ocaml
#use "hol.ml";;
#load "unix.cma";;
loadt "miz3/miz3.ml";;
reset_miz3 0;;
verbose := true;;
report_timing := true;;
Theorem/Proof templates:
let _THM = theorem `;
â
â
proof
qed;
`;;
interactive_goal `;
`;;
interactive_proof `;
`;;
interactive_proof `;
`;;
interactive_proof `;
`;;
interactive_proof `;
`;;
interactive_proof `;
`;;
â |- â a l. a â l â ¬(a â l)
Interval_DEF |- â A B X. open (A,B) = {X | Between A X B}
Collinear_DEF
|- â A B C. Collinear A B C â â l. Line l â§ A â l â§ B â l â§ C â l
SameSide_DEF
|- â l A B. A,B same_side l â Line l ⧠¬ â X. X â l â§ X â open (A,B)
Ray_DEF |- â A B. ray A B =
{X | ¬(A = B) â§ Collinear A B X â§ A â open (X,B)}
Ordered_DEF
|- â A C B D.
ordered A B C D â
B â open (A,C) â§ B â open (A,D) â§ C â open (A,D) â§ C â open (B,D)
InteriorAngle_DEF |- â A O B.
int_angle A O B =
{P | ¬Collinear A O B â§
â a b.
Line a â§ O â a â§ A â a â§
Line b â§ O â b â§ B â b â§
P â a â§ P â b â§
P,B same_side a â§ P,A same_side b}
InteriorTriangle_DEF
|- â A B C.
int_triangle A B C =
{P | P â int_angle A B C â§
P â int_angle B C A â§
P â int_angle C A B}
Tetralateral_DEF
|- â C D A B.
Tetralateral A B C D â
¬(A = B) ⧠¬(A = C) ⧠¬(A = D) ⧠¬(B = C) ⧠¬(B = D) ⧠¬(C = D) â§
¬Collinear A B C ⧠¬Collinear B C D ⧠¬Collinear C D A ⧠¬Collinear D A B
Quadrilateral_DEF
|- â B C D A.
Quadrilateral A B C D â
Tetralateral A B C D â§
open (A,B) â© open (C,D) = â
â§
open (B,C) â© open (D,A) = â
ConvexQuad_DEF
|- â D A B C.
ConvexQuadrilateral A B C D â
Quadrilateral A B C D â§
A â int_angle B C D â§
B â int_angle C D A â§
C â int_angle D A B â§
D â int_angle A B C
Segment_DEF |- â A B. seg A B = {A, B} ⪠open (A,B)
SEGMENT |- â s. Segment s â â A B. s = seg A B ⧠¬(A = B)
SegmentOrdering_DEF
|- â t s.
s <__ t â
Segment s â§
â C D X. t = seg C D â§ X â open (C,D) â§ s â¡ seg C X
Angle_DEF |- â A O B. â¡ A O B = ray O A ⪠ray O B
ANGLE
|- â α. Angle α â â A O B. α = â¡ A O B ⧠¬Collinear A O B
AngleOrdering_DEF
|- â β α.
α <_ang β â
Angle α â§
â A O B G.
¬Collinear A O B ⧠β = â¡ A O B â§
G â int_angle A O B ⧠α â¡ â¡ A O G
RAY |- â r. Ray r â â O A. ¬(O = A) â§ r = ray O A
TriangleCong_DEF
|- â A B C A' B' C'.
A,B,C â
A',B',C' â
¬Collinear A B C ⧠¬Collinear A' B' C' â§
seg A B â¡ seg A' B' â§
seg A C â¡ seg A' C' â§
seg B C â¡ seg B' C' â§
â¡ A B C â¡ â¡ A' B' C' â§
â¡ B C A â¡ â¡ B' C' A' â§
â¡ C A B â¡ â¡ C' A' B'
SupplementaryAngles_DEF
|- âα β.
α suppl β â
â A O B A'.
¬Collinear A O B â§ O â open (A,A') â§
α = ⡠A O B ⧠β = ⡠B O A'
RightAngle_DEF
|- âα. Right α â â β. α suppl β ⧠α ⡠β
PlaneComplement_DEF
|- â α. complement α = {P | P â α}
CONVEX
|- âα. Convex α â
â A B. A â α â§ B â α â open (A,B) â α
PARALLEL
|- â l k. l ⥠k â Line l â§ Line k â§ l â© k = â
Parallelogram_DEF
|- â A B C D.
Parallelogram A B C D â
Quadrilateral A B C D â§
â a b c d.
