ocaml #use "hol.ml";; #load "unix.cma";; loadt "miz3/miz3.ml";; reset_miz3 0;; verbose := true;; report_timing := true;; Theorem/Proof templates: let _THM = theorem `; â â proof qed; `;; interactive_goal `; `;; interactive_proof `; `;; interactive_proof `; `;; interactive_proof `; `;; interactive_proof `; `;; interactive_proof `; `;; â |- â a l. a â l â ¬(a â l) Interval_DEF |- â A B X. open (A,B) = {X | Between A X B} Collinear_DEF |- â A B C. Collinear A B C â â l. Line l ⧠A â l ⧠B â l ⧠C â l SameSide_DEF |- â l A B. A,B same_side l â Line l ⧠¬ â X. X â l ⧠X â open (A,B) Ray_DEF |- â A B. ray A B = {X | ¬(A = B) ⧠Collinear A B X ⧠A â open (X,B)} Ordered_DEF |- â A C B D. ordered A B C D â B â open (A,C) ⧠B â open (A,D) ⧠C â open (A,D) ⧠C â open (B,D) InteriorAngle_DEF |- â A O B. int_angle A O B = {P | ¬Collinear A O B ⧠â a b. Line a ⧠O â a ⧠A â a ⧠Line b ⧠O â b ⧠B â b ⧠P â a ⧠P â b ⧠P,B same_side a ⧠P,A same_side b} InteriorTriangle_DEF |- â A B C. int_triangle A B C = {P | P â int_angle A B C ⧠P â int_angle B C A ⧠P â int_angle C A B} Tetralateral_DEF |- â C D A B. Tetralateral A B C D â ¬(A = B) ⧠¬(A = C) ⧠¬(A = D) ⧠¬(B = C) ⧠¬(B = D) ⧠¬(C = D) ⧠¬Collinear A B C ⧠¬Collinear B C D ⧠¬Collinear C D A ⧠¬Collinear D A B Quadrilateral_DEF |- â B C D A. Quadrilateral A B C D â Tetralateral A B C D ⧠open (A,B) â© open (C,D) = â ⧠open (B,C) â© open (D,A) = â ConvexQuad_DEF |- â D A B C. ConvexQuadrilateral A B C D â Quadrilateral A B C D ⧠A â int_angle B C D ⧠B â int_angle C D A ⧠C â int_angle D A B ⧠D â int_angle A B C Segment_DEF |- â A B. seg A B = {A, B} ⪠open (A,B) SEGMENT |- â s. Segment s â â A B. s = seg A B ⧠¬(A = B) SegmentOrdering_DEF |- â t s. s <__ t â Segment s ⧠â C D X. t = seg C D ⧠X â open (C,D) ⧠s â¡ seg C X Angle_DEF |- â A O B. â¡ A O B = ray O A ⪠ray O B ANGLE |- â α. Angle α â â A O B. α = â¡ A O B ⧠¬Collinear A O B AngleOrdering_DEF |- â β α. α <_ang β â Angle α ⧠â A O B G. ¬Collinear A O B ⧠β = â¡ A O B ⧠G â int_angle A O B ⧠α â¡ â¡ A O G RAY |- â r. Ray r â â O A. ¬(O = A) ⧠r = ray O A TriangleCong_DEF |- â A B C A' B' C'. A,B,C â A',B',C' â ¬Collinear A B C ⧠¬Collinear A' B' C' ⧠seg A B â¡ seg A' B' ⧠seg A C â¡ seg A' C' ⧠seg B C â¡ seg B' C' ⧠⡠A B C â¡ â¡ A' B' C' ⧠⡠B C A â¡ â¡ B' C' A' ⧠⡠C A B â¡ â¡ C' A' B' SupplementaryAngles_DEF |- âα β. α suppl β â â A O B A'. ¬Collinear A O B ⧠O â open (A,A') ⧠α = â¡ A O B ⧠β = â¡ B O A' RightAngle_DEF |- âα. Right α â â β. α suppl β ⧠α ⡠β PlaneComplement_DEF |- â α. complement α = {P | P â α} CONVEX |- âα. Convex α â â A B. A â α ⧠B â α â open (A,B) â α PARALLEL |- â l k. l ⥠k â Line l ⧠Line k ⧠l â© k = â Parallelogram_DEF |- â A B C D. Parallelogram A B C D â Quadrilateral A B C D ⧠â a b c d. Line a ⧠A â a ⧠B â a ⧠Line b ⧠B â b ⧠C â b ⧠Line c ⧠C â c ⧠D â d ⧠Line d ⧠D â d ⧠A â d ⧠a ⥠c ⧠b ⥠d InteriorCircle_DEF |- â O R. int_circle O R = {P | ¬(O = R) ⧠(P = O ⨠seg O P <__ seg O R)} I1 |- â A B. ¬(A = B) â (â! l. Line l ⧠A â l ⧠B â l) I2 |- â l. Line l â (â A B. A â l ⧠B â l ⧠¬(A = B)) I3 |- â A B C. ¬(A = B) ⧠¬(A = C) ⧠¬(B = C) ⧠¬Collinear A B C B1 |- â A B C. Between A B C â ¬(A = B) ⧠¬(A = C) ⧠¬(B = C) ⧠Between C B A ⧠Collinear A B C B2 |- â A B. ¬(A = B) â âC. Between A B C B3 |- â A B C. ¬(A = B) ⧠¬(A = C) ⧠¬(B = C) ⧠Collinear A B C â (Between A B C ⨠Between B C A ⨠Between C A B) ⧠¬(Between A B C ⧠Between B C A) ⧠¬(Between A B C ⧠Between C A B) ⧠¬(Between B C A ⧠Between C A B) B4 |- â l A B C. Line l ⧠¬Collinear A B C ⧠A â l ⧠B â l ⧠C â l ⧠(âX. X â l ⧠Between A X C) â (â Y. Y â l ⧠Between A Y B) ⨠(â Y. Y â l ⧠Between B Y C) C1 |- â s O Z. Segment s ⧠¬(O = Z) â â! P. P â ray O Z â O ⧠seg O P â¡ s C2Reflexive |- Segment s â s â¡ s C2Symmetric |- Segment s ⧠Segment t ⧠s â¡ t â t â¡ s C2Transitive |- Segment s ⧠Segment t ⧠Segment u ⧠s â¡ t ⧠t â¡ u â s â¡ u C3 |- â A B C A' B' C'. B â open (A,C) ⧠B' â open (A',C') ⧠seg A B â¡ seg A' B' ⧠seg B C â¡ seg B' C' â seg A C â¡ seg A' C' C4 |- â α O A l Y. Angle α ⧠¬(O = A) ⧠Line l ⧠O â l ⧠A â l ⧠Y â l â â! r. Ray r ⧠â B. ¬(O = B) ⧠r = ray O B ⧠B â l ⧠B,Y same_side l ⧠⡠A O B ⡠α C5Reflexive |- Angle α â α ⡠α C5Symmetric |- Angle α ⧠Angle β ⧠α ⡠β â β ⡠α C5Transitive |- Angle α ⧠Angle β ⧠Angle γ ⧠α ⡠β ⧠β ⡠γ â α ⡠γ C6 |- âA B C A' B' C'. ¬Collinear A B C ⧠¬Collinear A' B' C' ⧠seg B A â¡ seg B' A' ⧠seg B C â¡ seg B' C' ⧠⡠A B C â¡ â¡ A' B' C' â â¡ B C A â¡ â¡ B' C' A' IN_Interval |- â A B X. X â open (A,B) â Between A X B IN_Ray |- â A B X. X â ray A B â ¬(A = B) ⧠Collinear A B X ⧠A â open (X,B) IN_InteriorAngle |- âA O B P. P â int_angle A O B â ¬Collinear A O B ⧠â a b. Line a ⧠O â a ⧠A â a ⧠Line b ⧠O â b ⧠B â b ⧠P â a ⧠P â b ⧠P,B same_side a ⧠P,A same_side b IN_InteriorTriangle |- âA B C P. P â int_triangle A B C â P â int_angle A B C ⧠P â int_angle B C A ⧠P â int_angle C A B IN_PlaneComplement |- âα P. P â complement α â P â α IN_InteriorCircle |- â O R P. P â int_circle O R â ¬(O = R) ⧠(P = O ⨠seg O P <__ seg O R) B1' |- â A B C. B â open (A,C) â ¬(A = B) ⧠¬(A = C) ⧠¬(B = C) ⧠B â open (C,A) ⧠Collinear A B C B2' |- â A B. ¬(A = B) â (â C. B â open (A,C)) B3' |- â A B C. ¬(A = B) ⧠¬(A = C) ⧠¬(B = C) ⧠Collinear A B C â (B â open (A,C) ⨠C â open (B,A) ⨠A â open (C,B)) ⧠¬(B â open (A,C) ⧠C â open (B,A)) ⧠¬(B â open (A,C) ⧠A â open (C,B)) ⧠¬(C â open (B,A) ⧠A â open (C,B)) B4' |- â l A B C. Line l ⧠¬Collinear A B C ⧠A â l ⧠B â l ⧠C â l ⧠(â X. X â l ⧠X â open (A,C)) â (â Y. Y â l ⧠Y â open (A,B)) ⨠(â Y. Y â l ⧠Y â open (B,C)) B4'' |- â l A B