(* ========================================================================= *)
(* The axiom of infinity; construction of the natural numbers.               *)
(*                                                                           *)
(*       John Harrison, University of Cambridge Computer Laboratory          *)
(*                                                                           *)
(*            (c) Copyright, University of Cambridge 1998                    *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(* ========================================================================= *)

needs "pair.ml";;

(* ------------------------------------------------------------------------- *)
(* Declare a new type "ind" of individuals.                                  *)
(* ------------------------------------------------------------------------- *)

new_type ("ind",0);;

(* ------------------------------------------------------------------------- *)
(* We assert the axiom of infinity as in HOL88, but then we can forget it!   *)
(* ------------------------------------------------------------------------- *)

let ONE_ONE = new_definition
  `ONE_ONE(f:A->B) = !x1 x2. (f x1 = f x2) ==> (x1 = x2)`;;
let ONTO = new_definition
  `ONTO(f:A->B) = !y. ?x. y = f x`;;
let INFINITY_AX = new_axiom `?f:ind->ind. ONE_ONE f /\ ~(ONTO f)`;; (* ------------------------------------------------------------------------- *) (* Actually introduce constants. *) (* ------------------------------------------------------------------------- *)
let IND_SUC_0_EXISTS = 
prove (`?(f:ind->ind) z. (!x1 x2. (f x1 = f x2) = (x1 = x2)) /\ (!x. ~(f x = z))`,
X_CHOOSE_TAC `f:ind->ind` INFINITY_AX THEN EXISTS_TAC `f:ind->ind` THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[ONE_ONE; ONTO] THEN MESON_TAC[]);;
let IND_SUC_SPEC =
let th1 = new_definition
   `IND_SUC = @f:ind->ind. ?z. (!x1 x2. (f x1 = f x2) = (x1 = x2)) /\
                                (!x. ~(f x = z))` in
  let th2 = REWRITE_RULE[GSYM th1] (SELECT_RULE IND_SUC_0_EXISTS) in
  let th3 = new_definition
   `IND_0 = @z:ind. (!x1 x2. IND_SUC x1 = IND_SUC x2 <=> x1 = x2) /\
                    (!x. ~(IND_SUC x = z))` in
  REWRITE_RULE[GSYM th3] (SELECT_RULE th2);;
let IND_SUC_INJ,IND_SUC_0 = CONJ_PAIR IND_SUC_SPEC;; (* ------------------------------------------------------------------------- *) (* Carve out the natural numbers inductively. *) (* ------------------------------------------------------------------------- *) let NUM_REP_RULES,NUM_REP_INDUCT,NUM_REP_CASES = new_inductive_definition `NUM_REP IND_0 /\ (!i. NUM_REP i ==> NUM_REP (IND_SUC i))`;; let num_tydef = new_basic_type_definition "num" ("mk_num","dest_num") (CONJUNCT1 NUM_REP_RULES);;
let ZERO_DEF = new_definition
 `_0 = mk_num IND_0`;;
let SUC_DEF = new_definition
 `SUC n = mk_num(IND_SUC(dest_num n))`;;
(* ------------------------------------------------------------------------- *) (* Distinctness and injectivity of constructors. *) (* ------------------------------------------------------------------------- *)
let NOT_SUC = 
prove (`!n. ~(SUC n = _0)`,
REWRITE_TAC[SUC_DEF; ZERO_DEF] THEN MESON_TAC[NUM_REP_RULES; fst num_tydef; snd num_tydef; IND_SUC_0]);;
let SUC_INJ = 
prove (`!m n. SUC m = SUC n <=> m = n`,
REPEAT GEN_TAC THEN REWRITE_TAC[SUC_DEF] THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN POP_ASSUM(MP_TAC o AP_TERM `dest_num`) THEN SUBGOAL_THEN `!p. NUM_REP (IND_SUC (dest_num p))` MP_TAC THENL [GEN_TAC THEN MATCH_MP_TAC (CONJUNCT2 NUM_REP_RULES); ALL_TAC] THEN REWRITE_TAC[fst num_tydef; snd num_tydef] THEN DISCH_TAC THEN ASM_REWRITE_TAC[IND_SUC_INJ] THEN DISCH_THEN(MP_TAC o AP_TERM `mk_num`) THEN REWRITE_TAC[fst num_tydef]);;