Line a â§ A â a â§ B â a â§ Line b â§ B â b â§ C â b â§
Line c â§ C â c â§ D â d â§ Line d â§ D â d â§ A â d â§
a ⥠c ⧠b ⥠d
InteriorCircle_DEF
|- â O R. int_circle O R = {P | ¬(O = R) â§ (P = O ⨠seg O P <__ seg O R)}
I1 |- â A B. ¬(A = B) â (â! l. Line l â§ A â l â§ B â l)
I2 |- â l. Line l â (â A B. A â l â§ B â l ⧠¬(A = B))
I3 |- â A B C. ¬(A = B) ⧠¬(A = C) ⧠¬(B = C) ⧠¬Collinear A B C
B1 |- â A B C.
Between A B C
â ¬(A = B) ⧠¬(A = C) ⧠¬(B = C) â§
Between C B A â§ Collinear A B C
B2 |- â A B. ¬(A = B) â âC. Between A B C
B3 |- â A B C.
¬(A = B) ⧠¬(A = C) ⧠¬(B = C) ⧠Collinear A B C
â (Between A B C ⨠Between B C A ⨠Between C A B) â§
¬(Between A B C â§ Between B C A) â§
¬(Between A B C â§ Between C A B) â§
¬(Between B C A ⧠Between C A B)
B4 |- â l A B C.
Line l â§
¬Collinear A B C â§
A â l â§ B â l â§ C â l â§
(âX. X â l â§ Between A X C)
â (â Y. Y â l â§ Between A Y B) â¨
(â Y. Y â l â§ Between B Y C)
C1 |- â s O Z.
Segment s ⧠¬(O = Z)
â â! P. P â ray O Z â O â§ seg O P â¡ s
C2Reflexive |- Segment s â s â¡ s
C2Symmetric |- Segment s â§ Segment t â§ s â¡ t â t â¡ s
C2Transitive
|- Segment s â§ Segment t â§ Segment u â§ s â¡ t â§ t â¡ u â s â¡ u
C3 |- â A B C A' B' C'.
B â open (A,C) â§ B' â open (A',C') â§
seg A B â¡ seg A' B' â§ seg B C â¡ seg B' C'
â seg A C â¡ seg A' C'
C4 |- â α O A l Y.
Angle α ⧠¬(O = A) â§ Line l â§ O â l â§ A â l â§ Y â l
â â! r. Ray r â§ â B. ¬(O = B) â§ r = ray O B â§
B â l â§ B,Y same_side l â§ â¡ A O B ⡠α
C5Reflexive |- Angle α â α ⡠α
C5Symmetric
|- Angle α â§ Angle β ⧠α ⡠β â β ⡠α
C5Transitive
|- Angle α ⧠Angle β ⧠Angle γ ⧠α ⡠β ⧠β ⡠γ
â α ⡠γ
C6 |- âA B C A' B' C'.
¬Collinear A B C ⧠¬Collinear A' B' C' â§
seg B A â¡ seg B' A' â§ seg B C â¡ seg B' C' â§
â¡ A B C â¡ â¡ A' B' C'
â â¡ B C A â¡ â¡ B' C' A'
IN_Interval |- â A B X. X â open (A,B) â Between A X B
IN_Ray |- â A B X.
X â ray A B â ¬(A = B) â§ Collinear A B X â§ A â open (X,B)
IN_InteriorAngle |- âA O B P.
P â int_angle A O B â ¬Collinear A O B â§ â a b.
Line a â§ O â a â§ A â a â§ Line b â§ O â b â§ B â b â§
P â a â§ P â b â§ P,B same_side a â§ P,A same_side b
IN_InteriorTriangle
|- âA B C P.
P â int_triangle A B C â
P â int_angle A B C â§ P â int_angle B C A â§ P â int_angle C A B
IN_PlaneComplement
|- âα P. P â complement α â P â α
IN_InteriorCircle
|- â O R P.
P â int_circle O R â ¬(O = R) â§ (P = O ⨠seg O P <__ seg O R)
B1' |- â A B C.
B â open (A,C)
â ¬(A = B) ⧠¬(A = C) ⧠¬(B = C) â§
B â open (C,A) â§ Collinear A B C
B2' |- â A B. ¬(A = B) â (â C. B â open (A,C))
B3' |- â A B C.
¬(A = B) ⧠¬(A = C) ⧠¬(B = C) ⧠Collinear A B C
â (B â open (A,C) ⨠C â open (B,A) ⨠A â open (C,B)) â§
¬(B â open (A,C) â§ C â open (B,A)) â§
¬(B â open (A,C) â§ A â open (C,B)) â§
¬(C â open (B,A) â§ A â open (C,B))
B4' |- â l A B C.
Line l ⧠¬Collinear A B C â§ A â l â§ B â l â§ C â l â§
(â X. X â l â§ X â open (A,C))
â (â Y. Y â l â§ Y â open (A,B)) â¨
(â Y. Y â l â§ Y â open (B,C))
B4'' |- â l A B C.