C. Line l ⧠¬Collinear A B C ⧠A â l ⧠B â l ⧠C â l ⧠A,B same_side l ⧠B,C same_side l â A,C same_side l DisjointOneNotOther |- â l m. (âx. x â m â x â l) â l â© m = â EquivIntersectionHelp |- â e x l m. (l â© m = {x} ⨠m â© l = {x}) ⧠e â m â x â e â l CollinearSymmetry |- â A B C. Collinear A B C â Collinear A C B ⧠Collinear B A C ⧠Collinear B C A ⧠Collinear C A B ⧠Collinear C B A ExistsNewPointOnLine |- â P l. Line l ⧠P â l â â Q. Q â l ⧠¬(P = Q) ExistsPointOffLine |- â l. Line l â â Q. Q â l BetweenLinear |- â A B C m. Line m ⧠A â m ⧠C â m ⧠B â open (A,C) ⨠C â open (B,A) ⨠A â open (C,B) â B â m CollinearLinear |- â A B C m. Line m ⧠A â m ⧠C â m ⧠¬(A = C) ⧠Collinear A B C ⨠Collinear B C A ⨠Collinear C A B â B â m NonCollinearImpliesDistinct |- â A B C. ¬Collinear A B C â ¬(A = B) ⧠¬(A = C) ⧠¬(B = C) NonCollinearRaa |- âA B C l. ¬(A = C) ⧠Line l ⧠A â l ⧠C â l ⧠B â l â ¬Collinear A B C TwoSidesTriangle1Intersection |- âA B C Y. ¬Collinear A B C ⧠Collinear B C Y ⧠Collinear A C Y â Y = C OriginInRay |- â O Q. ¬(Q = O) â O â ray O Q EndpointInRay |- â O Q. ¬(Q = O) â Q â ray O Q I1Uniqueness |- â X l m. Line l ⧠Line m ⧠¬(l = m) ⧠X â l ⧠X â m â l â© m = {X} EquivIntersection |- â A B X l m. Line l ⧠Line m ⧠l â© m = {X} ⧠A â m â X ⧠B â m â X ⧠X â open (A,B) â A,B same_side l RayLine |- â O P l. Line l ⧠O â l ⧠P â l â ray O P â l RaySameSide |- â l O A P. Line l ⧠O â l ⧠A â l ⧠P â ray O A â O â P â l ⧠P,A same_side l IntervalRayEZ |- â A B C. B â open (A,C) â B â ray A C â A ⧠C â ray A B â A NoncollinearityExtendsToLine |- â A O B X. ¬Collinear A O B ⧠Collinear O B X ⧠¬(X = O) â ¬Collinear A O X SameSideReflexive |- â l A. Line l ⧠A â l â A,A same_side l SameSideSymmetric |- â l A B. Line l ⧠A â l ⧠B â l ⧠A,B same_side l â B,A same_side l SameSideTransitive |- âl A B C. Line l ⧠A â l ⧠B â l ⧠C â l ⧠A,B same_side l ⧠B,C same_side l â A,C same_side l ConverseCrossbar |- â O A B G. ¬Collinear A O B ⧠G â open (A,B) â G â int_angle A O B InteriorUse |- â A O B P a b. Line a ⧠O â a ⧠A â a ⧠Line b ⧠O â b ⧠B â b ⧠P â int_angle A O B â P â a ⧠P â b ⧠P,B same_side a ⧠P,A same_side b InteriorEZHelp |- â A O B P. P â int_angle A O B â ¬(P = A) ⧠¬(P = O) ⧠¬(P = B) ⧠¬Collinear A O P InteriorAngleSymmetry |- â A O B P. P â int_angle A O B â P â int_angle B O A InteriorWellDefined |- â A O B X P. P â int_angle A O B ⧠X â ray O B â O â P â int_angle A O X WholeRayInterior |- âA O B X P. X â int_angle A O B ⧠P â ray O X â O â P â int_angle A O B AngleOrdering |- â O A P Q a. ¬(O = A) ⧠Line a ⧠O â a ⧠A â a ⧠P â a ⧠Q â a ⧠P,Q same_side a ⧠¬Collinear P O Q â P â int_angle Q O A ⨠Q â int_angle P O A InteriorsDisjointSupplement |- âA O B A'. ¬Collinear A O B ⧠O â open (A,A') â int_angle A O B â© int_angle