(* ========================================================================= *)
(* Convex sets, functions and related things.                                *)
(*                                                                           *)
(*              (c) Copyright, John Harrison 1998-2008                       *)
(*                 (c) Copyright, Lars Schewe 2007                           *)
(*              (c) Copyright, Valentina Bruno 2010                          *)
(* ========================================================================= *)

needs "Multivariate/topology.ml";;

(* ------------------------------------------------------------------------- *)
(* Some miscelleneous things that are convenient to prove here.              *)
(* ------------------------------------------------------------------------- *)

let TRANSLATION_GALOIS = 
prove (`!s t a:real^N. s = IMAGE (\x. a + x) t <=> t = IMAGE (\x. --a + x) s`,
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[GSYM IMAGE_o; o_DEF] THEN REWRITE_TAC[VECTOR_ARITH `--a + a + x:real^N = x`; VECTOR_ARITH `a + --a + x:real^N = x`] THEN REWRITE_TAC[IMAGE_ID]);;
let TRANSLATION_EQ_IMP = 
prove (`!P:(real^N->bool)->bool. (!a s. P(IMAGE (\x. a + x) s) <=> P s) <=> (!a s. P s ==> P (IMAGE (\x. a + x) s))`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `s:real^N->bool`] THEN EQ_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM (MP_TAC o SPECL [`--a:real^N`; `IMAGE (\x:real^N. a + x) s`]) THEN ASM_REWRITE_TAC[GSYM IMAGE_o; o_DEF; IMAGE_ID; VECTOR_ARITH `--a + a + x:real^N = x`]);;
let DIM_HYPERPLANE = 
prove (`!a:real^N. ~(a = vec 0) ==> dim {x | a dot x = &0} = dimindex(:N) - 1`,
GEOM_BASIS_MULTIPLE_TAC 1 `a:real^N` THEN SIMP_TAC[VECTOR_MUL_EQ_0; DE_MORGAN_THM; DOT_LMUL; DOT_BASIS; DIMINDEX_GE_1; LE_REFL; REAL_ENTIRE; DIM_SPECIAL_HYPERPLANE]);;
let LOWDIM_EQ_HYPERPLANE = 
prove (`!s. dim s = dimindex(:N) - 1 ==> ?a:real^N. ~(a = vec 0) /\ span s = {x | a dot x = &0}`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `s:real^N->bool` LOWDIM_SUBSET_HYPERPLANE) THEN ASM_SIMP_TAC[DIMINDEX_GE_1; ARITH_RULE `1 <= a ==> a - 1 < a`] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPEC `a:real^N` SUBSPACE_HYPERPLANE) THEN ONCE_REWRITE_TAC[GSYM SPAN_EQ_SELF] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC DIM_EQ_SPAN THEN ASM_SIMP_TAC[DIM_HYPERPLANE; LE_REFL] THEN ASM_MESON_TAC[SUBSET_TRANS; SPAN_INC]);;
let DIM_EQ_HYPERPLANE = 
prove (`!s. dim s = dimindex(:N) - 1 <=> ?a:real^N. ~(a = vec 0) /\ span s = {x | a dot x = &0}`,
(* ------------------------------------------------------------------------- *) (* Affine set and affine hull. *) (* ------------------------------------------------------------------------- *)
let affine = new_definition
  `affine s <=> !x y u v. x IN s /\ y IN s /\ (u + v = &1)
                          ==> (u % x + v % y) IN s`;;
let AFFINE_ALT = 
prove (`affine s <=> !x y u. x IN s /\ y IN s ==> ((&1 - u) % x + u % y) IN s`,
REWRITE_TAC[affine] THEN MESON_TAC[REAL_ARITH `(u + v = &1) <=> (u = &1 - v)`]);;
let AFFINE_SCALING = 
prove (`!s c. affine s ==> affine (IMAGE (\x. c % x) s)`,
REWRITE_TAC[affine; IN_IMAGE] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `u % c % x + v % c % y = c % (u % x + v % y)`] THEN ASM_MESON_TAC[]);;
let AFFINE_SCALING_EQ = 
prove (`!s c. ~(c = &0) ==> (affine (IMAGE (\x. c % x) s) <=> affine s)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[AFFINE_SCALING] THEN DISCH_THEN(MP_TAC o SPEC `inv c` o MATCH_MP AFFINE_SCALING) THEN ASM_SIMP_TAC[GSYM IMAGE_o; o_DEF; VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID; IMAGE_ID]);;
let AFFINE_NEGATIONS = 
prove (`!s. affine s ==> affine (IMAGE (--) s)`,
REWRITE_TAC[affine; IN_IMAGE] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `u % --x + v % --y = --(u % x + v % y)`] THEN ASM_MESON_TAC[]);;
let AFFINE_SUMS = 
prove (`!s t. affine s /\ affine t ==> affine {x + y | x IN s /\ y IN t}`,
REWRITE_TAC[affine; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `u % (a + b) + v % (c + d) = (u % a + v % c) + (u % b + v % d)`] THEN ASM_MESON_TAC[]);;
let AFFINE_DIFFERENCES = 
prove (`!s t. affine s /\ affine t ==> affine {x - y | x IN s /\ y IN t}`,
REWRITE_TAC[affine; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `u % (a - b) + v % (c - d) = (u % a + v % c) - (u % b + v % d)`] THEN ASM_MESON_TAC[]);;
let AFFINE_TRANSLATION_EQ = 
prove (`!a:real^N s. affine (IMAGE (\x. a + x) s) <=> affine s`,
REWRITE_TAC[AFFINE_ALT; IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE; UNWIND_THM1; VECTOR_ARITH `(&1 - u) % (a + x) + u % (a + y) = a + z <=> (&1 - u) % x + u % y = z`]);;
add_translation_invariants [AFFINE_TRANSLATION_EQ];;
let AFFINE_TRANSLATION = 
prove (`!s a:real^N. affine s ==> affine (IMAGE (\x. a + x) s)`,
REWRITE_TAC[AFFINE_TRANSLATION_EQ]);;
let AFFINE_AFFINITY = 
prove (`!s a:real^N c. affine s ==> affine (IMAGE (\x. a + c % x) s)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x:real^N. a + c % x) = (\x. a + x) o (\x. c % x)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN ASM_SIMP_TAC[IMAGE_o; AFFINE_TRANSLATION; AFFINE_SCALING]);;
let AFFINE_LINEAR_IMAGE = 
prove (`!f s. affine s /\ linear f ==> affine(IMAGE f s)`,
REWRITE_TAC[affine; FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[IN_IMAGE; linear] THEN MESON_TAC[]);;
let AFFINE_LINEAR_IMAGE_EQ = 
prove (`!f s. linear f /\ (!x y. f x = f y ==> x = y) ==> (affine (IMAGE f s) <=> affine s)`,
MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE AFFINE_LINEAR_IMAGE));;
add_linear_invariants [AFFINE_LINEAR_IMAGE_EQ];;
let AFFINE_EMPTY = 
prove (`affine {}`,
REWRITE_TAC[affine; NOT_IN_EMPTY]);;
let AFFINE_SING = 
prove (`!x. affine {x}`,
SIMP_TAC[AFFINE_ALT; IN_SING] THEN REWRITE_TAC[GSYM VECTOR_ADD_RDISTRIB] THEN REWRITE_TAC[REAL_SUB_ADD; VECTOR_MUL_LID]);;
let AFFINE_UNIV = 
prove (`affine(UNIV:real^N->bool)`,
REWRITE_TAC[affine; IN_UNIV]);;
let AFFINE_HYPERPLANE = 
prove (`!a b. affine {x | a dot x = b}`,
REWRITE_TAC[affine; IN_ELIM_THM; DOT_RADD; DOT_RMUL] THEN CONV_TAC REAL_RING);;
let AFFINE_STANDARD_HYPERPLANE = 
prove (`!a b k. affine {x:real^N | x$k = b}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `b:real`] AFFINE_HYPERPLANE) THEN ASM_SIMP_TAC[DOT_BASIS]);;
let AFFINE_INTERS = 
prove (`(!s. s IN f ==> affine s) ==> affine(INTERS f)`,
REWRITE_TAC[affine; IN_INTERS] THEN MESON_TAC[]);;
let AFFINE_INTER = 
prove (`!s t. affine s /\ affine t ==> affine(s INTER t)`,
REWRITE_TAC[affine; IN_INTER] THEN MESON_TAC[]);;
let AFFINE_AFFINE_HULL = 
prove (`!s. affine(affine hull s)`,
SIMP_TAC[P_HULL; AFFINE_INTERS]);;
let AFFINE_HULL_EQ = 
prove (`!s. (affine hull s = s) <=> affine s`,
SIMP_TAC[HULL_EQ; AFFINE_INTERS]);;
let IS_AFFINE_HULL = 
prove (`!s. affine s <=> ?t. s = affine hull t`,
GEN_TAC THEN MATCH_MP_TAC IS_HULL THEN SIMP_TAC[AFFINE_INTERS]);;
let AFFINE_HULL_UNIV = 
prove (`affine hull (:real^N) = (:real^N)`,
REWRITE_TAC[AFFINE_HULL_EQ; AFFINE_UNIV]);;
let AFFINE_HULLS_EQ = 
prove (`!s t. s SUBSET affine hull t /\ t SUBSET affine hull s ==> affine hull s = affine hull t`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HULLS_EQ THEN ASM_SIMP_TAC[AFFINE_INTERS]);;
let AFFINE_HULL_TRANSLATION = 
prove (`!a s. affine hull (IMAGE (\x. a + x) s) = IMAGE (\x. a + x) (affine hull s)`,
REWRITE_TAC[hull] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [AFFINE_HULL_TRANSLATION];;
let AFFINE_HULL_LINEAR_IMAGE = 
prove (`!f s. linear f ==> affine hull (IMAGE f s) = IMAGE f (affine hull s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN CONJ_TAC THEN MATCH_MP_TAC HULL_INDUCT THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN SIMP_TAC[FUN_IN_IMAGE; HULL_INC] THEN REWRITE_TAC[affine; IN_ELIM_THM] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THENL [FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP LINEAR_CMUL th)]) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP LINEAR_ADD th)]) THEN REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[REWRITE_RULE[affine] AFFINE_AFFINE_HULL]; ASM_SIMP_TAC[LINEAR_ADD; LINEAR_CMUL] THEN MESON_TAC[REWRITE_RULE[affine] AFFINE_AFFINE_HULL]]);;
add_linear_invariants [AFFINE_HULL_LINEAR_IMAGE];;
let IN_AFFINE_HULL_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s x. linear f /\ x IN affine hull s ==> (f x) IN affine hull (IMAGE f s)`,
SIMP_TAC[AFFINE_HULL_LINEAR_IMAGE] THEN SET_TAC[]);;
let SAME_DISTANCES_TO_AFFINE_HULL = 
prove (`!s a b:real^N. (!x. x IN s ==> dist(x,a) = dist(x,b)) ==> (!x. x IN affine hull s ==> dist(x,a) = dist(x,b))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC HULL_INDUCT THEN ASM_REWRITE_TAC[AFFINE_ALT; IN_ELIM_THM] THEN REWRITE_TAC[dist; NORM_EQ_SQUARE; NORM_POS_LE; VECTOR_ARITH `((&1 - u) % x + u % y) - a:real^N = (&1 - u) % (x - a) + u % (y - a)`] THEN REWRITE_TAC[NORM_POW_2; DOT_LMUL; DOT_RMUL; VECTOR_ARITH `(x + y) dot (x + y):real^N = (x dot x + y dot y) + &2 * x dot y`] THEN SIMP_TAC[DOT_LSUB; DOT_RSUB; DOT_SYM] THEN CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *) (* Some convenient lemmas about common affine combinations. *) (* ------------------------------------------------------------------------- *)
let IN_AFFINE_ADD_MUL = 
prove (`!s a x:real^N d. affine s /\ a IN s /\ (a + x) IN s ==> (a + d % x) IN s`,
REWRITE_TAC[affine] THEN REPEAT STRIP_TAC THEN SUBST1_TAC(VECTOR_ARITH `a + d % x:real^N = (&1 - d) % a + d % (a + x)`) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let IN_AFFINE_ADD_MUL_DIFF = 
prove (`!s a x y z:real^N. affine s /\ x IN s /\ y IN s /\ z IN s ==> (x + a % (y - z)) IN s`,
REWRITE_TAC[affine] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[VECTOR_ARITH `x + a % (y - z):real^N = &1 / &2 % ((&1 - &2 * a) % x + (&2 * a) % y) + &1 / &2 % ((&1 + &2 * a) % x + (-- &2 * a) % z)`] THEN FIRST_ASSUM MATCH_MP_TAC THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let IN_AFFINE_MUL_DIFF_ADD = 
prove (`!s a x y z:real^N. affine s /\ x IN s /\ y IN s /\ z IN s ==> a % (x - y) + z IN s`,
ONCE_REWRITE_TAC[VECTOR_ADD_SYM] THEN SIMP_TAC[IN_AFFINE_ADD_MUL_DIFF]);;
let IN_AFFINE_SUB_MUL_DIFF = 
prove (`!s a x y z:real^N. affine s /\ x IN s /\ y IN s /\ z IN s ==> x - a % (y - z) IN s`,
REWRITE_TAC[VECTOR_ARITH `x - a % (y - z):real^N = x + a % (z - y)`] THEN SIMP_TAC[IN_AFFINE_ADD_MUL_DIFF]);;
let AFFINE_DIFFS_SUBSPACE = 
prove (`!s:real^N->bool a. affine s /\ a IN s ==> subspace {x - a | x IN s}`,
REWRITE_TAC[subspace; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[VECTOR_ARITH `vec 0:real^N = x - a <=> x = a`; VECTOR_ARITH `x - a + y - a:real^N = z - a <=> z = (a + &1 % (x - a)) + &1 % (y - a)`; VECTOR_ARITH `c % (x - a):real^N = y - a <=> y = a + c % (x - a)`] THEN MESON_TAC[IN_AFFINE_ADD_MUL_DIFF]);;
(* ------------------------------------------------------------------------- *) (* Explicit formulations for affine combinations. *) (* ------------------------------------------------------------------------- *)
let AFFINE_VSUM = 
prove (`!s k u x:A->real^N. FINITE k /\ affine s /\ sum k u = &1 /\ (!i. i IN k ==> x i IN s) ==> vsum k (\i. u i % x i) IN s`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_REWRITE_TAC[NOT_IN_EMPTY; GSYM NOT_EXISTS_THM; MEMBER_NOT_EMPTY] THEN ASM_CASES_TAC `k:A->bool = {}` THEN ASM_REWRITE_TAC[SUM_CLAUSES] THEN REAL_ARITH_TAC; ALL_TAC] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`] AFFINE_DIFFS_SUBSPACE) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MP_TAC(ISPECL [`{x - a:real^N | x IN s}`; `(\i. u i % (x i - a)):A->real^N`; `k:A->bool`] SUBSPACE_VSUM) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSPACE_MUL THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]; ASM_SIMP_TAC[VSUM_SUB; IN_ELIM_THM; VECTOR_SUB_LDISTRIB; VSUM_RMUL] THEN REWRITE_TAC[VECTOR_ARITH `x - &1 % a:real^N = y - a <=> x = y`] THEN ASM_MESON_TAC[]]);;
let AFFINE_INDEXED = 
prove (`!s:real^N->bool. affine s <=> !k u x. (!i:num. 1 <= i /\ i <= k ==> x(i) IN s) /\ (sum (1..k) u = &1) ==> vsum (1..k) (\i. u(i) % x(i)) IN s`,
REPEAT GEN_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC AFFINE_VSUM THEN ASM_REWRITE_TAC[IN_NUMSEG; FINITE_NUMSEG]; DISCH_TAC THEN REWRITE_TAC[affine] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `u:real`; `v:real`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `2`) THEN DISCH_THEN(MP_TAC o SPEC `\n. if n = 1 then u else v:real`) THEN DISCH_THEN(MP_TAC o SPEC `\n. if n = 1 then x else y:real^N`) THEN REWRITE_TAC[num_CONV `2`; SUM_CLAUSES_NUMSEG; VSUM_CLAUSES_NUMSEG; NUMSEG_SING; VSUM_SING; SUM_SING] THEN REWRITE_TAC[ARITH] THEN ASM_MESON_TAC[]]);;
let AFFINE_HULL_INDEXED = 
prove (`!s. affine hull s = {y:real^N | ?k u x. (!i. 1 <= i /\ i <= k ==> x i IN s) /\ (sum (1..k) u = &1) /\ (vsum (1..k) (\i. u i % x i) = y)}`,
GEN_TAC THEN MATCH_MP_TAC HULL_UNIQUE THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`1`; `\i:num. &1`; `\i:num. x:real^N`] THEN ASM_SIMP_TAC[FINITE_RULES; IN_SING; SUM_SING; VECTOR_MUL_LID; VSUM_SING; REAL_POS; NUMSEG_SING]; ALL_TAC; REWRITE_TAC[AFFINE_INDEXED; SUBSET; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN MESON_TAC[]] THEN REWRITE_TAC[affine; IN_ELIM_THM] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `u:real`; `v:real`] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`k1:num`; `u1:num->real`; `x1:num->real^N`; `k2:num`; `u2:num->real`; `x2:num->real^N`] THEN STRIP_TAC THEN EXISTS_TAC `k1 + k2:num` THEN EXISTS_TAC `\i:num. if i <= k1 then u * u1(i) else v * u2(i - k1):real` THEN EXISTS_TAC `\i:num. if i <= k1 then x1(i) else x2(i - k1):real^N` THEN ASM_SIMP_TAC[NUMSEG_ADD_SPLIT; ARITH_RULE `1 <= x + 1 /\ x < x + 1`; IN_NUMSEG; SUM_UNION; VSUM_UNION; FINITE_NUMSEG; DISJOINT_NUMSEG; ARITH_RULE `k1 + 1 <= i ==> ~(i <= k1)`] THEN REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] NUMSEG_OFFSET_IMAGE] THEN ASM_SIMP_TAC[SUM_IMAGE; VSUM_IMAGE; EQ_ADD_LCANCEL; FINITE_NUMSEG] THEN ASM_SIMP_TAC[o_DEF; ADD_SUB2; SUM_LMUL; VSUM_LMUL; GSYM VECTOR_MUL_ASSOC; FINITE_NUMSEG; REAL_MUL_RID] THEN ASM_MESON_TAC[REAL_LE_MUL; ARITH_RULE `i <= k1 + k2 /\ ~(i <= k1) ==> 1 <= i - k1 /\ i - k1 <= k2`]);;
let AFFINE = 
prove (`!V:real^N->bool. affine V <=> !(s:real^N->bool) (u:real^N->real). FINITE s /\ ~(s = {}) /\ s SUBSET V /\ sum s u = &1 ==> vsum s (\x. u x % x) IN V`,
GEN_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC AFFINE_VSUM THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]; REWRITE_TAC[affine] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `u:real`; `v:real`] THEN STRIP_TAC THEN ASM_CASES_TAC `x:real^N = y` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN ASM_REWRITE_TAC[GSYM VECTOR_ADD_RDISTRIB;VECTOR_MUL_LID];ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x:real^N,y}`) THEN DISCH_THEN(MP_TAC o SPEC `\w. if w = x:real^N then u else v:real`) THEN ASM_SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES; FINITE_RULES; NUMSEG_SING; VSUM_SING; SUM_SING;SUBSET;IN_INSERT;NOT_IN_EMPTY] THEN ASM SET_TAC[]]);;
let AFFINE_EXPLICIT = 
prove (`!s:real^N->bool. affine s <=> !t u. FINITE t /\ t SUBSET s /\ sum t u = &1 ==> vsum t (\x. u(x) % x) IN s`,
GEN_TAC THEN REWRITE_TAC[AFFINE] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `t:real^N->bool` THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[SUM_CLAUSES] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;
let AFFINE_HULL_EXPLICIT = 
prove (`!(p:real^N -> bool). affine hull p = {y | ?s u. FINITE s /\ ~(s = {}) /\ s SUBSET p /\ sum s u = &1 /\ vsum s (\v. u v % v) = y}`,
GEN_TAC THEN MATCH_MP_TAC HULL_UNIQUE THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[SUBSET;IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`{x:real^N}`;`\v:real^N. &1:real`] THEN ASM_SIMP_TAC[FINITE_RULES;IN_SING;SUM_SING;VSUM_SING;VECTOR_MUL_LID] THEN SET_TAC[]; REWRITE_TAC[affine;IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `(s UNION s'):real^N->bool` THEN EXISTS_TAC `\a:real^N. (\b:real^N.if (b IN s) then (u * (u' b)) else &0) a + (\b:real^N.if (b IN s') then v * (u'' b) else &0) a` THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[FINITE_UNION]; ASM SET_TAC[]; ASM_REWRITE_TAC[UNION_SUBSET]; ASM_SIMP_TAC[REWRITE_RULE[REAL_ARITH `a + b = c + d <=> c = a + b - d`] SUM_INCL_EXCL; GSYM SUM_RESTRICT_SET; SET_RULE `{a | a IN (s:A->bool) /\ a IN s'} = s INTER s'`; SUM_ADD;SUM_LMUL;REAL_MUL_RID; FINITE_INTER;INTER_IDEMPOT] THEN ASM_REWRITE_TAC[SET_RULE `(a INTER b) INTER a = a INTER b`; SET_RULE `(a INTER b) INTER b = a INTER b`; REAL_ARITH `(a + b) + (c + d) - (e + b) = (a + d) + c - e`; REAL_ARITH `a + b - c = a <=> b = c`] THEN AP_TERM_TAC THEN REWRITE_TAC[INTER_COMM]; ASM_SIMP_TAC[REWRITE_RULE [VECTOR_ARITH `(a:real^N) + b = c + d <=> c = a + b - d`] VSUM_INCL_EXCL;GSYM VSUM_RESTRICT_SET; SET_RULE `{a | a IN (s:A->bool) /\ a IN s'} = s INTER s'`; VSUM_ADD;FINITE_INTER;INTER_IDEMPOT;VECTOR_ADD_RDISTRIB; GSYM VECTOR_MUL_ASSOC;VSUM_LMUL; MESON[] `(if P then a else b) % (x:real^N) = (if P then a % x else b % x)`; VECTOR_MUL_LZERO;GSYM VSUM_RESTRICT_SET] THEN ASM_REWRITE_TAC[SET_RULE `(a INTER b) INTER a = a INTER b`; SET_RULE `(a INTER b) INTER b = a INTER b`; VECTOR_ARITH `((a:real^N) + b) + (c + d) - (e + b) = (a + d) + c - e`; VECTOR_ARITH `(a:real^N) + b - c = a <=> b = c`] THEN AP_TERM_TAC THEN REWRITE_TAC[INTER_COMM]]; ASM_CASES_TAC `(p:real^N->bool) = {}` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[SUBSET_EMPTY;EMPTY_SUBSET] THEN ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[AFFINE; SUBSET; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN ASM SET_TAC[]]);;
let AFFINE_HULL_EXPLICIT_ALT = 
prove (`!(p:real^N -> bool). affine hull p = {y | ?s u. FINITE s /\ s SUBSET p /\ sum s u = &1 /\ vsum s (\v. u v % v) = y}`,
GEN_TAC THEN REWRITE_TAC[AFFINE_HULL_EXPLICIT] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM] THEN GEN_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN POP_ASSUM MP_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN SIMP_TAC[SUM_CLAUSES; REAL_OF_NUM_EQ; ARITH_EQ]);;
let AFFINE_HULL_FINITE = 
prove (`!s:real^N->bool. affine hull s = {y | ?u. sum s u = &1 /\ vsum s (\v. u v % v) = y}`,
GEN_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[AFFINE_HULL_EXPLICIT; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL [MAP_EVERY X_GEN_TAC [`t:real^N->bool`; `f:real^N->real`] THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. if x IN t then f x else &0` THEN REWRITE_TAC[COND_RAND; COND_RATOR; VECTOR_MUL_LZERO] THEN REWRITE_TAC[GSYM SUM_RESTRICT_SET; GSYM VSUM_RESTRICT_SET] THEN ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> {x | x IN s /\ x IN t} = t`]; X_GEN_TAC `f:real^N->real` THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[SUM_CLAUSES; REAL_OF_NUM_EQ; ARITH] THEN STRIP_TAC THEN EXISTS_TAC `support (+) (f:real^N->real) s` THEN EXISTS_TAC `f:real^N->real` THEN MP_TAC(ASSUME `sum s (f:real^N->real) = &1`) THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [sum] THEN REWRITE_TAC[iterate] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[NEUTRAL_REAL_ADD; REAL_OF_NUM_EQ; ARITH] THEN DISCH_THEN(K ALL_TAC) THEN UNDISCH_TAC `sum s (f:real^N->real) = &1` THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM SUM_SUPPORT] THEN ASM_CASES_TAC `support (+) (f:real^N->real) s = {}` THEN ASM_SIMP_TAC[SUM_CLAUSES; REAL_OF_NUM_EQ; ARITH] THEN DISCH_TAC THEN REWRITE_TAC[SUPPORT_SUBSET] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC VSUM_SUPERSET THEN REWRITE_TAC[SUPPORT_SUBSET] THEN REWRITE_TAC[support; IN_ELIM_THM; NEUTRAL_REAL_ADD] THEN MESON_TAC[VECTOR_MUL_LZERO]]);;
(* ------------------------------------------------------------------------- *) (* Stepping theorems and hence small special cases. *) (* ------------------------------------------------------------------------- *)
let AFFINE_HULL_EMPTY = 
prove (`affine hull {} = {}`,
MATCH_MP_TAC HULL_UNIQUE THEN REWRITE_TAC[SUBSET_REFL; AFFINE_EMPTY; EMPTY_SUBSET]);;
let AFFINE_HULL_EQ_EMPTY = 
prove (`!s. (affine hull s = {}) <=> (s = {})`,
GEN_TAC THEN EQ_TAC THEN MESON_TAC[SUBSET_EMPTY; HULL_SUBSET; AFFINE_HULL_EMPTY]);;
let AFFINE_HULL_FINITE_STEP_GEN = 
prove (`!P:real^N->real->bool. ((?u. (!x. x IN {} ==> P x (u x)) /\ sum {} u = w /\ vsum {} (\x. u(x) % x) = y) <=> w = &0 /\ y = vec 0) /\ (FINITE(s:real^N->bool) /\ (!y. a IN s /\ P a y ==> P a (y / &2)) /\ (!x y. a IN s /\ P a x /\ P a y ==> P a (x + y)) ==> ((?u. (!x. x IN (a INSERT s) ==> P x (u x)) /\ sum (a INSERT s) u = w /\ vsum (a INSERT s) (\x. u(x) % x) = y) <=> ?v u. P a v /\ (!x. x IN s ==> P x (u x)) /\ sum s u = w - v /\ vsum s (\x. u(x) % x) = y - v % a))`,
GEN_TAC THEN SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES; NOT_IN_EMPTY] THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_TAC THEN ASM_CASES_TAC `(a:real^N) IN s` THEN ASM_REWRITE_TAC[] THENL [ASM_SIMP_TAC[SET_RULE `a IN s ==> a INSERT s = s`] THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL [X_GEN_TAC `u:real^N->real` THEN STRIP_TAC THEN EXISTS_TAC `(u:real^N->real) a / &2` THEN EXISTS_TAC `\x:real^N. if x = a then u x / &2 else u x`; MAP_EVERY X_GEN_TAC [`v:real`; `u:real^N->real`] THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. if x = a then u x + v else u x`] THEN ASM_SIMP_TAC[] THEN (CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_SIMP_TAC[VSUM_CASES; SUM_CASES] THEN ASM_SIMP_TAC[GSYM DELETE; SUM_DELETE; VSUM_DELETE] THEN ASM_SIMP_TAC[SET_RULE `a IN s ==> {x | x IN s /\ x = a} = {a}`] THEN REWRITE_TAC[SUM_SING; VSUM_SING] THEN (CONJ_TAC THENL [REAL_ARITH_TAC; VECTOR_ARITH_TAC]); EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL [X_GEN_TAC `u:real^N->real` THEN STRIP_TAC THEN EXISTS_TAC `(u:real^N->real) a` THEN EXISTS_TAC `u:real^N->real` THEN ASM_SIMP_TAC[IN_INSERT] THEN REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN CONJ_TAC THENL [REAL_ARITH_TAC; VECTOR_ARITH_TAC]; MAP_EVERY X_GEN_TAC [`v:real`; `u:real^N->real`] THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. if x = a then v:real else u x` THEN ASM_SIMP_TAC[IN_INSERT] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_SIMP_TAC[VSUM_CASES; SUM_CASES] THEN ASM_SIMP_TAC[GSYM DELETE; SUM_DELETE; VSUM_DELETE] THEN ASM_SIMP_TAC[SET_RULE `~(a IN s) ==> {x | x IN s /\ x = a} = {}`] THEN ASM_SIMP_TAC[SET_RULE `~(a IN s) ==> s DELETE a = s`] THEN REWRITE_TAC[SUM_CLAUSES; VSUM_CLAUSES] THEN CONJ_TAC THENL [REAL_ARITH_TAC; VECTOR_ARITH_TAC]]]);;
let AFFINE_HULL_FINITE_STEP = 
prove (`((?u. sum {} u = w /\ vsum {} (\x. u(x) % x) = y) <=> w = &0 /\ y = vec 0) /\ (FINITE(s:real^N->bool) ==> ((?u. sum (a INSERT s) u = w /\ vsum (a INSERT s) (\x. u(x) % x) = y) <=> ?v u. sum s u = w - v /\ vsum s (\x. u(x) % x) = y - v % a))`,
MATCH_ACCEPT_TAC (REWRITE_RULE[] (ISPEC `\x:real^N y:real. T` AFFINE_HULL_FINITE_STEP_GEN)));;
let AFFINE_HULL_2 = 
prove (`!a b. affine hull {a,b} = {u % a + v % b | u + v = &1}`,
SIMP_TAC[AFFINE_HULL_FINITE; FINITE_INSERT; FINITE_RULES] THEN SIMP_TAC[AFFINE_HULL_FINITE_STEP; FINITE_INSERT; FINITE_RULES] THEN REWRITE_TAC[REAL_ARITH `x - y = z:real <=> x = y + z`; VECTOR_ARITH `x - y = z:real^N <=> x = y + z`] THEN REWRITE_TAC[VECTOR_ADD_RID; REAL_ADD_RID] THEN SET_TAC[]);;
let AFFINE_HULL_2_ALT = 
prove (`!a b. affine hull {a,b} = {a + u % (b - a) | u IN (:real)}`,
REPEAT GEN_TAC THEN REWRITE_TAC[AFFINE_HULL_2] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV; ARITH_RULE `u + v = &1 <=> v = &1 - u`; FORALL_UNWIND_THM2; UNWIND_THM2] THEN CONJ_TAC THEN X_GEN_TAC `u:real` THEN EXISTS_TAC `&1 - u` THEN VECTOR_ARITH_TAC);;
let AFFINE_HULL_3 = 
prove (`affine hull {a,b,c} = { u % a + v % b + w % c | u + v + w = &1}`,
SIMP_TAC[AFFINE_HULL_FINITE; FINITE_INSERT; FINITE_RULES] THEN SIMP_TAC[AFFINE_HULL_FINITE_STEP; FINITE_INSERT; FINITE_RULES] THEN REWRITE_TAC[REAL_ARITH `x - y = z:real <=> x = y + z`; VECTOR_ARITH `x - y = z:real^N <=> x = y + z`] THEN REWRITE_TAC[VECTOR_ADD_RID; REAL_ADD_RID] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Some relations between affine hull and subspaces. *) (* ------------------------------------------------------------------------- *)
let AFFINE_HULL_INSERT_SUBSET_SPAN = 
prove (`!a:real^N s. affine hull (a INSERT s) SUBSET {a + v | v | v IN span {x - a | x IN s}}`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [SUBSET] THEN REWRITE_TAC[AFFINE_HULL_EXPLICIT; SPAN_EXPLICIT; IN_ELIM_THM] THEN REWRITE_TAC[SIMPLE_IMAGE; CONJ_ASSOC; FINITE_SUBSET_IMAGE] THEN REWRITE_TAC[MESON[] `(?s u. (?t. P t /\ s = f t) /\ Q s u) <=> (?t u. P t /\ Q (f t) u)`] THEN REWRITE_TAC[MESON[] `(?v. (?s u. P s /\ f s u = v) /\ (x = g a v)) <=> (?s u. ~(P s ==> ~(g a (f s u) = x)))`] THEN SIMP_TAC[VSUM_IMAGE; VECTOR_ARITH `x - a:real^N = y - a <=> x = y`] THEN REWRITE_TAC[o_DEF] THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`t:real^N->bool`; `u:real^N->real`] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (SUBST1_TAC o SYM)) THEN MAP_EVERY EXISTS_TAC [`t DELETE (a:real^N)`; `\x. (u:real^N->real)(x + a)`] THEN ASM_SIMP_TAC[FINITE_DELETE; VECTOR_SUB_ADD; SET_RULE `t SUBSET (a INSERT s) ==> t DELETE a SUBSET s`] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `a + vsum t (\x. u x % (x - a)):real^N` THEN CONJ_TAC THENL [AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC VSUM_SUPERSET THEN REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ] THEN SET_TAC[]; ASM_SIMP_TAC[VECTOR_SUB_LDISTRIB; FINITE_DELETE; VSUM_SUB] THEN ASM_REWRITE_TAC[VSUM_RMUL] THEN REWRITE_TAC[VECTOR_ARITH `a + x - &1 % a:real^N = x`]]);;
let AFFINE_HULL_INSERT_SPAN = 
prove (`!a:real^N s. ~(a IN s) ==> affine hull (a INSERT s) = {a + v | v | v IN span {x - a | x IN s}}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[AFFINE_HULL_INSERT_SUBSET_SPAN] THEN REWRITE_TAC[SUBSET] THEN REWRITE_TAC[AFFINE_HULL_EXPLICIT; SPAN_EXPLICIT; IN_ELIM_THM] THEN REWRITE_TAC[SIMPLE_IMAGE; CONJ_ASSOC; FINITE_SUBSET_IMAGE] THEN REWRITE_TAC[MESON[] `(?s u. (?t. P t /\ s = f t) /\ Q s u) <=> (?t u. P t /\ Q (f t) u)`] THEN REWRITE_TAC[MESON[] `(?v. (?s u. P s /\ f s u = v) /\ (x = g a v)) <=> (?s u. ~(P s ==> ~(g a (f s u) = x)))`] THEN SIMP_TAC[VSUM_IMAGE; VECTOR_ARITH `x - a:real^N = y - a <=> x = y`] THEN REWRITE_TAC[o_DEF] THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[NOT_IMP; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`t:real^N->bool`; `u:real^N->real`] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (SUBST1_TAC o SYM)) THEN MAP_EVERY EXISTS_TAC [`(a:real^N) INSERT t`; `\x. if x = a then &1 - sum t (\x. u(x - a)) else (u:real^N->real)(x - a)`] THEN ASM_SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES] THEN ASM_CASES_TAC `(a:real^N) IN t` THENL [ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN ASM_SIMP_TAC[FINITE_INSERT; NOT_INSERT_EMPTY; SET_RULE `s SUBSET t ==> (a INSERT s) SUBSET (a INSERT t)`] THEN SUBGOAL_THEN `!x:real^N. x IN t ==> ~(x = a)` MP_TAC THENL [ASM SET_TAC[]; SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC)] THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[VECTOR_SUB_LDISTRIB; FINITE_DELETE; VSUM_SUB] THEN ASM_REWRITE_TAC[VSUM_RMUL] THEN VECTOR_ARITH_TAC);;
let AFFINE_HULL_SPAN = 
prove (`!a:real^N s. a IN s ==> (affine hull s = {a + v | v | v IN span {x - a | x | x IN (s DELETE a)}})`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`a:real^N`; `s DELETE (a:real^N)`] AFFINE_HULL_INSERT_SPAN) THEN ASM_REWRITE_TAC[IN_DELETE] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN AP_TERM_TAC THEN ASM SET_TAC[]);;
let DIFFS_AFFINE_HULL_SPAN = 
prove (`!a:real^N s. a IN s ==> {x - a | x IN affine hull s} = span {x - a | x IN s}`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP AFFINE_HULL_SPAN) THEN REWRITE_TAC[SIMPLE_IMAGE; GSYM IMAGE_o; o_DEF; VECTOR_ADD_SUB; IMAGE_ID] THEN SIMP_TAC[IMAGE_DELETE_INJ; VECTOR_ARITH `x - a:real^N = y - a <=> x = y`] THEN REWRITE_TAC[VECTOR_SUB_REFL; SPAN_DELETE_0]);;
let AFFINE_HULL_SING = 
prove (`!a. affine hull {a} = {a}`,
SIMP_TAC[AFFINE_HULL_INSERT_SPAN; NOT_IN_EMPTY] THEN REWRITE_TAC[SET_RULE `{f x | x | F} = {}`; SPAN_EMPTY] THEN REWRITE_TAC[SET_RULE `{f x | x IN {a}} = {f a}`; VECTOR_ADD_RID]);;
let AFFINE_HULL_EQ_SING = 
prove (`!s a:real^N. affine hull s = {a} <=> s = {a}`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[AFFINE_HULL_EMPTY] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[AFFINE_HULL_SING] THEN MATCH_MP_TAC(SET_RULE `~(s = {}) /\ s SUBSET {a} ==> s = {a}`) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[HULL_SUBSET]);;
(* ------------------------------------------------------------------------- *) (* Convexity. *) (* ------------------------------------------------------------------------- *)
let convex = new_definition
  `convex s <=>
        !x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ (u + v = &1)
                  ==> (u % x + v % y) IN s`;;
let CONVEX_ALT = 
prove (`convex s <=> !x y u. x IN s /\ y IN s /\ &0 <= u /\ u <= &1 ==> ((&1 - u) % x + u % y) IN s`,
REWRITE_TAC[convex] THEN MESON_TAC[REAL_ARITH `&0 <= u /\ &0 <= v /\ (u + v = &1) ==> v <= &1 /\ (u = &1 - v)`; REAL_ARITH `u <= &1 ==> &0 <= &1 - u /\ ((&1 - u) + u = &1)`]);;
let IN_CONVEX_SET = 
prove (`!s a b u. convex s /\ a IN s /\ b IN s /\ &0 <= u /\ u <= &1 ==> ((&1 - u) % a + u % b) IN s`,
MESON_TAC[CONVEX_ALT]);;
let CONVEX_EMPTY = 
prove (`convex {}`,
REWRITE_TAC[convex; NOT_IN_EMPTY]);;
let CONVEX_SING = 
prove (`!a. convex {a}`,
SIMP_TAC[convex; IN_SING; GSYM VECTOR_ADD_RDISTRIB; VECTOR_MUL_LID]);;
let CONVEX_UNIV = 
prove (`convex(UNIV:real^N->bool)`,
REWRITE_TAC[convex; IN_UNIV]);;
let CONVEX_INTERS = 
prove (`(!s. s IN f ==> convex s) ==> convex(INTERS f)`,
REWRITE_TAC[convex; IN_INTERS] THEN MESON_TAC[]);;
let CONVEX_INTER = 
prove (`!s t. convex s /\ convex t ==> convex(s INTER t)`,
REWRITE_TAC[convex; IN_INTER] THEN MESON_TAC[]);;
let CONVEX_HULLS_EQ = 
prove (`!s t. s SUBSET convex hull t /\ t SUBSET convex hull s ==> convex hull s = convex hull t`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HULLS_EQ THEN ASM_SIMP_TAC[CONVEX_INTERS]);;
let CONVEX_HALFSPACE_LE = 
prove (`!a b. convex {x | a dot x <= b}`,
REWRITE_TAC[convex; IN_ELIM_THM; DOT_RADD; DOT_RMUL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(u + v) * b` THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_ADD_RDISTRIB; REAL_LE_ADD2; REAL_LE_LMUL]; ASM_MESON_TAC[REAL_MUL_LID; REAL_LE_REFL]]);;
let CONVEX_HALFSPACE_COMPONENT_LE = 
prove (`!a k. convex {x:real^N | x$k <= a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] CONVEX_HALFSPACE_LE) THEN ASM_SIMP_TAC[DOT_BASIS]);;
let CONVEX_HALFSPACE_GE = 
prove (`!a b. convex {x:real^N | a dot x >= b}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `{x:real^N | a dot x >= b} = {x | --a dot x <= --b}` (fun th -> REWRITE_TAC[th; CONVEX_HALFSPACE_LE]) THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; DOT_LNEG] THEN REAL_ARITH_TAC);;
let CONVEX_HALFSPACE_COMPONENT_GE = 
prove (`!a k. convex {x:real^N | x$k >= a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] CONVEX_HALFSPACE_GE) THEN ASM_SIMP_TAC[DOT_BASIS]);;
let CONVEX_HYPERPLANE = 
prove (`!a b. convex {x:real^N | a dot x = b}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `{x:real^N | a dot x = b} = {x | a dot x <= b} INTER {x | a dot x >= b}` (fun th -> SIMP_TAC[th; CONVEX_INTER; CONVEX_HALFSPACE_LE; CONVEX_HALFSPACE_GE]) THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_ELIM_THM] THEN REAL_ARITH_TAC);;
let CONVEX_STANDARD_HYPERPLANE = 
prove (`!k a. convex {x:real^N | x$k = a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] CONVEX_HYPERPLANE) THEN ASM_SIMP_TAC[DOT_BASIS]);;
let CONVEX_HALFSPACE_LT = 
prove (`!a b. convex {x | a dot x < b}`,
REWRITE_TAC[convex; IN_ELIM_THM; DOT_RADD; DOT_RMUL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONVEX_BOUND_LT THEN ASM_REWRITE_TAC[]);;
let CONVEX_HALFSPACE_COMPONENT_LT = 
prove (`!a k. convex {x:real^N | x$k < a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] CONVEX_HALFSPACE_LT) THEN ASM_SIMP_TAC[DOT_BASIS]);;
let CONVEX_HALFSPACE_GT = 
prove (`!a b. convex {x | a dot x > b}`,
REWRITE_TAC[REAL_ARITH `ax > b <=> --ax < --b`] THEN REWRITE_TAC[GSYM DOT_LNEG; CONVEX_HALFSPACE_LT]);;
let CONVEX_HALFSPACE_COMPONENT_GT = 
prove (`!a k. convex {x:real^N | x$k > a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] CONVEX_HALFSPACE_GT) THEN ASM_SIMP_TAC[DOT_BASIS]);;
let CONVEX_POSITIVE_ORTHANT = 
prove (`convex {x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> &0 <= x$i}`,
let LIMPT_OF_CONVEX = 
prove (`!s x:real^N. convex s /\ x IN s ==> (x limit_point_of s <=> ~(s = {x}))`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s = {x:real^N}` THEN ASM_REWRITE_TAC[LIMPT_SING] THEN SUBGOAL_THEN `?y:real^N. y IN s /\ ~(y = x)` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[LIMPT_APPROACHABLE] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN ABBREV_TAC `u = min (&1 / &2) (e / &2 / norm(y - x:real^N))` THEN SUBGOAL_THEN `&0 < u /\ u < &1` STRIP_ASSUME_TAC THENL [EXPAND_TAC "u" THEN REWRITE_TAC[REAL_LT_MIN; REAL_MIN_LT] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_SIMP_TAC[REAL_HALF; REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]; ALL_TAC] THEN EXISTS_TAC `(&1 - u) % x + u % y:real^N` THEN REPEAT CONJ_TAC THENL [FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [CONVEX_ALT]) THEN ASM_SIMP_TAC[REAL_LT_IMP_LE]; ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ; VECTOR_ARITH `(&1 - u) % x + u % y:real^N = x <=> u % (y - x) = vec 0`] THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[dist; NORM_MUL; VECTOR_ARITH `((&1 - u) % x + u % y) - x:real^N = u % (y - x)`] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < u ==> abs u = u`] THEN MATCH_MP_TAC(REAL_ARITH `x <= e / &2 /\ &0 < e ==> x < e`) THEN ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN ASM_REAL_ARITH_TAC]);;
let TRIVIAL_LIMIT_WITHIN_CONVEX = 
prove (`!s x:real^N. convex s /\ x IN s ==> (trivial_limit(at x within s) <=> s = {x})`,
(* ------------------------------------------------------------------------- *) (* Some invariance theorems for convex sets. *) (* ------------------------------------------------------------------------- *)
let CONVEX_TRANSLATION_EQ = 
prove (`!a:real^N s. convex (IMAGE (\x. a + x) s) <=> convex s`,
REWRITE_TAC[CONVEX_ALT; IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE; UNWIND_THM1; VECTOR_ARITH `(&1 - u) % (a + x) + u % (a + y) = a + z <=> (&1 - u) % x + u % y = z`]);;
add_translation_invariants [CONVEX_TRANSLATION_EQ];;
let CONVEX_TRANSLATION = 
prove (`!s a:real^N. convex s ==> convex (IMAGE (\x. a + x) s)`,
REWRITE_TAC[CONVEX_TRANSLATION_EQ]);;
let CONVEX_LINEAR_IMAGE = 
prove (`!f s. convex s /\ linear f ==> convex(IMAGE f s)`,
REWRITE_TAC[convex; FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[IN_IMAGE; linear] THEN MESON_TAC[]);;
let CONVEX_LINEAR_IMAGE_EQ = 
prove (`!f s. linear f /\ (!x y. f x = f y ==> x = y) ==> (convex (IMAGE f s) <=> convex s)`,
MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE CONVEX_LINEAR_IMAGE));;