Line l ⧠¬Collinear A B C â§ A â l â§ B â l â§ C â l â§
A,B same_side l â§ B,C same_side l
â A,C same_side l
DisjointOneNotOther
|- â l m. (âx. x â m â x â l) â l â© m = â
EquivIntersectionHelp
|- â e x l m.
(l â© m = {x} ⨠m â© l = {x}) â§ e â m â x â e â l
CollinearSymmetry
|- â A B C.
Collinear A B C
â Collinear A C B â§ Collinear B A C â§
Collinear B C A â§ Collinear C A B â§ Collinear C B A
ExistsNewPointOnLine
|- â P l. Line l â§ P â l â â Q. Q â l ⧠¬(P = Q)
ExistsPointOffLine |- â l. Line l â â Q. Q â l
BetweenLinear
|- â A B C m.
Line m â§ A â m â§ C â m â§
B â open (A,C) ⨠C â open (B,A) ⨠A â open (C,B)
â B â m
CollinearLinear
|- â A B C m.
Line m â§ A â m â§ C â m ⧠¬(A = C) â§
Collinear A B C ⨠Collinear B C A ⨠Collinear C A B
â B â m
NonCollinearImpliesDistinct
|- â A B C. ¬Collinear A B C â ¬(A = B) ⧠¬(A = C) ⧠¬(B = C)
NonCollinearRaa
|- âA B C l.
¬(A = C) â§ Line l â§ A â l â§ C â l â§ B â l
â ¬Collinear A B C
TwoSidesTriangle1Intersection
|- âA B C Y.
¬Collinear A B C â§ Collinear B C Y â§ Collinear A C Y â Y = C
OriginInRay |- â O Q. ¬(Q = O) â O â ray O Q
EndpointInRay |- â O Q. ¬(Q = O) â Q â ray O Q
I1Uniqueness
|- â X l m.
Line l â§ Line m ⧠¬(l = m) â§ X â l â§ X â m
â l â© m = {X}
EquivIntersection
|- â A B X l m.
Line l â§ Line m â§ l â© m = {X} â§
A â m â X â§ B â m â X â§ X â open (A,B)
â A,B same_side l
RayLine
|- â O P l. Line l â§ O â l â§ P â l â ray O P â l
RaySameSide
|- â l O A P.
Line l â§ O â l â§ A â l â§ P â ray O A â O
â P â l â§ P,A same_side l
IntervalRayEZ
|- â A B C.
B â open (A,C) â B â ray A C â A â§ C â ray A B â A
NoncollinearityExtendsToLine
|- â A O B X.
¬Collinear A O B ⧠Collinear O B X ⧠¬(X = O)
â ¬Collinear A O X
SameSideReflexive
|- â l A. Line l â§ A â l â A,A same_side l
SameSideSymmetric
|- â l A B.
Line l â§ A â l â§ B â l â§ A,B same_side l
â B,A same_side l
SameSideTransitive
|- âl A B C.
Line l â§ A â l â§ B â l â§ C â l â§
A,B same_side l â§ B,C same_side l
â A,C same_side l
ConverseCrossbar
|- â O A B G. ¬Collinear A O B â§ G â open (A,B) â G â int_angle A O B
InteriorUse
|- â A O B P a b.
Line a â§ O â a â§ A â a â§
Line b â§ O â b â§ B â b â§
P â int_angle A O B
â P â a â§ P â b â§ P,B same_side a â§ P,A same_side b
InteriorEZHelp
|- â A O B P.
P â int_angle A O B
â ¬(P = A) ⧠¬(P = O) ⧠¬(P = B) ⧠¬Collinear A O P
InteriorAngleSymmetry
|- â A O B P. P â int_angle A O B â P â int_angle B O A
InteriorWellDefined
|- â A O B X P.
P â int_angle A O B â§ X â ray O B â O â P â int_angle A O X
WholeRayInterior
|- âA O B X P.
X â int_angle A O B â§ P â ray O X â O
â P â int_angle A O B
AngleOrdering
|- â O A P Q a.
¬(O = A) â§ Line a â§ O â a â§ A â a â§ P â a â§ Q â a â§
P,Q same_side a ⧠¬Collinear P O Q
â P â int_angle Q O A ⨠Q â int_angle P O A
InteriorsDisjointSupplement
|- âA O B A'.
¬Collinear A O B â§ O â open (A,A')
â int_angle A O B â© int_angle B O A' = â
InteriorReflectionInterior
|- â A O B D A'.
O â open (A,A') â§ D â int_angle A O B â B â int_angle D O A'
Crossbar_THM
|- â O A B D.
