNonzero REAL_DIV_LMUL;
A' - A = t % (X - B) ⧠X - C = (-- s) % (B - A) []
proof REWRITE_TAC - Xexists; VEC2_TAC; qed;
collinear {vec 0,B - A,X - C} ⧠collinear {vec 0,X - B,A' - A} [] by fol - COLLINEAR_LEMMA;
fol - move;
qed;
`;;
let FourStepMoveAB = theorem `;
âA B C A' B'. ¬collinear {A,B,C} â
¬collinear {B,A,A'} ⧠¬collinear {A',B,B'} â
â X Y. move (A,B,C) (A,B,X) ⧠move (A,B,X) (A',B,X) â§
move (A',B,X) (A',B,Y) ⧠move (A',B,Y) (A',B',Y)
proof
intro_TAC âA B C A' B', H1, H2;
consider X such that
move (A,B,C) (A,B,X) ⧠move (A,B,X) (A',B,X) [ABX] by fol H1 H2 Basic2move_THM;
¬collinear {A,B,X} ⧠¬collinear {A',B,X} [] by fol - H1 moveInvariant ORIENTED_AREA_COLLINEAR_CONG;
¬collinear {B,A',X} [] by fol - collinearSymmetry;
consider Y such that
move (B,A',X) (B,A',Y) ⧠move (B,A',Y) (B',A',Y) [BA'Y] by fol - H2 Basic2move_THM;
move (A',B,X) (A',B,Y) ⧠move (A',B,Y) (A',B',Y) [] by fol - BA'Y moveSymmetry;
fol - ABX;
qed;
`;;
let FourStepMoveABBAreach = theorem `;
âA B C A' B'. ¬collinear {A,B,C} ⧠move2Cond A B A' B' â
â Y. reachableN (A,B,C) (A',B',Y) 4
proof
intro_TAC âA B C A' B', H1 H2;
case_split Case1 | Case2 by fol - H2 move2Cond;
suppose ¬collinear {B,A,A'} ⧠¬collinear {A',B,B'};
fol - H1 FourStepMoveAB reachableN_Four;
end;
suppose ¬collinear {A,B,B'} ⧠¬collinear {B',A,A'};
¬collinear {B,A,C} [] by fol H1 collinearSymmetry;
consider X Y such that
move (B,A,C) (B,A,X) ⧠move (B,A,X) (B',A,X) â§
move (B',A,X) (B',A,Y) ⧠move (B',A,Y) (B',A',Y) [BAX] by fol Case2 - FourStepMoveAB;
fol - moveSymmetry reachableN_Four;
end;
qed;
`;;
let NotMove2ImpliesCollinear = theorem `;
âA B C A' B' C'. ¬collinear {A,B,C} ⧠¬collinear {A',B',C'} â§
¬(A = A') ⧠¬(B = B') ⧠¬move2Cond A B A' B' â
collinear {A,B,A',B'}
proof
intro_TAC âA B C A' B' C', H1 H1' H2 H2' H3;
¬(A = B) ⧠¬(A' = B') [Distinct] by fol H1 H1' Noncollinear_3ImpliesDistinct;
{A,B,A',B'} â {A,A',B,B'} â§
{A,B,A',B'} â {B,B',A',A} ⧠{A,B,A',B'} â {A',B',B,A} [set4symmetry] by SET_TAC;
case_split Case1 | Case2 | Case3 | Case4 by fol H3 move2Cond;
suppose collinear {B,A,A'} ⧠collinear {A,B,B'};
fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET;
end;
suppose collinear {B,A,A'} ⧠collinear {B',A,A'};
fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET;
end;
suppose collinear {A',B,B'} ⧠collinear {A,B,B'};
fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET;
end;
suppose collinear {A',B,B'} ⧠collinear {B',A,A'};
fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET;
end;
qed;
`;;
let NotMove2ImpliesCollinear = theorem `;
âA B C A' B' C'. ¬collinear {A,B,C} ⧠¬collinear {A',B',C'} â§
¬(A = A') ⧠¬(B = B') ⧠¬move2Cond A B A' B' â
collinear {A,B,A',B'}
proof
intro_TAC âA B C A' B' C', H1 H1' H2 H2' H3;
¬(A = B) ⧠¬(A' = B') [Distinct] by fol H1 H1' Noncollinear_3ImpliesDistinct;
{A,B,A',B'} â {A,A',B,B'} â§
{A,B,A',B'} â {B,B',A',A} ⧠{A,B,A',B'} â {A',B',B,A} [set4symmetry] by SET_TAC;