add_linear_invariants [CONVEX_LINEAR_IMAGE_EQ];; (* ------------------------------------------------------------------------- *) (* Explicit expressions for convexity in terms of arbitrary sums. *) (* ------------------------------------------------------------------------- *)
let CONVEX_VSUM = 
prove (`!s k u x:A->real^N. FINITE k /\ convex s /\ sum k u = &1 /\ (!i. i IN k ==> &0 <= u i /\ x i IN s) ==> vsum k (\i. u i % x i) IN s`,
GEN_TAC THEN ASM_CASES_TAC `convex(s:real^N->bool)` THEN ASM_REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES; FORALL_IN_INSERT] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN MAP_EVERY X_GEN_TAC [`i:A`; `k:A->bool`] THEN GEN_REWRITE_TAC (BINOP_CONV o DEPTH_CONV) [RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`u:A->real`; `x:A->real^N`] THEN ASM_CASES_TAC `(u:A->real) i = &1` THENL [ASM_REWRITE_TAC[REAL_ARITH `&1 + a = &1 <=> a = &0`] THEN STRIP_TAC THEN SUBGOAL_THEN `vsum k (\i:A. u i % x(i):real^N) = vec 0` (fun th -> ASM_SIMP_TAC[th; VECTOR_ADD_RID; VECTOR_MUL_LID]) THEN MATCH_MP_TAC VSUM_EQ_0 THEN REWRITE_TAC[VECTOR_MUL_EQ_0] THEN REPEAT STRIP_TAC THEN DISJ1_TAC THEN ASM_MESON_TAC[SUM_POS_EQ_0]; STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\j:A. u(j) / (&1 - u(i))`) THEN ASM_REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[SUM_LMUL; VSUM_LMUL; GSYM VECTOR_MUL_ASSOC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN SUBGOAL_THEN `&0 < &1 - u(i:A)` ASSUME_TAC THENL [ASM_MESON_TAC[SUM_POS_LE; REAL_ADD_SYM; REAL_ARITH `&0 <= a /\ &0 <= b /\ b + a = &1 /\ ~(a = &1) ==> &0 < &1 - a`]; ALL_TAC] THEN ASM_SIMP_TAC[REAL_LE_DIV; REAL_LT_IMP_LE] THEN ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_MUL_LID; REAL_EQ_SUB_LADD] THEN DISCH_TAC THEN ONCE_REWRITE_TAC[VECTOR_ADD_SYM] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [convex]) THEN DISCH_THEN(MP_TAC o SPECL [`vsum k (\j. (u j / (&1 - u(i:A))) % x(j) :real^N)`; `x(i:A):real^N`; `&1 - u(i:A)`; `u(i:A):real`]) THEN REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM VECTOR_MUL_ASSOC; VSUM_LMUL] THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RINV; REAL_LT_IMP_NZ] THEN REWRITE_TAC[VECTOR_MUL_LID] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; VSUM_LMUL] THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC; REAL_ARITH_TAC] THEN ASM_MESON_TAC[REAL_ADD_SYM]]);;
let CONVEX_VSUM_STRONG = 
prove (`!s k u x:A->real^N. FINITE k /\ convex s /\ sum k u = &1 /\ (!i. i IN k ==> &0 <= u i /\ (u i = &0 \/ x i IN s)) ==> vsum k (\i. u i % x i) IN s`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `vsum k (\i. u i % (x:A->real^N) i) = vsum {i | i IN k /\ ~(u i = &0)} (\i. u i % x i)` SUBST1_TAC THENL [MATCH_MP_TAC VSUM_SUPERSET THEN REWRITE_TAC[VECTOR_MUL_EQ_0] THEN SET_TAC[]; MATCH_MP_TAC CONVEX_VSUM THEN ASM_SIMP_TAC[FINITE_RESTRICT; IN_ELIM_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_SUPERSET THEN ASM SET_TAC[]]);;
let CONVEX_INDEXED = 
prove (`!s:real^N->bool. convex s <=> !k u x. (!i:num. 1 <= i /\ i <= k ==> &0 <= u(i) /\ x(i) IN s) /\ (sum (1..k) u = &1) ==> vsum (1..k) (\i. u(i) % x(i)) IN s`,
REPEAT GEN_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC CONVEX_VSUM THEN ASM_REWRITE_TAC[IN_NUMSEG; FINITE_NUMSEG]; DISCH_TAC THEN REWRITE_TAC[convex] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `u:real`; `v:real`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `2`) THEN DISCH_THEN(MP_TAC o SPEC `\n. if n = 1 then u else v:real`) THEN DISCH_THEN(MP_TAC o SPEC `\n. if n = 1 then x else y:real^N`) THEN REWRITE_TAC[num_CONV `2`; SUM_CLAUSES_NUMSEG; VSUM_CLAUSES_NUMSEG; NUMSEG_SING; VSUM_SING; SUM_SING] THEN REWRITE_TAC[ARITH] THEN ASM_MESON_TAC[]]);;
let CONVEX_EXPLICIT = 
prove (`!s:real^N->bool. convex s <=> !t u. FINITE t /\ t SUBSET s /\ (!x. x IN t ==> &0 <= u x) /\ sum t u = &1 ==> vsum t (\x. u(x) % x) IN s`,
REPEAT GEN_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC CONVEX_VSUM THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]; DISCH_TAC THEN REWRITE_TAC[convex] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `u:real`; `v:real`] THEN ASM_CASES_TAC `x:real^N = y` THENL [ASM_SIMP_TAC[GSYM VECTOR_ADD_RDISTRIB; VECTOR_MUL_LID]; ALL_TAC] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x:real^N,y}`) THEN DISCH_THEN(MP_TAC o SPEC `\z:real^N. if z = x then u else v:real`) THEN ASM_SIMP_TAC[FINITE_INSERT; FINITE_RULES; SUM_CLAUSES; VSUM_CLAUSES; NOT_IN_EMPTY] THEN ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; REAL_ADD_RID; SUBSET] THEN REWRITE_TAC[VECTOR_ADD_RID] THEN ASM_MESON_TAC[]]);;
let CONVEX = 
prove (`!V:real^N->bool. convex V <=> !(s:real^N->bool) (u:real^N->real). FINITE s /\ ~(s = {}) /\ s SUBSET V /\ (!x. x IN s ==> &0 <= u x) /\ sum s u = &1 ==> vsum s (\x. u x % x) IN V`,
GEN_TAC THEN REWRITE_TAC[CONVEX_EXPLICIT] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `t:real^N->bool` THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[SUM_CLAUSES] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;
let CONVEX_FINITE = 
prove (`!s:real^N->bool. FINITE s ==> (convex s <=> !u. (!x. x IN s ==> &0 <= u x) /\ sum s u = &1 ==> vsum s (\x. u(x) % x) IN s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[CONVEX_EXPLICIT] THEN EQ_TAC THENL [ASM_MESON_TAC[SUBSET_REFL]; ALL_TAC] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`t:real^N->bool`; `u:real^N->real`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\x:real^N. if x IN t then u x else &0`) THEN ASM_SIMP_TAC[GSYM SUM_RESTRICT_SET] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_SIMP_TAC[VECTOR_MUL_LZERO; REAL_LE_REFL; GSYM VSUM_RESTRICT_SET] THEN ASM_SIMP_TAC[COND_ID; SET_RULE `t SUBSET s ==> {x | x IN s /\ x IN t} = t`]);;
let AFFINE_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. affine s /\ affine t ==> affine(s PCROSS t)`,
REWRITE_TAC[affine; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN SIMP_TAC[FORALL_IN_PCROSS; GSYM PASTECART_CMUL; PASTECART_ADD] THEN SIMP_TAC[PASTECART_IN_PCROSS]);;
let AFFINE_PCROSS_EQ = 
prove (`!s:real^M->bool t:real^N->bool. affine(s PCROSS t) <=> s = {} \/ t = {} \/ affine s /\ affine t`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_REWRITE_TAC[PCROSS_EMPTY; AFFINE_EMPTY] THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[PCROSS_EMPTY; AFFINE_EMPTY] THEN EQ_TAC THEN REWRITE_TAC[AFFINE_PCROSS] THEN REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`fstcart:real^(M,N)finite_sum->real^M`; `(s:real^M->bool) PCROSS (t:real^N->bool)`] AFFINE_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_FSTCART]; MP_TAC(ISPECL [`sndcart:real^(M,N)finite_sum->real^N`; `(s:real^M->bool) PCROSS (t:real^N->bool)`] AFFINE_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_SNDCART]] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; EXISTS_PASTECART; PASTECART_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART] THEN ASM SET_TAC[]);;
let CONVEX_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. convex s /\ convex t ==> convex(s PCROSS t)`,
REWRITE_TAC[convex; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN SIMP_TAC[FORALL_IN_PCROSS; GSYM PASTECART_CMUL; PASTECART_ADD] THEN SIMP_TAC[PASTECART_IN_PCROSS]);;
let CONVEX_PCROSS_EQ = 
prove (`!s:real^M->bool t:real^N->bool. convex(s PCROSS t) <=> s = {} \/ t = {} \/ convex s /\ convex t`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_REWRITE_TAC[PCROSS_EMPTY; CONVEX_EMPTY] THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[PCROSS_EMPTY; CONVEX_EMPTY] THEN EQ_TAC THEN REWRITE_TAC[CONVEX_PCROSS] THEN REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`fstcart:real^(M,N)finite_sum->real^M`; `(s:real^M->bool) PCROSS (t:real^N->bool)`] CONVEX_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_FSTCART]; MP_TAC(ISPECL [`sndcart:real^(M,N)finite_sum->real^N`; `(s:real^M->bool) PCROSS (t:real^N->bool)`] CONVEX_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_SNDCART]] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; EXISTS_PASTECART; PASTECART_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART] THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Conic sets and conic hull. *) (* ------------------------------------------------------------------------- *)
let conic = new_definition
  `conic s <=> !x c. x IN s /\ &0 <= c ==> (c % x) IN s`;;
let SUBSPACE_IMP_CONIC = 
prove (`!s. subspace s ==> conic s`,
SIMP_TAC[subspace; conic]);;
let CONIC_EMPTY = 
prove (`conic {}`,
REWRITE_TAC[conic; NOT_IN_EMPTY]);;
let CONIC_UNIV = 
prove (`conic (UNIV:real^N->bool)`,
REWRITE_TAC[conic; IN_UNIV]);;
let CONIC_INTERS = 
prove (`(!s. s IN f ==> conic s) ==> conic(INTERS f)`,
REWRITE_TAC[conic; IN_INTERS] THEN MESON_TAC[]);;
let CONIC_LINEAR_IMAGE = 
prove (`!f s. conic s /\ linear f ==> conic(IMAGE f s)`,
REWRITE_TAC[conic; IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[LINEAR_CMUL]);;
let CONIC_LINEAR_IMAGE_EQ = 
prove (`!f s. linear f /\ (!x y. f x = f y ==> x = y) ==> (conic (IMAGE f s) <=> conic s)`,
MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE CONIC_LINEAR_IMAGE));;
add_linear_invariants [CONIC_LINEAR_IMAGE_EQ];;
let CONIC_CONIC_HULL = 
prove (`!s. conic(conic hull s)`,
SIMP_TAC[P_HULL; CONIC_INTERS]);;
let CONIC_HULL_EQ = 
prove (`!s. (conic hull s = s) <=> conic s`,
SIMP_TAC[HULL_EQ; CONIC_INTERS]);;
let CONIC_NEGATIONS = 
prove (`!s. conic s ==> conic (IMAGE (--) s)`,
REWRITE_TAC[conic; RIGHT_FORALL_IMP_THM; IMP_CONJ; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE; VECTOR_MUL_RNEG] THEN MESON_TAC[]);;
let CONIC_SPAN = 
prove (`!s. conic(span s)`,
let CONIC_HULL_EXPLICIT = 
prove (`!s:real^N->bool. conic hull s = {c % x | &0 <= c /\ x IN s}`,
GEN_TAC THEN MATCH_MP_TAC HULL_UNIQUE THEN REWRITE_TAC[conic; SUBSET; RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`&1`; `x:real^N`] THEN ASM_SIMP_TAC[REAL_POS; VECTOR_MUL_LID]; REWRITE_TAC[VECTOR_MUL_ASSOC] THEN MESON_TAC[REAL_LE_MUL]; MESON_TAC[]]);;
let CONIC_HULL_LINEAR_IMAGE = 
prove (`!f s. linear f ==> conic hull (IMAGE f s) = IMAGE f (conic hull s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONIC_HULL_EXPLICIT] THEN REWRITE_TAC[SET_RULE `IMAGE f {c % x | P c x} = {f(c % x) | P c x}`] THEN REWRITE_TAC[SET_RULE `{c % x | &0 <= c /\ x IN IMAGE f s} = {c % f(x) | &0 <= c /\ x IN s}`] THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP LINEAR_CMUL th]));;
add_linear_invariants [CONIC_HULL_LINEAR_IMAGE];;
let CONVEX_CONIC_HULL = 
prove (`!s:real^N->bool. convex s ==> convex (conic hull s)`,
REWRITE_TAC[CONIC_HULL_EXPLICIT] THEN REWRITE_TAC[CONVEX_ALT; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM; IMP_IMP] THEN X_GEN_TAC `s:real^N->bool` THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`c:real`; `x:real^N`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`d:real`; `y:real^N`] THEN STRIP_TAC THEN X_GEN_TAC `u:real` THEN STRIP_TAC THEN REWRITE_TAC[VECTOR_MUL_ASSOC] THEN ASM_CASES_TAC `(&1 - u) * c = &0` THENL [ASM_REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_LID] THEN ASM_MESON_TAC[REAL_LE_MUL]; ALL_TAC] THEN SUBGOAL_THEN `&0 < (&1 - u) * c + u * d` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LTE_ADD THEN ASM_REWRITE_TAC[REAL_LT_LE] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN EXISTS_TAC `(&1 - u) * c + u * d:real` THEN EXISTS_TAC `((&1 - u) * c) / ((&1 - u) * c + u * d) % x + (u * d) / ((&1 - u) * c + u * d) % y:real^N` THEN REWRITE_TAC[VECTOR_ADD_LDISTRIB; VECTOR_MUL_ASSOC] THEN ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN ASM_SIMP_TAC[REAL_LE_ADD; REAL_LE_MUL; REAL_SUB_LE] THEN ASM_SIMP_TAC[REAL_FIELD `&0 < u + v ==> u / (u + v) = &1 - (v / (u + v))`] THEN RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP]) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ] THEN ASM_SIMP_TAC[REAL_MUL_LZERO; REAL_LE_MUL; REAL_MUL_LID; REAL_LE_ADDL; REAL_SUB_LE]);;
let CONIC_HALFSPACE_LE = 
prove (`!a. conic {x | a dot x <= &0}`,
REWRITE_TAC[conic; IN_ELIM_THM; DOT_RMUL] THEN REWRITE_TAC[REAL_ARITH `a <= &0 <=> &0 <= --a`] THEN SIMP_TAC[GSYM REAL_MUL_RNEG; REAL_LE_MUL]);;
let CONIC_HALFSPACE_GE = 
prove (`!a. conic {x | a dot x >= &0}`,
SIMP_TAC[conic; IN_ELIM_THM; DOT_RMUL; real_ge; REAL_LE_MUL]);;
let CONIC_HULL_EMPTY = 
prove (`conic hull {} = {}`,
MATCH_MP_TAC HULL_UNIQUE THEN REWRITE_TAC[SUBSET_REFL; CONIC_EMPTY; EMPTY_SUBSET]);;
let CONIC_CONTAINS_0 = 
prove (`!s:real^N->bool. conic s ==> (vec 0 IN s <=> ~(s = {}))`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `x:real^N`) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [conic]) THEN DISCH_THEN(MP_TAC o SPECL [`x:real^N`; `&0`]) THEN ASM_REWRITE_TAC[REAL_POS; VECTOR_MUL_LZERO]);;
let CONIC_HULL_EQ_EMPTY = 
prove (`!s. (conic hull s = {}) <=> (s = {})`,
GEN_TAC THEN EQ_TAC THEN MESON_TAC[SUBSET_EMPTY; HULL_SUBSET; CONIC_HULL_EMPTY]);;
let CONIC_SUMS = 
prove (`!s t. conic s /\ conic t ==> conic {x + y:real^N | x IN s /\ y IN t}`,
REWRITE_TAC[conic; IN_ELIM_THM] THEN MESON_TAC[VECTOR_ADD_LDISTRIB]);;
let CONIC_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. conic s /\ conic t ==> conic(s PCROSS t)`,
REWRITE_TAC[conic; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN SIMP_TAC[FORALL_IN_PCROSS; GSYM PASTECART_CMUL; PASTECART_ADD] THEN SIMP_TAC[PASTECART_IN_PCROSS]);;
let CONIC_PCROSS_EQ = 
prove (`!s:real^M->bool t:real^N->bool. conic(s PCROSS t) <=> s = {} \/ t = {} \/ conic s /\ conic t`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_REWRITE_TAC[PCROSS_EMPTY; CONIC_EMPTY] THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[PCROSS_EMPTY; CONIC_EMPTY] THEN EQ_TAC THEN REWRITE_TAC[CONIC_PCROSS] THEN REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`fstcart:real^(M,N)finite_sum->real^M`; `(s:real^M->bool) PCROSS (t:real^N->bool)`] CONIC_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_FSTCART]; MP_TAC(ISPECL [`sndcart:real^(M,N)finite_sum->real^N`; `(s:real^M->bool) PCROSS (t:real^N->bool)`] CONIC_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_SNDCART]] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; EXISTS_PASTECART; PASTECART_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART] THEN ASM SET_TAC[]);;
let CONIC_POSITIVE_ORTHANT = 
prove (`conic {x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> &0 <= x$i}`,
let SEPARATE_CLOSED_CONES = 
prove (`!c d:real^N->bool. conic c /\ closed c /\ conic d /\ closed d /\ c INTER d SUBSET {vec 0} ==> ?e. &0 < e /\ !x y. x IN c /\ y IN d ==> dist(x,y) >= e * max (norm x) (norm y)`,
SUBGOAL_THEN `!c d:real^N->bool. conic c /\ closed c /\ conic d /\ closed d /\ c INTER d SUBSET {vec 0} ==> ?e. &0 < e /\ !x y. x IN c /\ y IN d ==> dist(x,y) >= e * norm x` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[real_ge] THEN MP_TAC(ISPECL [`c INTER sphere(vec 0:real^N,&1)`; `d:real^N->bool`] SEPARATE_COMPACT_CLOSED) THEN ASM_SIMP_TAC[CLOSED_INTER_COMPACT; COMPACT_SPHERE] THEN ANTS_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `c INTER d SUBSET {a} ==> ~(a IN s) ==> (c INTER s) INTER d = {}`)) THEN REWRITE_TAC[IN_SPHERE_0; NORM_0] THEN REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `e:real` THEN REWRITE_TAC[IN_INTER; IN_SPHERE_0] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_REWRITE_TAC[DIST_POS_LE; REAL_MUL_RZERO; NORM_0] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`inv(norm x) % x:real^N`; `inv(norm(x:real^N)) % y:real^N`]) THEN REWRITE_TAC[dist; NORM_MUL; GSYM VECTOR_SUB_LDISTRIB] THEN REWRITE_TAC[REAL_ARITH `abs x * a = a * abs x`] THEN REWRITE_TAC[REAL_ABS_INV; GSYM real_div; REAL_ABS_NORM] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; NORM_POS_LT] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[REAL_DIV_REFL; NORM_EQ_0] THEN RULE_ASSUM_TAC(REWRITE_RULE[conic]) THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[REAL_LE_INV_EQ; NORM_POS_LE]]; REPEAT STRIP_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPECL [`c:real^N->bool`; `d:real^N->bool`] th) THEN MP_TAC(SPECL [`d:real^N->bool`; `c:real^N->bool`] th)) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; real_ge] THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN EXISTS_TAC `min d e:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN REWRITE_TAC[real_max] THEN COND_CASES_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THENL [EXISTS_TAC `d * norm(y:real^N)` THEN ONCE_REWRITE_TAC[DIST_SYM]; EXISTS_TAC `e * norm(x:real^N)`] THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC REAL_LE_RMUL THEN NORM_ARITH_TAC]);;
let CONTINUOUS_ON_COMPACT_SURFACE_PROJECTION = 
prove (`!s:real^N->bool v d:real^N->real. compact s /\ s SUBSET (v DELETE (vec 0)) /\ conic v /\ (!x k. x IN v DELETE (vec 0) ==> (&0 < k /\ (k % x) IN s <=> d x = k)) ==> (\x. d x % x) continuous_on (v DELETE (vec 0))`,
let lemma = prove
   (`!s:real^N->real^N p srf:real^N->bool pnc.
          compact srf /\ srf SUBSET pnc /\
          IMAGE s pnc SUBSET srf /\ (!x. x IN srf ==> s x = x) /\
          p continuous_on pnc /\
          (!x. x IN pnc ==> s(p x) = s x /\ p(s x) = p x)
          ==> s continuous_on pnc`,
    REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_EQ THEN
    EXISTS_TAC `(s:real^N->real^N) o (p:real^N->real^N)` THEN
    CONJ_TAC THENL [ASM_SIMP_TAC[o_DEF]; ALL_TAC] THEN
    MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `IMAGE (p:real^N->real^N) pnc = IMAGE p srf` SUBST1_TAC THENL
     [ASM SET_TAC[];
      MATCH_MP_TAC CONTINUOUS_ON_INVERSE THEN ASM_REWRITE_TAC[] THEN
      CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]; ASM SET_TAC[]]]) in
  REWRITE_TAC[conic; IN_DELETE; SUBSET] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma THEN
  MAP_EVERY EXISTS_TAC [`\x:real^N. inv(norm x) % x`; `s:real^N->bool`] THEN
  ASM_REWRITE_TAC[] THEN
  CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN CONJ_TAC THENL
   [MATCH_MP_TAC CONTINUOUS_ON_MUL THEN SIMP_TAC[o_DEF; CONTINUOUS_ON_ID] THEN
    MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN
    SIMP_TAC[IN_DELETE; NORM_EQ_0; SIMP_RULE[o_DEF] CONTINUOUS_ON_LIFT_NORM];
    REWRITE_TAC[IN_UNIV; IN_DELETE]] THEN
  CONJ_TAC THENL
   [X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `&1`]) THEN
    ASM_REWRITE_TAC[VECTOR_MUL_LID; REAL_LT_01; IN_DELETE] THEN
    ASM_MESON_TAC[VECTOR_MUL_LID; SUBSET; IN_DELETE];
    ALL_TAC] THEN
  X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN CONJ_TAC THENL
   [FIRST_ASSUM(MP_TAC o SPECL
     [`inv(norm x) % x:real^N`; `norm x * (d:real^N->real) x`]) THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `(d:real^N->real) x`]) THEN
    ASM_SIMP_TAC[VECTOR_MUL_EQ_0; REAL_INV_EQ_0; NORM_EQ_0] THEN STRIP_TAC THEN
    ASM_SIMP_TAC[REAL_LE_INV_EQ; NORM_POS_LE; REAL_LT_MUL; NORM_POS_LT] THEN
    ASM_SIMP_TAC[VECTOR_MUL_ASSOC; NORM_EQ_0; REAL_FIELD
     `~(n = &0) ==> (n * d) * inv n = d`];
    FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `(d:real^N->real) x`]) THEN
    ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
    ASM_SIMP_TAC[NORM_MUL; VECTOR_MUL_ASSOC; REAL_INV_MUL] THEN
    ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE] THEN
    ASM_SIMP_TAC[REAL_FIELD `&0 < x ==> (inv(x) * y) * x = y`]]);;
(* ------------------------------------------------------------------------- *) (* Affine dependence and consequential theorems (from Lars Schewe). *) (* ------------------------------------------------------------------------- *)
let affine_dependent = new_definition
 `affine_dependent (s:real^N -> bool) <=>
        ?x. x IN s /\ x IN (affine hull (s DELETE x))`;;
let AFFINE_DEPENDENT_EXPLICIT = 
prove (`!p. affine_dependent (p:real^N -> bool) <=> (?s u. FINITE s /\ s SUBSET p /\ sum s u = &0 /\ (?v. v IN s /\ ~(u v = &0)) /\ vsum s (\v. u v % v) = (vec 0):real^N)`,
X_GEN_TAC `p:real^N->bool` THEN EQ_TAC THENL [REWRITE_TAC[affine_dependent;AFFINE_HULL_EXPLICIT; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `(x:real^N) INSERT s` THEN EXISTS_TAC `\v:real^N.if v = x then -- &1 else u v` THEN ASM_SIMP_TAC[FINITE_INSERT;SUM_CLAUSES;VSUM_CLAUSES;INSERT_SUBSET] THEN REPEAT CONJ_TAC THENL [ASM SET_TAC[]; COND_CASES_TAC THENL [ASM SET_TAC[];ALL_TAC] THEN ASM_SIMP_TAC[SUM_CASES; SUM_CLAUSES; SET_RULE `~((x:real^N) IN s) ==> {v | v IN s /\ v = x} = {} /\ {v | v IN s /\ ~(v = x)} = s`] THEN REAL_ARITH_TAC; SET_TAC[REAL_ARITH `~(-- &1 = &0)`]; MP_TAC (SET_RULE `s SUBSET p DELETE (x:real^N) ==> ~(x IN s)`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ASM_SIMP_TAC[VECTOR_ARITH `(-- &1 % (x:real^N)) + a = vec 0 <=> a = x`] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `vsum s (\v:real^N. u v % v)` THEN CONJ_TAC THENL [ MATCH_MP_TAC VSUM_EQ THEN ASM_SIMP_TAC[] THEN ASM SET_TAC[]; ASM_REWRITE_TAC[]]]; ALL_TAC] THEN REWRITE_TAC[affine_dependent;AFFINE_HULL_EXPLICIT;IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `v:real^N` THEN CONJ_TAC THENL [ASM SET_TAC[];ALL_TAC] THEN EXISTS_TAC `s DELETE (v:real^N)` THEN EXISTS_TAC `\x:real^N. -- (&1 / (u v)) * u x` THEN ASM_SIMP_TAC[FINITE_DELETE;SUM_DELETE;VSUM_DELETE_CASES] THEN ASM_SIMP_TAC[SUM_LMUL;GSYM VECTOR_MUL_ASSOC;VSUM_LMUL; VECTOR_MUL_RZERO;VECTOR_ARITH `vec 0 - -- a % x = a % x:real^N`; REAL_MUL_RZERO;REAL_ARITH `&0 - -- a * b = a * b`] THEN ASM_SIMP_TAC[REAL_FIELD `~(x = &0) ==> &1 / x * x = &1`; VECTOR_MUL_ASSOC;VECTOR_MUL_LID] THEN CONJ_TAC THENL [ALL_TAC;ASM SET_TAC[]] THEN ASM_SIMP_TAC[SET_RULE `v IN s ==> (s DELETE v = {} <=> s = {v})`] THEN ASM_CASES_TAC `s = {v:real^N}` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN FIND_ASSUM MP_TAC `sum {v:real^N} u = &0` THEN REWRITE_TAC[SUM_SING] THEN ASM_REWRITE_TAC[]);;
let AFFINE_DEPENDENT_EXPLICIT_FINITE = 
prove (`!s. FINITE(s:real^N -> bool) ==> (affine_dependent s <=> ?u. sum s u = &0 /\ (?v. v IN s /\ ~(u v = &0)) /\ vsum s (\v. u v % v) = vec 0)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[AFFINE_DEPENDENT_EXPLICIT] THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[SUBSET_REFL]] THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` (X_CHOOSE_THEN `u:real^N->real` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `\x:real^N. if x IN t then u(x) else &0` THEN REWRITE_TAC[COND_RAND; COND_RATOR; VECTOR_MUL_LZERO] THEN ASM_SIMP_TAC[GSYM SUM_RESTRICT_SET; GSYM VSUM_RESTRICT_SET] THEN ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> {x | x IN s /\ x IN t} = t`] THEN ASM SET_TAC[]);;
let AFFINE_DEPENDENT_TRANSLATION_EQ = 
prove (`!a s. affine_dependent (IMAGE (\x. a + x) s) <=> affine_dependent s`,
REWRITE_TAC[affine_dependent] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [AFFINE_DEPENDENT_TRANSLATION_EQ];;
let AFFINE_DEPENDENT_TRANSLATION = 
prove (`!s a. affine_dependent s ==> affine_dependent (IMAGE (\x. a + x) s)`,
let AFFINE_DEPENDENT_LINEAR_IMAGE_EQ = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> (affine_dependent(IMAGE f s) <=> affine_dependent s)`,
REWRITE_TAC[affine_dependent] THEN GEOM_TRANSFORM_TAC[]);;
add_linear_invariants [AFFINE_DEPENDENT_LINEAR_IMAGE_EQ];;
let AFFINE_DEPENDENT_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\ affine_dependent(s) ==> affine_dependent(IMAGE f s)`,
REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[affine_dependent; EXISTS_IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^M` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `IMAGE (f:real^M->real^N) s DELETE f a = IMAGE f (s DELETE a)` (fun t -> ASM_SIMP_TAC[FUN_IN_IMAGE; AFFINE_HULL_LINEAR_IMAGE; t]) THEN ASM SET_TAC[]);;
let AFFINE_DEPENDENT_MONO = 
prove (`!s t:real^N->bool. affine_dependent s /\ s SUBSET t ==> affine_dependent t`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[affine_dependent] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^N` THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HULL_MONO o SPEC `x:real^N` o MATCH_MP (SET_RULE `!x. s SUBSET t ==> (s DELETE x) SUBSET (t DELETE x)`)) THEN ASM SET_TAC[]);;
let AFFINE_INDEPENDENT_EMPTY = 
prove (`~(affine_dependent {})`,
REWRITE_TAC[affine_dependent; NOT_IN_EMPTY]);;
let AFFINE_INDEPENDENT_1 = 
prove (`!a:real^N. ~(affine_dependent {a})`,
REWRITE_TAC[affine_dependent; EXISTS_IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[SET_RULE `{a} DELETE a = {}`; AFFINE_HULL_EMPTY; NOT_IN_EMPTY]);;
let AFFINE_INDEPENDENT_2 = 
prove (`!a b:real^N. ~(affine_dependent {a,b})`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `b:real^N = a` THENL [ASM_REWRITE_TAC[INSERT_AC; AFFINE_INDEPENDENT_1]; REWRITE_TAC[affine_dependent; EXISTS_IN_INSERT; NOT_IN_EMPTY] THEN ASM_SIMP_TAC[SET_RULE `~(a = b) ==> {a,b} DELETE a = {b} /\ {a,b} DELETE b = {a}`] THEN ASM_REWRITE_TAC[AFFINE_HULL_SING; IN_SING]]);;
let AFFINE_INDEPENDENT_SUBSET = 
prove (`!s t. ~affine_dependent t /\ s SUBSET t ==> ~affine_dependent s`,
REWRITE_TAC[IMP_CONJ_ALT; CONTRAPOS_THM] THEN REWRITE_TAC[GSYM IMP_CONJ_ALT; AFFINE_DEPENDENT_MONO]);;
let AFFINE_INDEPENDENT_DELETE = 
prove (`!s a. ~affine_dependent s ==> ~affine_dependent(s DELETE a)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] AFFINE_INDEPENDENT_SUBSET) THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Coplanarity, and collinearity in terms of affine hull. *) (* ------------------------------------------------------------------------- *)
let coplanar = new_definition
 `coplanar s <=> ?u v w. s SUBSET affine hull {u,v,w}`;;
let COLLINEAR_AFFINE_HULL = 
prove (`!s:real^N->bool. collinear s <=> ?u v. s SUBSET affine hull {u,v}`,
GEN_TAC THEN REWRITE_TAC[collinear; AFFINE_HULL_2] THEN EQ_TAC THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[REAL_ARITH `u + v = &1 <=> &1 - u = v`; UNWIND_THM1] THENL [X_GEN_TAC `u:real^N` THEN DISCH_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN EXISTS_TAC `x + u:real^N` THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `y:real^N`]) THEN ASM_REWRITE_TAC[VECTOR_ARITH `x - y:real^N = z <=> x = y + z`] THEN DISCH_THEN(X_CHOOSE_THEN `c:real` SUBST1_TAC) THEN EXISTS_TAC `&1 + c` THEN VECTOR_ARITH_TAC; MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN DISCH_TAC THEN EXISTS_TAC `b - a:real^N` THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `y:real^N` th) THEN MP_TAC(SPEC `x:real^N` th)) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real` THEN DISCH_THEN SUBST1_TAC THEN X_GEN_TAC `s:real` THEN DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `s - r:real` THEN VECTOR_ARITH_TAC]);;
let COLLINEAR_IMP_COPLANAR = 
prove (`!s. collinear s ==> coplanar s`,
REWRITE_TAC[coplanar; COLLINEAR_AFFINE_HULL] THEN MESON_TAC[INSERT_AC]);;
let COPLANAR_SMALL = 
prove (`!s. FINITE s /\ CARD s <= 3 ==> coplanar s`,
GEN_TAC THEN REWRITE_TAC[ARITH_RULE `s <= 3 <=> s <= 2 \/ s = 3`] THEN REWRITE_TAC[LEFT_OR_DISTRIB; GSYM HAS_SIZE] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN SIMP_TAC[COLLINEAR_IMP_COPLANAR; COLLINEAR_SMALL] THEN CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN REWRITE_TAC[coplanar] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[HULL_INC; SUBSET]);;
let COPLANAR_EMPTY = 
prove (`coplanar {}`,
let COPLANAR_SING = 
prove (`!a. coplanar {a}`,
let COPLANAR_2 = 
prove (`!a b. coplanar {a,b}`,
let COPLANAR_3 = 
prove (`!a b c. coplanar {a,b,c}`,
REPEAT GEN_TAC THEN MATCH_MP_TAC COPLANAR_SMALL THEN SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_RULES] THEN ARITH_TAC);;
let COLLINEAR_AFFINE_HULL_COLLINEAR = 
prove (`!s. collinear(affine hull s) <=> collinear s`,
REWRITE_TAC[COLLINEAR_AFFINE_HULL] THEN MESON_TAC[HULL_HULL; HULL_MONO; HULL_INC; SUBSET]);;
let COPLANAR_AFFINE_HULL_COPLANAR = 
prove (`!s. coplanar(affine hull s) <=> coplanar s`,
REWRITE_TAC[coplanar] THEN MESON_TAC[HULL_HULL; HULL_MONO; HULL_INC; SUBSET]);;
let COPLANAR_TRANSLATION_EQ = 
prove (`!a:real^N s. coplanar(IMAGE (\x. a + x) s) <=> coplanar s`,
REWRITE_TAC[coplanar] THEN GEOM_TRANSLATE_TAC[]);;
let COPLANAR_TRANSLATION = 
prove (`!a:real^N s. coplanar s ==> coplanar(IMAGE (\x. a + x) s)`,
REWRITE_TAC[COPLANAR_TRANSLATION_EQ]);;
add_translation_invariants [COPLANAR_TRANSLATION_EQ];;
let COPLANAR_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. coplanar s /\ linear f ==> coplanar(IMAGE f s)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[coplanar; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^M`; `b:real^M`; `c:real^M`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`(f:real^M->real^N) a`; `(f:real^M->real^N) b`; `(f:real^M->real^N) c`] THEN REWRITE_TAC[SET_RULE `{f a,f b,f c} = IMAGE f {a,b,c}`] THEN ASM_SIMP_TAC[AFFINE_HULL_LINEAR_IMAGE; IMAGE_SUBSET]);;
let COPLANAR_LINEAR_IMAGE_EQ = 
prove (`!f s. linear f /\ (!x y. f x = f y ==> x = y) ==> (coplanar (IMAGE f s) <=> coplanar s)`,
MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE COPLANAR_LINEAR_IMAGE));;
add_linear_invariants [COPLANAR_LINEAR_IMAGE_EQ];;
let COPLANAR_SUBSET = 
prove (`!s t. coplanar t /\ s SUBSET t ==> coplanar s`,
REWRITE_TAC[coplanar] THEN SET_TAC[]);;
let AFFINE_HULL_3_IMP_COLLINEAR = 
prove (`!a b c. c IN affine hull {a,b} ==> collinear {a,b,c}`,
ONCE_REWRITE_TAC[GSYM COLLINEAR_AFFINE_HULL_COLLINEAR] THEN SIMP_TAC[HULL_REDUNDANT_EQ; INSERT_AC] THEN REWRITE_TAC[COLLINEAR_AFFINE_HULL_COLLINEAR; COLLINEAR_2]);;
let COLLINEAR_3_AFFINE_HULL = 
prove (`!a b c:real^N. ~(a = b) ==> (collinear {a,b,c} <=> c IN affine hull {a,b})`,
REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[AFFINE_HULL_3_IMP_COLLINEAR] THEN REWRITE_TAC[collinear] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(fun th -> MP_TAC(SPECL [`b:real^N`; `a:real^N`] th) THEN MP_TAC(SPECL [`c:real^N`; `a:real^N`] th)) THEN REWRITE_TAC[IN_INSERT; AFFINE_HULL_2; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[VECTOR_ARITH `a - b:real^N = c <=> a = b + c`] THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN X_GEN_TAC `y:real` THEN ASM_CASES_TAC `y = &0` THEN ASM_REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_RID] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`&1 - x / y`; `x / y:real`] THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[VECTOR_ADD_LDISTRIB; VECTOR_MUL_ASSOC] THEN ASM_SIMP_TAC[REAL_DIV_RMUL] THEN VECTOR_ARITH_TAC);;
let COLLINEAR_3_EQ_AFFINE_DEPENDENT = 
prove (`!a b c:real^N. collinear{a,b,c} <=> a = b \/ a = c \/ b = c \/ affine_dependent {a,b,c}`,
REPEAT GEN_TAC THEN MAP_EVERY (fun t -> ASM_CASES_TAC t THENL [ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_2]; ALL_TAC]) [`a:real^N = b`; `a:real^N = c`; `b:real^N = c`] THEN ASM_REWRITE_TAC[affine_dependent] THEN EQ_TAC THENL [ASM_SIMP_TAC[COLLINEAR_3_AFFINE_HULL] THEN DISCH_TAC THEN EXISTS_TAC `c:real^N` THEN REWRITE_TAC[IN_INSERT]; REWRITE_TAC[EXISTS_IN_INSERT; NOT_IN_EMPTY] THEN STRIP_TAC THENL [ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {b,c,a}`]; ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {c,a,b}`]; ALL_TAC] THEN ASM_SIMP_TAC[COLLINEAR_3_AFFINE_HULL]] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `x IN s ==> s SUBSET t ==> x IN t`)) THEN MATCH_MP_TAC HULL_MONO THEN ASM SET_TAC[]);;
let AFFINE_DEPENDENT_IMP_COLLINEAR_3 = 
prove (`!a b c:real^N. affine_dependent {a,b,c} ==> collinear{a,b,c}`,
REPEAT GEN_TAC THEN REWRITE_TAC[affine_dependent] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; RIGHT_OR_DISTRIB] THEN REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2; COLLINEAR_AFFINE_HULL] THEN STRIP_TAC THENL [MAP_EVERY EXISTS_TAC [`b:real^N`; `c:real^N`]; MAP_EVERY EXISTS_TAC [`a:real^N`; `c:real^N`]; MAP_EVERY EXISTS_TAC [`a:real^N`; `b:real^N`]] THEN SIMP_TAC[INSERT_SUBSET; EMPTY_SUBSET; HULL_INC; IN_INSERT] THEN POP_ASSUM MP_TAC THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> a IN s ==> a IN t`) THEN MATCH_MP_TAC HULL_MONO THEN SET_TAC[]);;
let COLLINEAR_3_IN_AFFINE_HULL = 
prove (`!v0 v1 x:real^N. ~(v1 = v0) ==> (collinear {v0,v1,x} <=> x IN affine hull {v0,v1})`,
REPEAT GEN_TAC THEN GEOM_ORIGIN_TAC `v0:real^N` THEN REWRITE_TAC[COLLINEAR_LEMMA; AFFINE_HULL_2] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID; IN_ELIM_THM] THEN ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_REWRITE_TAC[] THENL [MAP_EVERY EXISTS_TAC [`&1`; `&0`] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN VECTOR_ARITH_TAC; MESON_TAC[REAL_ARITH `u + v = &1 <=> u = &1 - v`]]);;
(* ------------------------------------------------------------------------- *) (* A general lemma. *) (* ------------------------------------------------------------------------- *)
let CONVEX_CONNECTED = 
prove (`!s:real^N->bool. convex s ==> connected s`,
REWRITE_TAC[CONVEX_ALT; connected; SUBSET; EXTENSION; IN_INTER; IN_UNION; NOT_IN_EMPTY; NOT_FORALL_THM; NOT_EXISTS_THM] THEN GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN MAP_EVERY (K(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC))) (1--4) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `x1:real^N` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `x2:real^N` STRIP_ASSUME_TAC)) THEN MP_TAC(ISPECL [`\u. (&1 - u) % x1 + u % (x2:real^N)`; `&0`; `&1`; `e1:real^N->bool`; `e2:real^N->bool`] (REWRITE_RULE[GSYM open_def] CONNECTED_REAL_LEMMA)) THEN ASM_REWRITE_TAC[NOT_IMP; REAL_SUB_RZERO; VECTOR_MUL_LID; VECTOR_MUL_LZERO; REAL_SUB_REFL; VECTOR_ADD_RID; VECTOR_ADD_LID; REAL_POS] THEN REPEAT(CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]) THEN REPEAT STRIP_TAC THEN REWRITE_TAC[dist] THEN REWRITE_TAC[NORM_MUL; VECTOR_ARITH `((&1 - a) % x + a % y) - ((&1 - b) % x + b % y) = (a - b) % (y - x)`] THEN MP_TAC(ISPEC `(x2 - x1):real^N` NORM_POS_LE) THEN REWRITE_TAC[REAL_LE_LT] THEN STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_MUL_RZERO; REAL_LT_01]] THEN EXISTS_TAC `e / norm((x2 - x1):real^N)` THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_LT_DIV]);;
(* ------------------------------------------------------------------------- *) (* Various topological facts are queued up here, just because they rely on *) (* CONNECTED_UNIV, which is a trivial consequence of CONVEX_UNIV. It would *) (* be fairly easy to prove it earlier and move these back to the topology.ml *) (* file, which is a bit tidier intellectually. *) (* ------------------------------------------------------------------------- *)
let CONNECTED_UNIV = 
prove (`connected (UNIV:real^N->bool)`,
let CONNECTED_COMPONENT_UNIV = 
prove (`!x. connected_component(:real^N) x = (:real^N)`,
let CONNECTED_COMPONENT_EQ_UNIV = 
prove (`!s x. connected_component s x = (:real^N) <=> s = (:real^N)`,
REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[CONNECTED_COMPONENT_UNIV] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> s = UNIV ==> t = UNIV`) THEN REWRITE_TAC[CONNECTED_COMPONENT_SUBSET]);;
let CLOPEN = 
prove (`!s. closed s /\ open s <=> s = {} \/ s = (:real^N)`,
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[CLOSED_EMPTY; OPEN_EMPTY; CLOSED_UNIV; OPEN_UNIV] THEN MATCH_MP_TAC(REWRITE_RULE[CONNECTED_CLOPEN] CONNECTED_UNIV) THEN ASM_REWRITE_TAC[SUBTOPOLOGY_UNIV; GSYM OPEN_IN; GSYM CLOSED_IN]);;
let COMPACT_OPEN = 
prove (`!s:real^N->bool. compact s /\ open s <=> s = {}`,
let FRONTIER_NOT_EMPTY = 
prove (`!s. ~(s = {}) /\ ~(s = (:real^N)) ==> ~(frontier s = {})`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`(:real^N)`; `s:real^N->bool`] CONNECTED_INTER_FRONTIER) THEN REWRITE_TAC[CONNECTED_UNIV] THEN ASM SET_TAC[]);;