D â int_angle A O B
â â G. G â open (A,B) â§ G â ray O D â O
AlternateConverseCrossbar
|- â O A B G. Collinear A G B â§ G â int_angle A O B â G â open (A,B)
InteriorOpposite
|- â A O B P p.
P â int_angle A O B â§ Line p â§ O â p â§ P â p
â ¬(A,B same_side p)
IntervalTransitivity
|- â O P Q R m.
Line m â§ O â m â§
P â m â O â§ Q â m â O â§ R â m â O â§
O â open (P,Q) â§ O â open (Q,R)
â O â open (P,R)
RayWellDefinedHalfway
|- â O P Q. ¬(Q = O) â§ P â ray O Q â O â ray O P â ray O Q
RayWellDefined
|- â O P Q. ¬(Q = O) â§ P â ray O Q â O â ray O P = ray O Q
OppositeRaysIntersect1pointHelp
|- â A O B X.
O â open (A,B) â§ X â ray O B â O
â X â ray O A â§ O â open (X,A)
OppositeRaysIntersect1point
|- â A O B. O â open (A,B) â ray O A â© ray O B = {O}
IntervalRay
|- â A B C. B â open (A,C) â ray A B = ray A C
Reverse4Order
|- â A B C D. ordered A B C D â ordered D C B A
TransitivityBetweennessHelp
|- â A B C D. B â open (A,C) â§ C â open (B,D) â B â open (A,D)
TransitivityBetweenness
|- â A B C D. B â open (A,C) â§ C â open (B,D) â ordered A B C D
IntervalsAreConvex
|- â A B C. B â open (A,C) â open (A,B) â open (A,C)
TransitivityBetweennessVariant
|- â A X B C. X â open (A,B) â§ B â open (A,C) â ordered A X B C
Interval2sides2aLineHelp
|- â A B C X. B â open (A,C) â X â open (A,B) ⨠X â open (B,C)
Interval2sides2aLine
|- â A B C X.
Collinear A B C
â X â open (A,B) ⨠X â open (A,C) ⨠X â open (B,C)
TwosidesTriangle2aLine
|- âA B C Y l m.
Line l ⧠¬Collinear A B C â§ A â l â§ B â l â§ C â l â§
Line m â§ A â m â§ C â m â§
Y â l â§ Y â m ⧠¬(A,B same_side l) ⧠¬(B,C same_side l)
â A,C same_side l
LineUnionOf2Rays
|- â A O B l.
Line l â§ A â l â§ B â l â§ O â open (A,B)
â l = ray O A ⪠ray O B
AtMost2Sides
|- â A B C l.
Line l â§ A â l â§ B â l â§ C â l
â A,B same_side l ⨠A,C same_side l ⨠B,C same_side l
FourPointsOrder
|- â A B C X l.
Line l â§ A â l â§ B â l â§ C â l â§ X â l â§ B â open (A,C) â§
¬(X = A) ⧠¬(X = B) ⧠¬(X = C)
â ordered X A B C ⨠ordered A X B C ⨠ordered A B X C ⨠ordered A B C X
HilbertAxiomRedundantByMoore
|- â A B C D l.
Line l â§ A â l â§ B â l â§ C â l â§ D â l â§
¬(A = B) ⧠¬(A = C) ⧠¬(A = D) ⧠¬(B = C) ⧠¬(B = D) ⧠¬(C = D)
â ordered D A B C ⨠ordered A D B C ⨠ordered A B D C â¨
ordered A B C D ⨠ordered D A C B ⨠ordered A D C B â¨
ordered A C D B ⨠ordered A C B D ⨠ordered D C A B â¨
ordered C D A B ⨠ordered C A D B ⨠ordered C A B D
InteriorTransitivity
|- âA O B F G.
G â int_angle A O B â§ F â int_angle A O G
â F â int_angle A O B
HalfPlaneConvexNonempty
|- âl H A.
Line l â§ A â l â§ H = {X | X â l â§ X,A same_side l}
â ¬(H = â
) â§ H â complement l â§ Convex H
PlaneSeparation
|- â l. Line l
â â H1 H2.
H1 â© H2 = â
⧠¬(H1 = â
) ⧠¬(H2 = â
) â§
Convex H1 â§ Convex H2 â§ complement l = H1 ⪠H2 â§
â P Q. P â H1 â§ Q â H2 â ¬(P,Q same_side l)
TetralateralSymmetry
|- â A B C D.
Tetralateral A B C D
â Tetralateral B C D A â§ Tetralateral A B D C
EasyEmptyIntersectionsTetralateralHelp
|- â A B C D. Tetralateral A B C D â open (A,B) â© open (B,C) = â
EasyEmptyIntersectionsTetralateral
|- â A B C D.