collinear {B,A,A'} ⧠collinear {A,B,B'} â¨
collinear {B,A,A'} ⧠collinear {B',A,A'} â¨
collinear {A',B,B'} ⧠collinear {A,B,B'} â¨
collinear {A',B,B'} ⧠collinear {B',A,A'} [] by fol H3 move2Cond;
fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET;
qed;
`;;
let DistinctImplies2moveable = theorem `;
âA B C A' B' C'. ¬collinear {A,B,C} ⧠¬collinear {A',B',C'} â§
¬(A = A') ⧠¬(B = B') ⧠¬(C = C') â
move2Cond A B A' B' ⨠move2Cond B C B' C'
proof
intro_TAC âA B C A' B' C', H1 H1' H2a H2b H2c;
{A,B,B'} â {A,B,A',B'} ⧠{B,B',C} â {B,C,B',C'} [3subset4] by SET_TAC;
raa ¬move2Cond A B A' B' ⧠¬move2Cond B C B' C' [Con] by fol -;
collinear {A,B,A',B'} ⧠collinear {B,C,B',C'} [] by fol - H1 H1' H2a H2b H2c collinearSymmetry NotMove2ImpliesCollinear;
collinear {A,B,C} [] by fol - 3subset4 H2a H2b H2c COLLINEAR_SUBSET COLLINEAR_3_TRANS;
fol - H1 H1';
qed;
`;;
let SameCdiffAB = theorem `;
âA B C A' B' C'. ¬collinear {A,B,C} ⧠¬collinear {A',B',C'} â
C = C' ⧠¬(A = A') ⧠¬(B = B') â
â Y. reachableN (A,B,C) (Y,B',C') 2 ⨠reachableN (A,B,C) (A',B',Y) 4
proof
intro_TAC âA B C A' B' C', H1, H2;
{B,B',A} â {A,B,A',B'} ⧠{A,B,C} â {B,B',A,C} [easy_set] by SET_TAC;
case_split Ncol | move | col_Nmove by fol;
suppose ¬collinear {C,B,B'};
consider X such that move (B,C,A) (B,C,X) ⧠move (B,C,X) (B',C',X) [BCX] by fol - easy_set H1 H2 collinearSymmetry Basic2move_THM;
fol BCX reachableN_Two reachableNSymmetry;
end;
suppose move2Cond A B A' B';
fol - H1 FourStepMoveABBAreach;
end;
suppose collinear {C,B,B'} ⧠¬move2Cond A B A' B';
collinear {B,B',A} ⧠collinear {B,B',C} [] by fol - H1 H2 easy_set NotMove2ImpliesCollinear COLLINEAR_SUBSET collinearSymmetry;
fol - H2 easy_set H1 COLLINEAR_4_3 COLLINEAR_SUBSET;
end;
qed;
`;;
let FourMovesToCorrectTwo = theorem `;
âA B C A' B' C'. ¬collinear {A,B,C} ⧠¬collinear {A',B',C'} â
â n. n < 5 ⧠â Y. reachableN (A,B,C) (A',B',Y) n â¨
reachableN (A,B,C) (A',Y,C') n ⨠reachableN (A,B,C) (Y,B',C') n
proof
intro_TAC âA B C A' B' C', H1;
¬collinear {B,C,A} â§
¬collinear{B',C',A'} ⧠¬collinear {C,A,B} ⧠¬collinear {C',A',B'} [H1'] by fol H1 collinearSymmetry;
0 < 5 ⧠2 < 5 ⧠3 < 5 ⧠4 < 5 [easy_arith] by ARITH_TAC;
case_split case01 | case2 | case3 by fol;
suppose A = A' ⧠B = B' ⧠C = C' â¨
A = A' ⧠B = B' ⧠¬(C = C') ⨠A = A' ⧠¬(B = B') ⧠C = C' â¨
¬(A = A') ⧠B = B' ⧠C = C';
fol - easy_arith reachableN_CLAUSES;
end;
suppose A = A' ⧠¬(B = B') ⧠¬(C = C') â¨
¬(A = A') ⧠B = B' ⧠¬(C = C') ⨠¬(A = A') ⧠¬(B = B') ⧠C = C';
fol - H1 H1' easy_arith SameCdiffAB reachableNSymmetry;
end;
suppose ¬(A = A') ⧠¬(B = B') ⧠¬(C = C');
exists_TAC 4;
SIMP_TAC easy_arith reachableN_CLAUSES;
fol - H1 H1' DistinctImplies2moveable FourStepMoveABBAreach
reachableNSymmetry reachableN_Four;
end;
qed;
`;;
let CorrectFinalPoint = theorem `;
oriented_area (A,B,C) = oriented_area (A,B,C') â
move (A,B,C) (A,B,C')
proof
REWRITE_TAC move oriented_area COLLINEAR_3_2Dzero; VEC2_TAC;
qed;
`;;
let FiveMovesOrLess = theorem `;