let FRONTIER_EQ_EMPTY = 
prove (`!s. frontier s = {} <=> s = {} \/ s = (:real^N)`,
let EQ_INTERVAL = 
prove (`(!a b c d:real^N. interval[a,b] = interval[c,d] <=> interval[a,b] = {} /\ interval[c,d] = {} \/ a = c /\ b = d) /\ (!a b c d:real^N. interval[a,b] = interval(c,d) <=> interval[a,b] = {} /\ interval(c,d) = {}) /\ (!a b c d:real^N. interval(a,b) = interval[c,d] <=> interval(a,b) = {} /\ interval[c,d] = {}) /\ (!a b c d:real^N. interval(a,b) = interval(c,d) <=> interval(a,b) = {} /\ interval(c,d) = {} \/ a = c /\ b = d)`,
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN (EQ_TAC THENL [ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[]]) THEN MATCH_MP_TAC(MESON[] `(p = {} /\ q = {} ==> r) /\ (~(p = {}) /\ ~(q = {}) ==> p = q ==> r) ==> p = q ==> r`) THEN SIMP_TAC[] THENL [REWRITE_TAC[INTERVAL_NE_EMPTY; CART_EQ] THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN SIMP_TAC[SUBSET_INTERVAL; GSYM REAL_LE_ANTISYM]; STRIP_TAC THEN MATCH_MP_TAC(MESON[CLOPEN] `closed s /\ open t /\ ~(s = {}) /\ ~(s = UNIV) ==> ~(s = t)`) THEN ASM_REWRITE_TAC[CLOSED_INTERVAL; OPEN_INTERVAL; NOT_INTERVAL_UNIV]; STRIP_TAC THEN MATCH_MP_TAC(MESON[CLOPEN] `closed s /\ open t /\ ~(s = {}) /\ ~(s = UNIV) ==> ~(t = s)`) THEN ASM_REWRITE_TAC[CLOSED_INTERVAL; OPEN_INTERVAL; NOT_INTERVAL_UNIV]; REWRITE_TAC[INTERVAL_NE_EMPTY; CART_EQ] THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN SIMP_TAC[SUBSET_INTERVAL; GSYM REAL_LE_ANTISYM]]);;
let CLOSED_INTERVAL_EQ = 
prove (`(!a b:real^N. closed(interval[a,b])) /\ (!a b:real^N. closed(interval(a,b)) <=> interval(a,b) = {})`,
REWRITE_TAC[CLOSED_INTERVAL] THEN REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[CLOSED_EMPTY] THEN MP_TAC(ISPEC `interval(a:real^N,b)` CLOPEN) THEN ASM_REWRITE_TAC[OPEN_INTERVAL] THEN MESON_TAC[BOUNDED_INTERVAL; NOT_BOUNDED_UNIV]);;
let OPEN_INTERVAL_EQ = 
prove (`(!a b:real^N. open(interval[a,b]) <=> interval[a,b] = {}) /\ (!a b:real^N. open(interval(a,b)))`,
REWRITE_TAC[OPEN_INTERVAL] THEN REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[CLOSED_EMPTY] THEN MP_TAC(ISPEC `interval[a:real^N,b]` CLOPEN) THEN ASM_REWRITE_TAC[CLOSED_INTERVAL] THEN MESON_TAC[BOUNDED_INTERVAL; NOT_BOUNDED_UNIV]);;
let COMPACT_INTERVAL_EQ = 
prove (`(!a b:real^N. compact(interval[a,b])) /\ (!a b:real^N. compact(interval(a,b)) <=> interval(a,b) = {})`,
let CONNECTED_CHAIN = 
prove (`!f:(real^N->bool)->bool. (!s. s IN f ==> compact s /\ connected s) /\ (!s t. s IN f /\ t IN f ==> s SUBSET t \/ t SUBSET s) ==> connected(INTERS f)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `f:(real^N->bool)->bool = {}` THEN ASM_REWRITE_TAC[INTERS_0; CONNECTED_UNIV] THEN ABBREV_TAC `c:real^N->bool = INTERS f` THEN SUBGOAL_THEN `compact(c:real^N->bool)` ASSUME_TAC THENL [EXPAND_TAC "c" THEN MATCH_MP_TAC COMPACT_INTERS THEN ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[CONNECTED_CLOSED_SET; COMPACT_IMP_CLOSED; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^N->bool`; `b:real^N->bool`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`a:real^N->bool`; `b:real^N->bool`] SEPARATION_NORMAL) THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:real^N->bool`; `v:real^N->bool`] THEN STRIP_TAC THEN SUBGOAL_THEN `?k:real^N->bool. k IN f` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?n:real^N->bool. open n /\ k SUBSET n` MP_TAC THENL [ASM_MESON_TAC[BOUNDED_SUBSET_BALL; COMPACT_IMP_BOUNDED; OPEN_BALL]; REWRITE_TAC[UNIONS_SUBSET] THEN STRIP_TAC] THEN MP_TAC(ISPEC `k:real^N->bool` COMPACT_IMP_HEINE_BOREL) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `(u UNION v:real^N->bool) INSERT {n DIFF s | s IN f}`) THEN REWRITE_TAC[SIMPLE_IMAGE; FORALL_IN_INSERT; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[OPEN_UNION; OPEN_DIFF; COMPACT_IMP_CLOSED; NOT_IMP] THEN CONJ_TAC THENL [REWRITE_TAC[UNIONS_INSERT] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[IN_UNION] THEN ASM_CASES_TAC `(x:real^N) IN c` THENL [ASM SET_TAC[]; DISJ2_TAC] THEN REWRITE_TAC[UNIONS_IMAGE; IN_ELIM_THM] THEN UNDISCH_TAC `~((x:real^N) IN c)` THEN SUBST1_TAC(SYM(ASSUME `INTERS f:real^N->bool = c`)) THEN REWRITE_TAC[IN_INTERS; NOT_FORALL_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `g:(real^N->bool)->bool` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN REWRITE_TAC[SUBSET_INSERT_DELETE] THEN SUBGOAL_THEN `FINITE(g DELETE (u UNION v:real^N->bool))` MP_TAC THENL [ASM_REWRITE_TAC[FINITE_DELETE]; REWRITE_TAC[TAUT `p ==> ~q <=> ~(p /\ q)`]] THEN REWRITE_TAC[FINITE_SUBSET_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `f':(real^N->bool)->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?j:real^N->bool. j IN f /\ UNIONS(IMAGE (\s. n DIFF s) f') SUBSET (n DIFF j)` STRIP_ASSUME_TAC THENL [ASM_CASES_TAC `f':(real^N->bool)->bool = {}` THEN ASM_REWRITE_TAC[IMAGE_CLAUSES; UNIONS_0; EMPTY_SUBSET] THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?j:real^N->bool. j IN f' /\ UNIONS(IMAGE (\s. n DIFF s) f') SUBSET (n DIFF j)` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[SUBSET]] THEN SUBGOAL_THEN `!s t:real^N->bool. s IN f' /\ t IN f' ==> s SUBSET t \/ t SUBSET s` MP_TAC THENL [ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN UNDISCH_TAC `~(f':(real^N->bool)->bool = {})` THEN UNDISCH_TAC `FINITE(f':(real^N->bool)->bool)` THEN SPEC_TAC(`f':(real^N->bool)->bool`,`f':(real^N->bool)->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[] THEN REWRITE_TAC[EXISTS_IN_INSERT; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_INSERT] THEN POP_ASSUM_LIST(K ALL_TAC) THEN MAP_EVERY X_GEN_TAC [`i:real^N->bool`; `f:(real^N->bool)->bool`] THEN ASM_CASES_TAC `f:(real^N->bool)->bool = {}` THEN ASM_REWRITE_TAC[IMAGE_CLAUSES; UNIONS_INSERT; NOT_IN_EMPTY; UNIONS_0; UNION_EMPTY; SUBSET_REFL] THEN DISCH_THEN(fun th -> REPEAT DISCH_TAC THEN MP_TAC th) THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `j:real^N->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(n DIFF j) SUBSET (n DIFF i) \/ (n DIFF i:real^N->bool) SUBSET (n DIFF j)` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `j:real^N->bool` o CONJUNCT2) THEN ASM SET_TAC[]; DISJ1_TAC THEN ASM SET_TAC[]; DISJ2_TAC THEN EXISTS_TAC `j:real^N->bool` THEN ASM SET_TAC[]]; ALL_TAC] THEN SUBGOAL_THEN `(j INTER k:real^N->bool) SUBSET (u UNION v)` ASSUME_TAC THENL [MATCH_MP_TAC(SET_RULE `k SUBSET (u UNION v) UNION (n DIFF j) ==> (j INTER k) SUBSET (u UNION v)`) THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `UNIONS g :real^N->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `UNIONS((u UNION v:real^N->bool) INSERT (g DELETE (u UNION v)))` THEN CONJ_TAC THENL [MATCH_MP_TAC SUBSET_UNIONS THEN SET_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[UNIONS_INSERT] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `connected(j INTER k:real^N->bool)` MP_TAC THENL [ASM_MESON_TAC[SET_RULE `s SUBSET t ==> s INTER t = s`; INTER_COMM]; REWRITE_TAC[connected] THEN MAP_EVERY EXISTS_TAC [`u:real^N->bool`; `v:real^N->bool`] THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]);;
let CONNECTED_CHAIN_GEN = 
prove (`!f:(real^N->bool)->bool. (!s. s IN f ==> closed s /\ connected s) /\ (?s. s IN f /\ compact s) /\ (!s t. s IN f /\ t IN f ==> s SUBSET t \/ t SUBSET s) ==> connected(INTERS f)`,
GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_X_ASSUM(X_CHOOSE_THEN `s:real^N->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `INTERS f = INTERS(IMAGE (\t:real^N->bool. s INTER t) f)` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; INTERS_IMAGE] THEN ASM SET_TAC[]; MATCH_MP_TAC CONNECTED_CHAIN THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[COMPACT_INTER_CLOSED] THEN CONJ_TAC THENL [X_GEN_TAC `t:real^N->bool`; ASM SET_TAC[]] THEN DISCH_TAC THEN SUBGOAL_THEN `s INTER t:real^N->bool = s \/ s INTER t = t` (DISJ_CASES_THEN SUBST1_TAC) THEN ASM SET_TAC[]]);;
let CONNECTED_NEST = 
prove (`!s. (!n. compact(s n) /\ connected(s n)) /\ (!m n. m <= n ==> s n SUBSET s m) ==> connected(INTERS {s n | n IN (:num)})`,
GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC CONNECTED_CHAIN THEN ASM_SIMP_TAC[FORALL_IN_GSPEC; IN_UNIV; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC WLOG_LE THEN ASM_MESON_TAC[]);;
let CONNECTED_NEST_GEN = 
prove (`!s. (!n. closed(s n) /\ connected(s n)) /\ (?n. compact(s n)) /\ (!m n. m <= n ==> s n SUBSET s m) ==> connected(INTERS {s n | n IN (:num)})`,
GEN_TAC THEN DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC) THEN MATCH_MP_TAC CONNECTED_CHAIN_GEN THEN ASM_SIMP_TAC[FORALL_IN_GSPEC; IN_UNIV; IMP_CONJ; RIGHT_FORALL_IMP_THM; EXISTS_IN_GSPEC] THEN MATCH_MP_TAC WLOG_LE THEN ASM_MESON_TAC[]);;
let EQ_BALLS = 
prove (`(!a a':real^N r r'. ball(a,r) = ball(a',r') <=> a = a' /\ r = r' \/ r <= &0 /\ r' <= &0) /\ (!a a':real^N r r'. ball(a,r) = cball(a',r') <=> r <= &0 /\ r' < &0) /\ (!a a':real^N r r'. cball(a,r) = ball(a',r') <=> r < &0 /\ r' <= &0) /\ (!a a':real^N r r'. cball(a,r) = cball(a',r') <=> a = a' /\ r = r' \/ r < &0 /\ r' < &0)`,
REWRITE_TAC[AND_FORALL_THM] THEN REPEAT STRIP_TAC THEN (EQ_TAC THENL [ALL_TAC; REWRITE_TAC[EXTENSION; IN_BALL; IN_CBALL] THEN NORM_ARITH_TAC]) THENL [REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET_BALLS] THEN NORM_ARITH_TAC; ONCE_REWRITE_TAC[EQ_SYM_EQ]; ALL_TAC; REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET_BALLS] THEN NORM_ARITH_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP (MESON[CLOPEN; BOUNDED_BALL; NOT_BOUNDED_UNIV] `s = t ==> closed s /\ open t /\ bounded t ==> s = {} /\ t = {}`)) THEN REWRITE_TAC[OPEN_BALL; CLOSED_CBALL; BOUNDED_BALL; BALL_EQ_EMPTY; CBALL_EQ_EMPTY] THEN REAL_ARITH_TAC);;
let FINITE_CBALL = 
prove (`!a:real^N r. FINITE(cball(a,r)) <=> r <= &0`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `r < &0` THEN ASM_SIMP_TAC[CBALL_EMPTY; REAL_LT_IMP_LE; FINITE_EMPTY] THEN ASM_CASES_TAC `r = &0` THEN ASM_REWRITE_TAC[CBALL_TRIVIAL; FINITE_SING; REAL_LE_REFL] THEN EQ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP EMPTY_INTERIOR_FINITE) THEN REWRITE_TAC[INTERIOR_CBALL; BALL_EQ_EMPTY] THEN ASM_REAL_ARITH_TAC);;
let FINITE_BALL = 
prove (`!a:real^N r. FINITE(ball(a,r)) <=> r <= &0`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `r <= &0` THEN ASM_SIMP_TAC[BALL_EMPTY; REAL_LT_IMP_LE; FINITE_EMPTY] THEN DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] FINITE_IMP_NOT_OPEN)) THEN REWRITE_TAC[OPEN_BALL; BALL_EQ_EMPTY] THEN ASM_REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Convex functions into the reals. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("convex_on",(12,"right"));;
let convex_on = new_definition
  `f convex_on s <=>
        !x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ (u + v = &1)
                  ==> f(u % x + v % y) <= u * f(x) + v * f(y)`;;
let CONVEX_ON_SUBSET = 
prove (`!f s t. f convex_on t /\ s SUBSET t ==> f convex_on s`,
REWRITE_TAC[convex_on; SUBSET] THEN MESON_TAC[]);;
let CONVEX_ADD = 
prove (`!s f g. f convex_on s /\ g convex_on s ==> (\x. f(x) + g(x)) convex_on s`,
REWRITE_TAC[convex_on; AND_FORALL_THM] THEN REPEAT(MATCH_MP_TAC MONO_FORALL ORELSE GEN_TAC) THEN MATCH_MP_TAC(TAUT `(b /\ c ==> d) ==> (a ==> b) /\ (a ==> c) ==> a ==> d`) THEN REAL_ARITH_TAC);;
let CONVEX_CMUL = 
prove (`!s c f. &0 <= c /\ f convex_on s ==> (\x. c * f(x)) convex_on s`,
SIMP_TAC[convex_on; REAL_LE_LMUL; REAL_ARITH `u * c * fx + v * c * fy = c * (u * fx + v * fy)`]);;
let CONVEX_MAX = 
prove (`!f g s. f convex_on s /\ g convex_on s ==> (\x. max (f x) (g x)) convex_on s`,
REWRITE_TAC[convex_on; REAL_MAX_LE] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) th o lhand o snd)) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_LMUL THEN ASM_REAL_ARITH_TAC);;
let CONVEX_LOWER = 
prove (`!f s x y. f convex_on s /\ x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ (u + v = &1) ==> f(u % x + v % y) <= max (f(x)) (f(y))`,
REWRITE_TAC[convex_on] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [SYM th]) THEN REWRITE_TAC[REAL_ADD_RDISTRIB] THEN MATCH_MP_TAC REAL_LE_TRANS THEN ASM_MESON_TAC[REAL_LE_ADD2; REAL_LE_LMUL; REAL_MAX_MAX]);;
let CONVEX_LOWER_SEGMENT = 
prove (`!f s a b x:real^N. f convex_on s /\ a IN s /\ b IN s /\ x IN segment[a,b] ==> f(x) <= max (f a) (f b)`,
REWRITE_TAC[IN_SEGMENT] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONVEX_LOWER THEN EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
let CONVEX_LOCAL_GLOBAL_MINIMUM = 
prove (`!f s t x:real^N. f convex_on s /\ x IN t /\ open t /\ t SUBSET s /\ (!y. y IN t ==> f(x) <= f(y)) ==> !y. y IN s ==> f(x) <= f(y)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN DISCH_TAC THEN SUBGOAL_THEN `&0 < dist(x:real^N,y)` ASSUME_TAC THENL [ASM_MESON_TAC[DIST_POS_LT; REAL_LT_REFL]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_BALL]) THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`&1`; `e / dist(x:real^N,y)`] REAL_DOWN2) THEN ANTS_TAC THENL [ASM_SIMP_TAC[REAL_LT_DIV; REAL_LT_01]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `u:real` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [convex_on]) THEN DISCH_THEN(MP_TAC o SPECL [`x:real^N`; `y:real^N`; `&1 - u`; `u:real`]) THEN ANTS_TAC THENL [ASM_SIMP_TAC[REAL_SUB_ADD; REAL_SUB_LE; REAL_LT_IMP_LE] THEN ASM_MESON_TAC[CENTRE_IN_BALL; SUBSET]; ALL_TAC] THEN REWRITE_TAC[REAL_NOT_LE] THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `(&1 - u) * f(x) + u * f(x:real^N):real` THEN ASM_SIMP_TAC[REAL_LT_LADD; REAL_LT_LMUL] THEN REWRITE_TAC[REAL_ARITH `(&1 - x) * a + x * a = a`] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[IN_BALL; dist] THEN REWRITE_TAC[VECTOR_ARITH `x - ((&1 - u) % x + u % y):real^N = u % (x - y)`] THEN REWRITE_TAC[NORM_MUL; GSYM dist] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_ARITH `&0 < x /\ x < b ==> abs x < b`]);;
let CONVEX_DISTANCE = 
prove (`!s a. (\x. dist(a,x)) convex_on s`,
REWRITE_TAC[convex_on; dist] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [GSYM VECTOR_MUL_LID] THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[VECTOR_ARITH `(u + v) % z - (u % x + v % y) = u % (z - x) + v % (z - y)`] THEN ASM_MESON_TAC[NORM_TRIANGLE; NORM_MUL; REAL_ABS_REFL]);;
let CONVEX_NORM = 
prove (`!s:real^N->bool. norm convex_on s`,
GEN_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `vec 0:real^N`] CONVEX_DISTANCE) THEN REWRITE_TAC[DIST_0; ETA_AX]);;
let CONVEX_ON_COMPOSE_LINEAR = 
prove (`!f g:real^M->real^N s. f convex_on (IMAGE g s) /\ linear g ==> (f o g) convex_on s`,
REWRITE_TAC[convex_on; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_IMAGE; o_THM] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP LINEAR_ADD th]) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP LINEAR_CMUL th]) THEN ASM_SIMP_TAC[]);;
let CONVEX_ON_TRANSLATION = 
prove (`!f a:real^N. f convex_on (IMAGE (\x. a + x) s) <=> (\x. f(a + x)) convex_on s`,
REWRITE_TAC[convex_on; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_IMAGE; o_THM] THEN REWRITE_TAC[VECTOR_ARITH `u % (a + x) + v % (a + y):real^N = (u + v) % a + u % x + v % y`] THEN SIMP_TAC[VECTOR_MUL_LID]);;
(* ------------------------------------------------------------------------- *) (* Open and closed balls are convex and hence connected. *) (* ------------------------------------------------------------------------- *)
let CONVEX_BALL = 
prove (`!x:real^N e. convex(ball(x,e))`,
let lemma = REWRITE_RULE[convex_on; IN_UNIV] (ISPEC `(:real^N)` CONVEX_DISTANCE) in REWRITE_TAC[convex; IN_BALL] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) lemma o lhand o snd) THEN ASM_MESON_TAC[REAL_LET_TRANS; REAL_CONVEX_BOUND_LT]);;
let CONNECTED_BALL = 
prove (`!x:real^N e. connected(ball(x,e))`,
let CONVEX_CBALL = 
prove (`!x:real^N e. convex(cball(x,e))`,
REWRITE_TAC[convex; IN_CBALL; dist] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `e:real`; `y:real^N`; `z:real^N`; `u:real`; `v:real`] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[VECTOR_ARITH `a - b = &1 % a - b`] THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[VECTOR_ARITH `(a + b) % x - (a % y + b % z) = a % (x - y) + b % (x - z)`] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `norm(u % (x - y)) + norm(v % (x - z):real^N)` THEN REWRITE_TAC[NORM_TRIANGLE; NORM_MUL] THEN MATCH_MP_TAC REAL_CONVEX_BOUND_LE THEN ASM_REWRITE_TAC[REAL_ABS_POS] THEN ASM_SIMP_TAC[REAL_ARITH `&0 <= u /\ &0 <= v /\ (u + v = &1) ==> (abs(u) + abs(v) = &1)`]);;
let CONNECTED_CBALL = 
prove (`!x:real^N e. connected(cball(x,e))`,
let FRONTIER_OF_CONNECTED_COMPONENT_SUBSET = 
prove (`!s c x:real^N. frontier(connected_component s x) SUBSET frontier s`,
REPEAT GEN_TAC THEN REWRITE_TAC[frontier; SUBSET; IN_DIFF] THEN X_GEN_TAC `y:real^N` THEN REPEAT STRIP_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `y IN s ==> s SUBSET t ==> y IN t`)) THEN MATCH_MP_TAC SUBSET_CLOSURE THEN REWRITE_TAC[CONNECTED_COMPONENT_SUBSET]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERIOR]) THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `ball(y:real^N,e) SUBSET connected_component s y` ASSUME_TAC THENL [MATCH_MP_TAC CONNECTED_COMPONENT_MAXIMAL THEN ASM_REWRITE_TAC[CONNECTED_BALL; CENTRE_IN_BALL]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CLOSURE_APPROACHABLE]) THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[ONCE_REWRITE_RULE[DIST_SYM] (GSYM IN_BALL)] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_neg o concl)) THEN REWRITE_TAC[IN_INTERIOR] THEN EXISTS_TAC `e:real` THEN MP_TAC(ISPECL [`s:real^N->bool`; `x:real^N`; `y:real^N`] CONNECTED_COMPONENT_OVERLAP) THEN MATCH_MP_TAC(TAUT `p /\ (q ==> r) ==> (p <=> q) ==> r`) THEN ASM_SIMP_TAC[] THEN ASM SET_TAC[]]]);;
let FRONTIER_OF_COMPONENTS_SUBSET = 
prove (`!s c:real^N->bool. c IN components s ==> frontier c SUBSET frontier s`,
let FRONTIER_OF_COMPONENTS_CLOSED_COMPLEMENT = 
prove (`!s c. closed s /\ c IN components ((:real^N) DIFF s) ==> frontier c SUBSET s`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP FRONTIER_OF_COMPONENTS_SUBSET) THEN REWRITE_TAC[FRONTIER_COMPLEMENT] THEN ASM_MESON_TAC[FRONTIER_SUBSET_EQ; SUBSET_TRANS]);;
(* ------------------------------------------------------------------------- *) (* A couple of lemmas about components (see Newman IV, 3.3 and 3.4). *) (* ------------------------------------------------------------------------- *)
let CONNECTED_UNION_CLOPEN_IN_COMPLEMENT = 
prove (`!s t u:real^N->bool. connected s /\ connected u /\ s SUBSET u /\ open_in (subtopology euclidean (u DIFF s)) t /\ closed_in (subtopology euclidean (u DIFF s)) t ==> connected (s UNION t)`,
MAP_EVERY X_GEN_TAC [`c:real^N->bool`; `h:real^N->bool`; `s:real^N->bool`] THEN STRIP_TAC THEN REWRITE_TAC[CONNECTED_CLOSED_IN_EQ; NOT_EXISTS_THM] THEN MATCH_MP_TAC(MESON[] `!Q. (!x y. P x y <=> P y x) /\ (!x y. P x y ==> Q x \/ Q y) /\ (!x y. P x y /\ Q x ==> F) ==> (!x y. ~(P x y))`) THEN EXISTS_TAC `\x:real^N->bool. c SUBSET x` THEN CONJ_TAC THENL [MESON_TAC[INTER_COMM; UNION_COMM]; ALL_TAC] THEN REWRITE_TAC[] THEN CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`h1:real^N->bool`; `h2:real^N->bool`] THENL [STRIP_TAC THEN UNDISCH_TAC `connected(c:real^N->bool)` THEN REWRITE_TAC[CONNECTED_CLOSED_IN; NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPECL [`c INTER h1:real^N->bool`; `c INTER h2:real^N->bool`]) THEN MATCH_MP_TAC(TAUT `(p /\ q) /\ (~r ==> s) ==> ~(p /\ q /\ r) ==> s`) THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN CONJ_TAC THENL [UNDISCH_TAC `closed_in(subtopology euclidean (c UNION h)) (h1:real^N->bool)`; UNDISCH_TAC `closed_in(subtopology euclidean (c UNION h)) (h2:real^N->bool)`] THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]; STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o CONJUNCT1 o GEN_REWRITE_RULE I [open_in]) THEN SUBGOAL_THEN `(h2:real^N->bool) SUBSET h` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN UNDISCH_TAC `connected(s:real^N->bool)` THEN REWRITE_TAC[CONNECTED_CLOPEN] THEN DISCH_THEN(MP_TAC o SPEC `h2:real^N->bool`) THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN SUBGOAL_THEN `s:real^N->bool = (s DIFF c) UNION (c UNION h)` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_SUBTOPOLOGY_UNION THEN MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL [REWRITE_TAC[OPEN_IN_CLOSED_IN_EQ; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(c UNION h) DIFF h2:real^N->bool = h1` (fun th -> ASM_REWRITE_TAC[th]) THEN ASM SET_TAC[]; DISCH_TAC THEN MATCH_MP_TAC OPEN_IN_TRANS THEN EXISTS_TAC `h:real^N->bool` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `open_in(subtopology euclidean (c UNION h)) (h2:real^N->bool)` THEN REWRITE_TAC[OPEN_IN_OPEN] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]]; MATCH_MP_TAC CLOSED_IN_SUBTOPOLOGY_UNION THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_TRANS THEN EXISTS_TAC `h:real^N->bool` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `closed_in(subtopology euclidean (c UNION h)) (h2:real^N->bool)` THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]]]);;
let COMPONENT_COMPLEMENT_CONNECTED = 
prove (`!s u c:real^N->bool. connected s /\ connected u /\ s SUBSET u /\ c IN components (u DIFF s) ==> connected(u DIFF c)`,
MAP_EVERY X_GEN_TAC [`a:real^N->bool`; `s:real^N->bool`; `c:real^N->bool`] THEN STRIP_TAC THEN UNDISCH_TAC `connected(a:real^N->bool)` THEN REWRITE_TAC[CONNECTED_CLOSED_IN_EQ; NOT_EXISTS_THM] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`h3:real^N->bool`; `h4:real^N->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a INTER h3:real^N->bool`; `a INTER h4:real^N->bool`]) THEN FIRST_ASSUM(MP_TAC o MATCH_MP IN_COMPONENTS_NONEMPTY) THEN FIRST_ASSUM(MP_TAC o MATCH_MP IN_COMPONENTS_SUBSET) THEN EVERY_ASSUM(fun th -> try MP_TAC(CONJUNCT1(GEN_REWRITE_RULE I [closed_in] th)) with Failure _ -> ALL_TAC) THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN REPEAT DISCH_TAC THEN REPEAT CONJ_TAC THENL [UNDISCH_TAC `closed_in (subtopology euclidean (s DIFF c)) (h3:real^N->bool)` THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]; UNDISCH_TAC `closed_in (subtopology euclidean (s DIFF c)) (h4:real^N->bool)` THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]; ASM SET_TAC[]; ASM SET_TAC[]; DISCH_TAC THEN MP_TAC(ISPECL [`s DIFF a:real^N->bool`; `c UNION h3:real^N->bool`; `c:real^N->bool`] COMPONENTS_MAXIMAL) THEN ASM_REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONNECTED_UNION_CLOPEN_IN_COMPLEMENT THEN EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[IN_COMPONENTS_CONNECTED]; ASM SET_TAC[]; REWRITE_TAC[OPEN_IN_CLOSED_IN_EQ; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `s DIFF c DIFF h3:real^N->bool = h4` SUBST1_TAC THEN ASM SET_TAC[]]; DISCH_TAC THEN MP_TAC(ISPECL [`s DIFF a:real^N->bool`; `c UNION h4:real^N->bool`; `c:real^N->bool`] COMPONENTS_MAXIMAL) THEN ASM_REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONNECTED_UNION_CLOPEN_IN_COMPLEMENT THEN EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[IN_COMPONENTS_CONNECTED]; ASM SET_TAC[]; REWRITE_TAC[OPEN_IN_CLOSED_IN_EQ; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `s DIFF c DIFF h4:real^N->bool = h3` SUBST1_TAC THEN ASM SET_TAC[]]]);;
(* ------------------------------------------------------------------------- *) (* Sura-Bura's result about components of closed sets. *) (* ------------------------------------------------------------------------- *)
let SURA_BURA_COMPACT = 
prove (`!s c:real^N->bool. compact s /\ c IN components s ==> c = INTERS {t | c SUBSET t /\ open_in (subtopology euclidean s) t /\ closed_in (subtopology euclidean s) t}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [components]) THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `x:real^N` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(fun th -> SUBST1_TAC th THEN ASSUME_TAC(SYM th)) THEN MATCH_MP_TAC CONNECTED_COMPONENT_MAXIMAL THEN SUBGOAL_THEN `(x:real^N) IN c` ASSUME_TAC THENL [ASM_MESON_TAC[CONNECTED_COMPONENT_REFL; IN]; ALL_TAC] THEN SUBGOAL_THEN `(c:real^N->bool) SUBSET s` ASSUME_TAC THENL [ASM_MESON_TAC[CONNECTED_COMPONENT_SUBSET]; ALL_TAC] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ASM_REWRITE_TAC[]; MATCH_MP_TAC(SET_RULE `s IN t ==> INTERS t SUBSET s`) THEN REWRITE_TAC[IN_ELIM_THM; CONNECTED_COMPONENT_SUBSET; OPEN_IN_SUBTOPOLOGY_REFL; CLOSED_IN_SUBTOPOLOGY_REFL] THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN; SUBSET_UNIV]] THEN W(fun (asl,w) -> ABBREV_TAC(mk_eq(`k:real^N->bool`,rand w))) THEN SUBGOAL_THEN `closed(k:real^N->bool)` ASSUME_TAC THENL [EXPAND_TAC "k" THEN MATCH_MP_TAC CLOSED_INTERS THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[CLOSED_IN_CLOSED_TRANS; COMPACT_IMP_CLOSED]; ALL_TAC] THEN REWRITE_TAC[CONNECTED_CLOSED_IN_EQ; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`k1:real^N->bool`; `k2:real^N->bool`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`k1:real^N->bool`; `k2:real^N->bool`] SEPARATION_NORMAL) THEN ASM_REWRITE_TAC[NOT_EXISTS_THM; NOT_IMP] THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSED_IN_CLOSED_TRANS; COMPACT_IMP_CLOSED]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`v1:real^N->bool`; `v2:real^N->bool`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`s DIFF (v1 UNION v2):real^N->bool`; `{t:real^N->bool | connected_component s x SUBSET t /\ open_in (subtopology euclidean s) t /\ closed_in (subtopology euclidean s) t}`] COMPACT_IMP_FIP) THEN ASM_SIMP_TAC[NOT_IMP; COMPACT_DIFF; OPEN_UNION; IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[CLOSED_IN_CLOSED_TRANS; COMPACT_IMP_CLOSED]; ONCE_REWRITE_TAC[SUBSET] THEN REWRITE_TAC[IN_ELIM_THM]; ASM SET_TAC[]] THEN X_GEN_TAC `f:(real^N->bool)->bool` THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?c0:real^N->bool. c SUBSET c0 /\ c0 SUBSET (v1 UNION v2) /\ open_in (subtopology euclidean s) c0 /\ closed_in (subtopology euclidean s) c0` STRIP_ASSUME_TAC THENL [ASM_CASES_TAC `f:(real^N->bool)->bool = {}` THENL [EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[TOPSPACE_EUCLIDEAN; SUBSET_UNIV; OPEN_IN_SUBTOPOLOGY_REFL; CLOSED_IN_SUBTOPOLOGY_REFL] THEN UNDISCH_TAC `(s DIFF (v1 UNION v2)) INTER INTERS f :real^N->bool = {}` THEN ASM_REWRITE_TAC[INTERS_0; INTER_UNIV] THEN SET_TAC[]; EXISTS_TAC `INTERS f :real^N->bool` THEN REPEAT CONJ_TAC THENL [ASM SET_TAC[]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(s DIFF u) INTER t = {} ==> t SUBSET s ==> t SUBSET u`)) THEN MATCH_MP_TAC(SET_RULE `~(f = {}) /\ (!s. s IN f ==> s SUBSET t) ==> INTERS f SUBSET t`) THEN ASM_MESON_TAC[CLOSED_IN_SUBSET; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY]; MATCH_MP_TAC OPEN_IN_INTERS THEN ASM_SIMP_TAC[]; MATCH_MP_TAC CLOSED_IN_INTERS THEN ASM_SIMP_TAC[]]]; ALL_TAC] THEN SUBGOAL_THEN `connected(c:real^N->bool)` MP_TAC THENL [ASM_MESON_TAC[CONNECTED_CONNECTED_COMPONENT]; ALL_TAC] THEN SUBGOAL_THEN `closed_in (subtopology euclidean c0) (c0 INTER v1 :real^N->bool) /\ closed_in (subtopology euclidean c0) (c0 INTER v2 :real^N->bool)` MP_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC(MESON[] `closed_in top (c INTER closure v) /\ c INTER closure v = c INTER v ==> closed_in top (c INTER v)`) THEN (CONJ_TAC THENL [MESON_TAC[CLOSED_IN_CLOSED; CLOSED_CLOSURE]; ALL_TAC]) THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `c0 SUBSET vv ==> c0 INTER (vv INTER v') = c0 INTER v ==> c0 INTER v' = c0 INTER v`)) THEN REWRITE_TAC[ONCE_REWRITE_RULE[INTER_COMM] UNION_OVER_INTER; UNION_OVER_INTER] THEN SIMP_TAC[SET_RULE `s SUBSET t ==> s INTER t = s`; CLOSURE_SUBSET] THENL [ALL_TAC; ONCE_REWRITE_TAC[UNION_COMM]] THEN MATCH_MP_TAC(SET_RULE `t = {} ==> s UNION (u INTER t) = s`) THEN ASM_SIMP_TAC[OPEN_INTER_CLOSURE_EQ_EMPTY] THEN ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `u1:real^N->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `u2:real^N->bool` STRIP_ASSUME_TAC)) THEN SUBGOAL_THEN `closed(c0:real^N->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[CLOSED_IN_CLOSED_TRANS; COMPACT_IMP_CLOSED]; ALL_TAC] THEN REWRITE_TAC[CONNECTED_CLOSED] THEN MAP_EVERY EXISTS_TAC [`c0 INTER u1:real^N->bool`; `c0 INTER u2:real^N->bool`] THEN ASM_SIMP_TAC[CLOSED_INTER] THEN REPLICATE_TAC 2 (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN CONJ_TAC THENL [STRIP_TAC THEN SUBGOAL_THEN `c SUBSET (c0 INTER v2 :real^N->bool)` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `k SUBSET (c0 INTER v2 :real^N->bool)` ASSUME_TAC THENL [ALL_TAC; ASM SET_TAC[]]; STRIP_TAC THEN SUBGOAL_THEN `c SUBSET (c0 INTER v1 :real^N->bool)` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `k SUBSET (c0 INTER v1 :real^N->bool)` ASSUME_TAC THENL [ALL_TAC; ASM SET_TAC[]]] THEN (UNDISCH_THEN `k1 UNION k2 :real^N->bool = k` (K ALL_TAC) THEN EXPAND_TAC "k" THEN MATCH_MP_TAC(SET_RULE `s IN t ==> INTERS t SUBSET s`) THEN REWRITE_TAC[IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC OPEN_IN_INTER_OPEN THEN ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_INTER_CLOSED THEN ASM_REWRITE_TAC[]]));;
let SURA_BURA_CLOSED = 
prove (`!s c:real^N->bool. closed s /\ c IN components s /\ compact c ==> c = INTERS {k | c SUBSET k /\ compact k /\ open_in (subtopology euclidean s) k}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!u:real^N->bool. open u /\ c SUBSET u ==> ?k. c SUBSET k /\ k SUBSET u /\ compact k /\ open_in (subtopology euclidean s) k` ASSUME_TAC THENL [ALL_TAC; REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x:real^N` THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN MP_TAC(ISPECL [`{x:real^N}`; `c:real^N->bool`] SEPARATION_NORMAL) THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED; CLOSED_SING] THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:real^N->bool`; `v:real^N->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `v:real^N->bool`) THEN ASM_REWRITE_TAC[IN_INTERS; NOT_FORALL_THM; IN_ELIM_THM; NOT_IMP] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM SET_TAC[]] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?f. FINITE f /\ c SUBSET UNIONS f /\ (!d:real^N->bool. d IN f ==> open d) /\ (!d:real^N->bool. d IN f ==> bounded d) /\ (!d. d IN f ==> closure d SUBSET u)` STRIP_ASSUME_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_HEINE_BOREL) THEN DISCH_THEN(MP_TAC o SPEC `{ ball(x:real^N,e) | x IN c /\ &0 < e /\ cball(x,e) SUBSET u}`) THEN ANTS_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC; UNIONS_GSPEC; OPEN_BALL] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN EXISTS_TAC `x:real^N` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_CBALL]) THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[CENTRE_IN_BALL] THEN ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN REPEAT CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `t SUBSET s ==> (!x. x IN s ==> P x) ==> (!x. x IN t ==> P x)`)) THEN SIMP_TAC[FORALL_IN_GSPEC; OPEN_BALL; BOUNDED_BALL; CLOSURE_BALL]]; ALL_TAC] THEN ABBREV_TAC `v:real^N->bool = UNIONS f` THEN SUBGOAL_THEN `bounded(v:real^N->bool)` ASSUME_TAC THENL [EXPAND_TAC "v" THEN MATCH_MP_TAC BOUNDED_UNIONS THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `compact(closure v:real^N->bool)` ASSUME_TAC THENL [ASM_REWRITE_TAC[COMPACT_CLOSURE]; ALL_TAC] THEN SUBGOAL_THEN `(closure v:real^N->bool) SUBSET u` ASSUME_TAC THENL [EXPAND_TAC "v" THEN ASM_SIMP_TAC[CLOSURE_UNIONS] THEN ASM_REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC]; ALL_TAC] THEN SUBGOAL_THEN `open(v:real^N->bool)` ASSUME_TAC THENL [EXPAND_TAC "v" THEN MATCH_MP_TAC OPEN_UNIONS THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`closure v INTER s:real^N->bool`; `c:real^N->bool`] SURA_BURA_COMPACT) THEN ANTS_TAC THENL [ASM_SIMP_TAC[COMPACT_INTER_CLOSED] THEN REWRITE_TAC[IN_COMPONENTS_MAXIMAL] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_COMPONENTS_MAXIMAL]) THEN ASM_MESON_TAC[SUBSET_INTER; SUBSET_TRANS; CLOSURE_SUBSET]; ALL_TAC] THEN SUBGOAL_THEN `!t:real^N->bool. c SUBSET t /\ open_in (subtopology euclidean (closure v INTER s)) t /\ closed_in (subtopology euclidean (closure v INTER s)) t <=> c SUBSET t /\ t SUBSET (closure v INTER s) /\ compact t /\ open_in (subtopology euclidean (closure v INTER s)) t` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSED_IN_SUBSET; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY]; STRIP_TAC THEN REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN CONJ_TAC THENL [ASM_MESON_TAC[BOUNDED_SUBSET; COMPACT_IMP_BOUNDED; COMPACT_INTER_CLOSED]; MATCH_MP_TAC CLOSED_IN_CLOSED_TRANS THEN EXISTS_TAC `closure v INTER s:real^N->bool` THEN ASM_MESON_TAC[COMPACT_IMP_CLOSED; CLOSED_INTER]]]; MATCH_MP_TAC CLOSED_CLOSED_IN_TRANS THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED; CLOSED_INTER]]; DISCH_THEN(ASSUME_TAC o SYM)] THEN MP_TAC(ISPECL [`(closure v INTER s) DIFF v:real^N->bool`; `{t:real^N->bool | c SUBSET t /\ t SUBSET (closure v INTER s) /\ compact t /\ open_in (subtopology euclidean (closure v INTER s)) t}`] COMPACT_IMP_FIP) THEN ASM_SIMP_TAC[COMPACT_DIFF; COMPACT_INTER_CLOSED] THEN MATCH_MP_TAC(TAUT `p /\ r /\ (~q ==> s) ==> (p /\ q ==> ~r) ==> s`) THEN REWRITE_TAC[IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [MESON_TAC[COMPACT_IMP_CLOSED]; ASM SET_TAC[]; REWRITE_TAC[NOT_FORALL_THM; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `g:(real^N->bool)->bool` THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [SUBSET] THEN REWRITE_TAC[IN_ELIM_THM; NOT_IMP] THEN ASM_CASES_TAC `g:(real^N->bool)->bool = {}` THENL [ASM_REWRITE_TAC[FINITE_EMPTY; NOT_IN_EMPTY; INTERS_0; INTER_UNIV] THEN REWRITE_TAC[SET_RULE `s DIFF t = {} <=> s SUBSET t`] THEN STRIP_TAC THEN EXISTS_TAC `closure v INTER s :real^N->bool` THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_COMPONENTS_MAXIMAL]) THEN MP_TAC(ISPEC `v:real^N->bool` CLOSURE_SUBSET) THEN ASM SET_TAC[]; ASM SET_TAC[]; ASM_SIMP_TAC[COMPACT_INTER_CLOSED]; SUBGOAL_THEN `closure v INTER s :real^N->bool = s INTER v` SUBST1_TAC THENL [MP_TAC(ISPEC `v:real^N->bool` CLOSURE_SUBSET) THEN ASM SET_TAC[]; ASM_SIMP_TAC[OPEN_IN_OPEN_INTER]]]; STRIP_TAC THEN EXISTS_TAC `INTERS g :real^N->bool` THEN REPEAT CONJ_TAC THENL [ASM SET_TAC[]; MP_TAC(ISPEC `v:real^N->bool` CLOSURE_SUBSET) THEN ASM SET_TAC[]; MATCH_MP_TAC COMPACT_INTERS THEN ASM_MESON_TAC[]; SUBGOAL_THEN `open_in (subtopology euclidean (closure v INTER s)) (INTERS g:real^N->bool)` MP_TAC THENL [MATCH_MP_TAC OPEN_IN_INTERS THEN ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE `(s DIFF t) INTER u = {} ==> u SUBSET s ==> u SUBSET t`)) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_TAC] THEN REWRITE_TAC[OPEN_IN_OPEN] THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `(v:real^N->bool) INTER t` THEN ASM_SIMP_TAC[OPEN_INTER] THEN MP_TAC(ISPEC `v:real^N->bool` CLOSURE_SUBSET) THEN ASM SET_TAC[]]]);;
(* ------------------------------------------------------------------------- *) (* Condition for an open map's image to contain a ball. *) (* ------------------------------------------------------------------------- *)
let BALL_SUBSET_OPEN_MAP_IMAGE = 