Tetralateral A B C D
â open (A,B) â© open (B,C) = â
â§ open (B,C) â© open (C,D) = â
â§
open (C,D) â© open (D,A) = â
â§ open (D,A) â© open (A,B) = â
SegmentSameSideOppositeLine
|- â A B C D a c.
Quadrilateral A B C D â§
Line a â§ A â a â§ B â a â§ Line c â§ C â c â§ D â c
â A,B same_side c ⨠C,D same_side a
ConvexImpliesQuad
|- â A B C D.
Tetralateral A B C D â§
C â int_angle D A B â§ D â int_angle A B C
â Quadrilateral A B C D
DiagonalsIntersectImpliesConvexQuad
|- â A B C D G.
¬Collinear B C D â§ G â open (A,C) â§ G â open (B,D)
â ConvexQuadrilateral A B C D
DoubleNotSimImpliesDiagonalsIntersect
|- â A B C D l m.
Line l â§ A â l â§ C â l â§
Line m â§ B â m â§ D â m â§
Tetralateral A B C D â§
¬(B,D same_side l) ⧠¬(A,C same_side m)
â (â G. G â open (A,C) â© open (B,D)) â§
ConvexQuadrilateral A B C D
ConvexQuadImpliesDiagonalsIntersect
|- â A B C D l m.
Line l â§ A â l â§ C â l â§
Line m â§ B â m â§ D â m â§
ConvexQuadrilateral A B C D
â ¬(B,D same_side l) ⧠¬(A,C same_side m) â§
(â G. G â open (A,C) â© open (B,D)) â§
¬Quadrilateral A B D C
FourChoicesTetralateralHelp
|- â A B C D.
Tetralateral A B C D â§ C â int_angle D A B
â ConvexQuadrilateral A B C D ⨠C â int_triangle D A B
InteriorTriangleSymmetry
|- â A B C P. P â int_triangle A B C â P â int_triangle B C A
FourChoicesTetralateral
|- â A B C D a.
Tetralateral A B C D â§ Line a â§ A â a â§ B â a â§
C,D same_side a
â ConvexQuadrilateral A B C D ⨠ConvexQuadrilateral A B D C â¨
D â int_triangle A B C ⨠C â int_triangle D A B
QuadrilateralSymmetry
|- â A B C D.
Quadrilateral A B C D
â Quadrilateral B C D A â§
Quadrilateral C D A B â§
Quadrilateral D A B C
FiveChoicesQuadrilateral
|- â A B C D l m.
Quadrilateral A B C D â§
Line l â§ A â l â§ C â l â§
Line m â§ B â m â§ D â m
â (ConvexQuadrilateral A B C D â¨
A â int_triangle B C D ⨠B â int_triangle C D A â¨
C â int_triangle D A B ⨠D â int_triangle A B C) â§
(¬(B,D same_side l) ⨠¬(A,C same_side m))
IntervalSymmetry |- â A B. open (A,B) = open (B,A)
SegmentSymmetry |- â A B. seg A B = seg B A
C1OppositeRay
|- â O P s.
Segment s ⧠¬(O = P) â â Q. P â open (O,Q) â§ seg P Q â¡ s
OrderedCongruentSegments
|- â A B C D F.
¬(A = C) ⧠¬(D = F) â§ seg A C â¡ seg D F â§ B â open (A,C)
â â E. E â open (D,F) â§ seg A B â¡ seg D E
SegmentSubtraction
|- â A B C A' B' C'.
B â open (A,C) â§ B' â open (A',C') â§
seg A B â¡ seg A' B' â§ seg A C â¡ seg A' C'
â seg B C â¡ seg B' C'
SegmentOrderingUse
|- âA B s.
Segment s ⧠¬(A = B) ⧠s <__ seg A B
â â G. G â open (A,B) â§ s â¡ seg A G
SegmentTrichotomy1 |- â s t. s <__ t â ¬(s â¡ t)
SegmentTrichotomy2
|- â s t u. s <__ t â§ Segment u â§ t â¡ u â s <__ u
SegmentOrderTransitivity
|- â s t u. s <__ t â§ t <__ u â s <__ u
SegmentTrichotomy
|- â s t.
Segment s â§ Segment t
â (s â¡ t ⨠s <__ t ⨠t <__ s) â§
¬(s ⡠t ⧠s <__ t) ⧠¬(s ⡠t ⧠t <__ s) ⧠¬(s <__ t ⧠t <__ s)
C4Uniqueness
|- â O A B P l.