B O A' = â InteriorReflectionInterior |- â A O B D A'. O â open (A,A') ⧠D â int_angle A O B â B â int_angle D O A' Crossbar_THM |- â O A B D. D â int_angle A O B â â G. G â open (A,B) ⧠G â ray O D â O AlternateConverseCrossbar |- â O A B G. Collinear A G B ⧠G â int_angle A O B â G â open (A,B) InteriorOpposite |- â A O B P p. P â int_angle A O B ⧠Line p ⧠O â p ⧠P â p â ¬(A,B same_side p) IntervalTransitivity |- â O P Q R m. Line m ⧠O â m ⧠P â m â O ⧠Q â m â O ⧠R â m â O ⧠O â open (P,Q) ⧠O â open (Q,R) â O â open (P,R) RayWellDefinedHalfway |- â O P Q. ¬(Q = O) ⧠P â ray O Q â O â ray O P â ray O Q RayWellDefined |- â O P Q. ¬(Q = O) ⧠P â ray O Q â O â ray O P = ray O Q OppositeRaysIntersect1pointHelp |- â A O B X. O â open (A,B) ⧠X â ray O B â O â X â ray O A ⧠O â open (X,A) OppositeRaysIntersect1point |- â A O B. O â open (A,B) â ray O A â© ray O B = {O} IntervalRay |- â A B C. B â open (A,C) â ray A B = ray A C Reverse4Order |- â A B C D. ordered A B C D â ordered D C B A TransitivityBetweennessHelp |- â A B C D. B â open (A,C) ⧠C â open (B,D) â B â open (A,D) TransitivityBetweenness |- â A B C D. B â open (A,C) ⧠C â open (B,D) â ordered A B C D IntervalsAreConvex |- â A B C. B â open (A,C) â open (A,B) â open (A,C) TransitivityBetweennessVariant |- â A X B C. X â open (A,B) ⧠B â open (A,C) â ordered A X B C Interval2sides2aLineHelp |- â A B C X. B â open (A,C) â X â open (A,B) ⨠X â open (B,C) Interval2sides2aLine |- â A B C X. Collinear A B C â X â open (A,B) ⨠X â open (A,C) ⨠X â open (B,C) TwosidesTriangle2aLine |- âA B C Y l m. Line l ⧠¬Collinear A B C ⧠A â l ⧠B â l ⧠C â l ⧠Line m ⧠A â m ⧠C â m ⧠Y â l ⧠Y â m ⧠¬(A,B same_side l) ⧠¬(B,C same_side l) â A,C same_side l LineUnionOf2Rays |- â A O B l. Line l ⧠A â l ⧠B â l ⧠O â open (A,B) â l = ray O A ⪠ray O B AtMost2Sides |- â A B C l. Line l ⧠A â l ⧠B â l ⧠C â l â A,B same_side l ⨠A,C same_side l ⨠B,C same_side l FourPointsOrder |- â A B C X l. Line l ⧠A â l ⧠B â l ⧠C â l ⧠X â l ⧠B â open (A,C) ⧠¬(X = A) ⧠¬(X = B) ⧠¬(X = C) â ordered X A B C ⨠ordered A X B C ⨠ordered A B X C ⨠ordered A B C X HilbertAxiomRedundantByMoore |- â A B C D l. Line l ⧠A â l ⧠B â l ⧠C â l ⧠D â l ⧠¬(A = B) ⧠¬(A = C) ⧠¬(A = D) ⧠¬(B = C) ⧠¬(B = D) ⧠¬(C = D) â ordered D A B C ⨠ordered A D B C ⨠ordered A B D C ⨠ordered A B C D ⨠ordered D A C B ⨠ordered A D C B ⨠ordered A C D B ⨠ordered A C B D ⨠ordered D C A B ⨠ordered C D A B ⨠ordered C A D B ⨠ordered C A B D InteriorTransitivity |- âA O B F G. G â int_angle A O B ⧠F â int_angle A O G â F â int_angle A O B HalfPlaneConvexNonempty |- âl H A. Line l ⧠A â l ⧠H = {X | X â l ⧠X,A same_side l} â ¬(H = â ) ⧠H â complement l ⧠Convex H PlaneSeparation |- â l. Line l â â H1 H2. H1 â© H2 = â ⧠¬(H1 = â ) ⧠¬(H2 = â ) ⧠Convex H1 ⧠Convex H2 ⧠complement l = H1 ⪠H2 ⧠â P Q. P â H1 ⧠Q â H2 â ¬(P,Q same_side l) TetralateralSymmetry |- â A B C D. Tetralateral A B C D â Tetralateral B C D A ⧠Tetralateral A B D C EasyEmptyIntersectionsTetralateralHelp |- â A B C D. Tetralateral A B C D â open (A,B) â© open (B,C) = â EasyEmptyIntersectionsTetralateral |- â A B C D. Tetralateral A B C D â open (A,B) â© open (B,C) = â ⧠open (B,C) â© open (C,D) = â ⧠open (C,D) â© open (D,A) = â ⧠open (D,A) â© open (A,B) = â SegmentSameSideOppositeLine |- â A B C D a c. Quadrilateral A B C D ⧠Line a ⧠A â a ⧠B â a ⧠Line c ⧠C â c ⧠D â c â A,B same_side c ⨠C,D same_side a ConvexImpliesQuad |- â A B C D. Tetralateral A B C D ⧠C â int_angle D A B ⧠D â int_angle A B C â Quadrilateral A B C D DiagonalsIntersectImpliesConvexQuad |- â A B C D G. ¬Collinear B C D ⧠G â open (A,C) ⧠G â open (B,D) â ConvexQuadrilateral A B C D DoubleNotSimImpliesDiagonalsIntersect |- â A B C D l m. Line l ⧠A â l ⧠C â l ⧠Line m ⧠B â m ⧠D â m ⧠Tetralateral A B C D ⧠¬(B,D same_side l) ⧠¬(A,C same_side m) â (â G. G â open (A,C) â© open (B,D)) ⧠ConvexQuadrilateral A B C D ConvexQuadImpliesDiagonalsIntersect |- â A B C D l m. Line l ⧠A â l ⧠C â l ⧠Line m ⧠B â m ⧠D â m ⧠ConvexQuadrilateral A B C D â ¬(B,D same_side l) ⧠¬(A,C same_side m) ⧠(â G. G â open (A,C) â© open (B,D)) ⧠¬Quadrilateral A B D C FourChoicesTetralateralHelp |- â A B C D. Tetralateral A B C D ⧠C â int_angle D A B â ConvexQuadrilateral A B C D ⨠C â int_triangle D A B InteriorTriangleSymmetry |- â A B C P. P â int_triangle A B C â P â int_triangle B C A FourChoicesTetralateral |- â A B C D a. Tetralateral A B C D ⧠Line a ⧠A â a ⧠B â a ⧠C,D same_side a â ConvexQuadrilateral A B C D ⨠ConvexQuadrilateral A B D C ⨠D â int_triangle A B C ⨠C â int_triangle D A B QuadrilateralSymmetry |- â A B C D. Quadrilateral A B C D â Quadrilateral B C D A ⧠Quadrilateral C D A B ⧠Quadrilateral D A B C FiveChoicesQuadrilateral |- â A B C D l m. Quadrilateral A B C D ⧠Line l ⧠A â l ⧠C â l ⧠Line m ⧠B â m ⧠D â m â (ConvexQuadrilateral A B C D ⨠A â int_triangle B C D ⨠B â int_triangle C D A ⨠C â int_triangle D A B ⨠D â int_triangle A B C) ⧠(¬(B,D same_side l) ⨠¬(A,C same_side m)) IntervalSymmetry |- â A B. open (A,B) = open (B,A) SegmentSymmetry |- â A B. seg A B = seg B A C1OppositeRay |- â O P s. Segment s ⧠¬(O = P) â â Q. P â open (O,Q) ⧠seg P Q â¡ s OrderedCongruentSegments |- â A B C D F. ¬(A = C) ⧠¬(D = F) ⧠seg A C â¡ seg D F ⧠B â open (A,C) â â E. E â open (D,F) ⧠seg A B â¡ seg D E SegmentSubtraction |- â A B C A' B' C'. B â open (A,C) ⧠B' â open (A',C') ⧠seg A B â¡ seg A' B' ⧠seg A C â¡ seg A' C' â seg B C â¡ seg B' C' SegmentOrderingUse |- âA B s. Segment s ⧠¬(A = B) ⧠s <__ seg A B â â G. G â