prove (`!f:real^M->real^N s a r. bounded s /\ f continuous_on closure s /\ open(IMAGE f (interior s)) /\ a IN s /\ &0 < r /\ (!z. z IN frontier s ==> r <= norm(f z - f a)) ==> ball(f(a),r) SUBSET IMAGE f s`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`ball((f:real^M->real^N) a,r)`; `(:real^N) DIFF IMAGE (f:real^M->real^N) s`] CONNECTED_INTER_FRONTIER) THEN REWRITE_TAC[CONNECTED_BALL] THEN MATCH_MP_TAC(SET_RULE `~(b INTER s = {}) /\ b INTER f = {} ==> (~(b INTER (UNIV DIFF s) = {}) /\ ~(b DIFF (UNIV DIFF s) = {}) ==> ~(b INTER f = {})) ==> b SUBSET s`) THEN REWRITE_TAC[FRONTIER_COMPLEMENT] THEN CONJ_TAC THENL [REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER] THEN EXISTS_TAC `(f:real^M->real^N) a` THEN ASM_REWRITE_TAC[CENTRE_IN_BALL] THEN ASM SET_TAC[]; REWRITE_TAC[SET_RULE `s INTER t = {} <=> !x. x IN t ==> ~(x IN s)`] THEN REWRITE_TAC[IN_BALL; REAL_NOT_LT]] THEN MP_TAC(ISPECL[`frontier(IMAGE (f:real^M->real^N) s)`; `(f:real^M->real^N) a`] DISTANCE_ATTAINS_INF) THEN REWRITE_TAC[FRONTIER_CLOSED; FRONTIER_EQ_EMPTY] THEN ANTS_TAC THENL [SIMP_TAC[DE_MORGAN_THM] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(MESON[NOT_BOUNDED_UNIV] `bounded s ==> ~(s = UNIV)`) THEN MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC `IMAGE (f:real^M->real^N) (closure s)` THEN SIMP_TAC[IMAGE_SUBSET; CLOSURE_SUBSET] THEN MATCH_MP_TAC COMPACT_IMP_BOUNDED THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN ASM_REWRITE_TAC[COMPACT_CLOSURE]; DISCH_THEN(X_CHOOSE_THEN `w:real^N` STRIP_ASSUME_TAC)] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [frontier]) THEN REWRITE_TAC[IN_DIFF] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[CLOSURE_SEQUENTIAL] THEN DISCH_THEN(X_CHOOSE_THEN `y:num->real^N` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN REWRITE_TAC[IN_IMAGE; SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:num->real^M` THEN REWRITE_TAC[FORALL_AND_THM] THEN ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM COMPACT_CLOSURE]) THEN REWRITE_TAC[compact] THEN DISCH_THEN(MP_TAC o SPEC `z:num->real^M`) THEN ASM_SIMP_TAC[REWRITE_RULE[SUBSET] CLOSURE_SUBSET; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`y:real^M`; `r:num->num`] THEN STRIP_TAC THEN SUBGOAL_THEN `(((\n. (f:real^M->real^N)(z n)) o (r:num->num)) --> w) sequentially` MP_TAC THENL [MATCH_MP_TAC LIM_SUBSEQUENCE THEN ASM_REWRITE_TAC[]; ONCE_REWRITE_TAC[GSYM o_DEF] THEN REWRITE_TAC[GSYM o_ASSOC]] THEN DISCH_TAC THEN SUBGOAL_THEN `!n. ((z:num->real^M) o (r:num->num)) n IN s` MP_TAC THENL [ASM_REWRITE_TAC[o_THM]; UNDISCH_THEN `((\n. (f:real^M->real^N) ((z:num->real^M) n)) --> w) sequentially` (K ALL_TAC) THEN UNDISCH_THEN `!n. (z:num->real^M) n IN s` (K ALL_TAC)] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN SPEC_TAC(`(z:num->real^M) o (r:num->num)`, `z:num->real^M`) THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `w = (f:real^M->real^N) y` SUBST_ALL_TAC THENL [MATCH_MP_TAC(ISPEC `sequentially` LIM_UNIQUE) THEN EXISTS_TAC `(f:real^M->real^N) o (z:num->real^M)` THEN ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN ASM_MESON_TAC[CONTINUOUS_ON_CLOSURE_SEQUENTIALLY]; ALL_TAC] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `norm(f y - (f:real^M->real^N) a)` THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC; ASM_MESON_TAC[dist; NORM_SUB]] THEN ASM_REWRITE_TAC[frontier; IN_DIFF] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_neg o concl)) THEN REWRITE_TAC[interior; IN_ELIM_THM] THEN EXISTS_TAC `IMAGE (f:real^M->real^N) (interior s)` THEN ASM_SIMP_TAC[IMAGE_SUBSET; INTERIOR_SUBSET] THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Arithmetic operations on sets preserve convexity. *) (* ------------------------------------------------------------------------- *)
let CONVEX_SCALING = 
prove (`!s c. convex s ==> convex (IMAGE (\x. c % x) s)`,
REWRITE_TAC[convex; IN_IMAGE] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `u % c % x + v % c % y = c % (u % x + v % y)`] THEN ASM_MESON_TAC[]);;
let CONVEX_SCALING_EQ = 
prove (`!s c. ~(c = &0) ==> (convex (IMAGE (\x. c % x) s) <=> convex s)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[CONVEX_SCALING] THEN DISCH_THEN(MP_TAC o SPEC `inv c` o MATCH_MP CONVEX_SCALING) THEN ASM_SIMP_TAC[GSYM IMAGE_o; o_DEF; VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID; IMAGE_ID]);;
let CONVEX_NEGATIONS = 
prove (`!s. convex s ==> convex (IMAGE (--) s)`,
REWRITE_TAC[convex; IN_IMAGE] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `u % --x + v % --y = --(u % x + v % y)`] THEN ASM_MESON_TAC[]);;
let CONVEX_SUMS = 
prove (`!s t. convex s /\ convex t ==> convex {x + y | x IN s /\ y IN t}`,
REWRITE_TAC[convex; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `u % (a + b) + v % (c + d) = (u % a + v % c) + (u % b + v % d)`] THEN ASM_MESON_TAC[]);;
let CONVEX_DIFFERENCES = 
prove (`!s t. convex s /\ convex t ==> convex {x - y | x IN s /\ y IN t}`,
REWRITE_TAC[convex; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `u % (a - b) + v % (c - d) = (u % a + v % c) - (u % b + v % d)`] THEN ASM_MESON_TAC[]);;
let CONVEX_AFFINITY = 
prove (`!s a:real^N c. convex s ==> convex (IMAGE (\x. a + c % x) s)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x:real^N. a + c % x) = (\x. a + x) o (\x. c % x)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN ASM_SIMP_TAC[IMAGE_o; CONVEX_TRANSLATION; CONVEX_SCALING]);;
let CONVEX_LINEAR_PREIMAGE = 
prove (`!f:real^M->real^N. linear f /\ convex s ==> convex {x | f(x) IN s}`,
REWRITE_TAC[CONVEX_ALT; IN_ELIM_THM] THEN SIMP_TAC[LINEAR_ADD; LINEAR_CMUL]);;
(* ------------------------------------------------------------------------- *) (* Convex hull. *) (* ------------------------------------------------------------------------- *)
let CONVEX_CONVEX_HULL = 
prove (`!s. convex(convex hull s)`,
SIMP_TAC[P_HULL; CONVEX_INTERS]);;
let CONVEX_HULL_EQ = 
prove (`!s. (convex hull s = s) <=> convex s`,
SIMP_TAC[HULL_EQ; CONVEX_INTERS]);;
let IS_CONVEX_HULL = 
prove (`!s. convex s <=> ?t. s = convex hull t`,
GEN_TAC THEN MATCH_MP_TAC IS_HULL THEN SIMP_TAC[CONVEX_INTERS]);;
let CONVEX_HULL_UNIV = 
prove (`convex hull (:real^N) = (:real^N)`,
REWRITE_TAC[CONVEX_HULL_EQ; CONVEX_UNIV]);;
let BOUNDED_CONVEX_HULL = 
prove (`!s:real^N->bool. bounded s ==> bounded(convex hull s)`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [bounded] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC `cball(vec 0:real^N,B)` THEN SIMP_TAC[BOUNDED_CBALL; SUBSET_HULL; CONVEX_CBALL] THEN ASM_REWRITE_TAC[IN_CBALL; SUBSET; dist; VECTOR_SUB_LZERO; NORM_NEG]);;
let BOUNDED_CONVEX_HULL_EQ = 
prove (`!s. bounded(convex hull s) <=> bounded s`,
let FINITE_IMP_BOUNDED_CONVEX_HULL = 
prove (`!s. FINITE s ==> bounded(convex hull s)`,
(* ------------------------------------------------------------------------- *) (* Stepping theorems for convex hulls of finite sets. *) (* ------------------------------------------------------------------------- *)
let CONVEX_HULL_EMPTY = 
prove (`convex hull {} = {}`,
MATCH_MP_TAC HULL_UNIQUE THEN REWRITE_TAC[SUBSET_REFL; CONVEX_EMPTY; EMPTY_SUBSET]);;
let CONVEX_HULL_EQ_EMPTY = 
prove (`!s. (convex hull s = {}) <=> (s = {})`,
GEN_TAC THEN EQ_TAC THEN MESON_TAC[SUBSET_EMPTY; HULL_SUBSET; CONVEX_HULL_EMPTY]);;
let CONVEX_HULL_SING = 
prove (`!a. convex hull {a} = {a}`,
REWRITE_TAC[CONVEX_HULL_EQ; CONVEX_SING]);;
let CONVEX_HULL_EQ_SING = 
prove (`!s a:real^N. convex hull s = {a} <=> s = {a}`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[CONVEX_HULL_EMPTY] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[CONVEX_HULL_SING] THEN MATCH_MP_TAC(SET_RULE `~(s = {}) /\ s SUBSET {a} ==> s = {a}`) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[HULL_SUBSET]);;
let CONVEX_HULL_INSERT = 
prove (`!s a. ~(s = {}) ==> (convex hull (a INSERT s) = {x:real^N | ?u v b. &0 <= u /\ &0 <= v /\ (u + v = &1) /\ b IN (convex hull s) /\ (x = u % a + v % b)})`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC HULL_MINIMAL THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT] THEN X_GEN_TAC `x:real^N` THEN STRIP_TAC THENL [MAP_EVERY EXISTS_TAC [`&1`; `&0`]; MAP_EVERY EXISTS_TAC [`&0`; `&1`]] THEN ASM_REWRITE_TAC[VECTOR_MUL_LID; VECTOR_MUL_LZERO] THEN ASM_REWRITE_TAC[VECTOR_ADD_LID; VECTOR_ADD_RID] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY; HULL_SUBSET; SUBSET]; ALL_TAC]; REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[convex] CONVEX_CONVEX_HULL) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[HULL_SUBSET; SUBSET; IN_INSERT; HULL_MONO]] THEN REWRITE_TAC[convex; IN_ELIM_THM] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `u:real`; `v:real`; `u1:real`; `v1:real`; `b1:real^N`; `u2:real`; `v2:real`; `b2:real^N`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`u * u1 + v * u2`; `u * v1 + v * v2`] THEN REWRITE_TAC[VECTOR_ARITH `u % (u1 % a + v1 % b1) + v % (u2 % a + v2 % b2) = (u * u1 + v * u2) % a + (u * v1) % b1 + (v * v2) % b2`] THEN ASM_SIMP_TAC[REAL_LE_ADD; REAL_LE_MUL] THEN ASM_REWRITE_TAC[REAL_MUL_RID; REAL_ARITH `(u * u1 + v * u2) + (u * v1 + v * v2) = u * (u1 + v1) + v * (u2 + v2)`] THEN ASM_CASES_TAC `u * v1 + v * v2 = &0` THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP (REAL_ARITH `(a + b = &0) ==> &0 <= a /\ &0 <= b ==> (a = &0) /\ (b = &0)`)) THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_ADD_LID; VECTOR_MUL_LZERO; VECTOR_ADD_RID] THEN ASM_MESON_TAC[]; ALL_TAC] THEN EXISTS_TAC `(u * v1) / (u * v1 + v * v2) % b1 + (v * v2) / (u * v1 + v * v2) % b2 :real^N` THEN ASM_SIMP_TAC[VECTOR_ADD_LDISTRIB; VECTOR_MUL_ASSOC; REAL_DIV_LMUL] THEN MATCH_MP_TAC(REWRITE_RULE[convex] CONVEX_CONVEX_HULL) THEN ASM_SIMP_TAC[REAL_LE_DIV; REAL_LE_MUL; REAL_LE_ADD] THEN ASM_SIMP_TAC[real_div; GSYM REAL_ADD_RDISTRIB; REAL_MUL_RINV]);;
let CONVEX_HULL_INSERT_ALT = 
prove (`!s a:real^N. convex hull (a INSERT s) = if s = {} then {a} else {(&1 - u) % a + u % x | &0 <= u /\ u <= &1 /\ x IN convex hull s}`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[CONVEX_HULL_SING] THEN ASM_SIMP_TAC[CONVEX_HULL_INSERT] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> b /\ c /\ a /\ d`] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM2; REAL_SUB_LE; REAL_ARITH `u + v = &1 <=> u = &1 - v`] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Explicit expression for convex hull. *) (* ------------------------------------------------------------------------- *)
let CONVEX_HULL_INDEXED = 
prove (`!s. convex hull s = {y:real^N | ?k u x. (!i. 1 <= i /\ i <= k ==> &0 <= u i /\ x i IN s) /\ (sum (1..k) u = &1) /\ (vsum (1..k) (\i. u i % x i) = y)}`,
GEN_TAC THEN MATCH_MP_TAC HULL_UNIQUE THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`1`; `\i:num. &1`; `\i:num. x:real^N`] THEN ASM_SIMP_TAC[FINITE_RULES; IN_SING; SUM_SING; VECTOR_MUL_LID; VSUM_SING; REAL_POS; NUMSEG_SING]; ALL_TAC; REWRITE_TAC[CONVEX_INDEXED; SUBSET; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN MESON_TAC[]] THEN REWRITE_TAC[convex; IN_ELIM_THM] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `u:real`; `v:real`] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`k1:num`; `u1:num->real`; `x1:num->real^N`; `k2:num`; `u2:num->real`; `x2:num->real^N`] THEN STRIP_TAC THEN EXISTS_TAC `k1 + k2:num` THEN EXISTS_TAC `\i:num. if i <= k1 then u * u1(i) else v * u2(i - k1):real` THEN EXISTS_TAC `\i:num. if i <= k1 then x1(i) else x2(i - k1):real^N` THEN ASM_SIMP_TAC[NUMSEG_ADD_SPLIT; ARITH_RULE `1 <= x + 1 /\ x < x + 1`; IN_NUMSEG; SUM_UNION; VSUM_UNION; FINITE_NUMSEG; DISJOINT_NUMSEG; ARITH_RULE `k1 + 1 <= i ==> ~(i <= k1)`] THEN REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] NUMSEG_OFFSET_IMAGE] THEN ASM_SIMP_TAC[SUM_IMAGE; VSUM_IMAGE; EQ_ADD_LCANCEL; FINITE_NUMSEG] THEN ASM_SIMP_TAC[o_DEF; ADD_SUB2; SUM_LMUL; VSUM_LMUL; GSYM VECTOR_MUL_ASSOC; FINITE_NUMSEG; REAL_MUL_RID] THEN ASM_MESON_TAC[REAL_LE_MUL; ARITH_RULE `i <= k1 + k2 /\ ~(i <= k1) ==> 1 <= i - k1 /\ i - k1 <= k2`]);;
(* ------------------------------------------------------------------------- *) (* Another formulation from Lars Schewe. *) (* ------------------------------------------------------------------------- *)
let CONVEX_HULL_EXPLICIT = 
prove (`!p. convex hull p = {y:real^N | ?s u. FINITE s /\ s SUBSET p /\ (!x. x IN s ==> &0 <= u x) /\ sum s u = &1 /\ vsum s (\v. u v % v) = y}`,
REWRITE_TAC[CONVEX_HULL_INDEXED;EXTENSION;IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL [MAP_EVERY EXISTS_TAC [`IMAGE (x':num->real^N) (1..k)`; `\v:real^N.sum {i | i IN (1..k) /\ x' i = v} u`] THEN ASM_SIMP_TAC[FINITE_IMAGE;FINITE_NUMSEG;IN_IMAGE] THEN REPEAT STRIP_TAC THENL [REWRITE_TAC[IMAGE;SUBSET;IN_ELIM_THM;IN_NUMSEG] THEN ASM_MESON_TAC[]; MATCH_MP_TAC SUM_POS_LE THEN ASM_SIMP_TAC[FINITE_NUMSEG;FINITE_RESTRICT;IN_ELIM_THM;IN_NUMSEG]; ASM_SIMP_TAC[GSYM SUM_IMAGE_GEN;FINITE_IMAGE;FINITE_NUMSEG]; FIRST_X_ASSUM (fun th -> REWRITE_TAC[GSYM th]) THEN ASM_SIMP_TAC[GSYM VSUM_IMAGE_GEN;FINITE_IMAGE; FINITE_NUMSEG;VSUM_VMUL;FINITE_RESTRICT] THEN MP_TAC (ISPECL [`x':num->real^N`;`\i:num.u i % (x' i):real^N`;`(1..k)`] (GSYM VSUM_IMAGE_GEN)) THEN ASM_SIMP_TAC[FINITE_NUMSEG]];ALL_TAC] THEN STRIP_ASSUME_TAC (ASM_REWRITE_RULE [ASSUME `FINITE (s:real^N->bool)`] (ISPEC `s:real^N->bool` FINITE_INDEX_NUMSEG)) THEN MAP_EVERY EXISTS_TAC [`CARD (s:real^N->bool)`; `(u:real^N->real) o (f:num->real^N)`; `(f:num->real^N)`] THEN REPEAT STRIP_TAC THENL [REWRITE_TAC[o_DEF] THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM SUBST1_TAC THEN REWRITE_TAC[IN_IMAGE;IN_NUMSEG] THEN ASM_MESON_TAC[]; MATCH_MP_TAC (REWRITE_RULE [SUBSET] (ASSUME `(s:real^N->bool) SUBSET p`)) THEN FIRST_ASSUM SUBST1_TAC THEN REWRITE_TAC[IN_IMAGE;IN_NUMSEG] THEN ASM_MESON_TAC[]; MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `sum (s:real^N->bool) u` THEN CONJ_TAC THENL [ALL_TAC;ASM_REWRITE_TAC[]] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ASSUME `(s:real^N->bool) = IMAGE f (1..CARD s)`] THEN MATCH_MP_TAC (GSYM SUM_IMAGE) THEN ASM_MESON_TAC[]; REWRITE_TAC[MESON [o_THM;FUN_EQ_THM] `(\i:num. (u o f) i % f i) = (\v:real^N. u v % v) o f`] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `vsum (s:real^N->bool) (\v. u v % v)` THEN CONJ_TAC THENL [ALL_TAC;ASM_REWRITE_TAC[]] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ASSUME `(s:real^N->bool) = IMAGE f (1..CARD s)`] THEN MATCH_MP_TAC (GSYM VSUM_IMAGE) THEN ASM SET_TAC[FINITE_NUMSEG]]);;
let CONVEX_HULL_FINITE = 
prove (`!s:real^N->bool. convex hull s = {y | ?u. (!x. x IN s ==> &0 <= u x) /\ sum s u = &1 /\ vsum s (\x. u x % x) = y}`,
GEN_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[CONVEX_HULL_EXPLICIT; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL [MAP_EVERY X_GEN_TAC [`t:real^N->bool`; `f:real^N->real`] THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. if x IN t then f x else &0` THEN REWRITE_TAC[COND_RAND; COND_RATOR; VECTOR_MUL_LZERO] THEN REWRITE_TAC[GSYM SUM_RESTRICT_SET; GSYM VSUM_RESTRICT_SET] THEN ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> {x | x IN s /\ x IN t} = t`] THEN REWRITE_TAC[REAL_LE_REFL; COND_ID]; X_GEN_TAC `f:real^N->real` THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[SUM_CLAUSES; REAL_OF_NUM_EQ; ARITH] THEN STRIP_TAC THEN EXISTS_TAC `support (+) (f:real^N->real) s` THEN EXISTS_TAC `f:real^N->real` THEN MP_TAC(ASSUME `sum s (f:real^N->real) = &1`) THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [sum] THEN REWRITE_TAC[iterate] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[NEUTRAL_REAL_ADD; REAL_OF_NUM_EQ; ARITH] THEN DISCH_THEN(K ALL_TAC) THEN UNDISCH_TAC `sum s (f:real^N->real) = &1` THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM SUM_SUPPORT] THEN ASM_CASES_TAC `support (+) (f:real^N->real) s = {}` THEN ASM_SIMP_TAC[SUM_CLAUSES; REAL_OF_NUM_EQ; ARITH] THEN DISCH_TAC THEN REWRITE_TAC[SUPPORT_SUBSET] THEN CONJ_TAC THENL [ASM_SIMP_TAC[support; IN_ELIM_THM]; ALL_TAC] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC VSUM_SUPERSET THEN REWRITE_TAC[SUPPORT_SUBSET] THEN REWRITE_TAC[support; IN_ELIM_THM; NEUTRAL_REAL_ADD] THEN MESON_TAC[VECTOR_MUL_LZERO]]);;
let CONVEX_HULL_UNION_EXPLICIT = 
prove (`!s t:real^N->bool. convex s /\ convex t ==> convex hull (s UNION t) = s UNION t UNION {(&1 - u) % x + u % y | x IN s /\ y IN t /\ &0 <= u /\ u <= &1}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [REWRITE_TAC[CONVEX_HULL_EXPLICIT] THEN GEN_REWRITE_TAC I [SUBSET] THEN REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`y:real^N`; `u:real^N->bool`; `f:real^N->real`] THEN REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN SUBST1_TAC(SET_RULE `u:real^N->bool = (u INTER s) UNION (u DIFF s)`) THEN ASM_SIMP_TAC[SUM_UNION; VSUM_UNION; FINITE_INTER; FINITE_DIFF; SET_RULE `DISJOINT (u INTER s) (u DIFF s)`] THEN ASM_CASES_TAC `sum (u INTER s) (f:real^N->real) = &0` THENL [SUBGOAL_THEN `!x. x IN (u INTER s) ==> (f:real^N->real) x = &0` ASSUME_TAC THENL [ASM_MESON_TAC[SUM_POS_EQ_0; FINITE_INTER; IN_INTER]; ASM_SIMP_TAC[VECTOR_MUL_LZERO; VSUM_0] THEN REWRITE_TAC[VECTOR_ADD_LID; REAL_ADD_LID] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN REWRITE_TAC[IN_UNION] THEN DISJ2_TAC THEN DISJ1_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [CONVEX_EXPLICIT]) THEN ASM_SIMP_TAC[FINITE_DIFF; IN_DIFF] THEN ASM SET_TAC[]]; ALL_TAC] THEN ASM_CASES_TAC `sum (u DIFF s) (f:real^N->real) = &0` THENL [SUBGOAL_THEN `!x. x IN (u DIFF s) ==> (f:real^N->real) x = &0` ASSUME_TAC THENL [ASM_MESON_TAC[SUM_POS_EQ_0; FINITE_DIFF; IN_DIFF]; ASM_SIMP_TAC[VECTOR_MUL_LZERO; VSUM_0] THEN REWRITE_TAC[VECTOR_ADD_RID; REAL_ADD_RID] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN REWRITE_TAC[IN_UNION] THEN DISJ1_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [CONVEX_EXPLICIT]) THEN ASM_SIMP_TAC[FINITE_INTER; IN_INTER] THEN ASM SET_TAC[]]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN DISJ2_TAC THEN DISJ2_TAC THEN MAP_EVERY EXISTS_TAC [`vsum(u INTER s) (\v:real^N. (f v / sum(u INTER s) f) % v)`; `sum(u DIFF s) (f:real^N->real)`; `vsum(u DIFF s) (\v:real^N. (f v / sum(u DIFF s) f) % v)`] THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [CONVEX_EXPLICIT]) THEN ASM_SIMP_TAC[INTER_SUBSET; FINITE_INTER; SUM_POS_LE; REAL_LE_DIV; IN_INTER; real_div; SUM_RMUL; REAL_MUL_RINV]; FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [CONVEX_EXPLICIT]) THEN ASM_SIMP_TAC[SUBSET_DIFF; FINITE_DIFF; SUM_POS_LE; REAL_LE_DIV; IN_DIFF; real_div; SUM_RMUL; REAL_MUL_RINV] THEN ASM SET_TAC[]; ASM_SIMP_TAC[SUM_POS_LE; IN_DIFF; FINITE_DIFF]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `a + b = &1 ==> &0 <= a ==> b <= &1`)) THEN ASM_SIMP_TAC[SUM_POS_LE; IN_INTER; FINITE_INTER]; ASM_SIMP_TAC[GSYM VSUM_LMUL; FINITE_INTER; FINITE_DIFF] THEN SIMP_TAC[VECTOR_MUL_ASSOC; REAL_ARITH `a * b / c:real = a / c * b`] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (REAL_ARITH `a + b = &1 ==> &1 - b = a`)) THEN ASM_SIMP_TAC[REAL_DIV_REFL; REAL_MUL_LID]]; REWRITE_TAC[GSYM UNION_ASSOC] THEN ONCE_REWRITE_TAC[UNION_SUBSET] THEN REWRITE_TAC[HULL_SUBSET] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `u:real`; `y:real^N`] THEN STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[CONVEX_ALT] CONVEX_CONVEX_HULL) THEN ASM_SIMP_TAC[HULL_INC; IN_UNION]]);;
let CONVEX_HULL_UNION_NONEMPTY_EXPLICIT = 
prove (`!s t:real^N->bool. convex s /\ ~(s = {}) /\ convex t /\ ~(t = {}) ==> convex hull (s UNION t) = {(&1 - u) % x + u % y | x IN s /\ y IN t /\ &0 <= u /\ u <= &1}`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CONVEX_HULL_UNION_EXPLICIT] THEN SIMP_TAC[SET_RULE `s UNION t UNION u = u <=> s SUBSET u /\ t SUBSET u`] THEN CONJ_TAC THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `z:real^N` THEN DISCH_TAC THENL [MAP_EVERY EXISTS_TAC [`z:real^N`; `&0`] THEN REWRITE_TAC[REAL_SUB_RZERO; VECTOR_MUL_LID; REAL_POS; VECTOR_MUL_LZERO; VECTOR_ADD_RID] THEN ASM SET_TAC[]; SUBGOAL_THEN `?a:real^N. a IN s` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`&1`; `z:real^N`] THEN ASM_REWRITE_TAC[REAL_POS; REAL_LE_REFL] THEN VECTOR_ARITH_TAC]);;
let CONVEX_HULL_UNION_UNIONS = 
prove (`!f s:real^N->bool. convex(UNIONS f) /\ ~(f = {}) ==> convex hull (s UNION UNIONS f) = UNIONS {convex hull (s UNION t) | t IN f}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HULL_MONO THEN ASM SET_TAC[]] THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_SIMP_TAC[UNION_EMPTY; HULL_P; UNIONS_SUBSET] THEN X_GEN_TAC `u:real^N->bool` THEN DISCH_TAC THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `convex hull u:real^N->bool` THEN REWRITE_TAC[HULL_SUBSET] THEN ASM SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `UNIONS f :real^N->bool = {}` THENL [ASM_REWRITE_TAC[UNION_EMPTY] THEN SUBGOAL_THEN `?u:real^N->bool. u IN f` CHOOSE_TAC THENL [ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]; ALL_TAC] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `convex hull (s UNION u:real^N->bool)` THEN ASM_SIMP_TAC[HULL_MONO; SUBSET_UNION] THEN ASM SET_TAC[]; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [HULL_UNION_LEFT] THEN ASM_SIMP_TAC[CONVEX_HULL_UNION_NONEMPTY_EXPLICIT; CONVEX_HULL_EQ_EMPTY; CONVEX_CONVEX_HULL] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_UNIONS] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`a:real`; `u:real^N->bool`] THEN DISCH_TAC THEN X_GEN_TAC `y:real^N` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[IN_UNIONS; EXISTS_IN_GSPEC] THEN EXISTS_TAC `u:real^N->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[CONVEX_ALT] CONVEX_CONVEX_HULL) THEN ASM_MESON_TAC[HULL_MONO; IN_UNION; SUBSET; HULL_INC]);;
(* ------------------------------------------------------------------------- *) (* A stepping theorem for that expansion. *) (* ------------------------------------------------------------------------- *)
let CONVEX_HULL_FINITE_STEP = 
prove (`((?u. (!x. x IN {} ==> &0 <= u x) /\ sum {} u = w /\ vsum {} (\x. u(x) % x) = y) <=> w = &0 /\ y = vec 0) /\ (FINITE(s:real^N->bool) ==> ((?u. (!x. x IN (a INSERT s) ==> &0 <= u x) /\ sum (a INSERT s) u = w /\ vsum (a INSERT s) (\x. u(x) % x) = y) <=> ?v. &0 <= v /\ ?u. (!x. x IN s ==> &0 <= u x) /\ sum s u = w - v /\ vsum s (\x. u(x) % x) = y - v % a))`,
MP_TAC(ISPEC `\x:real^N y:real. &0 <= y` AFFINE_HULL_FINITE_STEP_GEN) THEN SIMP_TAC[REAL_ARITH `&0 <= x / &2 <=> &0 <= x`; REAL_LE_ADD] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM]);;
(* ------------------------------------------------------------------------- *) (* Hence some special cases. *) (* ------------------------------------------------------------------------- *)
let CONVEX_HULL_2 = 
prove (`!a b. convex hull {a,b} = {u % a + v % b | &0 <= u /\ &0 <= v /\ u + v = &1}`,
SIMP_TAC[CONVEX_HULL_FINITE; FINITE_INSERT; FINITE_RULES] THEN SIMP_TAC[CONVEX_HULL_FINITE_STEP; FINITE_INSERT; FINITE_RULES] THEN REWRITE_TAC[REAL_ARITH `x - y = z:real <=> x = y + z`; VECTOR_ARITH `x - y = z:real^N <=> x = y + z`] THEN REWRITE_TAC[VECTOR_ADD_RID; REAL_ADD_RID] THEN SET_TAC[]);;
let CONVEX_HULL_2_ALT = 
prove (`!a b. convex hull {a,b} = {a + u % (b - a) | &0 <= u /\ u <= &1}`,
ONCE_REWRITE_TAC[SET_RULE `{a,b} = {b,a}`] THEN REWRITE_TAC[CONVEX_HULL_2; EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[REAL_ADD_ASSOC; CONJ_ASSOC] THEN REWRITE_TAC[TAUT `(a /\ x + y = &1) /\ b <=> x + y = &1 /\ a /\ b`] THEN REWRITE_TAC[REAL_ARITH `x + y = &1 <=> y = &1 - x`; UNWIND_THM2] THEN REPEAT GEN_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN BINOP_TAC THENL [REAL_ARITH_TAC; VECTOR_ARITH_TAC]);;
let CONVEX_HULL_3 = 
prove (`convex hull {a,b,c} = { u % a + v % b + w % c | &0 <= u /\ &0 <= v /\ &0 <= w /\ u + v + w = &1}`,
SIMP_TAC[CONVEX_HULL_FINITE; FINITE_INSERT; FINITE_RULES] THEN SIMP_TAC[CONVEX_HULL_FINITE_STEP; FINITE_INSERT; FINITE_RULES] THEN REWRITE_TAC[REAL_ARITH `x - y = z:real <=> x = y + z`; VECTOR_ARITH `x - y = z:real^N <=> x = y + z`] THEN REWRITE_TAC[VECTOR_ADD_RID; REAL_ADD_RID] THEN SET_TAC[]);;
let CONVEX_HULL_3_ALT = 
prove (`!a b c. convex hull {a,b,c} = {a + u % (b - a) + v % (c - a) | &0 <= u /\ &0 <= v /\ u + v <= &1}`,
ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {b,c,a}`] THEN REWRITE_TAC[CONVEX_HULL_3; EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[REAL_ADD_ASSOC; CONJ_ASSOC] THEN REWRITE_TAC[TAUT `(a /\ x + y = &1) /\ b <=> x + y = &1 /\ a /\ b`] THEN REWRITE_TAC[REAL_ARITH `x + y = &1 <=> y = &1 - x`; UNWIND_THM2] THEN REPEAT GEN_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN BINOP_TAC THENL [REAL_ARITH_TAC; VECTOR_ARITH_TAC]);;
let CONVEX_HULL_SUMS = 
prove (`!s t:real^N->bool. convex hull {x + y | x IN s /\ y IN t} = {x + y | x IN convex hull s /\ y IN convex hull t}`,
REPEAT GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC HULL_MINIMAL THEN SIMP_TAC[CONVEX_SUMS; CONVEX_CONVEX_HULL] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[HULL_INC]; REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [CONVEX_HULL_INDEXED] THEN REWRITE_TAC[IN_ELIM_THM; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`k1:num`; `u1:num->real`; `x1:num->real^N`; `k2:num`; `u2:num->real`; `x2:num->real^N`] THEN STRIP_TAC THEN SUBGOAL_THEN `x + y:real^N = vsum(1..k1) (\i. vsum(1..k2) (\j. u1 i % u2 j % (x1 i + x2 j)))` SUBST1_TAC THENL [REWRITE_TAC[VECTOR_ADD_LDISTRIB; VSUM_ADD_NUMSEG] THEN ASM_SIMP_TAC[VSUM_LMUL; VSUM_RMUL; VECTOR_MUL_LID]; REWRITE_TAC[VSUM_LMUL] THEN MATCH_MP_TAC CONVEX_VSUM THEN ASM_SIMP_TAC[FINITE_NUMSEG; CONVEX_CONVEX_HULL; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONVEX_VSUM THEN ASM_SIMP_TAC[FINITE_NUMSEG; CONVEX_CONVEX_HULL; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HULL_INC THEN ASM SET_TAC[]]]);;
let AFFINE_HULL_PCROSS,CONVEX_HULL_PCROSS = (CONJ_PAIR o prove) (`(!s:real^M->bool t:real^N->bool. affine hull (s PCROSS t) = (affine hull s) PCROSS (affine hull t)) /\ (!s:real^M->bool t:real^N->bool. convex hull (s PCROSS t) = (convex hull s) PCROSS (convex hull t))`,
let lemma1 = 
prove (`!u v x y:real^M z:real^N. u + v = &1 ==> pastecart z (u % x + v % y) = u % pastecart z x + v % pastecart z y /\ pastecart (u % x + v % y) z = u % pastecart x z + v % pastecart y z`,
REWRITE_TAC[PASTECART_ADD; GSYM PASTECART_CMUL] THEN SIMP_TAC[GSYM VECTOR_ADD_RDISTRIB; VECTOR_MUL_LID]) and lemma2 = prove (`INTERS {{x | pastecart x y IN u} | y IN t} = {x | !y. y IN t ==> pastecart x y IN u}`, REWRITE_TAC[INTERS_GSPEC; EXTENSION; IN_ELIM_THM] THEN SET_TAC[]) in CONJ_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC HULL_MINIMAL THEN SIMP_TAC[AFFINE_PCROSS; AFFINE_AFFINE_HULL; HULL_SUBSET; PCROSS_MONO]; REWRITE_TAC[SUBSET; FORALL_IN_PCROSS] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC HULL_INDUCT THEN CONJ_TAC THENL [X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN MATCH_MP_TAC HULL_INDUCT THEN CONJ_TAC THENL [X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `pastecart (x:real^M) (y:real^N) IN s PCROSS t` MP_TAC THENL [ASM_REWRITE_TAC[PASTECART_IN_PCROSS]; ALL_TAC] THEN REWRITE_TAC[HULL_INC]; ALL_TAC]; REWRITE_TAC[GSYM lemma2] THEN MATCH_MP_TAC AFFINE_INTERS THEN REWRITE_TAC[FORALL_IN_GSPEC]] THEN SIMP_TAC[affine; IN_ELIM_THM; lemma1; ONCE_REWRITE_RULE[affine] AFFINE_AFFINE_HULL]]; REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC HULL_MINIMAL THEN SIMP_TAC[CONVEX_PCROSS; CONVEX_CONVEX_HULL; HULL_SUBSET; PCROSS_MONO]; REWRITE_TAC[SUBSET; FORALL_IN_PCROSS] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC HULL_INDUCT THEN CONJ_TAC THENL [X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN MATCH_MP_TAC HULL_INDUCT THEN CONJ_TAC THENL [X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `pastecart (x:real^M) (y:real^N) IN s PCROSS t` MP_TAC THENL [ASM_REWRITE_TAC[PASTECART_IN_PCROSS]; ALL_TAC] THEN REWRITE_TAC[HULL_INC]; ALL_TAC]; REWRITE_TAC[GSYM lemma2] THEN MATCH_MP_TAC CONVEX_INTERS THEN REWRITE_TAC[FORALL_IN_GSPEC]] THEN SIMP_TAC[convex; IN_ELIM_THM; lemma1; ONCE_REWRITE_RULE[convex] CONVEX_CONVEX_HULL]]]);;
(* ------------------------------------------------------------------------- *) (* Relations among closure notions and corresponding hulls. *) (* ------------------------------------------------------------------------- *)
let SUBSPACE_IMP_AFFINE = 
prove (`!s. subspace s ==> affine s`,
REWRITE_TAC[subspace; affine] THEN MESON_TAC[]);;
let AFFINE_IMP_CONVEX = 
prove (`!s. affine s ==> convex s`,
REWRITE_TAC[affine; convex] THEN MESON_TAC[]);;
let SUBSPACE_IMP_CONVEX = 
prove (`!s. subspace s ==> convex s`,
let AFFINE_HULL_SUBSET_SPAN = 
prove (`!s. (affine hull s) SUBSET (span s)`,
GEN_TAC THEN REWRITE_TAC[span] THEN MATCH_MP_TAC HULL_ANTIMONO THEN REWRITE_TAC[SUBSET; IN; SUBSPACE_IMP_AFFINE]);;
let CONVEX_HULL_SUBSET_SPAN = 
prove (`!s. (convex hull s) SUBSET (span s)`,
GEN_TAC THEN REWRITE_TAC[span] THEN MATCH_MP_TAC HULL_ANTIMONO THEN REWRITE_TAC[SUBSET; IN; SUBSPACE_IMP_CONVEX]);;
let CONVEX_HULL_SUBSET_AFFINE_HULL = 
prove (`!s. (convex hull s) SUBSET (affine hull s)`,
GEN_TAC THEN REWRITE_TAC[span] THEN MATCH_MP_TAC HULL_ANTIMONO THEN REWRITE_TAC[SUBSET; IN; AFFINE_IMP_CONVEX]);;
let COLLINEAR_CONVEX_HULL_COLLINEAR = 
prove (`!s:real^N->bool. collinear(convex hull s) <=> collinear s`,
let AFFINE_SPAN = 
prove (`!s. affine(span s)`,
let CONVEX_SPAN = 
prove (`!s. convex(span s)`,
let AFFINE_EQ_SUBSPACE = 
prove (`!s:real^N->bool. vec 0 IN s ==> (affine s <=> subspace s)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[subspace; affine] THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`c:real`; `x:real^N`] THEN STRIP_TAC THEN SUBST1_TAC(VECTOR_ARITH `c % x:real^N = c % x + (&1 - c) % vec 0`) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN SUBST1_TAC(VECTOR_ARITH `x + y:real^N = &2 % (&1 / &2 % x + &1 / &2 % y)`) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]);;
let AFFINE_IMP_SUBSPACE = 
prove (`!s. affine s /\ vec 0 IN s ==> subspace s`,
SIMP_TAC[GSYM AFFINE_EQ_SUBSPACE]);;
let AFFINE_HULL_EQ_SPAN = 
prove (`!s:real^N->bool. (vec 0) IN affine hull s ==> affine hull s = span s`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[AFFINE_HULL_SUBSET_SPAN] THEN REWRITE_TAC[SUBSET] THEN MATCH_MP_TAC SPAN_INDUCT THEN ASM_REWRITE_TAC[SUBSET; subspace; IN_ELIM_THM; HULL_INC] THEN REPEAT STRIP_TAC THENL [SUBST1_TAC(VECTOR_ARITH `x + y:real^N = &2 % (&1 / &2 % x + &1 / &2 % y) + --(&1) % vec 0`) THEN MATCH_MP_TAC(REWRITE_RULE[affine] AFFINE_AFFINE_HULL) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[affine] AFFINE_AFFINE_HULL) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[]; SUBST1_TAC(VECTOR_ARITH `c % x:real^N = c % x + (&1 - c) % vec 0`) THEN MATCH_MP_TAC(REWRITE_RULE[affine] AFFINE_AFFINE_HULL) THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]);;
let CLOSED_AFFINE = 
prove (`!s:real^N->bool. affine s ==> closed s`,
GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[CLOSED_EMPTY] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN SUBGOAL_THEN `affine (IMAGE (\x:real^N. --a + x) s) ==> closed (IMAGE (\x:real^N. --a + x) s)` MP_TAC THENL [DISCH_THEN(fun th -> MATCH_MP_TAC CLOSED_SUBSPACE THEN MP_TAC th) THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC AFFINE_EQ_SUBSPACE THEN REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `a:real^N` THEN ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC; REWRITE_TAC[AFFINE_TRANSLATION_EQ; CLOSED_TRANSLATION_EQ]]);;
let CLOSED_AFFINE_HULL = 
prove (`!s. closed(affine hull s)`,
let CLOSURE_SUBSET_AFFINE_HULL = 
prove (`!s. closure s SUBSET affine hull s`,
GEN_TAC THEN MATCH_MP_TAC CLOSURE_MINIMAL THEN REWRITE_TAC[CLOSED_AFFINE_HULL; HULL_SUBSET]);;
let AFFINE_HULL_CLOSURE = 
prove (`!s:real^N->bool. affine hull (closure s) = affine hull s`,
GEN_TAC THEN MATCH_MP_TAC HULL_UNIQUE THEN REWRITE_TAC[CLOSURE_SUBSET_AFFINE_HULL; AFFINE_AFFINE_HULL] THEN X_GEN_TAC `t:real^N->bool` THEN STRIP_TAC THEN MATCH_MP_TAC HULL_MINIMAL THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CLOSURE_SUBSET; SUBSET]);;
let AFFINE_HULL_EQ_SPAN_EQ = 
prove (`!s:real^N->bool. (affine hull s = span s) <=> (vec 0) IN affine hull s`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[SPAN_0; AFFINE_HULL_EQ_SPAN]);;
let AFFINE_DEPENDENT_IMP_DEPENDENT = 
prove (`!s. affine_dependent s ==> dependent s`,
REWRITE_TAC[affine_dependent; dependent] THEN MESON_TAC[SUBSET; AFFINE_HULL_SUBSET_SPAN]);;
let DEPENDENT_AFFINE_DEPENDENT_CASES = 
prove (`!s:real^N->bool. dependent s <=> affine_dependent s \/ (vec 0) IN affine hull s`,
REWRITE_TAC[DEPENDENT_EXPLICIT; AFFINE_DEPENDENT_EXPLICIT; AFFINE_HULL_EXPLICIT_ALT; IN_ELIM_THM] THEN GEN_TAC THEN ONCE_REWRITE_TAC[OR_EXISTS_THM] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `t:real^N->bool` THEN ASM_CASES_TAC `FINITE(t:real^N->bool)` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN (X_CHOOSE_THEN `u:real^N->real` STRIP_ASSUME_TAC)) THENL [ASM_CASES_TAC `sum t (u:real^N->real) = &0` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISJ2_TAC THEN EXISTS_TAC `\v:real^N. inv(sum t u) * u v` THEN ASM_SIMP_TAC[SUM_LMUL; VSUM_LMUL; GSYM VECTOR_MUL_ASSOC] THEN ASM_SIMP_TAC[VECTOR_MUL_RZERO; REAL_MUL_LINV]; EXISTS_TAC `u:real^N->real` THEN ASM_MESON_TAC[]; EXISTS_TAC `u:real^N->real` THEN ASM_REWRITE_TAC[SET_RULE `(?v. v IN t /\ ~p v) <=> ~(!v. v IN t ==> p v)`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `x = &1 ==> x = &0 ==> F`)) THEN ASM_MESON_TAC[SUM_EQ_0]]);;
let DEPENDENT_IMP_AFFINE_DEPENDENT = 
prove (`!a:real^N s. dependent {x - a | x IN s} /\ ~(a IN s) ==> affine_dependent(a INSERT s)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[DEPENDENT_EXPLICIT; AFFINE_DEPENDENT_EXPLICIT] THEN REWRITE_TAC[SIMPLE_IMAGE; CONJ_ASSOC; FINITE_SUBSET_IMAGE] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN REWRITE_TAC[TAUT `a /\ x = IMAGE f s /\ b <=> x = IMAGE f s /\ a /\ b`] THEN REWRITE_TAC[UNWIND_THM2; EXISTS_IN_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->real` (X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC)) THEN FIRST_X_ASSUM(MP_TAC o check (is_eq o concl)) THEN ASM_SIMP_TAC[VSUM_IMAGE; VECTOR_ARITH `x - a:real^N = y - a <=> x = y`] THEN ASM_SIMP_TAC[o_DEF; VECTOR_SUB_LDISTRIB; VSUM_SUB; VSUM_RMUL] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`(a:real^N) INSERT t`; `\x. if x = a then --sum t (\x. u (x - a)) else (u:real^N->real) (x - a)`] THEN ASM_REWRITE_TAC[FINITE_INSERT; SUBSET_REFL] THEN ASM_SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [ASM SET_TAC[]; ALL_TAC] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC(REAL_ARITH `x = y ==> --x + y = &0`) THEN MATCH_MP_TAC SUM_EQ THEN ASM_MESON_TAC[]; EXISTS_TAC `x:real^N` THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; MATCH_MP_TAC(VECTOR_ARITH `!s. s - t % a = vec 0 /\ s = u ==> --t % a + u = vec 0`) THEN EXISTS_TAC `vsum t (\x:real^N. u(x - a) % x)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC VSUM_EQ THEN REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]);;
let AFFINE_DEPENDENT_BIGGERSET = 
prove (`!s:real^N->bool. (FINITE s ==> CARD s >= dimindex(:N) + 2) ==> affine_dependent s`,
GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_SIMP_TAC[CARD_CLAUSES; ARITH_RULE `~(0 >= n + 2)`; FINITE_RULES] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE `x IN s ==> s = x INSERT (s DELETE x)`)) THEN SIMP_TAC[FINITE_INSERT; CARD_CLAUSES; IN_DELETE] THEN REWRITE_TAC[ARITH_RULE `SUC x >= n + 2 <=> x > n`] THEN DISCH_TAC THEN MATCH_MP_TAC DEPENDENT_IMP_AFFINE_DEPENDENT THEN REWRITE_TAC[IN_DELETE] THEN MATCH_MP_TAC DEPENDENT_BIGGERSET THEN REWRITE_TAC[SET_RULE `{x - a:real^N | x | x IN s /\ ~(x = a)} = IMAGE (\x. x - a) (s DELETE a)`] THEN ASM_SIMP_TAC[FINITE_IMAGE_INJ_EQ; VECTOR_ARITH `x - a = y - a <=> x:real^N = y`; CARD_IMAGE_INJ]);;
let AFFINE_DEPENDENT_BIGGERSET_GENERAL = 
prove (`!s:real^N->bool. (FINITE s ==> CARD s >= dim s + 2) ==> affine_dependent s`,
GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_SIMP_TAC[CARD_CLAUSES; ARITH_RULE `~(0 >= n + 2)`; FINITE_RULES] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE `x IN s ==> s = x INSERT (s DELETE x)`)) THEN SIMP_TAC[FINITE_INSERT; CARD_CLAUSES; IN_DELETE] THEN REWRITE_TAC[ARITH_RULE `SUC x >= n + 2 <=> x > n`] THEN DISCH_TAC THEN MATCH_MP_TAC DEPENDENT_IMP_AFFINE_DEPENDENT THEN REWRITE_TAC[IN_DELETE] THEN MATCH_MP_TAC DEPENDENT_BIGGERSET_GENERAL THEN REWRITE_TAC[SET_RULE `{x - a:real^N | x | x IN s /\ ~(x = a)} = IMAGE (\x. x - a) (s DELETE a)`] THEN ASM_SIMP_TAC[FINITE_IMAGE_INJ_EQ; FINITE_DELETE; VECTOR_ARITH `x - a = y - a <=> x:real^N = y`; CARD_IMAGE_INJ] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o check(is_imp o concl)) THEN ASM_REWRITE_TAC[FINITE_DELETE] THEN MATCH_MP_TAC(ARITH_RULE `c:num <= b ==> (a > b ==> a > c)`) THEN MATCH_MP_TAC SUBSET_LE_DIM THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[SPAN_SUB; SPAN_SUPERSET; IN_INSERT]);;
let AFFINE_INDEPENDENT_IMP_FINITE = 
prove (`!s:real^N->bool. ~(affine_dependent s) ==> FINITE s`,
let AFFINE_INDEPENDENT_CARD_LE = 
prove (`!s:real^N->bool. ~(affine_dependent s) ==> CARD s <= dimindex(:N) + 1`,
REWRITE_TAC[ARITH_RULE `s <= n + 1 <=> ~(n + 2 <= s)`; CONTRAPOS_THM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC AFFINE_DEPENDENT_BIGGERSET THEN ASM_REWRITE_TAC[GE]);;
let AFFINE_INDEPENDENT_CONVEX_AFFINE_HULL = 
prove (`!s t:real^N->bool. ~affine_dependent s /\ t SUBSET s ==> convex hull t = affine hull t INTER convex hull s`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN SUBGOAL_THEN `FINITE(t:real^N->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[FINITE_SUBSET]; ALL_TAC] THEN MATCH_MP_TAC(SET_RULE `ct SUBSET a /\ ct SUBSET cs /\ a INTER cs SUBSET ct ==> ct = a INTER cs`) THEN ASM_SIMP_TAC[HULL_MONO; CONVEX_HULL_SUBSET_AFFINE_HULL] THEN REWRITE_TAC[SUBSET; IN_INTER; CONVEX_HULL_FINITE; AFFINE_HULL_FINITE] THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `u:real^N->real` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `v:real^N->real` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `u:real^N->real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [AFFINE_DEPENDENT_EXPLICIT]) THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPECL [`s:real^N->bool`; `\x:real^N. if x IN t then v x - u x:real else v x`]) THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN REWRITE_TAC[MESON[] `(if p then a else b) % x = if p then a % x else b % x`] THEN ASM_SIMP_TAC[VSUM_CASES; SUM_CASES; SET_RULE `t SUBSET s ==> {x | x IN s /\ x IN t} = t`] THEN ASM_SIMP_TAC[GSYM DIFF; SUM_DIFF; VSUM_DIFF; VECTOR_SUB_RDISTRIB; SUM_SUB; VSUM_SUB] THEN REWRITE_TAC[REAL_ARITH `a - b + b - a = &0`; NOT_EXISTS_THM; VECTOR_ARITH `a - b + b - a:real^N = vec 0`] THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[REAL_SUB_0] THEN ASM SET_TAC[]);;
let DISJOINT_AFFINE_HULL = 
prove (`!s t u:real^N->bool. ~affine_dependent s /\ t SUBSET s /\ u SUBSET s /\ DISJOINT t u ==> DISJOINT (affine hull t) (affine hull u)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN SUBGOAL_THEN `FINITE(t:real^N->bool) /\ FINITE (u:real^N->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[FINITE_SUBSET]; ALL_TAC] THEN REWRITE_TAC[IN_DISJOINT; AFFINE_HULL_FINITE; IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `y:real^N` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `a:real^N->real` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `b:real^N->real` STRIP_ASSUME_TAC)) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [AFFINE_DEPENDENT_EXPLICIT]) THEN REWRITE_TAC[NOT_EXISTS_THM] THEN MAP_EVERY EXISTS_TAC [`s:real^N->bool`; `\x:real^N. if x IN t then a x else if x IN u then --(b x) else &0`] THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN REWRITE_TAC[MESON[] `(if p then a else b) % x = if p then a % x else b % x`] THEN ASM_SIMP_TAC[SUM_CASES; SUBSET_REFL; VSUM_CASES; GSYM DIFF; SUM_DIFF; VSUM_DIFF; SET_RULE `t SUBSET s ==> {x | x IN s /\ x IN t} = t`] THEN ASM_SIMP_TAC[SUM_0; VSUM_0; VECTOR_MUL_LZERO; SUM_NEG; VSUM_NEG; VECTOR_MUL_LNEG; SET_RULE `DISJOINT t u ==> ~(x IN t /\ x IN u)`] THEN REWRITE_TAC[EMPTY_GSPEC; SUM_CLAUSES; VSUM_CLAUSES] THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; VECTOR_ARITH_TAC] THEN UNDISCH_TAC `sum t (a:real^N->real) = &1` THEN ASM_CASES_TAC `!x:real^N. x IN t ==> a x = &0` THEN ASM_SIMP_TAC[SUM_EQ_0; REAL_OF_NUM_EQ; ARITH_EQ] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]);;
let AFFINE_INDEPENDENT_SPAN_EQ = 
prove (`!s. ~(affine_dependent s) /\ CARD s = dimindex(:N) + 1 ==> affine hull s = (:real^N)`,
MATCH_MP_TAC SET_PROVE_CASES THEN REWRITE_TAC[CARD_CLAUSES; ARITH_RULE `~(0 = n + 1)`] THEN SIMP_TAC[IMP_CONJ; AFFINE_INDEPENDENT_IMP_FINITE; MESON[HAS_SIZE] `FINITE s ==> (CARD s = n <=> s HAS_SIZE n)`] THEN X_GEN_TAC `orig:real^N` THEN GEOM_ORIGIN_TAC `orig:real^N` THEN SIMP_TAC[AFFINE_HULL_EQ_SPAN; IN_INSERT; SPAN_INSERT_0; HULL_INC] THEN SIMP_TAC[HAS_SIZE; CARD_CLAUSES; FINITE_INSERT; IMP_CONJ] THEN REWRITE_TAC[ARITH_RULE `SUC n = m + 1 <=> n = m`; GSYM UNIV_SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_GE_DIM_INDEPENDENT THEN ASM_REWRITE_TAC[DIM_UNIV; SUBSET_UNIV; LE_REFL; independent] THEN UNDISCH_TAC `~affine_dependent((vec 0:real^N) INSERT s)` THEN REWRITE_TAC[CONTRAPOS_THM] THEN DISCH_TAC THEN MATCH_MP_TAC DEPENDENT_IMP_AFFINE_DEPENDENT THEN ASM_REWRITE_TAC[VECTOR_SUB_RZERO; SET_RULE `{x | x IN s} = s`]);;
let AFFINE_INDEPENDENT_SPAN_GT = 
prove (`!s:real^N->bool. ~(affine_dependent s) /\ dimindex(:N) < CARD s ==> affine hull s = (:real^N)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC AFFINE_INDEPENDENT_SPAN_EQ THEN ASM_REWRITE_TAC[] THEN MP_TAC(SPEC `s:real^N->bool` AFFINE_DEPENDENT_BIGGERSET) THEN ASM_SIMP_TAC[AFFINE_INDEPENDENT_IMP_FINITE] THEN ASM_ARITH_TAC);;
let EMPTY_INTERIOR_AFFINE_HULL = 
prove (`!s:real^N->bool. FINITE s /\ CARD(s) <= dimindex(:N) ==> interior(affine hull s) = {}`,
REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[AFFINE_HULL_EMPTY; INTERIOR_EMPTY] THEN SUBGOAL_THEN `!x s:real^N->bool n. ~(x IN s) /\ (x INSERT s) HAS_SIZE n /\ n <= dimindex(:N) ==> interior(affine hull(x INSERT s)) = {}` (fun th -> MESON_TAC[th; HAS_SIZE; FINITE_INSERT]) THEN X_GEN_TAC `orig:real^N` THEN GEOM_ORIGIN_TAC `orig:real^N` THEN SIMP_TAC[AFFINE_HULL_EQ_SPAN; IN_INSERT; SPAN_INSERT_0; HULL_INC] THEN REWRITE_TAC[HAS_SIZE; FINITE_INSERT; IMP_CONJ] THEN SIMP_TAC[CARD_CLAUSES] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC EMPTY_INTERIOR_LOWDIM THEN MATCH_MP_TAC LET_TRANS THEN EXISTS_TAC `CARD(s:real^N->bool)` THEN ASM_SIMP_TAC[DIM_LE_CARD; DIM_SPAN] THEN ASM_ARITH_TAC);;
let EMPTY_INTERIOR_CONVEX_HULL = 
prove (`!s:real^N->bool. FINITE s /\ CARD(s) <= dimindex(:N) ==> interior(convex hull s) = {}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `!t. s SUBSET t /\ t = {} ==> s = {}`) THEN EXISTS_TAC `interior(affine hull s):real^N->bool` THEN SIMP_TAC[SUBSET_INTERIOR; CONVEX_HULL_SUBSET_AFFINE_HULL] THEN ASM_SIMP_TAC[EMPTY_INTERIOR_AFFINE_HULL]);;
let AFFINE_DEPENDENT_CHOOSE = 
prove (`!s a:real^N. ~(affine_dependent s) ==> (affine_dependent(a INSERT s) <=> ~(a IN s) /\ a IN affine hull s)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `(a:real^N) IN s` THEN ASM_SIMP_TAC[SET_RULE `a IN s ==> a INSERT s = s`] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN EQ_TAC THENL [UNDISCH_TAC `~(affine_dependent(s:real^N->bool))` THEN ASM_SIMP_TAC[AFFINE_DEPENDENT_EXPLICIT_FINITE; AFFINE_HULL_FINITE; FINITE_INSERT; IN_ELIM_THM; SUM_CLAUSES; VSUM_CLAUSES] THEN DISCH_TAC THEN REWRITE_TAC[EXISTS_IN_INSERT] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->real` MP_TAC) THEN ASM_CASES_TAC `(u:real^N->real) a = &0` THEN ASM_REWRITE_TAC[] THENL [REWRITE_TAC[REAL_ADD_LID; VECTOR_MUL_LZERO; VECTOR_ADD_LID] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN DISCH_THEN(MP_TAC o SPEC `u:real^N->real`) THEN ASM_REWRITE_TAC[]; ONCE_REWRITE_TAC[REAL_ARITH `ua + sa = &0 <=> sa = --ua`; VECTOR_ARITH `va + sa:real^N = vec 0 <=> sa = --va`] THEN STRIP_TAC THEN EXISTS_TAC `(\x. --(inv(u a)) * u x):real^N->real` THEN ASM_SIMP_TAC[SUM_LMUL; GSYM VECTOR_MUL_ASSOC; VSUM_LMUL] THEN ASM_REWRITE_TAC[VECTOR_MUL_ASSOC; GSYM VECTOR_MUL_LNEG] THEN REWRITE_TAC[REAL_ARITH `--a * --b:real = a * b`] THEN ASM_SIMP_TAC[REAL_MUL_LINV; VECTOR_MUL_LID]]; DISCH_TAC THEN REWRITE_TAC[affine_dependent] THEN EXISTS_TAC `a:real^N` THEN ASM_SIMP_TAC[IN_INSERT; SET_RULE `~(a IN s) ==> (a INSERT s) DELETE a = s`]]);;
let AFFINE_INDEPENDENT_INSERT = 
prove (`!s a:real^N. ~(affine_dependent s) /\ ~(a IN affine hull s) ==> ~(affine_dependent(a INSERT s))`,
let AFFINE_HULL_EXPLICIT_UNIQUE = 
prove (`!s:real^N->bool u u'. ~(affine_dependent s) /\ sum s u = &1 /\ sum s u' = &1 /\ vsum s (\x. u x % x) = vsum s (\x. u' x % x) ==> !x. x IN s ==> u x = u' x`,
REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN FIRST_ASSUM(MP_TAC o MATCH_MP AFFINE_DEPENDENT_EXPLICIT_FINITE) THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `(\x. u x - u' x):real^N->real`) THEN ASM_SIMP_TAC[VSUM_SUB; SUM_SUB; REAL_SUB_REFL; VECTOR_SUB_RDISTRIB; VECTOR_SUB_REFL; VECTOR_SUB_EQ; REAL_SUB_0] THEN MESON_TAC[]);;
let INDEPENDENT_IMP_AFFINE_DEPENDENT_0 = 
prove (`!s. independent s ==> ~(affine_dependent(vec 0 INSERT s))`,
REWRITE_TAC[independent; DEPENDENT_AFFINE_DEPENDENT_CASES] THEN SIMP_TAC[DE_MORGAN_THM; AFFINE_INDEPENDENT_INSERT]);;
let AFFINE_INDEPENDENT_STDBASIS = 
prove (`~(affine_dependent ((vec 0:real^N) INSERT {basis i | 1 <= i /\ i <= dimindex (:N)}))`,
(* ------------------------------------------------------------------------- *) (* Nonempty affine sets are translates of (unique) subspaces. *) (* ------------------------------------------------------------------------- *)
let AFFINE_TRANSLATION_SUBSPACE = 
prove (`!t:real^N->bool. affine t /\ ~(t = {}) <=> ?a s. subspace s /\ t = IMAGE (\x. a + x) s`,
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[SUBSPACE_IMP_NONEMPTY; IMAGE_EQ_EMPTY; AFFINE_TRANSLATION; SUBSPACE_IMP_AFFINE] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[TRANSLATION_GALOIS] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM2] THEN MATCH_MP_TAC AFFINE_IMP_SUBSPACE THEN ASM_REWRITE_TAC[AFFINE_TRANSLATION_EQ; IN_IMAGE] THEN EXISTS_TAC `a:real^N` THEN ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC);;
let AFFINE_TRANSLATION_UNIQUE_SUBSPACE = 
prove (`!t:real^N->bool. affine t /\ ~(t = {}) <=> ?!s. ?a. subspace s /\ t = IMAGE (\x. a + x) s`,
GEN_TAC THEN REWRITE_TAC[AFFINE_TRANSLATION_SUBSPACE] THEN MATCH_MP_TAC(MESON[] `(!a a' s s'. P s a /\ P s' a' ==> s = s') ==> ((?a s. P s a) <=> (?!s. ?a. P s a))`) THEN REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[TRANSLATION_GALOIS] THEN DISCH_THEN SUBST1_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; VECTOR_ADD_ASSOC] THEN MATCH_MP_TAC SUBSPACE_TRANSLATION_SELF THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[VECTOR_ARITH `--a' + a:real^N = --(a' - a)`] THEN MATCH_MP_TAC SUBSPACE_NEG THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `t = IMAGE (\x:real^N. a' + x) s'` THEN DISCH_THEN(MP_TAC o AP_TERM `\s. (a':real^N) IN s`) THEN REWRITE_TAC[IN_IMAGE; VECTOR_ARITH `a:real^N = a + x <=> x = vec 0`] THEN ASM_SIMP_TAC[UNWIND_THM2; SUBSPACE_0] THEN REWRITE_TAC[IN_IMAGE; VECTOR_ARITH `a':real^N = a + x <=> x = a' - a`] THEN REWRITE_TAC[UNWIND_THM2]);;
let AFFINE_TRANSLATION_SUBSPACE_EXPLICIT = 
prove (`!t:real^N->bool a. affine t /\ a IN t ==> subspace {x - a | x IN t} /\ t = IMAGE (\x. a + x) {x - a | x IN t}`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[AFFINE_DIFFS_SUBSPACE] THEN ASM_REWRITE_TAC[SIMPLE_IMAGE; GSYM IMAGE_o] THEN REWRITE_TAC[o_DEF; VECTOR_SUB_ADD2; IMAGE_ID]);;
(* ------------------------------------------------------------------------- *) (* If we take a slice out of a set, we can do it perpendicularly, *) (* with the normal vector to the slice parallel to the affine hull. *) (* ------------------------------------------------------------------------- *)
let AFFINE_PARALLEL_SLICE = 
prove (`!s a:real^N b. affine s ==> s INTER {x | a dot x <= b} = {} \/ s SUBSET {x | a dot x <= b} \/ ?a' b'. ~(a' = vec 0) /\ s INTER {x | a' dot x <= b'} = s INTER {x | a dot x <= b} /\ s INTER {x | a' dot x = b'} = s INTER {x | a dot x = b} /\ !w. w IN s ==> (w + a') IN s`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s INTER {x:real^N | a dot x = b} = {}` THENL [MATCH_MP_TAC(TAUT `~(~p /\ ~q) ==> p \/ q \/ r`) THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?u v:real^N. u IN s /\ v IN s /\ a dot u <= b /\ ~(a dot v <= b)` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(a:real^N) dot u < b` ASSUME_TAC THENL [ASM_REWRITE_TAC[REAL_LT_LE] THEN ASM SET_TAC[]; ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[REAL_NOT_LE]) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN REWRITE_TAC[NOT_IN_EMPTY; IN_INTER; NOT_FORALL_THM; IN_ELIM_THM] THEN EXISTS_TAC `u + (b - a dot u) / (a dot v - a dot u) % (v - u):real^N` THEN ASM_SIMP_TAC[IN_AFFINE_ADD_MUL_DIFF] THEN REWRITE_TAC[DOT_RADD; DOT_RMUL; DOT_RSUB] THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_THEN `z:real^N` MP_TAC) THEN REWRITE_TAC[IN_INTER; IN_ELIM_THM] THEN POP_ASSUM MP_TAC THEN GEN_GEOM_ORIGIN_TAC `z:real^N` ["a";
"a'"; "b'"; "w"] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[VECTOR_ADD_RID; FORALL_IN_IMAGE] THEN REWRITE_TAC[DOT_RADD; REAL_ARITH `a + x <= a <=> x <= &0`] THEN SUBGOAL_THEN `subspace(s:real^N->bool) /\ span s = s` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[AFFINE_IMP_SUBSPACE; SPAN_EQ_SELF]; ALL_TAC] THEN MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`] ORTHOGONAL_SUBSPACE_DECOMP_EXISTS) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; orthogonal] THEN MAP_EVERY X_GEN_TAC [`a':real^N`; `a'':real^N`] THEN ASM_CASES_TAC `a':real^N = vec 0` THENL [ASM_REWRITE_TAC[VECTOR_ADD_LID] THEN ASM_CASES_TAC `a'':real^N = a` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; REAL_LE_REFL]; ALL_TAC] THEN STRIP_TAC THEN REPEAT DISJ2_TAC THEN EXISTS_TAC `a':real^N` THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `(a':real^N) dot z` THEN REPEAT(CONJ_TAC THENL [MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> (p x <=> q x)) ==> s INTER {x | p x} = s INTER {x | q x}`) THEN ASM_SIMP_TAC[DOT_LADD] THEN REAL_ARITH_TAC; ALL_TAC]) THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `x + a':real^N` THEN ASM_SIMP_TAC[SUBSPACE_ADD; VECTOR_ADD_ASSOC]]);; (* ------------------------------------------------------------------------- *) (* Affine dimension. *) (* ------------------------------------------------------------------------- *)
let MAXIMAL_AFFINE_INDEPENDENT_SUBSET = 
prove (`!s b:real^N->bool. b SUBSET s /\ ~(affine_dependent b) /\ (!b'. b SUBSET b' /\ b' SUBSET s /\ ~(affine_dependent b') ==> b' = b) ==> s SUBSET (affine hull b)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `(!a. a IN t /\ ~(a IN s) ==> F) ==> t SUBSET s`) THEN X_GEN_TAC `a:real^N` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(a:real^N) INSERT b`) THEN FIRST_ASSUM(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[GSYM CONTRAPOS_THM] HULL_INC)) THEN ASM_SIMP_TAC[AFFINE_INDEPENDENT_INSERT; INSERT_SUBSET] THEN ASM SET_TAC[]);;
let MAXIMAL_AFFINE_INDEPENDENT_SUBSET_AFFINE = 
prove (`!s b:real^N->bool. affine s /\ b SUBSET s /\ ~(affine_dependent b) /\ (!b'. b SUBSET b' /\ b' SUBSET s /\ ~(affine_dependent b') ==> b' = b) ==> affine hull b = s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [ASM_MESON_TAC[HULL_MONO; HULL_P]; ASM_MESON_TAC[MAXIMAL_AFFINE_INDEPENDENT_SUBSET]]);;
let EXTEND_TO_AFFINE_BASIS = 
prove (`!s u:real^N->bool. ~(affine_dependent s) /\ s SUBSET u ==> ?t. ~(affine_dependent t) /\ s SUBSET t /\ t SUBSET u /\ affine hull t = affine hull u`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `\n. ?t:real^N->bool. ~(affine_dependent t) /\ s SUBSET t /\ t SUBSET u /\ CARD t = n` num_MAX) THEN DISCH_THEN(MP_TAC o fst o EQ_IMP_RULE) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[SUBSET_REFL; AFFINE_INDEPENDENT_CARD_LE]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `n:num` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:real^N->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [ASM_MESON_TAC[HULL_MONO; HULL_P]; ALL_TAC] THEN MATCH_MP_TAC HULL_MINIMAL THEN REWRITE_TAC[AFFINE_AFFINE_HULL] THEN MATCH_MP_TAC MAXIMAL_AFFINE_INDEPENDENT_SUBSET THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `c:real^N->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `CARD(c:real^N->bool)`) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `c:real^N->bool`) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_TAC] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_SUBSET_LE THEN ASM_MESON_TAC[AFFINE_INDEPENDENT_IMP_FINITE]);;
let AFFINE_BASIS_EXISTS = 
prove (`!s:real^N->bool. ?b. ~(affine_dependent b) /\ b SUBSET s /\ affine hull b = affine hull s`,
GEN_TAC THEN MP_TAC(ISPECL [`{}:real^N->bool`; `s:real^N->bool`] EXTEND_TO_AFFINE_BASIS) THEN REWRITE_TAC[AFFINE_INDEPENDENT_EMPTY; EMPTY_SUBSET]);;
let aff_dim = new_definition
  `aff_dim s =
        @d:int. ?b. affine hull b = affine hull s /\ ~(affine_dependent b) /\
                    &(CARD b) = d + &1`;;
let AFF_DIM = 
prove (`!s. ?b. affine hull b = affine hull s /\ ~(affine_dependent b) /\ aff_dim s = &(CARD b) - &1`,
GEN_TAC THEN REWRITE_TAC[aff_dim; INT_ARITH `y:int = x + &1 <=> x = y - &1`] THEN CONV_TAC SELECT_CONV THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN MESON_TAC[AFFINE_BASIS_EXISTS]);;
let AFF_DIM_EMPTY = 
prove (`aff_dim {} = -- &1`,
REWRITE_TAC[aff_dim; AFFINE_HULL_EMPTY; AFFINE_HULL_EQ_EMPTY] THEN REWRITE_TAC[UNWIND_THM2; AFFINE_INDEPENDENT_EMPTY; CARD_CLAUSES] THEN REWRITE_TAC[INT_ARITH `&0 = d + &1 <=> d:int = -- &1`; SELECT_REFL]);;
let AFF_DIM_AFFINE_HULL = 
prove (`!s. aff_dim(affine hull s) = aff_dim s`,
REWRITE_TAC[aff_dim; HULL_HULL]);;
let AFF_DIM_TRANSLATION_EQ = 
prove (`!a:real^N s. aff_dim (IMAGE (\x. a + x) s) = aff_dim s`,
REWRITE_TAC[aff_dim] THEN GEOM_TRANSLATE_TAC[] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> ~(a /\ b ==> ~c)`] THEN SIMP_TAC[AFFINE_INDEPENDENT_IMP_FINITE; CARD_IMAGE_INJ; VECTOR_ARITH `a + x:real^N = a + y <=> x = y`]);;
add_translation_invariants [AFF_DIM_TRANSLATION_EQ];;
let AFFINE_INDEPENDENT_CARD_DIM_DIFFS = 
prove (`!s a:real^N. ~affine_dependent s /\ a IN s ==> CARD s = dim {x - a | x IN s} + 1`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN MATCH_MP_TAC(ARITH_RULE `~(s = 0) /\ v = s - 1 ==> s = v + 1`) THEN ASM_SIMP_TAC[CARD_EQ_0] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC DIM_UNIQUE THEN EXISTS_TAC `{b - a:real^N |b| b IN (s DELETE a)}` THEN REPEAT CONJ_TAC THENL [SET_TAC[]; REWRITE_TAC[SIMPLE_IMAGE; SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN ASM_CASES_TAC `x:real^N = a` THENL [ASM_REWRITE_TAC[VECTOR_SUB_REFL; SPAN_0]; MATCH_MP_TAC SPAN_SUPERSET THEN ASM SET_TAC[]]; UNDISCH_TAC `~affine_dependent(s:real^N->bool)` THEN REWRITE_TAC[independent; CONTRAPOS_THM] THEN DISCH_TAC THEN SUBGOAL_THEN `s = (a:real^N) INSERT (s DELETE a)` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC DEPENDENT_IMP_AFFINE_DEPENDENT THEN ASM_REWRITE_TAC[IN_DELETE]; REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN SIMP_TAC[VECTOR_ARITH `x - a:real^N = y - a <=> x = y`] THEN ASM_SIMP_TAC[HAS_SIZE; FINITE_DELETE; CARD_DELETE]]);;
let AFF_DIM_DIM_AFFINE_DIFFS = 
prove (`!a:real^N s. affine s /\ a IN s ==> aff_dim s = &(dim {x - a | x IN s})`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `s:real^N->bool` AFF_DIM) THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` MP_TAC) THEN ASM_CASES_TAC `b:real^N->bool = {}` THENL [ASM_MESON_TAC[AFFINE_HULL_EQ_EMPTY; NOT_IN_EMPTY]; ALL_TAC] THEN STRIP_TAC THEN ASM_REWRITE_TAC[INT_EQ_SUB_RADD; INT_OF_NUM_ADD; INT_OF_NUM_EQ] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `c:real^N`) THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `dim {x - c:real^N | x IN b} + 1` THEN CONJ_TAC THENL [MATCH_MP_TAC AFFINE_INDEPENDENT_CARD_DIM_DIFFS THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `dim {x - c:real^N | x IN affine hull b} + 1` THEN CONJ_TAC THENL [ASM_SIMP_TAC[DIFFS_AFFINE_HULL_SPAN; DIM_SPAN]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN SUBGOAL_THEN `affine hull s:real^N->bool = s` SUBST1_TAC THENL [ASM_MESON_TAC[AFFINE_HULL_EQ]; ALL_TAC] THEN SUBGOAL_THEN `(c:real^N) IN s` ASSUME_TAC THENL [ASM_MESON_TAC[AFFINE_HULL_EQ; HULL_INC]; ALL_TAC] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM] THEN SIMP_TAC[VECTOR_ARITH `x - c:real^N = y - a <=> y = x + &1 % (a - c)`] THEN ASM_MESON_TAC[IN_AFFINE_ADD_MUL_DIFF]);;
let AFF_DIM_DIM_0 = 
prove (`!s:real^N->bool. vec 0 IN affine hull s ==> aff_dim s = &(dim s)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`vec 0:real^N`; `affine hull s:real^N->bool`] AFF_DIM_DIM_AFFINE_DIFFS) THEN ASM_REWRITE_TAC[AFFINE_AFFINE_HULL; VECTOR_SUB_RZERO] THEN REWRITE_TAC[AFF_DIM_AFFINE_HULL; SET_RULE `{x | x IN s} = s`] THEN ASM_SIMP_TAC[AFFINE_HULL_EQ_SPAN; DIM_SPAN]);;
let AFF_DIM_DIM_SUBSPACE = 
prove (`!s:real^N->bool. subspace s ==> aff_dim s = &(dim s)`,
let AFF_DIM_LINEAR_IMAGE_LE = 
prove (`!f:real^M->real^N s. linear f ==> aff_dim(IMAGE f s) <= aff_dim s`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM AFF_DIM_AFFINE_HULL] THEN ASM_SIMP_TAC[AFFINE_HULL_LINEAR_IMAGE] THEN MP_TAC(ISPEC `s:real^M->bool` AFFINE_AFFINE_HULL) THEN SPEC_TAC(`affine hull s:real^M->bool`,`s:real^M->bool`) THEN GEN_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_REWRITE_TAC[IMAGE_CLAUSES; AFF_DIM_EMPTY; INT_LE_REFL] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^M`) THEN SUBGOAL_THEN `dim {x - f(a) |x| x IN IMAGE (f:real^M->real^N) s} <= dim {x - a | x IN s}` MP_TAC THENL [REWRITE_TAC[SET_RULE `{f x | x IN IMAGE g s} = {f (g x) | x IN s}`] THEN ASM_SIMP_TAC[GSYM LINEAR_SUB] THEN REWRITE_TAC[SIMPLE_IMAGE] THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN REWRITE_TAC[IMAGE_o] THEN MATCH_MP_TAC DIM_LINEAR_IMAGE_LE THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC EQ_IMP THEN REWRITE_TAC[GSYM INT_OF_NUM_LE] THEN BINOP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC AFF_DIM_DIM_AFFINE_DIFFS THEN ASM_SIMP_TAC[AFFINE_LINEAR_IMAGE; FUN_IN_IMAGE]]);;
let AFF_DIM_INJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> aff_dim(IMAGE f s) = aff_dim s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM INT_LE_ANTISYM] THEN CONJ_TAC THENL [ASM_MESON_TAC[AFF_DIM_LINEAR_IMAGE_LE]; ALL_TAC] THEN MP_TAC(ISPEC `f:real^M->real^N` LINEAR_INJECTIVE_LEFT_INVERSE) THEN ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^M` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC INT_LE_TRANS THEN EXISTS_TAC `aff_dim(IMAGE (g:real^N->real^M) (IMAGE (f:real^M->real^N) s))` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[GSYM IMAGE_o; o_DEF; IMAGE_ID; INT_LE_REFL]; MATCH_MP_TAC AFF_DIM_LINEAR_IMAGE_LE THEN ASM_REWRITE_TAC[]]);;
add_linear_invariants [AFF_DIM_INJECTIVE_LINEAR_IMAGE];;
let AFF_DIM_AFFINE_INDEPENDENT = 
prove (`!b:real^N->bool. ~(affine_dependent b) ==> aff_dim b = &(CARD b) - &1`,
GEN_TAC THEN ASM_CASES_TAC `b:real^N->bool = {}` THENL [ASM_REWRITE_TAC[CARD_CLAUSES; AFF_DIM_EMPTY] THEN INT_ARITH_TAC; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN DISCH_TAC THEN MP_TAC(ISPECL [`b:real^N->bool`; `a:real^N`] AFFINE_INDEPENDENT_CARD_DIM_DIFFS) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[GSYM INT_OF_NUM_ADD; INT_ARITH `(a + b) - b:int = a`] THEN MP_TAC(ISPECL [`a:real^N`; `affine hull b:real^N->bool`] AFF_DIM_DIM_AFFINE_DIFFS) THEN ASM_SIMP_TAC[AFFINE_AFFINE_HULL; HULL_INC; AFF_DIM_AFFINE_HULL] THEN DISCH_THEN(K ALL_TAC) THEN AP_TERM_TAC THEN ASM_MESON_TAC[DIFFS_AFFINE_HULL_SPAN; DIM_SPAN]);;
let AFF_DIM_UNIQUE = 
prove (`!s b:real^N->bool. affine hull b = affine hull s /\ ~(affine_dependent b) ==> aff_dim s = &(CARD b) - &1`,
let AFF_DIM_SING = 
prove (`!a:real^N. aff_dim {a} = &0`,
GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `&(CARD {a:real^N}) - &1:int` THEN CONJ_TAC THENL [MATCH_MP_TAC AFF_DIM_AFFINE_INDEPENDENT THEN REWRITE_TAC[AFFINE_INDEPENDENT_1]; SIMP_TAC[CARD_CLAUSES; FINITE_RULES; ARITH; NOT_IN_EMPTY; INT_SUB_REFL]]);;
let AFF_DIM_LE_CARD = 
prove (`!s:real^N->bool. FINITE s ==> aff_dim s <= &(CARD s) - &1`,
MATCH_MP_TAC SET_PROVE_CASES THEN SIMP_TAC[AFF_DIM_EMPTY; CARD_CLAUSES] THEN CONV_TAC INT_REDUCE_CONV THEN GEOM_ORIGIN_TAC `a:real^N` THEN SIMP_TAC[AFF_DIM_DIM_0; IN_INSERT; HULL_INC] THEN SIMP_TAC[CARD_IMAGE_INJ; VECTOR_ARITH `a + x:real^N = a + y <=> x = y`] THEN SIMP_TAC[DIM_INSERT_0; INT_LE_SUB_LADD; CARD_CLAUSES; FINITE_INSERT] THEN REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_LE; ADD1; LE_ADD_RCANCEL] THEN SIMP_TAC[DIM_LE_CARD]);;
let AFF_DIM_GE = 
prove (`!s:real^N->bool. -- &1 <= aff_dim s`,
GEN_TAC THEN MP_TAC(ISPEC `s:real^N->bool` AFF_DIM) THEN STRIP_TAC THEN ASM_REWRITE_TAC[INT_LE_SUB_LADD; INT_ADD_LINV; INT_POS]);;
let AFF_DIM_SUBSET = 
prove (`!s t:real^N->bool. s SUBSET t ==> aff_dim s <= aff_dim t`,
MATCH_MP_TAC SET_PROVE_CASES THEN REWRITE_TAC[AFF_DIM_GE; AFF_DIM_EMPTY] THEN GEOM_ORIGIN_TAC `a:real^N` THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `(vec 0:real^N) IN t` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[AFF_DIM_DIM_0; IN_INSERT; HULL_INC; INT_OF_NUM_LE; DIM_SUBSET]);;
let AFF_DIM_LE_DIM = 
prove (`!s:real^N->bool. aff_dim s <= &(dim s)`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM DIM_SPAN] THEN ASM_SIMP_TAC[GSYM AFF_DIM_DIM_SUBSPACE; SUBSPACE_SPAN] THEN MATCH_MP_TAC AFF_DIM_SUBSET THEN REWRITE_TAC[SPAN_INC]);;
let AFF_DIM_CONVEX_HULL = 
prove (`!s:real^N->bool. aff_dim(convex hull s) = aff_dim s`,
GEN_TAC THEN MATCH_MP_TAC(INT_ARITH `!c:int. c = a /\ a <= b /\ b <= c ==> b = a`) THEN EXISTS_TAC `aff_dim(affine hull s:real^N->bool)` THEN SIMP_TAC[AFF_DIM_AFFINE_HULL; AFF_DIM_SUBSET; HULL_SUBSET; CONVEX_HULL_SUBSET_AFFINE_HULL]);;
let AFF_DIM_CLOSURE = 
prove (`!s:real^N->bool. aff_dim(closure s) = aff_dim s`,
GEN_TAC THEN MATCH_MP_TAC(INT_ARITH `!h. h = s /\ s <= c /\ c <= h ==> c:int = s`) THEN EXISTS_TAC `aff_dim(affine hull s:real^N->bool)` THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[AFF_DIM_AFFINE_HULL]; MATCH_MP_TAC AFF_DIM_SUBSET THEN REWRITE_TAC[CLOSURE_SUBSET]; MATCH_MP_TAC AFF_DIM_SUBSET THEN MATCH_MP_TAC CLOSURE_MINIMAL THEN REWRITE_TAC[CLOSED_AFFINE_HULL; HULL_SUBSET]]);;
let AFF_DIM_2 = 
prove (`!a b:real^N. aff_dim {a,b} = if a = b then &0 else &1`,
REPEAT GEN_TAC THEN COND_CASES_TAC THENL [ASM_REWRITE_TAC[INSERT_AC; AFF_DIM_SING]; ALL_TAC] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `&(CARD {a:real^N,b}) - &1:int` THEN ASM_SIMP_TAC[AFF_DIM_AFFINE_INDEPENDENT; AFFINE_INDEPENDENT_2] THEN ASM_SIMP_TAC[CARD_CLAUSES; FINITE_RULES; IN_INSERT; NOT_IN_EMPTY] THEN CONV_TAC NUM_REDUCE_CONV THEN INT_ARITH_TAC);;
let AFF_DIM_EQ_MINUS1 = 
prove (`!s:real^N->bool. aff_dim s = -- &1 <=> s = {}`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[AFF_DIM_EMPTY] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN MATCH_MP_TAC(INT_ARITH `&0:int <= n ==> ~(n = -- &1)`) THEN MATCH_MP_TAC INT_LE_TRANS THEN EXISTS_TAC `aff_dim {a:real^N}` THEN ASM_SIMP_TAC[AFF_DIM_SUBSET; SING_SUBSET] THEN REWRITE_TAC[AFF_DIM_SING; INT_LE_REFL]);;
let AFF_DIM_POS_LE = 
prove (`!s:real^N->bool. &0 <= aff_dim s <=> ~(s = {})`,
GEN_TAC THEN REWRITE_TAC[GSYM AFF_DIM_EQ_MINUS1] THEN MP_TAC(ISPEC `s:real^N->bool` AFF_DIM_GE) THEN INT_ARITH_TAC);;
let AFF_DIM_EQ_0 = 
prove (`!s:real^N->bool. aff_dim s = &0 <=> ?a. s = {a}`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[AFF_DIM_SING; LEFT_IMP_EXISTS_THM] THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[AFF_DIM_EMPTY] THEN CONV_TAC INT_REDUCE_CONV THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN MATCH_MP_TAC(SET_RULE `(!b. ~(b = a) /\ {a,b} SUBSET s ==> F) ==> a IN s ==> s = {a}`) THEN X_GEN_TAC `b:real^N` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP AFF_DIM_SUBSET) THEN MP_TAC(ISPECL [`a:real^N`; `b:real^N`] AFF_DIM_2) THEN ASM_SIMP_TAC[] THEN INT_ARITH_TAC);;
let CONNECTED_IMP_PERFECT_AFF_DIM = 
prove (`!s x:real^N. connected s /\ ~(aff_dim s = &0) /\ x IN s ==> x limit_point_of s`,
let AFF_DIM_UNIV = 
prove (`aff_dim(:real^N) = &(dimindex(:N))`,
let AFF_DIM_EQ_AFFINE_HULL = 
prove (`!s t:real^N->bool. s SUBSET t /\ aff_dim t <= aff_dim s ==> affine hull s = affine hull t`,
MATCH_MP_TAC SET_PROVE_CASES THEN SIMP_TAC[AFF_DIM_EMPTY; AFF_DIM_EQ_MINUS1; AFF_DIM_GE; INT_ARITH `a:int <= x ==> (x <= a <=> x = a)`] THEN X_GEN_TAC `a:real^N` THEN GEOM_ORIGIN_TAC `a:real^N` THEN SIMP_TAC[INSERT_SUBSET; IMP_CONJ; AFF_DIM_DIM_0; IN_INSERT; DIM_EQ_SPAN; HULL_INC; AFFINE_HULL_EQ_SPAN; INT_OF_NUM_LE]);;
let AFF_DIM_SUMS_INTER = 
prove (`!s t:real^N->bool. affine s /\ affine t /\ ~(s INTER t = {}) ==> aff_dim {x + y | x IN s /\ y IN t} = (aff_dim s + aff_dim t) - aff_dim(s INTER t)`,
REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> c ==> a /\ b ==> d`] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN GEN_REWRITE_TAC BINDER_CONV [SWAP_FORALL_THM] THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN X_GEN_TAC `a:real^N` THEN GEOM_ORIGIN_TAC `a:real^N` THEN REWRITE_TAC[VECTOR_ARITH `(a + x) + (a + y):real^N = &2 % a + (x + y)`] THEN ONCE_REWRITE_TAC[SET_RULE `{a + x + y:real^N | x IN s /\ y IN t} = IMAGE (\x. a + x) {x + y | x IN s /\ y IN t}`] THEN REWRITE_TAC[AFF_DIM_TRANSLATION_EQ; IN_INTER] THEN MAP_EVERY X_GEN_TAC [`s:real^N->bool`; `t:real^N->bool`] THEN STRIP_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `(vec 0:real^N) IN {x + y | x IN s /\ y IN t}` ASSUME_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN REPEAT(EXISTS_TAC `vec 0:real^N`) THEN ASM_REWRITE_TAC[VECTOR_ADD_LID]; ALL_TAC] THEN ASM_SIMP_TAC[AFF_DIM_DIM_0; HULL_INC; IN_INTER] THEN REWRITE_TAC[INT_EQ_SUB_LADD; INT_OF_NUM_ADD; INT_OF_NUM_EQ] THEN MATCH_MP_TAC DIM_SUMS_INTER THEN ASM_SIMP_TAC[AFFINE_IMP_SUBSPACE]);;
let AFF_DIM_PSUBSET = 
prove (`!s t. (affine hull s) PSUBSET (affine hull t) ==> aff_dim s < aff_dim t`,
ONCE_REWRITE_TAC[GSYM AFF_DIM_AFFINE_HULL] THEN SIMP_TAC[PSUBSET; AFF_DIM_SUBSET; INT_LT_LE] THEN MESON_TAC[INT_EQ_IMP_LE; AFF_DIM_EQ_AFFINE_HULL; HULL_HULL]);;
let AFF_DIM_EQ_FULL = 
prove (`!s. aff_dim s = &(dimindex(:N)) <=> affine hull s = (:real^N)`,
GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM AFFINE_HULL_UNIV] THEN MATCH_MP_TAC AFF_DIM_EQ_AFFINE_HULL THEN ASM_REWRITE_TAC[SUBSET_UNIV; AFF_DIM_UNIV; INT_LE_REFL]; ONCE_REWRITE_TAC[GSYM AFF_DIM_AFFINE_HULL] THEN SIMP_TAC[AFF_DIM_UNIV]]);;
let AFF_DIM_LE_UNIV = 
prove (`!s:real^N->bool. aff_dim s <= &(dimindex(:N))`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM AFF_DIM_UNIV] THEN MATCH_MP_TAC AFF_DIM_SUBSET THEN REWRITE_TAC[SUBSET_UNIV]);;
let AFFINE_INDEPENDENT_IFF_CARD = 
prove (`!s:real^N->bool. ~affine_dependent s <=> FINITE s /\ aff_dim s = &(CARD s) - &1`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[AFF_DIM_AFFINE_INDEPENDENT; AFFINE_INDEPENDENT_IMP_FINITE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN DISCH_TAC THEN X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC (ISPEC `s:real^N->bool` AFFINE_BASIS_EXISTS) THEN MATCH_MP_TAC(ARITH_RULE `!b:int. a <= b - &1 /\ b < s ==> ~(a = s - &1)`) THEN EXISTS_TAC `&(CARD(b:real^N->bool)):int` THEN CONJ_TAC THENL [ASM_MESON_TAC[AFF_DIM_LE_CARD; FINITE_SUBSET; AFF_DIM_AFFINE_HULL]; REWRITE_TAC[INT_OF_NUM_LT] THEN MATCH_MP_TAC CARD_PSUBSET THEN ASM_REWRITE_TAC[PSUBSET] THEN ASM_MESON_TAC[]]);;
let AFFINE_HULL_CONVEX_INTER_NONEMPTY_INTERIOR = 
prove (`!s t:real^N->bool. convex s /\ ~(s INTER interior t = {}) ==> affine hull (s INTER t) = affine hull s`,
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`s:real^N->bool`; `t:real^N->bool`; `a:real^N`] THEN GEOM_ORIGIN_TAC `a:real^N` THEN REWRITE_TAC[IN_INTER] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[HULL_MONO; INTER_SUBSET] THEN SIMP_TAC[SUBSET_HULL; AFFINE_AFFINE_HULL] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (SIMP_RULE[SUBSET] INTERIOR_SUBSET)) THEN ASM_SIMP_TAC[AFFINE_HULL_EQ_SPAN; HULL_INC; IN_INTER] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERIOR_CBALL]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; SUBSET; IN_CBALL_0] THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN REWRITE_TAC[EXTENSION; IN_UNIV] THEN X_GEN_TAC `x:real^N` THEN ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_SIMP_TAC[SPAN_SUPERSET; IN_INTER] THEN DISCH_TAC THEN ABBREV_TAC `k = min (&1 / &2) (e / norm(x:real^N))` THEN SUBGOAL_THEN `&0 < k /\ k < &1` STRIP_ASSUME_TAC THENL [EXPAND_TAC "k" THEN ASM_SIMP_TAC[REAL_LT_MIN; REAL_LT_DIV; NORM_POS_LT; REAL_MIN_LT] THEN CONV_TAC REAL_RAT_REDUCE_CONV; ALL_TAC] THEN SUBGOAL_THEN `x:real^N = inv k % k % x` SUBST1_TAC THENL [ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID; REAL_LT_IMP_NZ]; ALL_TAC] THEN MATCH_MP_TAC SPAN_MUL THEN MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_INTER] THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[VECTOR_ARITH `k % x:real^N = (&1 - k) % vec 0 + k % x`] THEN MATCH_MP_TAC IN_CONVEX_SET THEN ASM_SIMP_TAC[REAL_LT_IMP_LE]; FIRST_X_ASSUM MATCH_MP_TAC THEN EXPAND_TAC "k" THEN ASM_SIMP_TAC[NORM_MUL; GSYM REAL_LE_RDIV_EQ; NORM_POS_LT] THEN ASM_REAL_ARITH_TAC]);;
let AFFINE_HULL_CONVEX_INTER_OPEN = 
prove (`!s t:real^N->bool. convex s /\ open t /\ ~(s INTER t = {}) ==> affine hull (s INTER t) = affine hull s`,
let AFFINE_HULL_AFFINE_INTER_NONEMPTY_INTERIOR = 
prove (`!s t:real^N->bool. affine s /\ ~(s INTER interior t = {}) ==> affine hull (s INTER t) = s`,
let AFFINE_HULL_AFFINE_INTER_OPEN = 
prove (`!s t:real^N->bool. affine s /\ open t /\ ~(s INTER t = {}) ==> affine hull (s INTER t) = s`,
let CONVEX_AND_AFFINE_INTER_OPEN = 
prove (`!s t u:real^N->bool. convex s /\ affine t /\ open u /\ s INTER u = t INTER u /\ ~(s INTER u = {}) ==> affine hull s = t`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[] `!u v. x = u /\ u = v /\ v = y ==> x = y`) THEN MAP_EVERY EXISTS_TAC [`affine hull (s INTER u:real^N->bool)`; `affine hull t:real^N->bool`] THEN REPEAT CONJ_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC AFFINE_HULL_CONVEX_INTER_OPEN THEN ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[] THEN MATCH_MP_TAC AFFINE_HULL_CONVEX_INTER_OPEN THEN ASM_SIMP_TAC[AFFINE_IMP_CONVEX] THEN ASM SET_TAC[]; ASM_REWRITE_TAC[AFFINE_HULL_EQ]]);;
let AFFINE_HULL_CONVEX_INTER_OPEN_IN = 