Line l â§ O â l â§ A â l ⧠¬(O = A) â§
B â l â§ P â l â§ P,B same_side l â§ â¡ A O P â¡ â¡ A O B
â ray O B = ray O P
AngleSymmetry |- â A O B. â¡ A O B = â¡ B O A
TriangleCongSymmetry
|- â A B C A' B' C'.
A,B,C â
A',B',C'
â A,C,B â
A',C',B' â§ B,A,C â
B',A',C' â§
B,C,A â
B',C',A' â§ C,A,B â
C',A',B' â§ C,B,A â
C',B',A'
SAS
|- â A B C A' B' C'.
¬Collinear A B C ⧠¬Collinear A' B' C' â§
seg B A â¡ seg B' A' â§ seg B C â¡ seg B' C' â§
â¡ A B C â¡ â¡ A' B' C'
â A,B,C â
A',B',C'
ASA
|- â A B C A' B' C'.
¬Collinear A B C ⧠¬Collinear A' B' C' â§
seg A C â¡ seg A' C' â§
â¡ C A B â¡ â¡ C' A' B' â§ â¡ B C A â¡ â¡ B' C' A'
â A,B,C â
A',B',C'
AngleSubtraction
|- â A O B A' O' B' G G'.
G â int_angle A O B â§ G' â int_angle A' O' B' â§
â¡ A O B â¡ â¡ A' O' B' â§ â¡ A O G â¡ â¡ A' O' G'
â â¡ G O B â¡ â¡ G' O' B'
OrderedCongruentAngles
|- â A O B A' O' B' G.
¬Collinear A' O' B' â§ â¡ A O B â¡ â¡ A' O' B' â§
G â int_angle A O B
â â G'. G' â int_angle A' O' B' â§ â¡ A O G â¡ â¡ A' O' G'
AngleAddition
|- â A O B A' O' B' G G'.
G â int_angle A O B â§ G' â int_angle A' O' B' â§
â¡ A O G â¡ â¡ A' O' G' â§ â¡ G O B â¡ â¡ G' O' B' â§
â â¡ A O B â¡ â¡ A' O' B'
AngleOrderingUse
|- â A O B α.
Angle α ⧠¬Collinear A O B ⧠α <_ang ⡠A O B
â (â G. G â int_angle A O B ⧠α â¡ â¡ A O G)
AngleTrichotomy1
|- â α β. α <_ang β â ¬(α ⡠β)
AngleTrichotomy2
|- â α β γ.
α <_ang β ⧠Angle γ ⧠β ⡠γ
â α <_ang γ
AngleOrderTransitivity
|- âα β γ.
α <_ang β ⧠β <_ang γ
â α <_ang γ
AngleTrichotomy
|- â α β.
Angle α ⧠Angle β
â (α ⡠β ⨠α <_ang β ⨠β <_ang α) â§
¬(α ⡠β ⧠α <_ang β) â§
¬(α ⡠β ⧠β <_ang α) â§
¬(α <_ang β ⧠β <_ang α)
SupplementExists
|- â α. Angle α â â α'. α suppl α'
SupplementImpliesAngle
|- â α β. α suppl β â Angle α â§ Angle β
RightImpliesAngle |- â α. Right α â Angle α
SupplementSymmetry
|- â α β. α suppl β â β suppl α
SupplementsCongAnglesCong
|- â α β α' β'.
α suppl α' ⧠β suppl β' ⧠α ⡠β
â α' ⡠β'
SupplementUnique
|- â α β β'.
α suppl β ⧠α suppl β' â β ⡠β'
CongRightImpliesRight
|- â α β.
Angle α â§ Right β ⧠α ⡠β â Right α
RightAnglesCongruentHelp
|- â A O B A' P a.
¬Collinear A O B â§ O â open (A,A')
Right (â¡ A O B) â§ Right (â¡ A O P)
â P â int_angle A O B
RightAnglesCongruent
|- â α β. Right α â§ Right β â α ⡠β
OppositeRightAnglesLinear
|- â A B O H h.
¬Collinear A O H ⧠¬Collinear H O B â§
Right (â¡ A O H) â§ Right (â¡ H O B) â§
Line h â§ O â h â§ H â h ⧠¬(A,B same_side h)
â O â open (A,B)
RightImpliesSupplRight
|- â A O B A'.
¬Collinear A O B â§ O â open (A,A') â§ Right (â¡ A O B)
â Right (â¡ B O A')
IsoscelesCongBaseAngles
|- â A B C.
¬Collinear A B C ⧠seg B A ⡠seg B C
â â¡ C A B â¡ â¡ A C B
C4withC1
|- â α l O A Y P Q.