(* ------------------------------------------------------------------------- *) (* Induction. *) (* ------------------------------------------------------------------------- *)
let num_INDUCTION = 
prove (`!P. P(_0) /\ (!n. P(n) ==> P(SUC n)) ==> !n. P n`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `\i. NUM_REP i /\ P(mk_num i):bool` NUM_REP_INDUCT) THEN ASM_REWRITE_TAC[GSYM ZERO_DEF; NUM_REP_RULES] THEN W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL [REPEAT STRIP_TAC THENL [MATCH_MP_TAC(CONJUNCT2 NUM_REP_RULES) THEN ASM_REWRITE_TAC[]; SUBGOAL_THEN `mk_num(IND_SUC i) = SUC(mk_num i)` SUBST1_TAC THENL [REWRITE_TAC[SUC_DEF] THEN REPEAT AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM(snd num_tydef)] THEN FIRST_ASSUM MATCH_ACCEPT_TAC; FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC]]; DISCH_THEN(MP_TAC o SPEC `dest_num n`) THEN REWRITE_TAC[fst num_tydef; snd num_tydef]]);;
(* ------------------------------------------------------------------------- *) (* Recursion. *) (* ------------------------------------------------------------------------- *)
let num_Axiom = 
prove (`!(e:A) f. ?!fn. (fn _0 = e) /\ (!n. fn (SUC n) = f (fn n) n)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[EXISTS_UNIQUE_THM] THEN CONJ_TAC THENL [(MP_TAC o prove_inductive_relations_exist) `PRG _0 e /\ (!b:A n:num. PRG n b ==> PRG (SUC n) (f b n))` THEN DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o GSYM)) THEN SUBGOAL_THEN `!n:num. ?!y:A. PRG n y` MP_TAC THENL [MATCH_MP_TAC num_INDUCTION THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC BINDER_CONV [GSYM th]) THEN REWRITE_TAC[GSYM NOT_SUC; NOT_SUC; SUC_INJ; EXISTS_UNIQUE_REFL] THEN REWRITE_TAC[UNWIND_THM1] THEN UNDISCH_TAC `?!y. PRG (n:num) (y:A)` THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `y:A`) ASSUME_TAC) THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [MAP_EVERY EXISTS_TAC [`(f:A->num->A) y n`; `y:A`]; AP_THM_TAC THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC] THEN ASM_REWRITE_TAC[]; REWRITE_TAC[UNIQUE_SKOLEM_ALT] THEN DISCH_THEN(X_CHOOSE_THEN `fn:num->A` (ASSUME_TAC o GSYM)) THEN EXISTS_TAC `fn:num->A` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o CONJUNCT2) THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN REFL_TAC]; REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC num_INDUCTION THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* The basic numeral tag; rewrite existing instances of "_0". *) (* ------------------------------------------------------------------------- *)
let NUMERAL = new_definition
 `NUMERAL (n:num) = n`;;
let [NOT_SUC; num_INDUCTION; num_Axiom] =
let th = 
prove(`_0 = 0`,
REWRITE_TAC[NUMERAL]) in map (GEN_REWRITE_RULE DEPTH_CONV [th]) [NOT_SUC; num_INDUCTION; num_Axiom];;
(* ------------------------------------------------------------------------- *) (* Induction tactic. *) (* ------------------------------------------------------------------------- *) let (INDUCT_TAC:tactic) = MATCH_MP_TAC num_INDUCTION THEN CONJ_TAC THENL [ALL_TAC; GEN_TAC THEN DISCH_TAC];; let num_RECURSION = let avs = fst(strip_forall(concl num_Axiom)) in GENL avs (EXISTENCE (SPECL avs num_Axiom));; (* ------------------------------------------------------------------------- *) (* Cases theorem. *) (* ------------------------------------------------------------------------- *)
let num_CASES = 
prove (`!m. (m = 0) \/ (?n. m = SUC n)`,
INDUCT_TAC THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Augmenting inductive type store. *) (* ------------------------------------------------------------------------- *)
let num_RECURSION_STD = 
prove (`!e:Z f. ?fn. (fn 0 = e) /\ (!n. fn (SUC n) = f n (fn n))`,
REPEAT GEN_TAC THEN MP_TAC(ISPECL [`e:Z`; `(\z n. (f:num->Z->Z) n z)`] num_RECURSION) THEN REWRITE_TAC[]);;