prove (`!s t:real^N->bool. convex s /\ open_in (subtopology euclidean (affine hull s)) t /\ ~(s INTER t = {}) ==> affine hull (s INTER t) = affine hull s`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_OPEN]) THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN ASM_SIMP_TAC[SET_RULE `s SUBSET t ==> s INTER t INTER u = s INTER u`; HULL_SUBSET] THEN MATCH_MP_TAC AFFINE_HULL_CONVEX_INTER_OPEN THEN ASM SET_TAC[]);;
let AFFINE_HULL_AFFINE_INTER_OPEN_IN = 
prove (`!s t:real^N->bool. affine s /\ open_in (subtopology euclidean s) t /\ ~(s INTER t = {}) ==> affine hull (s INTER t) = s`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`affine hull s:real^N->bool`; `t:real^N->bool`] AFFINE_HULL_CONVEX_INTER_OPEN_IN) THEN ASM_SIMP_TAC[HULL_HULL; AFFINE_IMP_CONVEX; AFFINE_AFFINE_HULL; HULL_P]);;
let AFFINE_HULL_CONVEX_INTER_OPEN_IN = 
prove (`!s t:real^N->bool. convex s /\ open_in (subtopology euclidean (affine hull s)) t /\ ~(s INTER t = {}) ==> affine hull (s INTER t) = affine hull s`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_OPEN]) THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN ASM_SIMP_TAC[SET_RULE `s SUBSET t ==> s INTER t INTER u = s INTER u`; HULL_SUBSET] THEN MATCH_MP_TAC AFFINE_HULL_CONVEX_INTER_OPEN THEN ASM SET_TAC[]);;
let AFFINE_HULL_AFFINE_INTER_OPEN_IN = 
prove (`!s t:real^N->bool. affine s /\ open_in (subtopology euclidean s) t /\ ~(s INTER t = {}) ==> affine hull (s INTER t) = s`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`affine hull s:real^N->bool`; `t:real^N->bool`] AFFINE_HULL_CONVEX_INTER_OPEN_IN) THEN ASM_SIMP_TAC[HULL_HULL; AFFINE_IMP_CONVEX; AFFINE_AFFINE_HULL; HULL_P]);;
let AFFINE_HULL_OPEN_IN = 
prove (`!s t:real^N->bool. open_in (subtopology euclidean (affine hull t)) s /\ ~(s = {}) ==> affine hull s = affine hull t`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_OPEN]) THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC AFFINE_HULL_AFFINE_INTER_OPEN THEN REWRITE_TAC[AFFINE_AFFINE_HULL] THEN ASM SET_TAC[]);;
let AFFINE_HULL_OPEN = 
prove (`!s. open s /\ ~(s = {}) ==> affine hull s = (:real^N)`,
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN SUBST1_TAC(SET_RULE `s = (:real^N) INTER s`) THEN ASM_SIMP_TAC[AFFINE_HULL_CONVEX_INTER_OPEN; CONVEX_UNIV] THEN REWRITE_TAC[AFFINE_HULL_UNIV]);;
let AFFINE_HULL_NONEMPTY_INTERIOR = 
prove (`!s. ~(interior s = {}) ==> affine hull s = (:real^N)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `!s. s SUBSET t /\ s = UNIV ==> t = UNIV`) THEN EXISTS_TAC `affine hull (interior s:real^N->bool)` THEN SIMP_TAC[HULL_MONO; INTERIOR_SUBSET] THEN ASM_SIMP_TAC[AFFINE_HULL_OPEN; OPEN_INTERIOR]);;
let AFF_DIM_OPEN = 
prove (`!s:real^N->bool. open s /\ ~(s = {}) ==> aff_dim s = &(dimindex(:N))`,
let AFF_DIM_NONEMPTY_INTERIOR = 
prove (`!s:real^N->bool. ~(interior s = {}) ==> aff_dim s = &(dimindex(:N))`,
let SPAN_OPEN = 
prove (`!s. open s /\ ~(s = {}) ==> span s = (:real^N)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `!s. s SUBSET t /\ s = UNIV ==> t = UNIV`) THEN EXISTS_TAC `affine hull s:real^N->bool` THEN ASM_SIMP_TAC[AFFINE_HULL_OPEN; AFFINE_HULL_SUBSET_SPAN]);;
let DIM_OPEN = 
prove (`!s:real^N->bool. open s /\ ~(s = {}) ==> dim s = dimindex(:N)`,
SIMP_TAC[DIM_EQ_FULL; SPAN_OPEN]);;
let AFF_DIM_INSERT = 
prove (`!a:real^N s. aff_dim (a INSERT s) = if a IN affine hull s then aff_dim s else aff_dim s + &1`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN MATCH_MP_TAC SET_PROVE_CASES THEN SIMP_TAC[AFF_DIM_EMPTY; AFF_DIM_SING; AFFINE_HULL_EMPTY; NOT_IN_EMPTY] THEN CONV_TAC INT_REDUCE_CONV THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN MAP_EVERY X_GEN_TAC [`b:real^N`; `s:real^N->bool`; `a:real^N`] THEN GEOM_ORIGIN_TAC `b:real^N` THEN SIMP_TAC[AFFINE_HULL_EQ_SPAN; AFF_DIM_DIM_0; HULL_INC; IN_INSERT] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `s:real^N->bool`] THEN DISCH_THEN(K ALL_TAC) THEN SPEC_TAC(`(vec 0:real^N) INSERT s`,`s:real^N->bool`) THEN SIMP_TAC[DIM_INSERT; INT_OF_NUM_ADD] THEN MESON_TAC[]);;
let AFFINE_BOUNDED_EQ_TRIVIAL = 
prove (`!s:real^N->bool. affine s ==> (bounded s <=> s = {} \/ ?a. s = {a})`,
GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[BOUNDED_EMPTY] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N` MP_TAC) THEN GEOM_ORIGIN_TAC `b:real^N` THEN SIMP_TAC[AFFINE_EQ_SUBSPACE] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[SUBSPACE_BOUNDED_EQ_TRIVIAL] THEN FIRST_ASSUM(MP_TAC o MATCH_MP SUBSPACE_0) THEN SET_TAC[]);;
let AFFINE_BOUNDED_EQ_LOWDIM = 
prove (`!s:real^N->bool. affine s ==> (bounded s <=> aff_dim s <= &0)`,
SIMP_TAC[AFF_DIM_GE; INT_ARITH `--(&1):int <= x ==> (x <= &0 <=> x = --(&1) \/ x = &0)`] THEN SIMP_TAC[AFF_DIM_EQ_0; AFF_DIM_EQ_MINUS1; AFFINE_BOUNDED_EQ_TRIVIAL]);;
let COLLINEAR_AFF_DIM = 
prove (`!s:real^N->bool. collinear s <=> aff_dim s <= &1`,
GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[COLLINEAR_AFFINE_HULL; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN STRIP_TAC THEN MATCH_MP_TAC INT_LE_TRANS THEN EXISTS_TAC `aff_dim{u:real^N,v}` THEN CONJ_TAC THENL [ASM_MESON_TAC[AFF_DIM_SUBSET; AFF_DIM_AFFINE_HULL]; MATCH_MP_TAC INT_LE_TRANS THEN EXISTS_TAC `&(CARD{u:real^N,v}) - &1:int` THEN SIMP_TAC[AFF_DIM_LE_CARD; FINITE_INSERT; FINITE_EMPTY] THEN REWRITE_TAC[INT_ARITH `x - &1:int <= &1 <=> x <= &2`; INT_OF_NUM_LE] THEN SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ARITH_TAC]; ONCE_REWRITE_TAC[GSYM COLLINEAR_AFFINE_HULL_COLLINEAR; GSYM AFF_DIM_AFFINE_HULL] THEN MP_TAC(ISPEC `s:real^N->bool` AFFINE_BASIS_EXISTS) THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` (STRIP_ASSUME_TAC o GSYM)) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [AFFINE_INDEPENDENT_IFF_CARD]) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[COLLINEAR_AFFINE_HULL_COLLINEAR; AFF_DIM_AFFINE_HULL] THEN REWRITE_TAC[INT_ARITH `x - &1:int <= &1 <=> x <= &2`; INT_OF_NUM_LE] THEN ASM_SIMP_TAC[COLLINEAR_SMALL]]);;
let HOMEOMORPHIC_AFFINE_SETS = 
prove (`!s:real^M->bool t:real^N->bool. affine s /\ affine t /\ aff_dim s = aff_dim t ==> s homeomorphic t`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_SIMP_TAC[AFF_DIM_EMPTY; AFF_DIM_EQ_MINUS1; HOMEOMORPHIC_EMPTY] THEN POP_ASSUM MP_TAC THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_SIMP_TAC[AFF_DIM_EMPTY; AFF_DIM_EQ_MINUS1; HOMEOMORPHIC_EMPTY] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC [GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM; RIGHT_IMP_FORALL_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^M`; `b:real^N`] THEN GEOM_ORIGIN_TAC `a:real^M` THEN GEOM_ORIGIN_TAC `b:real^N` THEN SIMP_TAC[AFFINE_EQ_SUBSPACE; AFF_DIM_DIM_0; HULL_INC; INT_OF_NUM_EQ] THEN MESON_TAC[HOMEOMORPHIC_SUBSPACES]);;
let AFF_DIM_OPEN_IN = 
prove (`!s t:real^N->bool. ~(s = {}) /\ open_in (subtopology euclidean t) s /\ affine t ==> aff_dim s = aff_dim t`,
REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ; GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:real^N` THEN GEOM_ORIGIN_TAC `a:real^N` THEN REPEAT GEN_TAC THEN STRIP_TAC THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN SUBGOAL_THEN `(vec 0:real^N) IN t` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[AFF_DIM_DIM_0; HULL_INC; AFFINE_EQ_SUBSPACE] THEN DISCH_TAC THEN AP_TERM_TAC THEN ASM_SIMP_TAC[GSYM LE_ANTISYM; DIM_SUBSET] THEN SUBGOAL_THEN `?e. &0 < e /\ cball(vec 0:real^N,e) INTER t SUBSET s` MP_TAC THENL [FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [OPEN_IN_OPEN]) THEN FIRST_X_ASSUM(MP_TAC o SPEC `vec 0:real^N` o GEN_REWRITE_RULE I [OPEN_CONTAINS_CBALL]) THEN ASM SET_TAC[]; REWRITE_TAC[SUBSET; IN_INTER; IN_CBALL_0] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC)] THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORTHONORMAL_BASIS_SUBSPACE) THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`s:real^N->bool`; `IMAGE (\x:real^N. e % x) b`] INDEPENDENT_CARD_LE_DIM) THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_SIMP_TAC[CARD_IMAGE_INJ; VECTOR_MUL_LCANCEL; REAL_LT_IMP_NZ] THEN ANTS_TAC THENL [REWRITE_TAC[SUBSET]; MESON_TAC[]] THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[NORM_MUL] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC SUBSPACE_MUL] THEN ASM SET_TAC[]; MATCH_MP_TAC INDEPENDENT_INJECTIVE_IMAGE THEN ASM_SIMP_TAC[VECTOR_MUL_LCANCEL; REAL_LT_IMP_NZ; LINEAR_SCALING]]);;
let DIM_OPEN_IN = 
prove (`!s t:real^N->bool. ~(s = {}) /\ open_in (subtopology euclidean t) s /\ subspace t ==> dim s = dim t`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN ASM_SIMP_TAC[GSYM LE_ANTISYM; DIM_SUBSET] THEN REWRITE_TAC[GSYM INT_OF_NUM_LE] THEN MATCH_MP_TAC INT_LE_TRANS THEN EXISTS_TAC `aff_dim(s:real^N->bool)` THEN REWRITE_TAC[AFF_DIM_LE_DIM] THEN ASM_SIMP_TAC[GSYM AFF_DIM_DIM_SUBSPACE] THEN MATCH_MP_TAC INT_EQ_IMP_LE THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC AFF_DIM_OPEN_IN THEN ASM_SIMP_TAC[SUBSPACE_IMP_AFFINE]);;
let AFF_DIM_CONVEX_INTER_NONEMPTY_INTERIOR = 
prove (`!s t:real^N->bool. convex s /\ ~(s INTER interior t = {}) ==> aff_dim(s INTER t) = aff_dim s`,
ONCE_REWRITE_TAC[GSYM AFF_DIM_AFFINE_HULL] THEN ASM_SIMP_TAC[AFFINE_HULL_CONVEX_INTER_NONEMPTY_INTERIOR] THEN REWRITE_TAC[AFF_DIM_AFFINE_HULL]);;
let AFF_DIM_CONVEX_INTER_OPEN = 
prove (`!s t:real^N->bool. convex s /\ open t /\ ~(s INTER t = {}) ==> aff_dim(s INTER t) = aff_dim s`,
ONCE_REWRITE_TAC[GSYM AFF_DIM_AFFINE_HULL] THEN ASM_SIMP_TAC[AFFINE_HULL_CONVEX_INTER_OPEN] THEN REWRITE_TAC[AFF_DIM_AFFINE_HULL]);;
let AFFINE_HULL_HALFSPACE_LT = 
prove (`!a b. affine hull {x | a dot x < b} = if a = vec 0 /\ b <= &0 then {} else (:real^N)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[AFFINE_HULL_EQ_EMPTY; HALFSPACE_EQ_EMPTY_LT; AFFINE_HULL_OPEN; OPEN_HALFSPACE_LT]);;
let AFFINE_HULL_HALFSPACE_LE = 
prove (`!a b. affine hull {x | a dot x <= b} = if a = vec 0 /\ b < &0 then {} else (:real^N)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:real^N = vec 0` THENL [ASM_SIMP_TAC[DOT_LZERO; SET_RULE `{x | p} = if p then UNIV else {}`] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[AFFINE_HULL_EMPTY; AFFINE_HULL_UNIV] THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[GSYM CLOSURE_HALFSPACE_LT; AFFINE_HULL_CLOSURE] THEN ASM_REWRITE_TAC[AFFINE_HULL_HALFSPACE_LT]]);;
let AFFINE_HULL_HALFSPACE_GT = 
prove (`!a b. affine hull {x | a dot x > b} = if a = vec 0 /\ b >= &0 then {} else (:real^N)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[AFFINE_HULL_EQ_EMPTY; HALFSPACE_EQ_EMPTY_GT; AFFINE_HULL_OPEN; OPEN_HALFSPACE_GT]);;
let AFFINE_HULL_HALFSPACE_GE = 
prove (`!a b. affine hull {x | a dot x >= b} = if a = vec 0 /\ b > &0 then {} else (:real^N)`,
REPEAT GEN_TAC THEN MP_TAC(ISPECL [`--a:real^N`; `--b:real`] AFFINE_HULL_HALFSPACE_LE) THEN SIMP_TAC[real_ge; DOT_LNEG; REAL_LE_NEG2; VECTOR_NEG_EQ_0] THEN REWRITE_TAC[REAL_ARITH `--b < &0 <=> b > &0`]);;
let AFF_DIM_HALFSPACE_LT = 
prove (`!a:real^N b. aff_dim {x | a dot x < b} = if a = vec 0 /\ b <= &0 then --(&1) else &(dimindex(:N))`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM AFF_DIM_AFFINE_HULL] THEN SIMP_TAC[AFFINE_HULL_HALFSPACE_LT] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[AFF_DIM_EMPTY; AFF_DIM_UNIV]);;
let AFF_DIM_HALFSPACE_LE = 
prove (`!a:real^N b. aff_dim {x | a dot x <= b} = if a = vec 0 /\ b < &0 then --(&1) else &(dimindex(:N))`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM AFF_DIM_AFFINE_HULL] THEN SIMP_TAC[AFFINE_HULL_HALFSPACE_LE] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[AFF_DIM_EMPTY; AFF_DIM_UNIV]);;
let AFF_DIM_HALFSPACE_GT = 
prove (`!a:real^N b. aff_dim {x | a dot x > b} = if a = vec 0 /\ b >= &0 then --(&1) else &(dimindex(:N))`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM AFF_DIM_AFFINE_HULL] THEN SIMP_TAC[AFFINE_HULL_HALFSPACE_GT] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[AFF_DIM_EMPTY; AFF_DIM_UNIV]);;
let AFF_DIM_HALFSPACE_GE = 
prove (`!a:real^N b. aff_dim {x | a dot x >= b} = if a = vec 0 /\ b > &0 then --(&1) else &(dimindex(:N))`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM AFF_DIM_AFFINE_HULL] THEN SIMP_TAC[AFFINE_HULL_HALFSPACE_GE] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[AFF_DIM_EMPTY; AFF_DIM_UNIV]);;
let CHOOSE_AFFINE_SUBSET = 
prove (`!s:real^N->bool d. affine s /\ --(&1) <= d /\ d <= aff_dim s ==> ?t. affine t /\ t SUBSET s /\ aff_dim t = d`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `d:int = --(&1)` THENL [STRIP_TAC THEN EXISTS_TAC `{}:real^N->bool` THEN ASM_REWRITE_TAC[EMPTY_SUBSET; AFFINE_EMPTY; AFF_DIM_EMPTY]; ASM_SIMP_TAC[INT_ARITH `~(d:int = --(&1)) ==> (--(&1) <= d <=> &0 <= d)`] THEN POP_ASSUM(K ALL_TAC)] THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_REWRITE_TAC[AFF_DIM_EMPTY] THEN INT_ARITH_TAC; POP_ASSUM MP_TAC] THEN GEN_REWRITE_TAC LAND_CONV [GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` MP_TAC) THEN GEOM_ORIGIN_TAC `a:real^N` THEN SIMP_TAC[IMP_CONJ; AFF_DIM_DIM_SUBSPACE; AFFINE_EQ_SUBSPACE] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN DISCH_TAC THEN REWRITE_TAC[GSYM INT_OF_NUM_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC) THEN REWRITE_TAC[INT_OF_NUM_LE] THEN DISCH_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `n:num`] CHOOSE_SUBSPACE_OF_SUBSPACE) THEN ASM_SIMP_TAC[SPAN_OF_SUBSPACE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:real^N->bool` THEN ASM_SIMP_TAC[AFF_DIM_DIM_SUBSPACE; SUBSPACE_IMP_AFFINE]);;
(* ------------------------------------------------------------------------- *) (* Existence of a rigid transform between congruent sets. *) (* ------------------------------------------------------------------------- *)
let RIGID_TRANSFORMATION_BETWEEN_CONGRUENT_SETS = 
prove (`!x:A->real^N y:A->real^N s. (!i j. i IN s /\ j IN s ==> dist(x i,x j) = dist(y i,y j)) ==> ?a f. orthogonal_transformation f /\ !i. i IN s ==> y i = a + f(x i)`,
let lemma = prove
   (`!x:(real^N)^M y:(real^N)^M.
          (!i j. 1 <= i /\ i <= dimindex(:M) /\
                 1 <= j /\ j <= dimindex(:M)
                 ==> dist(x$i,x$j) = dist(y$i,y$j))
          ==> ?a f. orthogonal_transformation f /\
                    !i. 1 <= i /\ i <= dimindex(:M)
                        ==> y$i = a + f(x$i)`,
    REPEAT STRIP_TAC THEN
    ABBREV_TAC `(X:real^M^N) = lambda i j. (x:real^N^M)$j$i - x$1$i` THEN
    ABBREV_TAC `(Y:real^M^N) = lambda i j. (y:real^N^M)$j$i - y$1$i` THEN
    SUBGOAL_THEN `transp(X:real^M^N) ** X = transp(Y:real^M^N) ** Y`
    ASSUME_TAC THENL
     [REWRITE_TAC[MATRIX_MUL_LTRANSP_DOT_COLUMN] THEN
      MAP_EVERY EXPAND_TAC ["X";
"Y"] THEN SIMP_TAC[CART_EQ; column; LAMBDA_BETA; dot] THEN REWRITE_TAC[GSYM VECTOR_SUB_COMPONENT; GSYM dot] THEN REWRITE_TAC[DOT_NORM_SUB; VECTOR_ARITH `(x - a) - (y - a):real^N = x - y`] THEN ASM_SIMP_TAC[GSYM dist; DIMINDEX_GE_1; LE_REFL]; ALL_TAC] THEN SUBGOAL_THEN `?M:real^N^N. orthogonal_matrix M /\ (Y:real^M^N) = M ** (X:real^M^N)` (CHOOSE_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THENL [ALL_TAC; GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [CART_EQ] THEN MAP_EVERY EXPAND_TAC ["X"; "Y"] THEN SIMP_TAC[LAMBDA_BETA; matrix_mul] THEN REWRITE_TAC[REAL_ARITH `x - y:real = z <=> x = y + z`] THEN STRIP_TAC THEN EXISTS_TAC `(y:real^N^M)$1 - (M:real^N^N) ** (x:real^N^M)$1` THEN EXISTS_TAC `\x:real^N. (M:real^N^N) ** x` THEN ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_MATRIX; MATRIX_OF_MATRIX_VECTOR_MUL; MATRIX_VECTOR_MUL_LINEAR] THEN SIMP_TAC[CART_EQ; matrix_vector_mul; LAMBDA_BETA; VECTOR_ADD_COMPONENT] THEN ASM_SIMP_TAC[REAL_SUB_LDISTRIB; SUM_SUB_NUMSEG] THEN REWRITE_TAC[VECTOR_SUB_COMPONENT; REAL_ARITH `a + y - b:real = a - z + y <=> z = b`] THEN SIMP_TAC[LAMBDA_BETA]] THEN MP_TAC(ISPEC `transp(X:real^M^N) ** X` SYMMETRIC_MATRIX_DIAGONALIZABLE_EXPLICIT) THEN REWRITE_TAC[MATRIX_TRANSP_MUL; TRANSP_TRANSP; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`P:real^M^M`; `d:num->real`] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(fun th -> MP_TAC th THEN ASM_REWRITE_TAC[] THEN MP_TAC th) THEN REWRITE_TAC[MATRIX_MUL_ASSOC; GSYM MATRIX_TRANSP_MUL] THEN REWRITE_TAC[GSYM MATRIX_MUL_ASSOC; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[IMP_IMP] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [CART_EQ] THEN SIMP_TAC[MATRIX_MUL_LTRANSP_DOT_COLUMN; LAMBDA_BETA] THEN STRIP_TAC THEN MP_TAC(ISPECL [`\i. column i ((X:real^M^N) ** (P:real^M^M))`; `\i. column i ((Y:real^M^N) ** (P:real^M^M))`; `1..dimindex(:M)`] ORTHOGONAL_TRANSFORMATION_BETWEEN_ORTHOGONAL_SETS) THEN REWRITE_TAC[IN_NUMSEG] THEN ANTS_TAC THENL [ASM_SIMP_TAC[pairwise; IN_NUMSEG; NORM_EQ; orthogonal]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `f:real^N->real^N` (STRIP_ASSUME_TAC o GSYM)) THEN EXISTS_TAC `matrix(f:real^N->real^N)` THEN CONJ_TAC THENL [ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_MATRIX]; ALL_TAC] THEN SUBGOAL_THEN `!M:real^M^N. M = M ** (P:real^M^M) ** transp P` (fun th -> GEN_REWRITE_TAC BINOP_CONV [th]) THENL [ASM_MESON_TAC[orthogonal_matrix; MATRIX_MUL_RID]; REWRITE_TAC[MATRIX_MUL_ASSOC] THEN AP_THM_TAC THEN AP_TERM_TAC] THEN REWRITE_TAC[GSYM MATRIX_MUL_ASSOC] THEN ASM_SIMP_TAC[MATRIX_EQUAL_COLUMNS] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [orthogonal_transformation]) THEN DISCH_THEN(ASSUME_TAC o GSYM o MATCH_MP MATRIX_WORKS o CONJUNCT1) THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[CART_EQ; matrix_vector_mul; column; LAMBDA_BETA] THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [matrix_mul] THEN ASM_SIMP_TAC[LAMBDA_BETA]) in REPEAT GEN_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THENL [REPEAT STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`vec 0:real^N`; `\x:real^N. x`] THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; ORTHOGONAL_TRANSFORMATION_ID]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `m:A`) THEN DISCH_TAC] THEN SUBGOAL_THEN `?r. IMAGE r (1..dimindex(:(N,1)finite_sum)) SUBSET s /\ affine hull (IMAGE (y o r) (1..dimindex(:(N,1)finite_sum))) = affine hull (IMAGE (y:A->real^N) s)` MP_TAC THENL [REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN SIMP_TAC[IMAGE_o; TAUT `p /\ q <=> ~(p ==> ~q)`; HULL_MONO; IMAGE_SUBSET] THEN REWRITE_TAC[NOT_IMP] THEN MP_TAC(ISPEC `IMAGE (y:A->real^N) s` AFFINE_BASIS_EXISTS) THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [AFFINE_INDEPENDENT_IFF_CARD]) THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FINITE_INDEX_NUMSEG]) THEN DISCH_THEN(X_CHOOSE_THEN `f:num->real^N` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `CARD(b:real^N->bool) <= dimindex(:(N,1)finite_sum)` ASSUME_TAC THENL [REWRITE_TAC[GSYM INT_OF_NUM_LE] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (INT_ARITH `a:int = c - &1 ==> a + &1 <= n ==> c <= n`)) THEN REWRITE_TAC[DIMINDEX_FINITE_SUM; DIMINDEX_1; GSYM INT_OF_NUM_ADD] THEN REWRITE_TAC[INT_LE_RADD; AFF_DIM_LE_UNIV]; ALL_TAC] THEN UNDISCH_TAC `b SUBSET IMAGE (y:A->real^N) s` THEN ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE] THEN GEN_REWRITE_TAC (LAND_CONV o DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; IN_NUMSEG] THEN DISCH_THEN(X_CHOOSE_THEN `r:num->A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\i. if i <= CARD(b:real^N->bool) then r i else (m:A)` THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN UNDISCH_THEN `affine hull b:real^N->bool = affine hull IMAGE y (s:A->bool)` (SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM SUBSET] THEN MATCH_MP_TAC HULL_MONO THEN ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_NUMSEG] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN REWRITE_TAC[GSYM IMAGE_o] THEN REWRITE_TAC[IN_IMAGE; IN_NUMSEG] THEN EXISTS_TAC `i:num` THEN ASM_REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[LE_TRANS]; REWRITE_TAC[SUBSET; IN_NUMSEG; FORALL_IN_IMAGE] THEN STRIP_TAC THEN MP_TAC(ISPECL [`(lambda i. x(r i:A)):real^N^(N,1)finite_sum`; `(lambda i. y(r i:A)):real^N^(N,1)finite_sum`] lemma) THEN ASM_SIMP_TAC[LAMBDA_BETA] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:real^N->real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `k:A` THEN STRIP_TAC THEN SUBGOAL_THEN `!z. z IN affine hull IMAGE (y o (r:num->A)) (1..dimindex(:(N,1)finite_sum)) ==> dist(z,y k) = dist(z,a + (f:real^N->real^N)(x k))` MP_TAC THENL [MATCH_MP_TAC SAME_DISTANCES_TO_AFFINE_HULL THEN REWRITE_TAC[FORALL_IN_IMAGE; o_THM; IN_NUMSEG] THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `dist(x(r(j:num)),(x:A->real^N) k)` THEN CONJ_TAC THENL [CONV_TAC SYM_CONV THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[]; REWRITE_TAC[dist] THEN ASM_SIMP_TAC[NORM_ARITH `(a + x) - (a + y):real^N = x - y`] THEN ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION; LINEAR_SUB]]; ASM_SIMP_TAC[NORM_ARITH `a:real^N = b <=> dist(a:real^N,a) = dist(a,b)`] THEN DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC HULL_INC THEN REWRITE_TAC[IN_IMAGE; IN_NUMSEG] THEN ASM_MESON_TAC[]]]);;
let RIGID_TRANSFORMATION_BETWEEN_CONGRUENT_SETS_STRONG = 
prove (`!x:A->real^N y:A->real^N s t. t SUBSET s /\ affine hull (IMAGE y t) = affine hull (IMAGE y s) /\ (!i j. i IN s /\ j IN t ==> dist(x i,x j) = dist(y i,y j)) ==> ?a f. orthogonal_transformation f /\ !i. i IN s ==> y i = a + f(x i)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`x:A->real^N`; `y:A->real^N`; `t:A->bool`] RIGID_TRANSFORMATION_BETWEEN_CONGRUENT_SETS) THEN ANTS_TAC THENL [ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:real^N->real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `i:A` THEN DISCH_TAC THEN SUBGOAL_THEN `!z. z IN affine hull (IMAGE (y:A->real^N) t) ==> dist(z,y i) = dist(z,a + (f:real^N->real^N)(x i))` MP_TAC THENL [MATCH_MP_TAC SAME_DISTANCES_TO_AFFINE_HULL THEN REWRITE_TAC[FORALL_IN_IMAGE; o_THM; IN_NUMSEG] THEN X_GEN_TAC `j:A` THEN STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `dist(a + f(x(j:A):real^N):real^N,a + f(x i))` THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN REWRITE_TAC[NORM_ARITH `dist(a + x:real^N,a + y) = dist(x,y)`] THEN ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_ISOMETRY; DIST_SYM]; ASM_SIMP_TAC[NORM_ARITH `a:real^N = b <=> dist(a:real^N,a) = dist(a,b)`] THEN DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC HULL_INC THEN REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[]]);;
let RIGID_TRANSFORMATION_BETWEEN_3 = 
prove (`!a b c a' b' c':real^N. dist(a,b) = dist(a',b') /\ dist(b,c) = dist(b',c') /\ dist(c,a) = dist(c',a') ==> ?k f. orthogonal_transformation f /\ a' = k + f a /\ b' = k + f b /\ c' = k + f c`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`FST:real^N#real^N->real^N`; `SND:real^N#real^N->real^N`; `{(a:real^N,a':real^N), (b,b'), (c,c')}`] RIGID_TRANSFORMATION_BETWEEN_CONGRUENT_SETS) THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_INSERT] THEN REWRITE_TAC[NOT_IN_EMPTY; IMP_IMP] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_MESON_TAC[DIST_REFL; DIST_SYM]);;
let RIGID_TRANSFORMATION_BETWEEN_2 = 
prove (`!a b a' b':real^N. dist(a,b) = dist(a',b') ==> ?k f. orthogonal_transformation f /\ a' = k + f a /\ b' = k + f b`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`a:real^N`; `b:real^N`; `a:real^N`; `a':real^N`; `b':real^N`; `a':real^N`] RIGID_TRANSFORMATION_BETWEEN_3) THEN ASM_MESON_TAC[DIST_EQ_0; DIST_SYM]);;
(* ------------------------------------------------------------------------- *) (* Caratheodory's theorem. *) (* ------------------------------------------------------------------------- *)
let CONVEX_HULL_CARATHEODORY_AFF_DIM = 
prove (`!p. convex hull p = {y:real^N | ?s u. FINITE s /\ s SUBSET p /\ &(CARD s) <= aff_dim p + &1 /\ (!x. x IN s ==> &0 <= u x) /\ sum s u = &1 /\ vsum s (\v. u v % v) = y}`,
GEN_TAC THEN REWRITE_TAC[CONVEX_HULL_EXPLICIT] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `y:real^N` THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN MATCH_MP_TAC(TAUT `!q. (p ==> q) /\ (q ==> r) ==> (p ==> r)`) THEN EXISTS_TAC `?n s u. CARD s = n /\ FINITE s /\ s SUBSET p /\ (!x. x IN s ==> &0 <= u x) /\ sum s u = &1 /\ vsum s (\v. u v % v) = (y:real^N)` THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN DISCH_THEN(X_CHOOSE_THEN `n:num` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC I [GSYM INT_NOT_LT] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [MATCH_MP_TAC(ARITH_RULE `~(n = 0) ==> n - 1 < n`) THEN DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `aff_dim(p:real^N->bool) + &1 < &0` THEN REWRITE_TAC[INT_ARITH `p + &1:int < &0 <=> ~(-- &1 <= p)`] THEN REWRITE_TAC[AFF_DIM_GE]; ALL_TAC] THEN MP_TAC(ISPEC `s:real^N->bool` AFF_DIM_AFFINE_INDEPENDENT) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `~(aff_dim(s:real^N->bool) = &n - &1)` ASSUME_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP AFF_DIM_SUBSET) THEN UNDISCH_TAC `aff_dim(p:real^N->bool) + &1 < &n` THEN INT_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[AFFINE_DEPENDENT_EXPLICIT_FINITE] THEN DISCH_THEN(X_CHOOSE_THEN `w:real^N->real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?t. (!v:real^N. v IN s ==> u(v) + t * w(v) >= &0) /\ ?a. a IN s /\ u(a) + t * w(a) = &0` STRIP_ASSUME_TAC THENL [ABBREV_TAC `i = IMAGE (\v. u(v) / --w(v)) {v:real^N | v IN s /\ w v < &0}` THEN EXISTS_TAC `inf i` THEN MP_TAC(SPEC `i:real->bool` INF_FINITE) THEN ANTS_TAC THENL [EXPAND_TAC "i" THEN ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN MP_TAC(ISPECL [`w:real^N->real`; `s:real^N->bool`] SUM_ZERO_EXISTS) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ABBREV_TAC `t = inf i` THEN EXPAND_TAC "i" THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) MP_TAC) THEN SIMP_TAC[REAL_LE_RDIV_EQ; REAL_ARITH `x < &0 ==> &0 < --x`; real_ge] THEN REWRITE_TAC[REAL_ARITH `t * --w <= u <=> &0 <= u + t * w`] THEN STRIP_TAC THEN CONJ_TAC THENL [X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN DISJ_CASES_TAC(REAL_ARITH `(w:real^N->real) x < &0 \/ &0 <= w x`) THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC REAL_LE_ADD THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_DIV THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `w < &0 ==> &0 <= --w`) THEN ASM_REWRITE_TAC[]; EXISTS_TAC `a:real^N` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `w(a:real^N) < &0` THEN CONV_TAC REAL_FIELD]; ALL_TAC] THEN MAP_EVERY EXISTS_TAC [`s DELETE (a:real^N)`; `(\v. u(v) + t * w(v)):real^N->real`] THEN ASM_SIMP_TAC[SUM_DELETE; VSUM_DELETE; CARD_DELETE; FINITE_DELETE] THEN ASM_SIMP_TAC[SUM_ADD; VECTOR_ADD_RDISTRIB; VSUM_ADD] THEN ASM_SIMP_TAC[GSYM VECTOR_MUL_ASSOC; SUM_LMUL; VSUM_LMUL] THEN REPEAT CONJ_TAC THENL [ASM SET_TAC[]; ASM SET_TAC[real_ge]; REAL_ARITH_TAC; VECTOR_ARITH_TAC]);;
let CARATHEODORY_AFF_DIM = 
prove (`!p. convex hull p = {x:real^N | ?s. FINITE s /\ s SUBSET p /\ &(CARD s) <= aff_dim p + &1 /\ x IN convex hull s}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN EQ_TAC THENL [GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [CONVEX_HULL_CARATHEODORY_AFF_DIM] THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[HULL_SUBSET; CONVEX_EXPLICIT; CONVEX_CONVEX_HULL]; MESON_TAC[SUBSET; HULL_MONO]]);;
let CONVEX_HULL_CARATHEODORY = 
prove (`!p. convex hull p = {y:real^N | ?s u. FINITE s /\ s SUBSET p /\ CARD(s) <= dimindex(:N) + 1 /\ (!x. x IN s ==> &0 <= u x) /\ sum s u = &1 /\ vsum s (\v. u v % v) = y}`,
GEN_TAC THEN REWRITE_TAC[EXTENSION] THEN X_GEN_TAC `y:real^N` THEN EQ_TAC THENL [REWRITE_TAC[CONVEX_HULL_CARATHEODORY_AFF_DIM; IN_ELIM_THM] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[GSYM INT_OF_NUM_LE; GSYM INT_OF_NUM_ADD] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (INT_ARITH `a:int <= x + &1 ==> x <= y ==> a <= y + &1`)) THEN REWRITE_TAC[AFF_DIM_LE_UNIV]; REWRITE_TAC[CONVEX_HULL_EXPLICIT; IN_ELIM_THM] THEN MESON_TAC[]]);;
let CARATHEODORY = 
prove (`!p. convex hull p = {x:real^N | ?s. FINITE s /\ s SUBSET p /\ CARD(s) <= dimindex(:N) + 1 /\ x IN convex hull s}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN EQ_TAC THENL [GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [CONVEX_HULL_CARATHEODORY] THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[HULL_SUBSET; CONVEX_EXPLICIT; CONVEX_CONVEX_HULL]; MESON_TAC[SUBSET; HULL_MONO]]);;
(* ------------------------------------------------------------------------- *) (* Some results on decomposing convex hulls, e.g. simplicial subdivision. *) (* ------------------------------------------------------------------------- *) let AFFINE_HULL_INTER,CONVEX_HULL_INTER = (CONJ_PAIR o prove) (`(!s t:real^N->bool. ~(affine_dependent(s UNION t)) ==> affine hull s INTER affine hull t = affine hull (s INTER t)) /\ (!s t:real^N->bool. ~(affine_dependent (s UNION t)) ==> convex hull s INTER convex hull t = convex hull (s INTER t))`, CONJ_TAC THEN (REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN REWRITE_TAC[FINITE_UNION] THEN STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET_INTER] THEN SIMP_TAC[HULL_MONO; INTER_SUBSET] THEN REWRITE_TAC[SUBSET; AFFINE_HULL_FINITE; CONVEX_HULL_FINITE; IN_ELIM_THM; IN_INTER] THEN X_GEN_TAC `y:real^N` THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `u:real^N->real` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `v:real^N->real` STRIP_ASSUME_TAC)) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [AFFINE_DEPENDENT_EXPLICIT]) THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `(s UNION t):real^N->bool`) THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN DISCH_THEN(MP_TAC o SPEC `\x:real^N. (if x IN s then u x else &0) - (if x IN t then v x else &0)`) THEN ASM_SIMP_TAC[SUM_SUB; FINITE_UNION; VSUM_SUB; VECTOR_SUB_RDISTRIB] THEN REWRITE_TAC[MESON[] `(if p then a else b) % x = (if p then a % x else b % x)`] THEN ASM_SIMP_TAC[SUM_CASES; VSUM_CASES; VECTOR_MUL_LZERO; FINITE_UNION] THEN ASM_REWRITE_TAC[SUM_0; VSUM_0; SET_RULE `{x | x IN (s UNION t) /\ x IN s} = s`; SET_RULE `{x | x IN (s UNION t) /\ x IN t} = t`] THEN MATCH_MP_TAC(TAUT `a /\ c /\ (~b ==> d) ==> ~(a /\ b /\ c) ==> d`) THEN REPEAT CONJ_TAC THENL [REAL_ARITH_TAC; VECTOR_ARITH_TAC; ALL_TAC] THEN DISCH_TAC THEN EXISTS_TAC `u:real^N->real` THEN ASM_SIMP_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC EQ_TRANS THENL [EXISTS_TAC `sum s (u:real^N->real)`; EXISTS_TAC `vsum s (\x. (u:real^N->real) x % x)`] THEN (CONJ_TAC THENL [ALL_TAC; FIRST_X_ASSUM ACCEPT_TAC]) THEN CONV_TAC SYM_CONV THENL [MATCH_MP_TAC SUM_EQ_SUPERSET; MATCH_MP_TAC VSUM_EQ_SUPERSET] THEN ASM_SIMP_TAC[FINITE_INTER; INTER_SUBSET; IN_INTER] THEN X_GEN_TAC `x:real^N` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[VECTOR_MUL_EQ_0] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[REAL_SUB_RZERO] THEN ASM SET_TAC[]));;
let AFFINE_HULL_INTERS = 
prove (`!s:(real^N->bool)->bool. ~(affine_dependent(UNIONS s)) ==> affine hull (INTERS s) = INTERS {affine hull t | t IN s}`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC th THEN MP_TAC(MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE th)) THEN SPEC_TAC(`s:(real^N->bool)->bool`,`s:(real^N->bool)->bool`) THEN REWRITE_TAC[FINITE_UNIONS; IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_0; INTERS_0; UNIONS_INSERT; INTERS_INSERT; SET_RULE `{f x | x IN {}} = {}`; AFFINE_HULL_UNIV] THEN MAP_EVERY X_GEN_TAC [`s:real^N->bool`; `f:(real^N->bool)->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN REWRITE_TAC[FORALL_IN_INSERT] THEN DISCH_THEN(fun th -> STRIP_TAC THEN STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [UNDISCH_TAC `~affine_dependent((s UNION UNIONS f):real^N->bool)` THEN REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] AFFINE_DEPENDENT_MONO) THEN SET_TAC[]; DISCH_TAC] THEN ASM_CASES_TAC `f:(real^N->bool)->bool = {}` THENL [ASM_REWRITE_TAC[INTERS_0; INTER_UNIV; IN_SING] THEN REWRITE_TAC[SET_RULE `{f x | x = a} = {f a}`; INTERS_1]; ALL_TAC] THEN W(MP_TAC o PART_MATCH (rhs o rand) AFFINE_HULL_INTER o lhand o snd) THEN ANTS_TAC THENL [UNDISCH_TAC `~affine_dependent((s UNION UNIONS f):real^N->bool)` THEN REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] AFFINE_DEPENDENT_MONO) THEN UNDISCH_TAC `~(f:(real^N->bool)->bool = {})` THEN SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN REWRITE_TAC[SET_RULE `{f x | x IN (a INSERT s)} = (f a) INSERT {f x | x IN s}`] THEN ASM_REWRITE_TAC[INTERS_INSERT]);;
let CONVEX_HULL_INTERS = 
prove (`!s:(real^N->bool)->bool. ~(affine_dependent(UNIONS s)) ==> convex hull (INTERS s) = INTERS {convex hull t | t IN s}`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC th THEN MP_TAC(MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE th)) THEN SPEC_TAC(`s:(real^N->bool)->bool`,`s:(real^N->bool)->bool`) THEN REWRITE_TAC[FINITE_UNIONS; IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_0; INTERS_0; UNIONS_INSERT; INTERS_INSERT; SET_RULE `{f x | x IN {}} = {}`; CONVEX_HULL_UNIV] THEN MAP_EVERY X_GEN_TAC [`s:real^N->bool`; `f:(real^N->bool)->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN REWRITE_TAC[FORALL_IN_INSERT] THEN DISCH_THEN(fun th -> STRIP_TAC THEN STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [UNDISCH_TAC `~affine_dependent((s UNION UNIONS f):real^N->bool)` THEN REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] AFFINE_DEPENDENT_MONO) THEN SET_TAC[]; DISCH_TAC] THEN ASM_CASES_TAC `f:(real^N->bool)->bool = {}` THENL [ASM_REWRITE_TAC[INTERS_0; INTER_UNIV; IN_SING] THEN REWRITE_TAC[SET_RULE `{f x | x = a} = {f a}`; INTERS_1]; ALL_TAC] THEN W(MP_TAC o PART_MATCH (rhs o rand) CONVEX_HULL_INTER o lhand o snd) THEN ANTS_TAC THENL [UNDISCH_TAC `~affine_dependent((s UNION UNIONS f):real^N->bool)` THEN REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] AFFINE_DEPENDENT_MONO) THEN UNDISCH_TAC `~(f:(real^N->bool)->bool = {})` THEN SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN REWRITE_TAC[SET_RULE `{f x | x IN (a INSERT s)} = (f a) INSERT {f x | x IN s}`] THEN ASM_REWRITE_TAC[INTERS_INSERT]);;
let IN_CONVEX_HULL_EXCHANGE = 