Angle α ⧠¬(O = A) ⧠¬(P = Q) â§
Line l â§ O â l â§ A â l â§ Y â l
â â N. ¬(O = N) â§ N â l â§ N,Y same_side l â§
seg O N ⡠seg P Q ⧠⡠A O N ⡠α
C4OppositeSide
|- â α l O A Z P Q.
Angle α ⧠¬(O = A) ⧠¬(P = Q) â§
Line l â§ O â l â§ A â l â§ Z â l
â â N. ¬(O = N) â§ N â l ⧠¬(Z,N same_side l) â§
seg O N ⡠seg P Q ⧠⡠A O N ⡠α
SSS
|- â A B C A' B' C'.
¬Collinear A B C ⧠¬Collinear A' B' C' â§
seg A B â¡ seg A' B' â§ seg A C â¡ seg A' C' â§ seg B C â¡ seg B' C'
â A,B,C â
A',B',C'
AngleBisector
|- â A B C.
¬Collinear B A C
â â F. F â int_angle B A C â§ â¡ B A F â¡ â¡ F A C
EuclidPropositionI_6
|- â A B C.
¬Collinear A B C ⧠⡠B A C ⡠⡠B C A
â seg B A â¡ seg B C
IsoscelesExists
|- â A B. ¬(A = B) â â D. ¬Collinear A D B â§ seg D A â¡ seg D B
MidpointExists
|- â A B. ¬(A = B) â â M. M â open (A,B) â§ seg A M â¡ seg M B
EuclidPropositionI_7short
|- â A B C D a.
¬(A = B) â§ Line a â§ A â a â§ B â a ⧠¬(C = D) â§ C â a â§ D â a â§
C,D same_side a â§ seg A C â¡ seg A D
â ¬(seg B C â¡ seg B D)
EuclidPropI_7Help
|- â A B C D a.
¬(A = B) â§ Line a â§ A â a â§ B â a ⧠¬(C = D) â§ C â a â§ D â a â§
C,D same_side a â§ seg A C â¡ seg A D â§
(C â int_triangle D A B ⨠ConvexQuadrilateral A B C D)
â ¬(seg B C â¡ seg B D)
EuclidPropositionI_7
|- â A B C D a.
¬(A = B) â§ Line a â§ A â a â§ B â a ⧠¬(C = D) â§ C â a â§ D â a â§
C,D same_side a â§ seg A C â¡ seg A D
â ¬(seg B C â¡ seg B D)
EuclidPropositionI_11
|- âA B. ¬(A = B) â â F. Right (â¡ A B F)
DropPerpendicularToLine
|- â P l.
Line l â§ P â l
â â E Q. E â l â§ Q â l â§ Right (â¡ P Q E)
EuclidPropositionI_14
|- â A B C D l.
Line l â§ A â l â§ B â l ⧠¬(A = B) â§
C â l â§ D â l ⧠¬(C,D same_side l) â§
â¡ C B A suppl â¡ A B D
â B â open (C,D)
VerticalAnglesCong
|- â A B O A' B'.
¬Collinear A O B â§ O â open (A,A') â§ O â open (B,B')
â â¡ B O A' â¡ â¡ B' O A
EuclidPropositionI_16
|- â A B C D.
¬Collinear A B C â§ C â open (B,D)
â â¡ B A C <_ang â¡ D C A
ExteriorAngle
|- â A B C D.
¬Collinear A B C â§ C â open (B,D)
â â¡ A B C <_ang â¡ A C D
EuclidPropositionI_17
|- â A B C α β γ.
¬Collinear A B C ⧠α = ⡠A B C ⧠β = ⡠B C A ⧠β suppl γ
â α <_ang γ
EuclidPropositionI_18
|- â A B C.
¬Collinear A B C ⧠seg A C <__ seg A B
â â¡ A B C <_ang â¡ B C A
EuclidPropositionI_19
|- â A B C.
¬Collinear A B C ⧠⡠A B C <_ang ⡠B C A
â seg A C <__ seg A B
EuclidPropositionI_20
|- â A B C D.
¬Collinear A B C â§ A â open (B,D) â§ seg A D â¡ seg A C
â seg B C <__ seg B D
EuclidPropositionI_21
|- â A B C D.
¬Collinear A B C â§ D â int_triangle A B C
â â¡ A B C <_ang â¡ C D A
AngleTrichotomy3
|- â α β γ.
α <_ang β ⧠Angle γ ⧠γ ⡠α
â γ <_ang β
InteriorCircleConvexHelp
|- â O A B C.
¬Collinear A O C â§ B â open (A,C) â§
seg O A <__ seg O C ⨠seg O A ⡠seg O C
â seg O B <__ seg O C
InteriorCircleConvex
|- â O R A B C.