âA B C A' B' C'. ¬collinear {A,B,C} â§
oriented_area (A,B,C) = oriented_area (A',B',C') â
â n. n <= 5 ⧠reachableN (A,B,C) (A',B',C') n
proof
intro_TAC âA B C A' B' C', H1 H2;
¬collinear {A',B',C'} [H1'] by fol H1 H2 ORIENTED_AREA_COLLINEAR_CONG;
¬(A = B) ⧠¬(A = C) ⧠¬(B = C) â§
¬(A' = B') ⧠¬(A' = C') ⧠¬(B' = C') [Distinct] by fol - H1 Noncollinear_3ImpliesDistinct;
consider n Y such that
n < 5 ⧠(reachableN (A,B,C) (A',B',Y) n â¨
reachableN (A,B,C) (A',Y,C') n ⨠reachableN (A,B,C) (Y,B',C') n) [2Correct] by fol H1 H1' FourMovesToCorrectTwo;
case_split A'B'Y | A'YC' | YB'C' by fol 2Correct;
suppose reachableN (A,B,C) (A',B',Y) n;
oriented_area (A',B',Y) = oriented_area (A',B',C') [] by fol - H2 ReachLemma reachableInvariant;
move (A',B',Y) (A',B',C') [] by fol - Distinct CorrectFinalPoint;
fol A'B'Y - 2Correct reachableN_CLAUSES LE_SUC_LT;
end;
suppose reachableN (A,B,C) (A',Y,C') n;
oriented_area (A',C',Y) = oriented_area (A',C',B') [] by fol H2 - ReachLemma reachableInvariant oriented_areaSymmetry;
move (A',Y,C') (A',B',C') [] by fol - Distinct CorrectFinalPoint moveSymmetry;
fol A'YC' - 2Correct reachableN_CLAUSES LE_SUC_LT;
end;
suppose reachableN (A,B,C) (Y,B',C') n;
oriented_area (B',C',Y) = oriented_area (B',C',A') [] by fol H2 - ReachLemma reachableInvariant oriented_areaSymmetry;
move (Y,B',C') (A',B',C') [] by fol - Distinct CorrectFinalPoint moveSymmetry;
fol YB'C' - 2Correct reachableN_CLAUSES LE_SUC_LT;
end;
qed;
`;;
let NOTENOUGH_4 = theorem `;
âp0 p4. oriented_area p0 = oriented_area p4 ⧠¬reachableN p0 p4 4
proof
consider p0 p4 such that
p0:triple = vector [&0;&0],vector [&0;&1],vector [&1;&0] â§
p4:triple = vector [&1;&1],vector [&1;&2],vector [&2;&1] [p04Def] by
fol;
oriented_area p0 = oriented_area p4 [equal_areas]
proof REWRITE_TAC - oriented_area; VEC2_TAC; qed;
¬reachableN p0 p4 4 []
proof
REWRITE_TAC p04Def reachableN_Four NOT_EXISTS_THM FORALL_PAIR_THM move COLLINEAR_3_2Dzero FORALL_VECTOR_2;
VEC2_TAC;
qed;
fol - equal_areas;
qed;
`;;
let FiveMovesOrLess_STRONG = theorem `;
âA B C A' B' C'.
oriented_area (A,B,C) = oriented_area (A',B',C') â
ân. n <= 5 ⧠reachableN (A,B,C) (A',B',C') n
proof
intro_TAC âA B C A' B' C', H1;
(âX Y:real^2. collinear {X,Y,Y}) â§
(âA B A'. move (A,B,B) (A',B,B)) â§
âA B C B'. (collinear {A,B,C} ⧠collinear {A,B',C} â
move (A,B,C) (A,B',C)) [EZcollinear]
proof REWRITE_TAC move COLLINEAR_3_2D; VEC2_TAC; qed;
case_split ABCncol | ABCcol by fol ;
suppose ¬collinear {A,B,C};
fol - H1 FiveMovesOrLess;
end;
suppose collinear {A,B,C};
collinear {A',B',C'} [A'B'C'col] by fol - H1 ORIENTED_AREA_COLLINEAR_CONG;
consider P1 P2 P3 P4 such that
P1 = A,C,C ⧠P2 = B',C,C ⧠P3 = B',B',C ⧠P4 = B',B',C' [P1234exist] by fol;
move (A,B,C) P1 ⧠move P1 P2 ⧠move P2 P3 ⧠move P3 P4 â§
move P4 (A',B',C') [] by fol ABCcol A'B'C'col EZcollinear P1234exist
collinearSymmetry moveSymmetry;
fol - reachableN_Five LE_REFL;
end;
qed;
`;;