open (A,B) ⧠s â¡ seg A G SegmentTrichotomy1 |- â s t. s <__ t â ¬(s â¡ t) SegmentTrichotomy2 |- â s t u. s <__ t ⧠Segment u ⧠t â¡ u â s <__ u SegmentOrderTransitivity |- â s t u. s <__ t ⧠t <__ u â s <__ u SegmentTrichotomy |- â s t. Segment s ⧠Segment t â (s â¡ t ⨠s <__ t ⨠t <__ s) ⧠¬(s â¡ t ⧠s <__ t) ⧠¬(s â¡ t ⧠t <__ s) ⧠¬(s <__ t ⧠t <__ s) C4Uniqueness |- â O A B P l. Line l ⧠O â l ⧠A â l ⧠¬(O = A) ⧠B â l ⧠P â l ⧠P,B same_side l ⧠⡠A O P â¡ â¡ A O B â ray O B = ray O P AngleSymmetry |- â A O B. â¡ A O B = â¡ B O A TriangleCongSymmetry |- â A B C A' B' C'. A,B,C â A',B',C' â A,C,B â A',C',B' ⧠B,A,C â B',A',C' ⧠B,C,A â B',C',A' ⧠C,A,B â C',A',B' ⧠C,B,A â C',B',A' SAS |- â A B C A' B' C'. ¬Collinear A B C ⧠¬Collinear A' B' C' ⧠seg B A â¡ seg B' A' ⧠seg B C â¡ seg B' C' ⧠⡠A B C â¡ â¡ A' B' C' â A,B,C â A',B',C' ASA |- â A B C A' B' C'. ¬Collinear A B C ⧠¬Collinear A' B' C' ⧠seg A C â¡ seg A' C' ⧠⡠C A B â¡ â¡ C' A' B' ⧠⡠B C A â¡ â¡ B' C' A' â A,B,C â A',B',C' AngleSubtraction |- â A O B A' O' B' G G'. G â int_angle A O B ⧠G' â int_angle A' O' B' ⧠⡠A O B â¡ â¡ A' O' B' ⧠⡠A O G â¡ â¡ A' O' G' â â¡ G O B â¡ â¡ G' O' B' OrderedCongruentAngles |- â A O B A' O' B' G. ¬Collinear A' O' B' ⧠⡠A O B â¡ â¡ A' O' B' ⧠G â int_angle A O B â â G'. G' â int_angle A' O' B' ⧠⡠A O G â¡ â¡ A' O' G' AngleAddition |- â A O B A' O' B' G G'. G â int_angle A O B ⧠G' â int_angle A' O' B' ⧠⡠A O G â¡ â¡ A' O' G' ⧠⡠G O B â¡ â¡ G' O' B' ⧠â â¡ A O B â¡ â¡ A' O' B' AngleOrderingUse |- â A O B α. Angle α ⧠¬Collinear A O B ⧠α <_ang â¡ A O B â (â G. G â int_angle A O B ⧠α â¡ â¡ A O G) AngleTrichotomy1 |- â α β. α <_ang β â ¬(α ⡠β) AngleTrichotomy2 |- â α β γ. α <_ang β ⧠Angle γ ⧠β ⡠γ â α <_ang γ AngleOrderTransitivity |- âα β γ. α <_ang β ⧠β <_ang γ â α <_ang γ AngleTrichotomy |- â α β. Angle α ⧠Angle β â (α ⡠β ⨠α <_ang β ⨠β <_ang α) ⧠¬(α ⡠β ⧠α <_ang β) ⧠¬(α ⡠β ⧠β <_ang α) ⧠¬(α <_ang β ⧠β <_ang α) SupplementExists |- â α. Angle α â â α'. α suppl α' SupplementImpliesAngle |- â α β. α suppl β â Angle α ⧠Angle β RightImpliesAngle |- â α. Right α â Angle α SupplementSymmetry |- â α β. α suppl β â β suppl α SupplementsCongAnglesCong |- â α β α' β'. α suppl α' ⧠β suppl β' ⧠α ⡠β â α' ⡠β' SupplementUnique |- â α β β'. α suppl β ⧠α suppl β' â β ⡠β' CongRightImpliesRight |- â α β. Angle α ⧠Right β ⧠α ⡠β â Right α RightAnglesCongruentHelp |- â A O B A' P a. ¬Collinear A O B ⧠O â open (A,A') Right (â¡ A O B) ⧠Right (â¡ A O P) â P â int_angle A O B RightAnglesCongruent |- â α β. Right α ⧠Right β â α ⡠β OppositeRightAnglesLinear |- â A B O H h. ¬Collinear A O H ⧠¬Collinear H O B ⧠Right (â¡ A O H) ⧠Right (â¡ H O B) ⧠Line h ⧠O â h ⧠H â h ⧠¬(A,B same_side h) â O â open (A,B) RightImpliesSupplRight |- â A O B A'. ¬Collinear A O