¬(O = R) â§ B â open (A,C) â§
A â int_circle O R â§ C â int_circle O R
â B â int_circle O R
SegmentTrichotomy3
|- â s t u. s <__ t â§ Segment u â§ u â¡ s â u <__ t
EuclidPropositionI_24Help
|- â O A C O' D F.
¬Collinear A O C ⧠¬Collinear D O' F â§
seg O' D â¡ seg O A â§ seg O' F â¡ seg O C â§
â¡ D O' F <_ang â¡ A O C â§
seg O A <__ seg O C ⨠seg O A ⡠seg O C
â seg D F <__ seg A C
EuclidPropositionI_24
|- â O A C O' D F.
¬Collinear A O C ⧠¬Collinear D O' F â§
seg O' D â¡ seg O A â§ seg O' F â¡ seg O C â§
â¡ D O' F <_ang â¡ A O C
â seg D F <__ seg A C
EuclidPropositionI_25
|- â O A C O' D F.
¬Collinear A O C ⧠¬Collinear D O' F â§
seg O' D â¡ seg O A â§ seg O' F â¡ seg O C â§
seg D F <__ seg A C
â â¡ D O' F <_ang â¡ A O C
AAS
|- â A B C A' B' C'.
¬Collinear A B C ⧠¬Collinear A' B' C' â§
â¡ A B C â¡ â¡ A' B' C' â§ â¡ B C A â¡ â¡ B' C' A' â§
seg A B â¡ seg A' B'
â A,B,C â
A',B',C'
ParallelSymmetry |- â l k. l ⥠k â k ⥠l
AlternateInteriorAngles
|- â A B C E l m t.
Line l â§ A â l â§ E â l â§
Line m â§ B â m â§ C â m â§
Line t â§ A â t â§ B â t â§
¬(A = E) ⧠¬(B = C) ⧠¬(A = B) â§ E â t â§ C â t â§
¬(C,E same_side t) ⧠⡠E A B ⡠⡠C B A
â l ⥠m
EuclidPropositionI_28
|- â A B C D E F G H l m t.
Line l â§ A â l â§ B â l â§ G â l â§
Line m â§ C â m â§ D â m â§ H â m â§
Line t â§ G â t â§ H â t â§ G â m â§ H â l â§
G â open (A,B) â§ H â open (C,D) â§
G â open (E,H) â§ H â open (F,G) ⧠¬(D,A same_side t) â§
⡠E G B ⡠⡠G H D ⨠⡠B G H suppl ⡠G H D
â l ⥠m
OppositeSidesCongImpliesParallelogram
|- â A B C D.
Quadrilateral A B C D â§
seg A B â¡ seg C D â§ seg B C â¡ seg D A
â Parallelogram A B C D
OppositeAnglesCongImpliesParallelogramHelp
|- â A B C D a c.
Quadrilateral A B C D â§
â¡ A B C â¡ â¡ C D A â§ â¡ D A B â¡ â¡ B C D â§
Line a â§ A â a â§ B â a â§ Line c â§ C â c â§ D â c
â a ⥠c
OppositeAnglesCongImpliesParallelogram
|- â A B C D.
Quadrilateral A B C D â§
â¡ A B C â¡ â¡ C D A â§ â¡ D A B â¡ â¡ B C D
â Parallelogram A B C D
P |- â P l. Line l â§ P â l â â! m. Line m â§ P â m â§ m ⥠l
AMa |- â α. Angle α â &0 < μ α ⧠μ α < &180
AMb |- â α. Right α â μ α = &90
AMc |- â α β. Angle α â§ Angle β ⧠α ⡠β â μ α = μ β
AMd |- â A O B P. P â int_angle A O B
â μ (â¡ A O B) = μ (â¡ A O P) + μ (â¡ P O B)
ConverseAlternateInteriorAngles
|- â A B C E l m t.
Line l â§ A â l â§ E â l â§
Line m â§ B â m â§ C â m â§
Line t â§ A â t â§ B â t â§
¬(A = E) ⧠¬(B = C) ⧠¬(A = B) â§ E â t â§ C â t â§
¬(C,E same_side t) ⧠l ⥠m
â â¡ E A B â¡ â¡ C B A
HilbertTriangleSum
|- â A B C.
¬Collinear A B C
â â E F.
B â open (E,F) â§ C â int_angle A B F â§
â¡ E B A â¡ â¡ C A B â§ â¡ C B F â¡ â¡ B C A
EuclidPropositionI_13
|- âA O B A'.
¬Collinear A O B â§ O â open (A,A')
â μ (â¡ A O B) + μ (â¡ B O A') = &180
TriangleSum
|- â A B C.
¬Collinear A B C
â μ (â¡ A B C) + μ (â¡ B C A) + μ (â¡ C A B) = &180