inductive_type_store := ("num",(2,num_INDUCTION,num_RECURSION_STD))::(!inductive_type_store);; (* ------------------------------------------------------------------------- *) (* "Bitwise" binary representation of numerals. *) (* ------------------------------------------------------------------------- *) let BIT0_DEF =
let def = new_definition
   `BIT0 = @fn. fn 0 = 0 /\ (!n. fn (SUC n) = SUC (SUC(fn n)))`
  and th = BETA_RULE(ISPECL [`0`; `\m n:num. SUC(SUC m)`] num_RECURSION) in
  REWRITE_RULE[GSYM def] (SELECT_RULE th);;
let BIT1_DEF = new_definition
 `BIT1 n = SUC (BIT0 n)`;;
(* ------------------------------------------------------------------------- *) (* Syntax operations on numerals. *) (* ------------------------------------------------------------------------- *) let mk_numeral = let Z = mk_const("_0",[]) and BIT0 = mk_const("BIT0",[]) and BIT1 = mk_const("BIT1",[]) and NUMERAL = mk_const("NUMERAL",[]) and zero = num_0 in let rec mk_num n = if n =/ num_0 then Z else mk_comb((if mod_num n num_2 =/ num_0 then BIT0 else BIT1), mk_num(quo_num n num_2)) in fun n -> if n </ zero then failwith "mk_numeral: negative argument" else mk_comb(NUMERAL,mk_num n);; let mk_small_numeral n = mk_numeral(Int n);; let dest_small_numeral t = Num.int_of_num(dest_numeral t);; let is_numeral = can dest_numeral;; (* ------------------------------------------------------------------------- *) (* Derived principles of definition based on existence. *) (* *) (* This is put here because we use numerals as tags to force different *) (* constants specified with equivalent theorems to have different underlying *) (* definitions, ensuring that there are no provable equalities between them *) (* and so in some sense the constants are "underspecified" as the user might *) (* want for some applications. *) (* ------------------------------------------------------------------------- *) let the_specifications = ref [];; let new_specification = let check_distinct l = try itlist (fun t res -> if mem t res then fail() else t::res) l []; true with Failure _ -> false in let specify n name th = let ntm = mk_numeral n in let gv = genvar(type_of ntm) in let th0 = CONV_RULE(REWR_CONV SKOLEM_THM) (GEN gv th) in let th1 = CONV_RULE(RATOR_CONV (REWR_CONV EXISTS_THM) THENC BETA_CONV) th0 in let l,r = dest_comb(concl th1) in let rn = mk_comb(r,ntm) in let ty = type_of rn in
let th2 = new_definition(mk_eq(mk_var(name,ty),rn)) in
    GEN_REWRITE_RULE ONCE_DEPTH_CONV [GSYM th2]
     (SPEC ntm (CONV_RULE BETA_CONV th1)) in
  let rec specifies n names th =
    match names with
      [] -> th
    | name::onames -> let th' = specify n name th in
                      specifies (n +/ Int 1) onames th' in
  let specification_counter = ref(Int 0) in
  fun names th ->
    let asl,c = dest_thm th in
    if not (asl = []) then
      failwith "new_specification: Assumptions not allowed in theorem" else
    if not (frees c = []) then
      failwith "new_specification: Free variables in predicate" else
    let avs = fst(strip_exists c) in
    if length names = 0 or length names > length avs then
      failwith "new_specification: Unsuitable number of constant names" else
    if not (check_distinct names) then
      failwith "new_specification: Constant names not distinct"
    else
      try let sth = snd(find (fun ((names',th'),sth') ->
                               names' = names & aconv (concl th') (concl th))
                             (!the_specifications)) in
          warn true ("Benign respecification"); sth
      with Failure _ ->
          let sth = specifies (!specification_counter) names th in
          the_specifications := ((names,th),sth)::(!the_specifications);
          specification_counter := !specification_counter +/ Int(length names);
          sth;;