B ⧠O â open (A,A') ⧠Right (â¡ A O B) â Right (â¡ B O A') IsoscelesCongBaseAngles |- â A B C. ¬Collinear A B C ⧠seg B A â¡ seg B C â â¡ C A B â¡ â¡ A C B C4withC1 |- â α l O A Y P Q. Angle α ⧠¬(O = A) ⧠¬(P = Q) ⧠Line l ⧠O â l ⧠A â l ⧠Y â l â â N. ¬(O = N) ⧠N â l ⧠N,Y same_side l ⧠seg O N â¡ seg P Q ⧠⡠A O N ⡠α C4OppositeSide |- â α l O A Z P Q. Angle α ⧠¬(O = A) ⧠¬(P = Q) ⧠Line l ⧠O â l ⧠A â l ⧠Z â l â â N. ¬(O = N) ⧠N â l ⧠¬(Z,N same_side l) ⧠seg O N â¡ seg P Q ⧠⡠A O N ⡠α SSS |- â A B C A' B' C'. ¬Collinear A B C ⧠¬Collinear A' B' C' ⧠seg A B â¡ seg A' B' ⧠seg A C â¡ seg A' C' ⧠seg B C â¡ seg B' C' â A,B,C â A',B',C' AngleBisector |- â A B C. ¬Collinear B A C â â F. F â int_angle B A C ⧠⡠B A F â¡ â¡ F A C EuclidPropositionI_6 |- â A B C. ¬Collinear A B C ⧠⡠B A C â¡ â¡ B C A â seg B A â¡ seg B C IsoscelesExists |- â A B. ¬(A = B) â â D. ¬Collinear A D B ⧠seg D A â¡ seg D B MidpointExists |- â A B. ¬(A = B) â â M. M â open (A,B) ⧠seg A M â¡ seg M B EuclidPropositionI_7short |- â A B C D a. ¬(A = B) ⧠Line a ⧠A â a ⧠B â a ⧠¬(C = D) ⧠C â a ⧠D â a ⧠C,D same_side a ⧠seg A C â¡ seg A D â ¬(seg B C â¡ seg B D) EuclidPropI_7Help |- â A B C D a. ¬(A = B) ⧠Line a ⧠A â a ⧠B â a ⧠¬(C = D) ⧠C â a ⧠D â a ⧠C,D same_side a ⧠seg A C â¡ seg A D ⧠(C â int_triangle D A B ⨠ConvexQuadrilateral A B C D) â ¬(seg B C â¡ seg B D) EuclidPropositionI_7 |- â A B C D a. ¬(A = B) ⧠Line a ⧠A â a ⧠B â a ⧠¬(C = D) ⧠C â a ⧠D â a ⧠C,D same_side a ⧠seg A C â¡ seg A D â ¬(seg B C â¡ seg B D) EuclidPropositionI_11 |- âA B. ¬(A = B) â â F. Right (â¡ A B F) DropPerpendicularToLine |- â P l. Line l ⧠P â l â â E Q. E â l ⧠Q â l ⧠Right (â¡ P Q E) EuclidPropositionI_14 |- â A B C D l. Line l ⧠A â l ⧠B â l ⧠¬(A = B) ⧠C â l ⧠D â l ⧠¬(C,D same_side l) ⧠⡠C B A suppl â¡ A B D â B â open (C,D) VerticalAnglesCong |- â A B O A' B'. ¬Collinear A O B ⧠O â open (A,A') ⧠O â open (B,B') â â¡ B O A' â¡ â¡ B' O A EuclidPropositionI_16 |- â A B C D. ¬Collinear A B C ⧠C â open (B,D) â â¡ B A C <_ang â¡ D C A ExteriorAngle |- â A B C D. ¬Collinear A B C ⧠C â open (B,D) â â¡ A B C <_ang â¡ A C D EuclidPropositionI_17 |- â A B C α β γ. ¬Collinear A B C ⧠α = â¡ A B C ⧠β = â¡ B C A ⧠β suppl γ â α <_ang γ EuclidPropositionI_18 |- â A B C. ¬Collinear A B C ⧠seg A C <__ seg A B â â¡ A B C <_ang â¡ B C A EuclidPropositionI_19 |- â A B C. ¬Collinear A B C ⧠⡠A B C <_ang â¡ B C A â seg A C <__ seg A B EuclidPropositionI_20 |- â A B C D. ¬Collinear A B C ⧠A â open (B,D) ⧠seg A D â¡ seg A C â seg B C <__ seg B D EuclidPropositionI_21 |- â A B C D. ¬Collinear A B C ⧠D â int_triangle A B C â â¡ A B C <_ang â¡ C D A AngleTrichotomy3 |- â α β γ. α <_ang β ⧠Angle γ ⧠γ ⡠α â γ <_ang β InteriorCircleConvexHelp |- â O A B C. ¬Collinear A O C ⧠B â open (A,C) ⧠seg O A <__ seg O C ⨠seg O A â¡ seg O C â seg O B <__ seg O C InteriorCircleConvex |- â O R A B C. ¬(O = R) ⧠B â open (A,C) ⧠A â int_circle O R ⧠C â int_circle O R â B â int_circle O R SegmentTrichotomy3 |- â s t u. s <__ t ⧠Segment u ⧠u â¡ s â u <__ t EuclidPropositionI_24Help |- â O A C O' D F. ¬Collinear A O C ⧠¬Collinear D O' F ⧠seg O' D â¡ seg O A ⧠seg O' F â¡ seg O C ⧠⡠D O' F <_ang â¡ A O C ⧠seg O A <__ seg O C ⨠seg O A â¡ seg O C â seg D F <__ seg A C EuclidPropositionI_24 |- â O A C O' D F. ¬Collinear A O C ⧠¬Collinear D O' F ⧠seg O' D â¡ seg O A ⧠seg O' F â¡ seg O C ⧠⡠D O' F <_ang â¡ A O C â seg D F <__ seg A C EuclidPropositionI_25 |- â O A C O' D F. ¬Collinear A O C ⧠¬Collinear D O' F ⧠seg O' D â¡ seg O A ⧠seg O' F â¡ seg O C ⧠seg D F <__ seg A C â â¡ D O' F <_ang â¡ A O C AAS |- â A B C A' B' C'. ¬Collinear A B C ⧠¬Collinear A' B' C' ⧠⡠A B C â¡ â¡ A' B' C' ⧠⡠B C A â¡ â¡ B' C' A' ⧠seg A B â¡ seg A' B' â A,B,C â A',B',C' ParallelSymmetry |- â l k. l ⥠k â k ⥠l AlternateInteriorAngles |- â A B C E l m t. Line l ⧠A â l ⧠E â l ⧠Line m ⧠B â m ⧠C â m ⧠Line t ⧠A â t ⧠B â t ⧠¬(A = E) ⧠¬(B = C) ⧠¬(A = B) ⧠E â t ⧠C â t ⧠¬(C,E same_side t) ⧠⡠E A B â¡ â¡ C B A â l ⥠m EuclidPropositionI_28 |- â A B C D E F G H l m t. Line l ⧠A â l ⧠B â l ⧠G â l ⧠Line m ⧠C â m ⧠D â m ⧠H â m ⧠Line t ⧠G â t ⧠H â t ⧠G â m ⧠H â l ⧠G â open (A,B) ⧠H â open (C,D) ⧠G â open (E,H) ⧠H â open (F,G) ⧠¬(D,A same_side t) ⧠⡠E G B â¡ â¡ G H D ⨠⡠B G H suppl â¡ G H D â l ⥠m OppositeSidesCongImpliesParallelogram |- â A B C D. Quadrilateral A B C D ⧠seg A B â¡ seg C D ⧠seg B C â¡ seg D A â Parallelogram A B C D OppositeAnglesCongImpliesParallelogramHelp |- â A B C D a c. Quadrilateral A B C D ⧠⡠A B C â¡ â¡ C D A ⧠⡠D A B â¡ â¡ B C D ⧠Line a ⧠A â a ⧠B â a ⧠Line c ⧠C â c ⧠D â c â a ⥠c OppositeAnglesCongImpliesParallelogram |- â A B C D. Quadrilateral A B C D ⧠⡠A B C â¡ â¡ C D A ⧠⡠D A B â¡ â¡ B C D â Parallelogram A B C D P |- â P l. Line l ⧠P â l â â! m. Line m ⧠P â m ⧠m ⥠l AMa |- â α. Angle α â &0 < μ α ⧠μ α < &180 AMb |- â α. Right α â μ α = &90 AMc |- â α β. Angle α ⧠Angle β ⧠α ⡠β â μ α = μ β AMd |- â A O B P. P â int_angle A O B â μ (â¡ A O B) = μ (â¡ A O P) + μ (â¡ P O B) ConverseAlternateInteriorAngles |- â A B C E l m t. Line l ⧠A â l ⧠E â l ⧠Line m ⧠B â m ⧠C â m ⧠Line t ⧠A â t ⧠B â t ⧠¬(A = E) ⧠¬(B = C) ⧠¬(A = B) ⧠E â t ⧠C â t ⧠¬(C,E same_side t) ⧠l ⥠m â â¡ E A B â¡ â¡ C B A HilbertTriangleSum |- â A B C. ¬Collinear A B C â â E F. B â open (E,F) ⧠C â int_angle A B F ⧠⡠E B A â¡ â¡ C A B ⧠⡠C B F â¡ â¡ B C A EuclidPropositionI_13 |- âA O B A'. ¬Collinear A O B ⧠O â open (A,A') â μ (â¡ A O B) + μ (â¡ B O A') = &180 TriangleSum |- â A B C. ¬Collinear A B C â μ (â¡ A B C) + μ (â¡ B C A) + μ (â¡ C A B) = &180