prove (`!s a x:real^N. a IN convex hull s /\ x IN convex hull s ==> ?b. b IN s /\ x IN convex hull (a INSERT (s DELETE b))`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `(a:real^N) IN s` THENL [EXISTS_TAC `a:real^N` THEN ASM_SIMP_TAC[INSERT_DELETE]; ALL_TAC] THEN ASM_CASES_TAC `FINITE(s:real^N->bool) /\ CARD s <= dimindex(:N) + 1` THENL [ALL_TAC; UNDISCH_TAC `(x:real^N) IN convex hull s` THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [CARATHEODORY] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_ELIM_THM] THEN X_GEN_TAC `t:real^N->bool` THEN STRIP_TAC THEN ASM_CASES_TAC `t:real^N->bool = s` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?b:real^N. b IN s /\ ~(b IN t)` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(x:real^N) IN convex hull t` THEN SPEC_TAC(`x:real^N`,`x:real^N`) THEN REWRITE_TAC[GSYM SUBSET] THEN MATCH_MP_TAC HULL_MONO THEN ASM SET_TAC[]] THEN MP_TAC(ASSUME `(a:real^N) IN convex hull s`) THEN MP_TAC(ASSUME `(x:real^N) IN convex hull s`) THEN REWRITE_TAC[CONVEX_HULL_FINITE; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `v:real^N->real` THEN STRIP_TAC THEN X_GEN_TAC `u:real^N->real` THEN STRIP_TAC THEN ASM_CASES_TAC `?b. b IN s /\ (v:real^N->real) b = &0` THENL [FIRST_X_ASSUM(fun th -> MP_TAC th THEN MATCH_MP_TAC MONO_EXISTS) THEN X_GEN_TAC `b:real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `\x:real^N. if x = a then &0 else v x` THEN ASM_SIMP_TAC[FORALL_IN_INSERT; REAL_LE_REFL] THEN ASM_SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES; FINITE_DELETE] THEN ASM_REWRITE_TAC[IN_DELETE] THEN ASM_SIMP_TAC[SUM_DELETE; VSUM_DELETE; COND_ID] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_SIMP_TAC[SUM_CASES; VSUM_CASES; REAL_LE_REFL; COND_ID] THEN REWRITE_TAC[VECTOR_MUL_LZERO; SUM_0; VSUM_0] THEN ASM_SIMP_TAC[SET_RULE `~(a IN s) ==> {x | x IN s /\ ~(x = a)} = s`] THEN CONJ_TAC THENL [REAL_ARITH_TAC; VECTOR_ARITH_TAC]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN REWRITE_TAC[TAUT `~(a /\ b) <=> a ==> ~b`] THEN DISCH_TAC THEN MP_TAC(ISPEC `IMAGE (\b. (u:real^N->real) b / v b) s` SUP_FINITE) THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_MESON_TAC[CONVEX_HULL_EMPTY; NOT_IN_EMPTY]; ALL_TAC] THEN ASM_SIMP_TAC[FINITE_IMAGE; IMAGE_EQ_EMPTY; FORALL_IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:real^N` THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `!b. b IN s ==> &0 < (v:real^N->real) b` ASSUME_TAC THENL [ASM_SIMP_TAC[REAL_LT_LE]; ALL_TAC] THEN SUBGOAL_THEN `&0 < (u:real^N->real) b /\ &0 < v b` STRIP_ASSUME_TAC THENL [ASM_SIMP_TAC[REAL_LT_LE] THEN UNDISCH_TAC `!x. x IN s ==> (u:real^N->real) x / v x <= u b / v b` THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ] THEN REWRITE_TAC[real_div; REAL_MUL_LZERO] THEN ASM_SIMP_TAC[REAL_ARITH `&0 <= x ==> (x <= &0 <=> x = &0)`] THEN DISCH_TAC THEN UNDISCH_TAC `sum s (u:real^N->real) = &1` THEN MATCH_MP_TAC(REAL_ARITH `x = &0 ==> x = &1 ==> F`) THEN ASM_SIMP_TAC[SUM_EQ_0]; ALL_TAC] THEN EXISTS_TAC `(\x. if x = a then v b / u b else v x - (v b / u b) * u x): real^N->real` THEN ASM_SIMP_TAC[FORALL_IN_INSERT; REAL_LE_DIV; REAL_LT_IMP_LE] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES; FINITE_DELETE] THEN ASM_SIMP_TAC[SUM_DELETE; VSUM_DELETE; IN_DELETE] THEN ASM_SIMP_TAC[SUM_CASES; VSUM_CASES; FINITE_DELETE] THEN ASM_SIMP_TAC[SET_RULE `~(a IN s) ==> {x | x IN s /\ ~(x = a)} = s`; SET_RULE `~(a IN s) ==> {x | x IN s /\ x = a} = {}`] THEN REWRITE_TAC[VSUM_CLAUSES; SUM_CLAUSES] THEN ASM_CASES_TAC `b:real^N = a` THENL [ASM_MESON_TAC[]; ASM_REWRITE_TAC[]] THEN ASM_SIMP_TAC[VECTOR_SUB_RDISTRIB; VSUM_SUB; SUM_SUB] THEN REWRITE_TAC[GSYM VECTOR_MUL_ASSOC; VECTOR_ADD_LID; REAL_ADD_LID] THEN ASM_SIMP_TAC[SUM_LMUL; VSUM_LMUL] THEN REWRITE_TAC[VECTOR_MUL_ASSOC] THEN ASM_SIMP_TAC[REAL_DIV_RMUL; REAL_LT_IMP_NZ] THEN REPEAT CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC; VECTOR_ARITH_TAC] THEN X_GEN_TAC `c:real^N` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_CASES_TAC `(u:real^N->real) c = &0` THENL [ASM_SIMP_TAC[REAL_MUL_RZERO; REAL_SUB_RZERO]; ALL_TAC] THEN REWRITE_TAC[REAL_SUB_LE] THEN ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; REAL_LT_LE] THEN ONCE_REWRITE_TAC[GSYM REAL_INV_DIV] THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_LT_LE]);;
let IN_CONVEX_HULL_EXCHANGE_UNIQUE = 
prove (`!s t t' a x:real^N. ~(affine_dependent s) /\ a IN convex hull s /\ t SUBSET s /\ t' SUBSET s /\ x IN convex hull (a INSERT t) /\ x IN convex hull (a INSERT t') ==> x IN convex hull (a INSERT (t INTER t'))`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `(a:real^N) IN s` THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[SET_RULE `a INSERT (s INTER t) = (a INSERT s) INTER (a INSERT t)`] THEN W(MP_TAC o PART_MATCH (rand o rand) CONVEX_HULL_INTER o rand o snd) THEN ANTS_TAC THENL [UNDISCH_TAC `~(affine_dependent(s:real^N->bool))` THEN REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] AFFINE_DEPENDENT_MONO); DISCH_THEN(SUBST1_TAC o SYM)] THEN ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN REWRITE_TAC[CONVEX_HULL_FINITE; IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `b:real^N->real` STRIP_ASSUME_TAC) MP_TAC) THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN SUBGOAL_THEN `~((a:real^N) IN t) /\ ~(a IN t')` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `FINITE(t:real^N->bool) /\ FINITE(t':real^N->bool)` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[FINITE_SUBSET]; ALL_TAC] THEN ASM_SIMP_TAC[AFFINE_HULL_FINITE_STEP_GEN; REAL_LE_ADD; REAL_ARITH `&0 <= a / &2 <=> &0 <= a`] THEN REWRITE_TAC[IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u':real`; `u:real^N->real`] THEN REPEAT DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`v':real`; `v:real^N->real`] THEN REPEAT DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [AFFINE_DEPENDENT_EXPLICIT]) THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `s:real^N->bool`) THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN DISCH_THEN(MP_TAC o SPEC `\x:real^N. (if x IN t then u x else &0) - (if x IN t' then v x else &0) + (u' - v') * b x`) THEN ASM_SIMP_TAC[SUM_ADD; VSUM_ADD; SUM_LMUL; VSUM_LMUL; VECTOR_ADD_RDISTRIB] THEN ASM_SIMP_TAC[SUM_SUB; VSUM_SUB; VECTOR_SUB_RDISTRIB] THEN REWRITE_TAC[MESON[] `(if p then a else b) % x = (if p then a % x else b % x)`] THEN ASM_SIMP_TAC[SUM_CASES; VSUM_CASES; VECTOR_MUL_LZERO; SUM_0; VSUM_0] THEN ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> {x | x IN s /\ x IN t} = t`] THEN ASM_SIMP_TAC[SUM_ADD; SUM_LMUL; VSUM_ADD; VSUM_LMUL; VECTOR_ADD_RDISTRIB; GSYM VECTOR_MUL_ASSOC] THEN MATCH_MP_TAC(TAUT `a /\ c /\ (~b ==> d) ==> ~(a /\ b /\ c) ==> d`) THEN REPEAT CONJ_TAC THENL [REAL_ARITH_TAC; VECTOR_ARITH_TAC; ALL_TAC] THEN DISCH_TAC THEN SUBGOAL_THEN `(!x. x IN s ==> (if x IN t then u x else &0) <= (if x IN t' then v x else &0)) \/ (!x:real^N. x IN s ==> (if x IN t' then v x else &0) <= (if x IN t then u x else &0))` (DISJ_CASES_THEN(LABEL_TAC "*")) THENL [MP_TAC(REAL_ARITH `&0 <= (u' - v') \/ &0 <= (v' - u')`) THEN MATCH_MP_TAC MONO_OR THEN CONJ_TAC THEN DISCH_TAC THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN DISCH_THEN(MP_TAC o SPEC `y:real^N`) THEN ASM_REWRITE_TAC[] THENL [MATCH_MP_TAC(REAL_ARITH `&0 <= c ==> a - b + c = &0 ==> a <= b`); MATCH_MP_TAC(REAL_ARITH `&0 <= --c ==> a - b + c = &0 ==> b <= a`)] THEN ASM_SIMP_TAC[REAL_LE_MUL; GSYM REAL_MUL_LNEG; REAL_NEG_SUB]; EXISTS_TAC `(\x. if x = a then u' else u x):real^N->real`; EXISTS_TAC `(\x. if x = a then v' else v x):real^N->real`] THEN ASM_SIMP_TAC[FORALL_IN_INSERT] THEN (CONJ_TAC THENL [ASM_MESON_TAC[IN_INTER]; ALL_TAC]) THEN ASM_SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES; FINITE_INTER] THEN ASM_REWRITE_TAC[IN_INTER] THEN REWRITE_TAC[REAL_ARITH `u' + u = &1 <=> u = &1 - u'`; VECTOR_ARITH `u' + u:real^N = y <=> u = y - u'`] THEN (CONJ_TAC THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN CONV_TAC SYM_CONV THENL [MATCH_MP_TAC SUM_EQ_SUPERSET; MATCH_MP_TAC VSUM_EQ_SUPERSET]) THEN ASM_SIMP_TAC[FINITE_INTER; INTER_SUBSET; IN_INTER] THEN (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN X_GEN_TAC `y:real^N` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[VECTOR_MUL_EQ_0] THEN DISCH_TAC THEN REMOVE_THEN "*" (MP_TAC o SPEC `y:real^N`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN ASM SET_TAC[]);;
let CONVEX_HULL_EXCHANGE_UNION = 
prove (`!s a:real^N. a IN convex hull s ==> convex hull s = UNIONS {convex hull (a INSERT (s DELETE b)) |b| b IN s}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN REWRITE_TAC[UNIONS_IMAGE] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[IN_CONVEX_HULL_EXCHANGE]; REWRITE_TAC[SUBSET; FORALL_IN_UNIONS; FORALL_IN_GSPEC; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[GSYM SUBSET] THEN ASM_SIMP_TAC[SUBSET_HULL; CONVEX_CONVEX_HULL] THEN ASM_REWRITE_TAC[INSERT_SUBSET] THEN MESON_TAC[HULL_INC; SUBSET; IN_DELETE]]);;
let CONVEX_HULL_EXCHANGE_INTER = 
prove (`!s a:real^N t t'. ~affine_dependent s /\ a IN convex hull s /\ t SUBSET s /\ t' SUBSET s ==> (convex hull (a INSERT t)) INTER (convex hull (a INSERT t')) = convex hull (a INSERT (t INTER t'))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_INTER] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC IN_CONVEX_HULL_EXCHANGE_UNIQUE THEN EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[]; REWRITE_TAC[SUBSET_INTER] THEN CONJ_TAC THEN MATCH_MP_TAC HULL_MONO THEN SET_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Representing affine hull as hyperplane or finite intersection of them. *) (* ------------------------------------------------------------------------- *)
let AFF_DIM_EQ_HYPERPLANE = 
prove (`!s. aff_dim s = &(dimindex(:N)) - &1 <=> ?a b. ~(a = vec 0) /\ affine hull s = {x:real^N | a dot x = b}`,
GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_REWRITE_TAC[AFF_DIM_EMPTY; INT_ARITH `--a:int = b - a <=> b = &0`] THEN SIMP_TAC[INT_OF_NUM_EQ; LE_1; DIMINDEX_GE_1; AFFINE_HULL_EMPTY] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real`] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o SPEC `(b / (a dot a)) % a:real^N`) THEN ASM_SIMP_TAC[DOT_RMUL; REAL_DIV_RMUL; DOT_EQ_0]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:real^N` THEN GEN_GEOM_ORIGIN_TAC `c:real^N` ["a"] THEN SIMP_TAC[AFF_DIM_DIM_0; HULL_INC] THEN SIMP_TAC[INT_OF_NUM_SUB; DIMINDEX_GE_1; INT_OF_NUM_EQ] THEN SIMP_TAC[AFFINE_HULL_EQ_SPAN; HULL_INC; DIM_EQ_HYPERPLANE] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `a:real^N` THEN REWRITE_TAC[] THEN ASM_CASES_TAC `a:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_RADD; REAL_ARITH `a + b:real = c <=> b = c - a`] THEN EQ_TAC THEN STRIP_TAC THENL [EXISTS_TAC `(a:real^N) dot c` THEN ASM_REWRITE_TAC[REAL_SUB_REFL]; ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o AP_TERM `\s. (vec 0:real^N) IN s`) THEN ASM_SIMP_TAC[SPAN_SUPERSET; IN_ELIM_THM; DOT_RZERO]]]);;
let AFF_DIM_HYPERPLANE = 
prove (`!a b. ~(a = vec 0) ==> aff_dim {x:real^N | a dot x = b} = &(dimindex(:N)) - &1`,
REPEAT STRIP_TAC THEN REWRITE_TAC[AFF_DIM_EQ_HYPERPLANE] THEN MAP_EVERY EXISTS_TAC [`a:real^N`; `b:real`] THEN ASM_REWRITE_TAC[AFFINE_HULL_EQ; AFFINE_HYPERPLANE]);;
let BOUNDED_HYPERPLANE_EQ_TRIVIAL = 
prove (`!a b. bounded {x:real^N | a dot x = b} <=> if a = vec 0 then ~(b = &0) else dimindex(:N) = 1`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_LZERO] THENL [ASM_CASES_TAC `b = &0` THEN ASM_REWRITE_TAC[EMPTY_GSPEC; BOUNDED_EMPTY] THEN REWRITE_TAC[NOT_BOUNDED_UNIV; SET_RULE `{x | T} = UNIV`]; ASM_SIMP_TAC[AFFINE_BOUNDED_EQ_LOWDIM; AFF_DIM_HYPERPLANE; AFFINE_HYPERPLANE] THEN REWRITE_TAC[INT_ARITH `a - &1:int <= &0 <=> a <= &1`; INT_OF_NUM_LE] THEN MATCH_MP_TAC(ARITH_RULE `1 <= n ==> (n <= 1 <=> n = 1)`) THEN REWRITE_TAC[DIMINDEX_GE_1]]);;
let AFFINE_HULL_FINITE_INTERSECTION_HYPERPLANES = 
prove (`!s:real^N->bool. ?f. FINITE f /\ &(CARD f) + aff_dim s = &(dimindex(:N)) /\ affine hull s = INTERS f /\ (!h. h IN f ==> ?a b. ~(a = vec 0) /\ h = {x | a dot x = b})`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM AFF_DIM_AFFINE_HULL] THEN MP_TAC(ISPEC `s:real^N->bool` AFFINE_BASIS_EXISTS) THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MP_TAC(ISPECL [`b:real^N->bool`; `(:real^N)`] EXTEND_TO_AFFINE_BASIS) THEN ASM_REWRITE_TAC[SUBSET_UNIV; AFFINE_HULL_UNIV] THEN DISCH_THEN(X_CHOOSE_THEN `c:real^N->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `FINITE(c:real^N->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[AFFINE_INDEPENDENT_IMP_FINITE]; ALL_TAC] THEN REWRITE_TAC[GSYM AFF_DIM_UNIV] THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[AFF_DIM_AFFINE_HULL] THEN ASM_SIMP_TAC[AFF_DIM_AFFINE_INDEPENDENT; CARD_DIFF] THEN REWRITE_TAC[INT_ARITH `f + b - &1:int = c - &1 <=> f = c - b`] THEN ASM_SIMP_TAC[INT_OF_NUM_SUB; CARD_SUBSET; GSYM CARD_DIFF; INT_OF_NUM_EQ] THEN ASM_CASES_TAC `c:real^N->bool = b` THENL [EXISTS_TAC `{}:(real^N->bool)->bool` THEN ASM_REWRITE_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; INTERS_0; DIFF_EQ_EMPTY] THEN ASM_MESON_TAC[]; ALL_TAC] THEN EXISTS_TAC `{affine hull (c DELETE a) |a| (a:real^N) IN (c DIFF b)}` THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[SIMPLE_IMAGE] THEN ASM_SIMP_TAC[FINITE_IMAGE; FINITE_DIFF] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_SIMP_TAC[FINITE_DIFF] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN ASM_CASES_TAC `x:real^N = y` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~affine_dependent(c:real^N->bool)` THEN REWRITE_TAC[affine_dependent] THEN EXISTS_TAC `x:real^N` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HULL_INC THEN ASM SET_TAC[]; ONCE_REWRITE_TAC[GSYM o_DEF] THEN REWRITE_TAC[IMAGE_o] THEN ONCE_REWRITE_TAC[GSYM SIMPLE_IMAGE] THEN W(MP_TAC o PART_MATCH (rhs o rand) AFFINE_HULL_INTERS o rand o snd) THEN ANTS_TAC THENL [MATCH_MP_TAC AFFINE_INDEPENDENT_SUBSET THEN EXISTS_TAC `c:real^N->bool` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; FORALL_IN_UNIONS; FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM) THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_INTERS; FORALL_IN_IMAGE] THEN ASM SET_TAC[]]; REWRITE_TAC[GSYM AFF_DIM_EQ_HYPERPLANE] THEN ASM_SIMP_TAC[IN_DIFF; AFFINE_INDEPENDENT_DELETE; AFF_DIM_AFFINE_INDEPENDENT; CARD_DELETE] THEN REWRITE_TAC[GSYM AFF_DIM_UNIV] THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[AFF_DIM_AFFINE_HULL] THEN ASM_SIMP_TAC[AFF_DIM_AFFINE_INDEPENDENT; CARD_DIFF] THEN REPEAT STRIP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC(GSYM INT_OF_NUM_SUB) THEN MATCH_MP_TAC(ARITH_RULE `~(c = 0) ==> 1 <= c`) THEN ASM_SIMP_TAC[CARD_EQ_0] THEN ASM SET_TAC[]]);;
let AFFINE_HYPERPLANE_SUMS_EQ_UNIV = 
prove (`!a b s. affine s /\ ~(s INTER {v | a dot v = b} = {}) /\ ~(s DIFF {v | a dot v = b} = {}) ==> {x + y | x IN s /\ y IN {v | a dot v = b}} = (:real^N)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:real^N = vec 0` THENL [ASM_REWRITE_TAC[DOT_LZERO] THEN SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> b ==> a /\ c ==> d`] THEN GEN_REWRITE_TAC LAND_CONV [GSYM MEMBER_NOT_EMPTY] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_ELIM_THM] THEN X_GEN_TAC `c:real^N` THEN ONCE_REWRITE_TAC[SET_RULE `{x + y:real^N | x IN s /\ P y} = {z | ?x y. x IN s /\ P y /\ z = x + y}`] THEN GEOM_ORIGIN_TAC `c:real^N` THEN REPEAT GEN_TAC THEN REWRITE_TAC[DOT_RADD; REAL_ARITH `b dot c + a = d <=> a = d - b dot c`] THEN REWRITE_TAC[IN_INTER; IN_ELIM_THM; DOT_RZERO] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN ASM_SIMP_TAC[AFFINE_EQ_SUBSPACE; HULL_INC] THEN STRIP_TAC THEN REWRITE_TAC[VECTOR_ARITH `c + z:real^N = (c + x) + (c + y) <=> z = c + x + y`] THEN REWRITE_TAC[SET_RULE `{z | ?x y. x IN s /\ P y /\ z = c + x + y} = IMAGE (\x. c + x) {x + y:real^N | x IN s /\ y IN {v | P v}}`] THEN MATCH_MP_TAC(SET_RULE `!f. (!x. g(f x) = x) /\ s = UNIV ==> IMAGE g s = UNIV`) THEN EXISTS_TAC `\x:real^N. x - c` THEN REWRITE_TAC[VECTOR_ARITH `c + x - c:real^N = x`] THEN MATCH_MP_TAC(MESON[SPAN_EQ_SELF] `subspace s /\ span s = t ==> s = t`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[SUBSPACE_SUMS; SUBSPACE_HYPERPLANE]; ALL_TAC] THEN REWRITE_TAC[GSYM DIM_EQ_FULL] THEN REWRITE_TAC[GSYM LE_ANTISYM; DIM_SUBSET_UNIV] THEN MATCH_MP_TAC(ARITH_RULE `m - 1 < n ==> m <= n`) THEN MATCH_MP_TAC LET_TRANS THEN EXISTS_TAC `dim {x:real^N | a dot x = &0}` THEN CONJ_TAC THENL [ASM_SIMP_TAC[DIM_HYPERPLANE; LE_REFL]; ALL_TAC] THEN MATCH_MP_TAC DIM_PSUBSET THEN ASM_SIMP_TAC[snd(EQ_IMP_RULE(SPEC_ALL SPAN_EQ_SELF)); SUBSPACE_SUMS; SUBSPACE_HYPERPLANE] THEN REWRITE_TAC[PSUBSET; SUBSET; FORALL_IN_GSPEC] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN CONJ_TAC THENL [X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`vec 0:real^N`; `x:real^N`] THEN ASM_SIMP_TAC[SUBSPACE_0; VECTOR_ADD_LID]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[NOT_FORALL_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^N` THEN SIMP_TAC[IN_DIFF; IN_ELIM_THM] THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`x:real^N`; `vec 0:real^N`] THEN ASM_REWRITE_TAC[DOT_RZERO; VECTOR_ADD_RID]]);;
let AFF_DIM_AFFINE_INTER_HYPERPLANE = 
prove (`!a b s:real^N->bool. affine s ==> aff_dim(s INTER {x | a dot x = b}) = if s INTER {v | a dot v = b} = {} then -- &1 else if s SUBSET {v | a dot v = b} then aff_dim s else aff_dim s - &1`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:real^N = vec 0` THENL [ASM_REWRITE_TAC[DOT_LZERO] THEN ASM_CASES_TAC `b = &0` THEN ASM_REWRITE_TAC[EMPTY_GSPEC; INTER_EMPTY; AFF_DIM_EMPTY] THEN SIMP_TAC[SET_RULE `{x | T} = UNIV`; IN_UNIV; INTER_UNIV; SUBSET_UNIV] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[AFF_DIM_EMPTY]; STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[AFF_DIM_EMPTY] THEN COND_CASES_TAC THENL [AP_TERM_TAC THEN ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`s:real^N->bool`; `{x:real^N | a dot x = b}`] AFF_DIM_SUMS_INTER) THEN ASM_SIMP_TAC[AFFINE_HYPERPLANE; AFF_DIM_HYPERPLANE] THEN ASM_SIMP_TAC[AFFINE_HYPERPLANE_SUMS_EQ_UNIV; AFF_DIM_UNIV; SET_RULE `~(s SUBSET t) ==> ~(s DIFF t = {})`] THEN SPEC_TAC(`aff_dim (s INTER {x:real^N | a dot x = b})`,`i:int`) THEN INT_ARITH_TAC]);;
let AFF_DIM_LT_FULL = 
prove (`!s. aff_dim s < &(dimindex(:N)) <=> ~(affine hull s = (:real^N))`,
GEN_TAC THEN REWRITE_TAC[GSYM AFF_DIM_EQ_FULL] THEN MP_TAC(ISPEC `s:real^N->bool` AFF_DIM_LE_UNIV) THEN ARITH_TAC);;
let AFF_LOWDIM_SUBSET_HYPERPLANE = 
prove (`!s:real^N->bool. aff_dim s < &(dimindex(:N)) ==> ?a b. ~(a = vec 0) /\ s SUBSET {x | a dot x = b}`,
MATCH_MP_TAC SET_PROVE_CASES THEN CONJ_TAC THENL [DISCH_TAC THEN EXISTS_TAC `basis 1:real^N` THEN SIMP_TAC[EMPTY_SUBSET; BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1]; MAP_EVERY X_GEN_TAC [`c:real^N`; `s:real^N->bool`] THEN CONV_TAC(ONCE_DEPTH_CONV(GEN_ALPHA_CONV `a:real^N`)) THEN GEN_GEOM_ORIGIN_TAC `c:real^N` ["a"] THEN SIMP_TAC[AFF_DIM_DIM_0; HULL_INC; IN_INSERT; INT_OF_NUM_LT] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP LOWDIM_SUBSET_HYPERPLANE) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:real^N` THEN STRIP_TAC THEN EXISTS_TAC `(u:real^N) dot c` THEN ASM_REWRITE_TAC[DOT_RADD; REAL_EQ_ADD_LCANCEL_0] THEN ASM_MESON_TAC[SPAN_INC; SUBSET_TRANS]]);;
(* ------------------------------------------------------------------------- *) (* An additional lemma about hyperplanes. *) (* ------------------------------------------------------------------------- *)
let SUBSET_HYPERPLANES = 
prove (`!a b a' b'. {x | a dot x = b} SUBSET {x | a' dot x = b'} <=> {x | a dot x = b} = {} \/ {x | a' dot x = b'} = (:real^N) \/ {x | a dot x = b} = {x | a' dot x = b'}`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `{x:real^N | a dot x = b} = {}` THEN ASM_REWRITE_TAC[EMPTY_SUBSET] THEN ASM_CASES_TAC `{x | a' dot x = b'} = (:real^N)` THEN ASM_REWRITE_TAC[SUBSET_UNIV] THEN RULE_ASSUM_TAC(REWRITE_RULE [HYPERPLANE_EQ_EMPTY; HYPERPLANE_EQ_UNIV]) THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN ASM_CASES_TAC `{x:real^N | a dot x = b} SUBSET {x | a' dot x = b'}` THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`{x:real^N | a dot x = b}`; `{x:real^N | a' dot x = b'}`] AFF_DIM_PSUBSET) THEN ASM_SIMP_TAC[PSUBSET; REWRITE_RULE[GSYM AFFINE_HULL_EQ] AFFINE_HYPERPLANE] THEN ASM_CASES_TAC `{x:real^N | a dot x = b} = {x | a' dot x = b'}` THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN ASM_CASES_TAC `a':real^N = vec 0` THENL [ASM_CASES_TAC `b' = &0` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[DOT_LZERO] THEN SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `a:real^N = vec 0` THENL [ASM_CASES_TAC `b = &0` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN ASM_REWRITE_TAC[DOT_LZERO] THEN SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[AFF_DIM_HYPERPLANE; INT_LT_REFL]);;
(* ------------------------------------------------------------------------- *) (* Openness and compactness are preserved by convex hull operation. *) (* ------------------------------------------------------------------------- *)
let OPEN_CONVEX_HULL = 
prove (`!s:real^N->bool. open s ==> open(convex hull s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONVEX_HULL_EXPLICIT; OPEN_CONTAINS_CBALL] THEN REWRITE_TAC[IN_ELIM_THM; SUBSET; LEFT_IMP_EXISTS_THM] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `t:real^N->bool`; `u:real^N->real`] THEN STRIP_TAC THEN SUBGOAL_THEN `?b. !x:real^N. x IN t ==> &0 < b(x) /\ cball(x,b(x)) SUBSET s` STRIP_ASSUME_TAC THENL [REWRITE_TAC[GSYM SKOLEM_THM] THEN ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN ABBREV_TAC `i = IMAGE (b:real^N->real) t` THEN EXISTS_TAC `inf i` THEN MP_TAC(SPEC `i:real->bool` INF_FINITE) THEN EXPAND_TAC "i" THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; IN_IMAGE] THEN ANTS_TAC THENL [EXPAND_TAC "i" THEN CONJ_TAC THENL [ASM_SIMP_TAC[FINITE_IMAGE]; ALL_TAC] THEN REWRITE_TAC[IMAGE_EQ_EMPTY] THEN ASM_MESON_TAC[SUM_CLAUSES; REAL_ARITH `~(&1 = &0)`]; ALL_TAC] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[IN_CBALL; dist] THEN DISCH_TAC THEN EXISTS_TAC `IMAGE (\v:real^N. v + (y - a)) t` THEN EXISTS_TAC `\v. (u:real^N->real)(v - (y - a))` THEN ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE; SUM_IMAGE; VSUM_IMAGE; VECTOR_ARITH `v + a:real^N = w + a <=> v = w`] THEN ASM_REWRITE_TAC[o_DEF; VECTOR_ARITH `(v + a) - a:real^N = v`] THEN ASM_REWRITE_TAC[VECTOR_ADD_LDISTRIB; ETA_AX] THEN ASM_SIMP_TAC[VSUM_ADD; VSUM_RMUL] THEN CONJ_TAC THENL [ALL_TAC; VECTOR_ARITH_TAC] THEN X_GEN_TAC `z:real^N` THEN STRIP_TAC THEN SUBGOAL_THEN `z + (y - a) IN cball(z:real^N,b z)` (fun th -> ASM_MESON_TAC[th; SUBSET]) THEN REWRITE_TAC[IN_CBALL; dist; NORM_ARITH `norm(z - (z + a - y)) = norm(y - a)`] THEN ASM_MESON_TAC[REAL_LE_TRANS]);;
let COMPACT_CONVEX_COMBINATIONS = 
prove (`!s t. compact s /\ compact t ==> compact { (&1 - u) % x + u % y :real^N | &0 <= u /\ u <= &1 /\ x IN s /\ y IN t}`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `{ (&1 - u) % x + u % y :real^N | &0 <= u /\ u <= &1 /\ x IN s /\ y IN t} = IMAGE (\z. (&1 - drop(fstcart z)) % fstcart(sndcart z) + drop(fstcart z) % sndcart(sndcart z)) { pastecart u w | u IN interval[vec 0,vec 1] /\ w IN { pastecart x y | x IN s /\ y IN t} }` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN X_GEN_TAC `x:real^N` THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN CONV_TAC(ONCE_DEPTH_CONV UNWIND_CONV) THEN REWRITE_TAC[FSTCART_PASTECART; SNDCART_PASTECART] THEN REWRITE_TAC[IN_INTERVAL_1; GSYM EXISTS_DROP; DROP_VEC] THEN MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN ASM_SIMP_TAC[COMPACT_PCROSS; GSYM PCROSS; COMPACT_INTERVAL] THEN MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN X_GEN_TAC `z:real^(1,(N,N)finite_sum)finite_sum` THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[PCROSS] THEN MATCH_MP_TAC CONTINUOUS_ADD THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_MUL THEN REWRITE_TAC[o_DEF; LIFT_SUB; LIFT_DROP] THEN CONJ_TAC THEN TRY(MATCH_MP_TAC CONTINUOUS_SUB) THEN REWRITE_TAC[CONTINUOUS_CONST] THEN MATCH_MP_TAC LINEAR_CONTINUOUS_AT THEN REWRITE_TAC[LINEAR_FSTCART; LINEAR_SNDCART; ETA_AX] THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC LINEAR_COMPOSE THEN REWRITE_TAC[LINEAR_FSTCART; LINEAR_SNDCART]);;
let COMPACT_CONVEX_HULL = 
prove (`!s:real^N->bool. compact s ==> compact(convex hull s)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[CARATHEODORY] THEN SPEC_TAC(`dimindex(:N) + 1`,`n:num`) THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_REWRITE_TAC[SUBSET_EMPTY] THEN CONV_TAC(ONCE_DEPTH_CONV UNWIND_CONV) THEN REWRITE_TAC[CONVEX_HULL_EMPTY; NOT_IN_EMPTY] THEN REWRITE_TAC[SET_RULE `{x | F} = {}`; COMPACT_EMPTY]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `w:real^N`) THEN INDUCT_TAC THENL [SUBGOAL_THEN `{x:real^N | ?t. FINITE t /\ t SUBSET s /\ CARD t <= 0 /\ x IN convex hull t} = {}` (fun th -> REWRITE_TAC[th; COMPACT_EMPTY]) THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; LE; IN_ELIM_THM] THEN MESON_TAC[CARD_EQ_0; CONVEX_HULL_EMPTY; NOT_IN_EMPTY]; ALL_TAC] THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[ARITH_RULE `s <= SUC 0 <=> s = 0 \/ s = 1`] THEN UNDISCH_TAC `compact(s:real^N->bool)` THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[TAUT `a /\ b /\ (c \/ d) /\ e <=> (a /\ c) /\ (b /\ e) \/ (a /\ d) /\ (b /\ e)`] THEN REWRITE_TAC[GSYM HAS_SIZE; num_CONV `1`; HAS_SIZE_CLAUSES] THEN REWRITE_TAC[EXISTS_OR_THM; LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN CONV_TAC(TOP_DEPTH_CONV UNWIND_CONV) THEN REWRITE_TAC[NOT_IN_EMPTY; CONVEX_HULL_EMPTY] THEN REWRITE_TAC[CONVEX_HULL_SING] THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `{x:real^N | ?t. FINITE t /\ t SUBSET s /\ CARD t <= SUC n /\ x IN convex hull t} = { (&1 - u) % x + u % y :real^N | &0 <= u /\ u <= &1 /\ x IN s /\ y IN {x | ?t. FINITE t /\ t SUBSET s /\ CARD t <= n /\ x IN convex hull t}}` (fun th -> ASM_SIMP_TAC[th; COMPACT_CONVEX_COMBINATIONS]) THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN EQ_TAC THENL [ALL_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:real^N`; `c:real`; `v:real^N`; `t:real^N->bool`] THEN STRIP_TAC THEN EXISTS_TAC `(u:real^N) INSERT t` THEN ASM_REWRITE_TAC[FINITE_INSERT; INSERT_SUBSET] THEN ASM_SIMP_TAC[CARD_CLAUSES] THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC IN_CONVEX_SET THEN ASM_REWRITE_TAC[CONVEX_CONVEX_HULL] THEN CONJ_TAC THEN ASM_MESON_TAC[HULL_SUBSET; SUBSET; IN_INSERT; HULL_MONO]] THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `CARD(t:real^N->bool) <= n` THENL [MAP_EVERY EXISTS_TAC [`w:real^N`; `&1`; `x:real^N`] THEN ASM_REWRITE_TAC[REAL_POS; REAL_LE_REFL] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; VECTOR_ARITH_TAC]; ALL_TAC] THEN SUBGOAL_THEN `(t:real^N->bool) HAS_SIZE (SUC n)` MP_TAC THENL [ASM_REWRITE_TAC[HAS_SIZE] THEN ASM_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[HAS_SIZE_CLAUSES] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` (X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC)) THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN UNDISCH_TAC `(x:real^N) IN convex hull (a INSERT u)` THEN RULE_ASSUM_TAC(REWRITE_RULE[FINITE_INSERT]) THEN ASM_CASES_TAC `(u:real^N->bool) = {}` THENL [ASM_REWRITE_TAC[CONVEX_HULL_SING; IN_SING] THEN DISCH_THEN SUBST_ALL_TAC THEN MAP_EVERY EXISTS_TAC [`a:real^N`; `&1`; `a:real^N`] THEN ASM_REWRITE_TAC[REAL_POS; REAL_LE_REFL] THEN CONJ_TAC THENL [ALL_TAC; VECTOR_ARITH_TAC] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN EXISTS_TAC `{a:real^N}` THEN SIMP_TAC[FINITE_RULES] THEN REWRITE_TAC[CONVEX_HULL_SING; IN_SING] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SIMP_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY] THEN UNDISCH_TAC `~(n = 0)` THEN ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[CONVEX_HULL_INSERT; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`c:real`; `d:real`; `z:real^N`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`a:real^N`; `d:real`; `z:real^N`] THEN FIRST_X_ASSUM(SUBST_ALL_TAC o MATCH_MP (REAL_ARITH `c + d = &1 ==> c = (&1 - d)`)) THEN ASM_REWRITE_TAC[REAL_ARITH `d <= &1 <=> &0 <= &1 - d`] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN EXISTS_TAC `u:real^N->bool` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN UNDISCH_TAC `CARD ((a:real^N) INSERT u) <= SUC n` THEN ASM_SIMP_TAC[CARD_CLAUSES; LE_SUC]);;
let FINITE_IMP_COMPACT_CONVEX_HULL = 
prove (`!s:real^N->bool. FINITE s ==> compact(convex hull s)`,
(* ------------------------------------------------------------------------- *) (* Extremal points of a simplex are some vertices. *) (* ------------------------------------------------------------------------- *)
let DIST_INCREASES_ONLINE = 
prove (`!a b d. ~(d = vec 0) ==> dist(a,b + d) > dist(a,b) \/ dist(a,b - d) > dist(a,b)`,
REWRITE_TAC[dist; vector_norm; real_gt; GSYM NORM_POS_LT] THEN SIMP_TAC[SQRT_MONO_LT_EQ; DOT_POS_LE; SQRT_LT_0] THEN REWRITE_TAC[DOT_RSUB; DOT_RADD; DOT_LSUB; DOT_LADD] THEN REAL_ARITH_TAC);;
let NORM_INCREASES_ONLINE = 
prove (`!a:real^N d. ~(d = vec 0) ==> norm(a + d) > norm(a) \/ norm(a - d) > norm(a)`,
MP_TAC(ISPEC `vec 0 :real^N` DIST_INCREASES_ONLINE) THEN REWRITE_TAC[dist; VECTOR_SUB_LZERO; NORM_NEG]);;
let SIMPLEX_FURTHEST_LT = 
prove (`!a:real^N s. FINITE s ==> !x. x IN (convex hull s) /\ ~(x IN s) ==> ?y. y IN (convex hull s) /\ norm(x - a) < norm(y - a)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[CONVEX_HULL_EMPTY; NOT_IN_EMPTY] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `s:real^N->bool`] THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_REWRITE_TAC[CONVEX_HULL_SING; IN_SING] THEN MESON_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[CONVEX_HULL_INSERT] THEN STRIP_TAC THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[IN_ELIM_THM; LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:real`; `v:real`; `b:real^N`] THEN ASM_CASES_TAC `y:real^N IN (convex hull s)` THENL [REWRITE_TAC[IN_INSERT; DE_MORGAN_THM] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:real^N`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real^N` THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`&0`; `&1`; `c:real^N`] THEN ASM_REWRITE_TAC[REAL_ADD_LID; REAL_POS] THEN VECTOR_ARITH_TAC; ALL_TAC] THEN ASM_CASES_TAC `u = &0` THENL [ASM_SIMP_TAC[REAL_ADD_LID; VECTOR_MUL_LZERO; VECTOR_ADD_LID] THEN ASM_MESON_TAC[VECTOR_MUL_LID]; ALL_TAC] THEN ASM_CASES_TAC `v = &0` THENL [ASM_SIMP_TAC[REAL_ADD_RID; VECTOR_MUL_LZERO; VECTOR_ADD_RID] THEN ASM_CASES_TAC `u = &1` THEN ASM_REWRITE_TAC[VECTOR_MUL_LID] THEN ASM_CASES_TAC `y = a:real^N` THEN ASM_REWRITE_TAC[IN_INSERT] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_INSERT; DE_MORGAN_THM] THEN STRIP_TAC THEN MP_TAC(SPECL [`u:real`; `v:real`] REAL_DOWN2) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[REAL_LT_LE]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `w:real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`a:real^N`; `y:real^N`; `w % (x - b):real^N`] DIST_INCREASES_ONLINE) THEN ANTS_TAC THENL [ASM_SIMP_TAC[VECTOR_MUL_EQ_0; REAL_LT_IMP_NZ] THEN REWRITE_TAC[VECTOR_ARITH `(x - y = vec 0) <=> (x = y)`] THEN DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `~(y:real^N IN convex hull s)` THEN ASM_REWRITE_TAC[GSYM VECTOR_ADD_RDISTRIB; VECTOR_MUL_LID]; ALL_TAC] THEN ASM_REWRITE_TAC[dist; real_gt] THEN REWRITE_TAC[VECTOR_ARITH `((u % x + v % b) + w % (x - b) = (u + w) % x + (v - w) % b) /\ ((u % x + v % b) - w % (x - b) = (u - w) % x + (v + w) % b)`] THEN STRIP_TAC THENL [MAP_EVERY EXISTS_TAC [`(u + w) % x + (v - w) % b:real^N`; `u + w`; `v - w`; `b:real^N`]; MAP_EVERY EXISTS_TAC [`(u - w) % x + (v + w) % b:real^N`; `u - w`; `v + w`; `b:real^N`]] THEN ONCE_REWRITE_TAC[NORM_SUB] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[REAL_LE_ADD; REAL_LT_IMP_LE; REAL_SUB_LE] THEN UNDISCH_TAC `u + v = &1` THEN REAL_ARITH_TAC);;
let SIMPLEX_FURTHEST_LE = 
prove (`!a:real^N s. FINITE s /\ ~(s = {}) ==> ?y. y IN s /\ !x. x IN (convex hull s) ==> norm(x - a) <= norm(y - a)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(ISPEC `convex hull (s:real^N->bool)` DISTANCE_ATTAINS_SUP) THEN DISCH_THEN(MP_TAC o SPEC `a:real^N`) THEN ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_IMP_COMPACT_CONVEX_HULL] THEN ASM_MESON_TAC[SUBSET_EMPTY; HULL_SUBSET]; ALL_TAC] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[dist] THEN ASM_MESON_TAC[SIMPLEX_FURTHEST_LT; REAL_NOT_LE]);;
let SIMPLEX_FURTHEST_LE_EXISTS = 
prove (`!a:real^N s. FINITE s ==> !x. x IN (convex hull s) ==> ?y. y IN s /\ norm(x - a) <= norm(y - a)`,
let SIMPLEX_EXTREMAL_LE = 
prove (`!s:real^N->bool. FINITE s /\ ~(s = {}) ==> ?u v. u IN s /\ v IN s /\ !x y. x IN convex hull s /\ y IN convex hull s ==> norm(x - y) <= norm(u - v)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `convex hull (s:real^N->bool)` COMPACT_SUP_MAXDISTANCE) THEN ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_IMP_COMPACT_CONVEX_HULL] THEN ASM_MESON_TAC[SUBSET_EMPTY; HULL_SUBSET]; ALL_TAC] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN SIMP_TAC[] THEN ASM_MESON_TAC[SIMPLEX_FURTHEST_LT; REAL_NOT_LE; NORM_SUB]);;
let SIMPLEX_EXTREMAL_LE_EXISTS = 
prove (`!s:real^N->bool x y. FINITE s /\ x IN convex hull s /\ y IN convex hull s ==> ?u v. u IN s /\ v IN s /\ norm(x - y) <= norm(u - v)`,
let DIAMETER_CONVEX_HULL = 
prove (`!s:real^N->bool. diameter(convex hull s) = diameter s`,
let lemma = prove
   (`!a b s. (!x. x IN s ==> dist(a,x) <= b)
             ==> (!x. x IN convex hull s ==> dist(a,x) <= b)`,
    REPEAT GEN_TAC THEN DISCH_TAC THEN
    MATCH_MP_TAC HULL_INDUCT THEN ASM_REWRITE_TAC[GSYM cball; CONVEX_CBALL]) in
  GEN_TAC THEN REWRITE_TAC[diameter; CONVEX_HULL_EQ_EMPTY] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUP_EQ THEN
  REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `b:real` THEN
  EQ_TAC THENL [MESON_TAC[SUBSET; HULL_SUBSET]; ALL_TAC] THEN
  MATCH_MP_TAC(TAUT `!b. (a ==> b) /\ (b ==> c) ==> a ==> c`) THEN
  EXISTS_TAC `!x:real^N y. x IN s /\ y IN convex hull s ==> norm(x - y) <= b`
  THEN CONJ_TAC THENL
   [MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:real^N` THEN
    ASM_CASES_TAC `(x:real^N) IN s` THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[GSYM dist; lemma];
    ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
    MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `y:real^N` THEN
    ASM_CASES_TAC `(y:real^N) IN convex hull s` THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[DIST_SYM] dist); lemma]]);;
let DIAMETER_SIMPLEX = 
prove (`!s:real^N->bool. ~(s = {}) ==> diameter(convex hull s) = sup { dist(x,y) | x IN s /\ y IN s}`,
REWRITE_TAC[DIAMETER_CONVEX_HULL] THEN SIMP_TAC[diameter; dist]);;
(* ------------------------------------------------------------------------- *) (* Closest point of a convex set is unique, with a continuous projection. *) (* ------------------------------------------------------------------------- *)
let CLOSER_POINTS_LEMMA = 
prove (`!y:real^N z. y dot z > &0 ==> ?u. &0 < u /\ !v. &0 < v /\ v <= u ==> norm(v % z - y) < norm y`,
REWRITE_TAC[NORM_LT; DOT_LSUB; DOT_RSUB; DOT_LMUL; DOT_RMUL; REAL_SUB_LDISTRIB; real_gt] THEN REPEAT GEN_TAC THEN REWRITE_TAC[REAL_ARITH `(a - b) - (c - d) < d <=> a < b + c`] THEN STRIP_TAC THEN SUBST1_TAC(VECTOR_ARITH `(z:real^N) dot y = y dot z`) THEN SIMP_TAC[GSYM REAL_ADD_LDISTRIB; REAL_LT_LMUL_EQ] THEN EXISTS_TAC `(y dot (z:real^N)) / (z dot z)` THEN SUBGOAL_THEN `&0 < z dot (z:real^N)` ASSUME_TAC THENL [ASM_MESON_TAC[DOT_POS_LT; DOT_RZERO; REAL_LT_REFL]; ALL_TAC] THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_LE_RDIV_EQ] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < y /\ x <= y ==> x < y + y`; REAL_LT_MUL]);;
let CLOSER_POINT_LEMMA = 
prove (`!x y z. (y - x) dot (z - x) > &0 ==> ?u. &0 < u /\ u <= &1 /\ dist(x + u % (z - x),y) < dist(x,y)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CLOSER_POINTS_LEMMA) THEN ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[dist; NORM_LT] THEN REWRITE_TAC[VECTOR_ARITH `(y - (x + z)) dot (y - (x + z)) = (z - (y - x)) dot (z - (y - x))`] THEN DISCH_THEN(X_CHOOSE_THEN `u:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min u (&1)` THEN ASM_SIMP_TAC[REAL_LT_MIN; REAL_MIN_LE; REAL_LT_01; REAL_LE_REFL]);;
let ANY_CLOSEST_POINT_DOT = 
prove (`!s a x y:real^N. convex s /\ closed s /\ x IN s /\ y IN s /\ (!z. z IN s ==> dist(a,x) <= dist(a,z)) ==> (a - x) dot (y - x) <= &0`,
REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH `x <= &0 <=> ~(x > &0)`] THEN DISCH_THEN(MP_TAC o MATCH_MP CLOSER_POINT_LEMMA) THEN DISCH_THEN(X_CHOOSE_THEN `u:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[REAL_NOT_LT] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[VECTOR_ARITH `x + u % (y - x) = (&1 - u) % x + u % y`] THEN MATCH_MP_TAC IN_CONVEX_SET THEN ASM_SIMP_TAC[REAL_LT_IMP_LE]);;
let ANY_CLOSEST_POINT_UNIQUE = 
prove (`!s a x y:real^N. convex s /\ closed s /\ x IN s /\ y IN s /\ (!z. z IN s ==> dist(a,x) <= dist(a,z)) /\ (!z. z IN s ==> dist(a,y) <= dist(a,z)) ==> x = y`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN REWRITE_TAC[GSYM NORM_LE_0; NORM_LE_SQUARE] THEN SUBGOAL_THEN `(a - x:real^N) dot (y - x) <= &0 /\ (a - y) dot (x - y) <= &0` MP_TAC THENL [ASM_MESON_TAC[ANY_CLOSEST_POINT_DOT]; ALL_TAC] THEN REWRITE_TAC[NORM_LT; DOT_LSUB; DOT_RSUB] THEN REAL_ARITH_TAC);;
let CLOSEST_POINT_UNIQUE = 
prove (`!s a x:real^N. convex s /\ closed s /\ x IN s /\ (!z. z IN s ==> dist(a,x) <= dist(a,z)) ==> x = closest_point s a`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC ANY_CLOSEST_POINT_UNIQUE THEN MAP_EVERY EXISTS_TAC [`s:real^N->bool`; `a:real^N`] THEN ASM_MESON_TAC[CLOSEST_POINT_EXISTS; MEMBER_NOT_EMPTY]);;
let CLOSEST_POINT_DOT = 
prove (`!s a x:real^N. convex s /\ closed s /\ x IN s ==> (a - closest_point s a) dot (x - closest_point s a) <= &0`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC ANY_CLOSEST_POINT_DOT THEN EXISTS_TAC `s:real^N->bool` THEN ASM_MESON_TAC[CLOSEST_POINT_EXISTS; MEMBER_NOT_EMPTY]);;
let CLOSEST_POINT_LT = 
prove (`!s a x. convex s /\ closed s /\ x IN s /\ ~(x = closest_point s a) ==> dist(a,closest_point s a) < dist(a,x)`,
REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[GSYM REAL_NOT_LE; CONTRAPOS_THM] THEN DISCH_TAC THEN MATCH_MP_TAC CLOSEST_POINT_UNIQUE THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CLOSEST_POINT_LE; REAL_LE_TRANS]);;
let CLOSEST_POINT_LIPSCHITZ = 
prove (`!s x y:real^N. convex s /\ closed s /\ ~(s = {}) ==> dist(closest_point s x,closest_point s y) <= dist(x,y)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[dist; NORM_LE] THEN SUBGOAL_THEN `(x - closest_point s x :real^N) dot (closest_point s y - closest_point s x) <= &0 /\ (y - closest_point s y) dot (closest_point s x - closest_point s y) <= &0` MP_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC ANY_CLOSEST_POINT_DOT THEN EXISTS_TAC `s:real^N->bool` THEN ASM_MESON_TAC[CLOSEST_POINT_EXISTS]; MP_TAC(ISPEC `(x - closest_point s x :real^N) - (y - closest_point s y)` DOT_POS_LE) THEN REWRITE_TAC[NORM_LT; DOT_LSUB; DOT_RSUB; DOT_SYM] THEN REAL_ARITH_TAC]);;
let CONTINUOUS_AT_CLOSEST_POINT = 
prove (`!s x. convex s /\ closed s /\ ~(s = {}) ==> (closest_point s) continuous (at x)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[continuous_at] THEN ASM_MESON_TAC[CLOSEST_POINT_LIPSCHITZ; REAL_LET_TRANS]);;
let CONTINUOUS_ON_CLOSEST_POINT = 
prove (`!s t. convex s /\ closed s /\ ~(s = {}) ==> (closest_point s) continuous_on t`,
(* ------------------------------------------------------------------------- *) (* Relating closest points and orthogonality. *) (* ------------------------------------------------------------------------- *)
let ANY_CLOSEST_POINT_AFFINE_ORTHOGONAL = 
prove (`!s a b:real^N. affine s /\ b IN s /\ (!x. x IN s ==> dist(a,b) <= dist(a,x)) ==> (!x. x IN s ==> orthogonal (x - b) (a - b))`,
REPEAT GEN_TAC THEN GEOM_ORIGIN_TAC `b:real^N` THEN REWRITE_TAC[DIST_0; VECTOR_SUB_RZERO; orthogonal; dist; NORM_LE] THEN REWRITE_TAC[DOT_LSUB] THEN REWRITE_TAC[DOT_RSUB] THEN REWRITE_TAC[DOT_SYM; REAL_ARITH `a <= a - y - (y - x) <=> &2 * y <= x`] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_RZERO] THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `vec 0 + --((a dot x) / (x dot x)) % (x - vec 0:real^N)` th) THEN MP_TAC(SPEC `vec 0 + (a dot x) / (x dot x) % (x - vec 0:real^N)` th)) THEN ASM_SIMP_TAC[IN_AFFINE_ADD_MUL_DIFF] THEN REWRITE_TAC[VECTOR_SUB_RZERO; VECTOR_ADD_LID; DOT_RMUL] THEN REWRITE_TAC[DOT_LMUL; IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH `&2 * x * a <= b * c * z /\ &2 * --x * a <= --b * --c * z ==> &2 * abs(x * a) <= b * c * z`)) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN ASM_SIMP_TAC[REAL_NOT_LE; REAL_DIV_RMUL; DOT_EQ_0] THEN MATCH_MP_TAC(REAL_ARITH `~(x = &0) ==> x < &2 * abs x`) THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM DOT_EQ_0]) THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);;
let ORTHOGONAL_ANY_CLOSEST_POINT = 
prove (`!s a b:real^N. b IN s /\ (!x. x IN s ==> orthogonal (x - b) (a - b)) ==> (!x. x IN s ==> dist(a,b) <= dist(a,x))`,
REPEAT GEN_TAC THEN GEOM_ORIGIN_TAC `b:real^N` THEN REWRITE_TAC[dist; NORM_LE; orthogonal; VECTOR_SUB_RZERO] THEN SIMP_TAC[DOT_LSUB; DOT_RSUB; DOT_SYM] THEN REWRITE_TAC[DOT_POS_LE; REAL_ARITH `a <= a - &0 - (&0 - x) <=> &0 <= x`]);;
let CLOSEST_POINT_AFFINE_ORTHOGONAL = 
prove (`!s a:real^N x. affine s /\ ~(s = {}) /\ x IN s ==> orthogonal (x - closest_point s a) (a - closest_point s a)`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN DISCH_TAC THEN GEN_TAC THEN MATCH_MP_TAC ANY_CLOSEST_POINT_AFFINE_ORTHOGONAL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSEST_POINT_EXISTS THEN ASM_SIMP_TAC[CLOSED_AFFINE]);;
let CLOSEST_POINT_AFFINE_ORTHOGONAL_EQ = 
prove (`!s a b:real^N. affine s /\ b IN s ==> (closest_point s a = b <=> !x. x IN s ==> orthogonal (x - b) (a - b))`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[CLOSEST_POINT_AFFINE_ORTHOGONAL; MEMBER_NOT_EMPTY]; DISCH_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CLOSEST_POINT_UNIQUE THEN ASM_SIMP_TAC[CLOSED_AFFINE; AFFINE_IMP_CONVEX] THEN MATCH_MP_TAC ORTHOGONAL_ANY_CLOSEST_POINT THEN ASM_REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Various point-to-set separating/supporting hyperplane theorems. *) (* ------------------------------------------------------------------------- *)
let SUPPORTING_HYPERPLANE_COMPACT_POINT_SUP = 
prove (`!a c s:real^N->bool. compact s /\ ~(s = {}) ==> ?b y. y IN s /\ a dot (y - c) = b /\ (!x. x IN s ==> a dot (x - c) <= b)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\x:real^N. a dot (x - c)`; `s:real^N->bool`] CONTINUOUS_ATTAINS_SUP) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN SUBGOAL_THEN `(\x:real^N. a dot (x - c)) = (\x. a dot x) o (\x. x - c)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN REWRITE_TAC[o_ASSOC] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[CONTINUOUS_ON_LIFT_DOT; CONTINUOUS_ON_SUB; CONTINUOUS_ON_CONST; CONTINUOUS_ON_ID]);;
let SUPPORTING_HYPERPLANE_COMPACT_POINT_INF = 
prove (`!a c s:real^N->bool. compact s /\ ~(s = {}) ==> ?b y. y IN s /\ a dot (y - c) = b /\ (!x. x IN s ==> a dot (x - c) >= b)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`--a:real^N`; `c:real^N`; `s:real^N->bool`] SUPPORTING_HYPERPLANE_COMPACT_POINT_SUP) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `b:real` (fun th -> EXISTS_TAC `--b:real` THEN MP_TAC th)) THEN REWRITE_TAC[DOT_LNEG; REAL_ARITH `x >= -- b <=> --x <= b`] THEN REWRITE_TAC[REAL_NEG_EQ]);;
let SUPPORTING_HYPERPLANE_CLOSED_POINT = 
prove (`!s z:real^N. convex s /\ closed s /\ ~(s = {}) /\ ~(z IN s) ==> ?a b y. a dot z < b /\ y IN s /\ (a dot y = b) /\ (!x. x IN s ==> a dot x >= b)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `z:real^N`] DISTANCE_ATTAINS_INF) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `y:real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `y - z:real^N` THEN EXISTS_TAC `(y - z:real^N) dot y` THEN EXISTS_TAC `y:real^N` THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN ASM_REWRITE_TAC[GSYM DOT_RSUB; DOT_POS_LT; VECTOR_SUB_EQ] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `!u. &0 <= u /\ u <= &1 ==> dist(z:real^N,y) <= dist(z,(&1 - u) % y + u % x)` MP_TAC THENL [ASM_MESON_TAC[CONVEX_ALT]; ALL_TAC] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[real_ge; REAL_NOT_LE; NOT_FORALL_THM; NOT_IMP] THEN GEN_REWRITE_TAC LAND_CONV [REAL_ARITH `x < y <=> y - x > &0`] THEN REWRITE_TAC[VECTOR_ARITH `(a - b) dot x - (a - b) dot y = (b - a) dot (y - x)`] THEN DISCH_THEN(MP_TAC o MATCH_MP CLOSER_POINT_LEMMA) THEN REWRITE_TAC[VECTOR_ARITH `y + u % (x - y) = (&1 - u) % y + u % x`] THEN MESON_TAC[REAL_LT_IMP_LE]);;
let SEPARATING_HYPERPLANE_CLOSED_POINT_INSET = 
prove (`!s z:real^N. convex s /\ closed s /\ ~(s = {}) /\ ~(z IN s) ==> ?a b. a IN s /\ (a - z) dot z < b /\ (!x. x IN s ==> (a - z) dot x > b)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `z:real^N`] DISTANCE_ATTAINS_INF) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `y:real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `y:real^N` THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `(y - z:real^N) dot z + norm(y - z) pow 2 / &2` THEN SUBGOAL_THEN `&0 < norm(y - z:real^N)` ASSUME_TAC THENL [ASM_MESON_TAC[NORM_POS_LT; VECTOR_SUB_EQ]; ALL_TAC] THEN ASM_SIMP_TAC[REAL_LT_ADDR; REAL_LT_DIV; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN REWRITE_TAC[NORM_POW_2; REAL_ARITH `a > b + c <=> c < a - b`] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN SIMP_TAC[REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN REWRITE_TAC[VECTOR_ARITH `((y - z) dot x - (y - z) dot z) * &2 - (y - z) dot (y - z) = &2 * ((y - z) dot (x - y)) + (y - z) dot (y - z)`] THEN MATCH_MP_TAC(REAL_ARITH `~(--x > &0) /\ &0 < y ==> &0 < &2 * x + y`) THEN ASM_SIMP_TAC[GSYM NORM_POW_2; REAL_POW_LT] THEN REWRITE_TAC[GSYM DOT_LNEG; VECTOR_NEG_SUB] THEN DISCH_THEN(MP_TAC o MATCH_MP CLOSER_POINT_LEMMA) THEN REWRITE_TAC[NOT_EXISTS_THM] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[REAL_NOT_LT] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[VECTOR_ARITH `y + u % (x - y) = (&1 - u) % y + u % x`] THEN ASM_MESON_TAC[CONVEX_ALT; REAL_LT_IMP_LE]);;
let SEPARATING_HYPERPLANE_CLOSED_0_INSET = 
prove (`!s:real^N->bool. convex s /\ closed s /\ ~(s = {}) /\ ~(vec 0 IN s) ==> ?a b. a IN s /\ ~(a = vec 0) /\ &0 < b /\ (!x. x IN s ==> a dot x > b)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP SEPARATING_HYPERPLANE_CLOSED_POINT_INSET) THEN REWRITE_TAC[DOT_RZERO; real_gt] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN SIMP_TAC[VECTOR_SUB_RZERO] THEN ASM_MESON_TAC[]);;
let SEPARATING_HYPERPLANE_CLOSED_POINT = 
prove (`!s z:real^N. convex s /\ closed s /\ ~(z IN s) ==> ?a b. a dot z < b /\ (!x. x IN s ==> a dot x > b)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [MAP_EVERY EXISTS_TAC [`--z:real^N`; `&1`] THEN SIMP_TAC[DOT_LNEG; REAL_ARITH `&0 <= x ==> --x < &1`; DOT_POS_LE] THEN ASM_MESON_TAC[NOT_IN_EMPTY]; ALL_TAC] THEN ASM_MESON_TAC[SEPARATING_HYPERPLANE_CLOSED_POINT_INSET]);;
let SEPARATING_HYPERPLANE_CLOSED_0 = 
prove (`!s:real^N->bool. convex s /\ closed s /\ ~(vec 0 IN s) ==> ?a b. ~(a = vec 0) /\ &0 < b /\ (!x. x IN s ==> a dot x > b)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [EXISTS_TAC `basis 1:real^N` THEN EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; REAL_LT_01; GSYM NORM_POS_LT] THEN ASM_SIMP_TAC[NORM_BASIS; DIMINDEX_GE_1; LE_REFL; REAL_LT_01]; FIRST_X_ASSUM(MP_TAC o MATCH_MP SEPARATING_HYPERPLANE_CLOSED_POINT) THEN REWRITE_TAC[DOT_RZERO; real_gt] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY; DOT_LZERO; REAL_LT_ANTISYM]]);;
(* ------------------------------------------------------------------------- *) (* Now set-to-set for closed/compact sets. *) (* ------------------------------------------------------------------------- *)
let SEPARATING_HYPERPLANE_CLOSED_COMPACT = 
prove (`!s t. convex s /\ closed s /\ convex t /\ compact t /\ ~(t = {}) /\ DISJOINT s t ==> ?a:real^N b. (!x. x IN s ==> a dot x < b) /\ (!x. x IN t ==> a dot x > b)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN REWRITE_TAC[BOUNDED_POS] THEN DISCH_THEN(X_CHOOSE_THEN `b:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?z:real^N. norm(z) = b + &1` CHOOSE_TAC THENL [ASM_SIMP_TAC[VECTOR_CHOOSE_SIZE; REAL_ARITH `&0 < b ==> &0 <= b + &1`]; ALL_TAC] THEN MP_TAC(SPECL [`t:real^N->bool`; `z:real^N`] SEPARATING_HYPERPLANE_CLOSED_POINT) THEN ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED] THEN ASM_MESON_TAC[REAL_ARITH `~(b + &1 <= b)`]; ALL_TAC] THEN MP_TAC(ISPECL [`{x - y:real^N | x IN s /\ y IN t}`; `vec 0 :real^N`] SEPARATING_HYPERPLANE_CLOSED_POINT) THEN ASM_SIMP_TAC[CLOSED_COMPACT_DIFFERENCES; CONVEX_DIFFERENCES] THEN ANTS_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN REWRITE_TAC[VECTOR_SUB_EQ] THEN ASM_MESON_TAC[DISJOINT; NOT_IN_EMPTY; IN_INTER; EXTENSION]; ALL_TAC] THEN SIMP_TAC[DOT_RZERO; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real`] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_FORALL_THM] THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL; DOT_RSUB] THEN REWRITE_TAC[real_gt; REAL_LT_SUB_LADD] THEN DISCH_TAC THEN EXISTS_TAC `--a:real^N` THEN MP_TAC(SPEC `IMAGE (\x:real^N. a dot x) t` SUP) THEN ABBREV_TAC `k = sup (IMAGE (\x:real^N. a dot x) t)` THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; IMAGE_EQ_EMPTY] THEN ANTS_TAC THENL [ASM_MESON_TAC[REAL_ARITH `b + x < y ==> x <= y - b`; MEMBER_NOT_EMPTY]; ALL_TAC] THEN STRIP_TAC THEN EXISTS_TAC `--(k + b / &2)` THEN REWRITE_TAC[DOT_LNEG; REAL_LT_NEG2] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; REAL_ARITH `&0 < b /\ x <= k ==> x < k + b`] THEN FIRST_X_ASSUM(MP_TAC o SPEC `k - b / &2`) THEN ASM_SIMP_TAC[REAL_ARITH `k <= k - b2 <=> ~(&0 < b2)`; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; NOT_FORALL_THM; LEFT_IMP_EXISTS_THM; NOT_IMP] THEN X_GEN_TAC `y:real^N` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC(REAL_ARITH `!b. (b2 + b2 = b) /\ b + ay < ax ==> ~(ay <= k - b2) ==> k + b2 < ax`) THEN ASM_MESON_TAC[REAL_HALF]);;
let SEPARATING_HYPERPLANE_COMPACT_CLOSED = 
prove (`!s t. convex s /\ compact s /\ ~(s = {}) /\ convex t /\ closed t /\ DISJOINT s t ==> ?a:real^N b. (!x. x IN s ==> a dot x < b) /\ (!x. x IN t ==> a dot x > b)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`t:real^N->bool`; `s:real^N->bool`] SEPARATING_HYPERPLANE_CLOSED_COMPACT) THEN ANTS_TAC THENL [ASM_MESON_TAC[DISJOINT_SYM]; ALL_TAC] THEN REWRITE_TAC[real_gt] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` (X_CHOOSE_THEN `b:real` STRIP_ASSUME_TAC)) THEN MAP_EVERY EXISTS_TAC [`--a:real^N`; `--b:real`] THEN ASM_REWRITE_TAC[REAL_LT_NEG2; DOT_LNEG]);;
let SEPARATING_HYPERPLANE_COMPACT_CLOSED_NONZERO = 
prove (`!s t:real^N->bool. convex s /\ compact s /\ ~(s = {}) /\ convex t /\ closed t /\ DISJOINT s t ==> ?a b. ~(a = vec 0) /\ (!x. x IN s ==> a dot x < b) /\ (!x. x IN t ==> a dot x > b)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `t:real^N->bool = {}` THENL [ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN STRIP_TAC THEN EXISTS_TAC `basis 1:real^N` THEN SUBGOAL_THEN `bounded(IMAGE (\x:real^N. lift(basis 1 dot x)) s)` MP_TAC THENL [MATCH_MP_TAC COMPACT_IMP_BOUNDED THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN ASM_SIMP_TAC[REWRITE_RULE[o_DEF] CONTINUOUS_ON_LIFT_DOT]; REWRITE_TAC[BOUNDED_POS_LT; FORALL_IN_IMAGE; NORM_LIFT] THEN SIMP_TAC[BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL] THEN MESON_TAC[REAL_ARITH `abs x < b ==> x < b`]]; STRIP_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `t:real^N->bool`] SEPARATING_HYPERPLANE_COMPACT_CLOSED) THEN ASM_REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN ASM_CASES_TAC `a:real^N = vec 0` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[DOT_LZERO; real_gt] THEN ASM_MESON_TAC[REAL_LT_ANTISYM; MEMBER_NOT_EMPTY]]);;
let SEPARATING_HYPERPLANE_COMPACT_COMPACT = 
prove (`!s t:real^N->bool. convex s /\ compact s /\ convex t /\ compact t /\ DISJOINT s t ==> ?a b. ~(a = vec 0) /\ (!x. x IN s ==> a dot x < b) /\ (!x. x IN t ==> a dot x > b)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN STRIP_TAC THEN EXISTS_TAC `--basis 1:real^N` THEN SUBGOAL_THEN `bounded(IMAGE (\x:real^N. lift(basis 1 dot x)) t)` MP_TAC THENL [MATCH_MP_TAC COMPACT_IMP_BOUNDED THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN ASM_SIMP_TAC[REWRITE_RULE[o_DEF] CONTINUOUS_ON_LIFT_DOT]; REWRITE_TAC[BOUNDED_POS_LT; FORALL_IN_IMAGE; NORM_LIFT] THEN SIMP_TAC[VECTOR_NEG_EQ_0; BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL] THEN DISCH_THEN(X_CHOOSE_THEN `b:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `--b:real` THEN REWRITE_TAC[DOT_LNEG] THEN REWRITE_TAC[REAL_ARITH `--x > --y <=> x < y`] THEN ASM_MESON_TAC[REAL_ARITH `abs x < b ==> x < b`]]; STRIP_TAC THEN MATCH_MP_TAC SEPARATING_HYPERPLANE_COMPACT_CLOSED_NONZERO THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED]]);;
(* ------------------------------------------------------------------------- *) (* General case without assuming closure and getting non-strict separation. *) (* ------------------------------------------------------------------------- *)
let SEPARATING_HYPERPLANE_SET_0_INSPAN = 
prove (`!s:real^N->bool. convex s /\ ~(s = {}) /\ ~(vec 0 IN s) ==> ?a b. a IN span s /\ ~(a = vec 0) /\ !x. x IN s ==> &0 <= a dot x`,
REPEAT STRIP_TAC THEN ABBREV_TAC `k = \c:real^N. {x | &0 <= c dot x}` THEN SUBGOAL_THEN `~((span s INTER frontier(cball(vec 0:real^N,&1))) INTER (INTERS (IMAGE k (s:real^N->bool))) = {})` MP_TAC THENL [ALL_TAC; SIMP_TAC[EXTENSION; NOT_IN_EMPTY; IN_INTER; IN_INTERS; NOT_FORALL_THM; FORALL_IN_IMAGE; FRONTIER_CBALL; REAL_LT_01] THEN EXPAND_TAC "k" THEN REWRITE_TAC[IN_SPHERE_0; IN_ELIM_THM; NORM_NEG] THEN MESON_TAC[NORM_EQ_0; REAL_ARITH `~(&1 = &0)`; DOT_SYM]] THEN MATCH_MP_TAC COMPACT_IMP_FIP THEN SIMP_TAC[COMPACT_CBALL; COMPACT_FRONTIER; FORALL_IN_IMAGE; CLOSED_INTER_COMPACT; CLOSED_SPAN] THEN CONJ_TAC THENL [EXPAND_TAC "k" THEN REWRITE_TAC[GSYM real_ge; CLOSED_HALFSPACE_GE]; ALL_TAC] THEN REWRITE_TAC[FINITE_SUBSET_IMAGE] THEN GEN_TAC THEN DISCH_THEN(X_CHOOSE_THEN `c:real^N->bool` MP_TAC) THEN ASM_CASES_TAC `c:real^N->bool = {}` THENL [ASM_SIMP_TAC[INTERS_0; INTER_UNIV; IMAGE_CLAUSES] THEN DISCH_THEN(K ALL_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN SUBGOAL_THEN `~(a:real^N = vec 0)` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `inv(norm a) % a:real^N` THEN ASM_SIMP_TAC[IN_INTER; FRONTIER_CBALL; SPAN_CLAUSES; IN_SPHERE_0] THEN REWRITE_TAC[DIST_0; NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM] THEN ASM_SIMP_TAC[REAL_MUL_LINV; NORM_EQ_0]; ALL_TAC] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPEC `convex hull (c:real^N->bool)` SEPARATING_HYPERPLANE_CLOSED_0_INSET) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[CONVEX_HULL_EQ_EMPTY] THEN ASM_MESON_TAC[CONVEX_CONVEX_HULL; SUBSET; SUBSET_HULL; HULL_SUBSET; FINITE_IMP_COMPACT_CONVEX_HULL; COMPACT_IMP_CLOSED]; ALL_TAC] THEN REWRITE_TAC[DOT_RZERO; real_gt] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` (X_CHOOSE_THEN `b:real` STRIP_ASSUME_TAC)) THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER; IN_INTERS; FORALL_IN_IMAGE] THEN EXPAND_TAC "k" THEN SIMP_TAC[IN_ELIM_THM; FRONTIER_CBALL; REAL_LT_01] THEN REWRITE_TAC[dist; VECTOR_SUB_LZERO; NORM_NEG] THEN EXISTS_TAC `inv(norm(a)) % a:real^N` THEN REWRITE_TAC[DOT_RMUL] THEN SUBGOAL_THEN `(a:real^N) IN s` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; HULL_MINIMAL]; ASM_SIMP_TAC[SPAN_CLAUSES]] THEN REWRITE_TAC[IN_SPHERE_0; VECTOR_SUB_LZERO; NORM_NEG; NORM_MUL] THEN REWRITE_TAC[REAL_ABS_INV; REAL_ABS_NORM] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_EQ_LDIV_EQ; NORM_POS_LT] THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID] THEN ASM_MESON_TAC[REAL_LT_IMP_LE; REAL_LE_TRANS; HULL_SUBSET; SUBSET; DOT_SYM]);;
let SEPARATING_HYPERPLANE_SET_POINT_INAFF = 
prove (`!s z:real^N. convex s /\ ~(s = {}) /\ ~(z IN s) ==> ?a b. (z + a) IN affine hull (z INSERT s) /\ ~(a = vec 0) /\ a dot z <= b /\ (!x. x IN s ==> a dot x >= b)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `IMAGE (\x:real^N. --z + x) s` SEPARATING_HYPERPLANE_SET_0_INSPAN) THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; CONVEX_TRANSLATION; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[IN_IMAGE; VECTOR_ARITH `vec 0:real^N = --z + x <=> x = z`] THEN ASM_SIMP_TAC[UNWIND_THM2; AFFINE_HULL_INSERT_SPAN; IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN REWRITE_TAC[GSYM SIMPLE_IMAGE; VECTOR_ARITH `--x + y:real^N = y - x`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN EXISTS_TAC `(a:real^N) dot z` THEN REWRITE_TAC[REAL_LE_REFL] THEN ASM_REWRITE_TAC[REAL_ARITH `x >= y <=> &0 <= x - y`; GSYM DOT_RSUB]);;
let SEPARATING_HYPERPLANE_SET_0 = 
prove (`!s:real^N->bool. convex s /\ ~(vec 0 IN s) ==> ?a b. ~(a = vec 0) /\ !x. x IN s ==> &0 <= a dot x`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN MESON_TAC[BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1]; ASM_MESON_TAC[SEPARATING_HYPERPLANE_SET_0_INSPAN]]);;
let SEPARATING_HYPERPLANE_SETS = 
prove (`!s t. convex s /\ convex t /\ ~(s = {}) /\ ~(t = {}) /\ DISJOINT s t ==> ?a:real^N b. ~(a = vec 0) /\ (!x. x IN s ==> a dot x <= b) /\ (!x. x IN t ==> a dot x >= b)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `{y - x:real^N | y IN t /\ x IN s}` SEPARATING_HYPERPLANE_SET_0) THEN ASM_SIMP_TAC[CONVEX_DIFFERENCES] THEN ANTS_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN REWRITE_TAC[VECTOR_SUB_EQ] THEN ASM_MESON_TAC[DISJOINT; NOT_IN_EMPTY; IN_INTER; EXTENSION]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_FORALL_THM] THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL; DOT_RSUB; REAL_SUB_LE] THEN DISCH_TAC THEN MP_TAC(SPEC `IMAGE (\x:real^N. a dot x) s` SUP) THEN ABBREV_TAC `k = sup (IMAGE (\x:real^N. a dot x) s)` THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; IMAGE_EQ_EMPTY; real_ge] THEN ANTS_TAC THENL [ASM_MESON_TAC[MEMBER_NOT_EMPTY]; ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* More convexity generalities. *) (* ------------------------------------------------------------------------- *)
let CONVEX_CLOSURE = 
prove (`!s:real^N->bool. convex s ==> convex(closure s)`,
REWRITE_TAC[convex; CLOSURE_SEQUENTIAL] THEN GEN_TAC THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `u:real`; `v:real`] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a:num->real^N`) MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `b:num->real^N`) MP_TAC) THEN STRIP_TAC THEN EXISTS_TAC `\n:num. u % a(n) + v % b(n) :real^N` THEN ASM_SIMP_TAC[LIM_ADD; LIM_CMUL]);;
let CONVEX_INTERIOR = 
prove (`!s:real^N->bool. convex s ==> convex(interior s)`,
REWRITE_TAC[CONVEX_ALT; IN_INTERIOR; SUBSET; IN_BALL; dist] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `d:real`) MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `e:real`) STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d e` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN X_GEN_TAC `z:real^N` THEN STRIP_TAC THEN SUBST1_TAC(VECTOR_ARITH `z:real^N = (&1 - u) % (z - u % (y - x)) + u % (z + (&1 - u) % (y - x))`) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[VECTOR_ARITH `x - (z - u % (y - x)) = ((&1 - u) % x + u % y) - z:real^N`; VECTOR_ARITH `y - (z + (&1 - u) % (y - x)) = ((&1 - u) % x + u % y) - z:real^N`]);;
(* ------------------------------------------------------------------------- *) (* Moving and scaling convex hulls. *) (* ------------------------------------------------------------------------- *)
let CONVEX_HULL_TRANSLATION = 
prove (`!a:real^N s. convex hull (IMAGE (\x. a + x) s) = IMAGE (\x. a + x) (convex hull s)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC HULL_IMAGE THEN REWRITE_TAC[CONVEX_TRANSLATION_EQ; CONVEX_CONVEX_HULL] THEN REWRITE_TAC[VECTOR_ARITH `a + x:real^N = y <=> x = y - a`; EXISTS_REFL] THEN VECTOR_ARITH_TAC);;
add_translation_invariants [CONVEX_HULL_TRANSLATION];;
let CONVEX_HULL_SCALING = 
prove (`!s:real^N->bool c. convex hull (IMAGE (\x. c % x) s) = IMAGE (\x. c % x) (convex hull s)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `c = &0` THENL [ASM_SIMP_TAC[IMAGE_CONST; VECTOR_MUL_LZERO; CONVEX_HULL_EQ_EMPTY] THEN COND_CASES_TAC THEN REWRITE_TAC[CONVEX_HULL_EMPTY; CONVEX_HULL_SING]; ALL_TAC] THEN MATCH_MP_TAC HULL_IMAGE THEN ASM_SIMP_TAC[CONVEX_SCALING_EQ; CONVEX_CONVEX_HULL] THEN REWRITE_TAC[VECTOR_ARITH `c % x = c % y <=> c % (x - y) = vec 0`] THEN ASM_SIMP_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ] THEN X_GEN_TAC `x:real^N` THEN EXISTS_TAC `inv c % x:real^N` THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RINV; VECTOR_MUL_LID]);;
let CONVEX_HULL_AFFINITY = 
prove (`!s a:real^N c. convex hull (IMAGE (\x. a + c % x) s) = IMAGE (\x. a + c % x) (convex hull s)`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `(\x:real^N. a + c % x) = (\x. a + x) o (\x. c % x)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN ASM_SIMP_TAC[IMAGE_o; CONVEX_HULL_TRANSLATION; CONVEX_HULL_SCALING]);;
(* ------------------------------------------------------------------------- *) (* Convex set as intersection of halfspaces. *) (* ------------------------------------------------------------------------- *)
let CONVEX_HALFSPACE_INTERSECTION = 
prove (`!s. closed(s:real^N->bool) /\ convex s ==> s = INTERS {h | s SUBSET h /\ ?a b. h = {x | a dot x <= b}}`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_INTERS] THEN X_GEN_TAC `x:real^N` THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[MESON[] `(!t. (P t /\ ?a b. t = x a b) ==> Q t) <=> (!a b. P(x a b) ==> Q(x a b))`] THEN EQ_TAC THENL [SET_TAC[]; ALL_TAC] THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `x:real^N`] SEPARATING_HYPERPLANE_CLOSED_POINT) THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`--a:real^N`; `--b:real`]) THEN ASM_SIMP_TAC[SUBSET; IN_ELIM_THM; DOT_LNEG; NOT_IMP] THEN ASM_SIMP_TAC[REAL_LE_NEG2; REAL_LT_NEG2; REAL_NOT_LE; REAL_ARITH `a > b ==> b <= a`]);;
(* ------------------------------------------------------------------------- *) (* Radon's theorem (from Lars Schewe). *) (* ------------------------------------------------------------------------- *)
let RADON_EX_LEMMA = 
prove (`!(c:real^N->bool). FINITE c /\ affine_dependent c ==> (?u. sum c u = &0 /\ (?v. v IN c /\ ~(u v = &0)) /\ vsum c (\v. u v % v) = (vec 0):real^N)`,
REWRITE_TAC[AFFINE_DEPENDENT_EXPLICIT] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `\v:real^N. if v IN s then u v else &0` THEN ASM_SIMP_TAC[GSYM SUM_RESTRICT_SET] THEN ASM_SIMP_TAC[COND_RAND;COND_RATOR; VECTOR_MUL_LZERO;GSYM VSUM_RESTRICT_SET] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET c ==> {x | x IN c /\ x IN s} = s`] THEN EXISTS_TAC `v:real^N` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);;
let RADON_S_LEMMA = 
prove (`!(s:A->bool) f. FINITE s /\ sum s f = &0 ==> sum {x | x IN s /\ &0 < f x} f = -- sum {x | x IN s /\ f x < &0} f`,
REWRITE_TAC[REAL_ARITH `a = --b <=> a + b = &0`] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FINITE_RESTRICT;GSYM SUM_UNION; REWRITE_RULE [REAL_ARITH `&0 < f x ==> ~(f x < &0)`] (SET_RULE `(!x:A. &0 < f x ==> ~(f x < &0)) ==> DISJOINT {x | x IN s /\ &0 < f x} {x | x IN s /\ f x < &0}`)] THEN MATCH_MP_TAC (REAL_ARITH `!a b.a = &0 /\ a + b = &0 ==> b = &0`) THEN EXISTS_TAC `sum {x:A | x IN s /\ f x = &0} f` THEN CONJ_TAC THENL [ASM_SIMP_TAC[SUM_RESTRICT_SET] THEN REWRITE_TAC[COND_ID;SUM_0]; ALL_TAC] THEN SUBGOAL_THEN `DISJOINT {x:A | x IN s /\ f x = &0} ({x | x IN s /\ &0 < f x} UNION {x | x IN s /\ f x < &0})` ASSUME_TAC THENL [REWRITE_TAC[DISJOINT;UNION;INTER;IN_ELIM_THM;EXTENSION;NOT_IN_EMPTY] THEN REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[FINITE_UNION;FINITE_RESTRICT;GSYM SUM_UNION] THEN FIRST_X_ASSUM (SUBST1_TAC o GSYM) THEN MATCH_MP_TAC (MESON[] `a = b ==> sum a f = sum b f`) THEN REWRITE_TAC[EXTENSION;IN_ELIM_THM;UNION] THEN MESON_TAC[REAL_LT_TOTAL]);;
let RADON_V_LEMMA = 
prove (`!(s:A->bool) f g. FINITE s /\ vsum s f = vec 0 /\ (!x. g x = &0 ==> f x = vec 0) ==> (vsum {x | x IN s /\ &0 < g x} f) :real^N = -- vsum {x | x IN s /\ g x < &0} f`,
REWRITE_TAC[VECTOR_ARITH `a:real^N = --b <=> a + b = vec 0`] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FINITE_RESTRICT;GSYM VSUM_UNION; REWRITE_RULE [REAL_ARITH `&0 < f x ==> ~(f x < &0)`] (SET_RULE `(!x:A. &0 < f x ==> ~(f x < &0)) ==> DISJOINT {x | x IN s /\ &0 < f x} {x | x IN s /\ f x < &0}`)] THEN MATCH_MP_TAC (VECTOR_ARITH `!a b. (a:real^N) = vec 0 /\ a + b = vec 0 ==> b = vec 0`) THEN EXISTS_TAC `(vsum {x:A | x IN s /\ g x = &0} f):real^N` THEN CONJ_TAC THENL [ASM_SIMP_TAC[VSUM_RESTRICT_SET;COND_ID;VSUM_0];ALL_TAC] THEN SUBGOAL_THEN `DISJOINT {x:A | x IN s /\ g x = &0} ({x | x IN s /\ &0 < g x} UNION {x | x IN s /\ g x < &0})` ASSUME_TAC THENL [REWRITE_TAC[DISJOINT;UNION;INTER;IN_ELIM_THM;EXTENSION;NOT_IN_EMPTY] THEN REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[FINITE_UNION;FINITE_RESTRICT;GSYM VSUM_UNION] THEN FIRST_X_ASSUM (SUBST1_TAC o GSYM) THEN MATCH_MP_TAC (MESON[] `a = b ==> vsum a f = vsum b f`) THEN REWRITE_TAC[EXTENSION;IN_ELIM_THM;UNION] THEN MESON_TAC[REAL_LT_TOTAL]);;
let RADON_PARTITION = 
prove (`!(c:real^N->bool). FINITE c /\ affine_dependent c ==> ?(m:real^N->bool) (p:real^N->bool). (DISJOINT m p) /\ (m UNION p = c) /\ ~(DISJOINT (convex hull m) (convex hull p))`,
REPEAT STRIP_TAC THEN MP_TAC (ISPEC `c:real^N->bool` RADON_EX_LEMMA) THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`{v:real^N | v IN c /\ u v <= &0}`; `{v:real^N | v IN c /\ u v > &0}`] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[DISJOINT;INTER; IN_ELIM_THM;REAL_ARITH `x <= &0 <=> ~(x > &0)`] THEN SET_TAC[]; REWRITE_TAC[UNION;IN_ELIM_THM;REAL_ARITH `x <= &0 <=> ~(x > &0)`] THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~(sum {x:real^N | x IN c /\ u x > &0} u = &0)` ASSUME_TAC THENL [MATCH_MP_TAC (REAL_ARITH `a > &0 ==> ~(a = &0)`) THEN REWRITE_TAC[REAL_ARITH `a > &0 <=> &0 < a`] THEN MATCH_MP_TAC (REWRITE_RULE[SUM_0] (ISPEC `\x. &0` SUM_LT_ALL)) THEN ASM_SIMP_TAC[FINITE_RESTRICT;IN_ELIM_THM;EXTENSION;NOT_IN_EMPTY] THEN REWRITE_TAC[MESON[]`~(!x. ~(P x /\ Q x)) = ?x. P x /\ Q x`] THEN ASM_CASES_TAC `&0 < u (v:real^N)` THENL [ASM SET_TAC[];ALL_TAC] THEN POP_ASSUM MP_TAC THEN POP_ASSUM (K ALL_TAC) THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[IMP_IMP;REAL_ARITH `~(a = &0) /\ ~(&0 < a) <=> a < &0`] THEN DISCH_TAC THEN REWRITE_TAC[MESON[REAL_NOT_LT] `(?x:real^N. P x /\ &0 < u x) <=> (!x. P x ==> u x <= &0) ==> F`] THEN DISCH_TAC THEN MP_TAC (ISPECL [`u:real^N->real`;`\x:real^N. &0`;`c:real^N->bool`] SUM_LT) THEN ASM_REWRITE_TAC[SUM_0;REAL_ARITH `~(&0 < &0)`] THEN ASM_MESON_TAC[];ALL_TAC] THEN REWRITE_TAC[SET_RULE `~DISJOINT a b <=> ?y. y IN a /\ y IN b`] THEN EXISTS_TAC `&1 / (sum {x:real^N | x IN c /\ u x > &0} u) % vsum {x:real^N | x IN c /\ u x > &0} (\x. u x % x)` THEN REWRITE_TAC[CONVEX_HULL_EXPLICIT;IN_ELIM_THM] THEN CONJ_TAC THENL [MAP_EVERY EXISTS_TAC [`{v:real^N | v IN c /\ u v < &0}`; `\y:real^N. &1 / (sum {x:real^N | x IN c /\ u x > &0} u) * (--(u y))`] THEN ASM_SIMP_TAC[FINITE_RESTRICT;SUBSET;IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [REAL_ARITH_TAC; REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[REAL_NEG_GE0;REAL_LE_LT]] THEN MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_LE_01] THEN MATCH_MP_TAC SUM_POS_LE THEN ASM_SIMP_TAC[FINITE_RESTRICT;IN_ELIM_THM] THEN REAL_ARITH_TAC; ASM_SIMP_TAC[FINITE_RESTRICT;SUM_LMUL] THEN MATCH_MP_TAC (REAL_FIELD `!a. ~(a = &0) /\ a * b = a * c ==> b = c`) THEN EXISTS_TAC `sum {x:real^N | x IN c /\ u x > &0} u` THEN REWRITE_TAC[SUM_LMUL] THEN ASM_SIMP_TAC[REAL_FIELD `~(a = &0) ==> a * &1 / a * b = b`] THEN REWRITE_TAC[SUM_NEG;REAL_MUL_RID] THEN REWRITE_TAC[REAL_ARITH `a > &0 <=> &0 < a`] THEN MATCH_MP_TAC (GSYM RADON_S_LEMMA) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM VECTOR_MUL_ASSOC;VSUM_LMUL;VECTOR_MUL_LCANCEL] THEN REWRITE_TAC[VECTOR_MUL_LNEG;VSUM_NEG] THEN DISJ2_TAC THEN MATCH_MP_TAC (REWRITE_RULE[REAL_ARITH `&0 < a <=> a > &0`] (GSYM RADON_V_LEMMA)) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[VECTOR_MUL_LZERO];ALL_TAC] THEN MAP_EVERY EXISTS_TAC [`{v:real^N | v IN c /\ u v > &0}`; `\y:real^N. &1 / (sum {x:real^N | x IN c /\ u x > &0} u) * (u y)`] THEN ASM_SIMP_TAC[FINITE_RESTRICT;SUBSET;IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[REAL_ARITH `a > &0 ==> &0 <= a`]] THEN MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_LE_01] THEN MATCH_MP_TAC SUM_POS_LE THEN ASM_SIMP_TAC[FINITE_RESTRICT;IN_ELIM_THM] THEN REAL_ARITH_TAC; ASM_SIMP_TAC[FINITE_RESTRICT;SUM_LMUL] THEN MATCH_MP_TAC (REAL_FIELD `!a. ~(a = &0) /\ a * b = a * c ==> b = c`) THEN EXISTS_TAC `sum {x:real^N | x IN c /\ u x > &0} u` THEN REWRITE_TAC[SUM_LMUL] THEN ASM_SIMP_TAC[REAL_FIELD `~(a = &0) ==> a * &1 / a * b = b`] THEN REWRITE_TAC[SUM_NEG;REAL_MUL_RID] THEN REWRITE_TAC[REAL_ARITH `a > &0 <=> &0 < a`] THEN MATCH_MP_TAC (GSYM RADON_S_LEMMA) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM VECTOR_MUL_ASSOC;VSUM_LMUL;VECTOR_MUL_LCANCEL] THEN REWRITE_TAC[VECTOR_MUL_LNEG;VSUM_NEG] THEN DISJ2_TAC THEN MATCH_MP_TAC (REWRITE_RULE[REAL_ARITH `&0 < a <=> a > &0`] (GSYM RADON_V_LEMMA)) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[VECTOR_MUL_LZERO]);;
let RADON = 
prove (`!(c:real^N->bool). affine_dependent c ==> ?(m:real^N->bool) (p:real^N->bool). m SUBSET c /\ p SUBSET c /\ DISJOINT m p /\ ~(DISJOINT (convex hull m) (convex hull p))`,
REPEAT STRIP_TAC THEN MP_TAC (ISPEC `c:real^N->bool` AFFINE_DEPENDENT_EXPLICIT) THEN ASM_SIMP_TAC[] THEN REPEAT STRIP_TAC THEN MP_TAC (ISPEC `s:real^N->bool` RADON_PARTITION) THEN ANTS_TAC THENL [ASM_SIMP_TAC[AFFINE_DEPENDENT_EXPLICIT] THEN MAP_EVERY EXISTS_TAC [`s:real^N->bool`;`u:real^N->real`] THEN ASM SET_TAC[];ALL_TAC] THEN DISCH_THEN STRIP_ASSUME_TAC THEN MAP_EVERY EXISTS_TAC [`m:real^N->bool`;`p:real^N->bool`] THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Helly's theorem. *) (* ------------------------------------------------------------------------- *)
let HELLY_INDUCT = 
prove (`!n f. f HAS_SIZE n /\ n >= dimindex(:N) + 1 /\ (!s:real^N->bool. s IN f ==> convex s) /\ (!t. t SUBSET f /\ CARD(t) = dimindex(:N) + 1 ==> ~(INTERS t = {})) ==> ~(INTERS f = {})`,
INDUCT_TAC THEN REWRITE_TAC[ARITH_RULE `~(0 >= n + 1)`] THEN GEN_TAC THEN POP_ASSUM(LABEL_TAC "*") THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HAS_SIZE_SUC]) THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE `SUC n >= m + 1 ==> m = n \/ n >= m + 1`)) THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_SIMP_TAC[CARD_CLAUSES; SUBSET_REFL] THEN ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `?X. !s:real^N->bool. s IN f ==> X(s) IN INTERS (f DELETE s)` STRIP_ASSUME_TAC THENL [REWRITE_TAC[GSYM SKOLEM_THM; MEMBER_NOT_EMPTY; RIGHT_EXISTS_IMP_THM] THEN GEN_TAC THEN STRIP_TAC THEN REMOVE_THEN "*" MATCH_MP_TAC THEN ASM_SIMP_TAC[FINITE_DELETE; CARD_DELETE] THEN ASM SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `?s t:real^N->bool. s IN f /\ t IN f /\ ~(s = t) /\ X s:real^N = X t` THENL [FIRST_X_ASSUM(CHOOSE_THEN STRIP_ASSUME_TAC) THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `(X:(real^N->bool)->real^N) t` THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC ONCE_DEPTH_CONV [MATCH_MP (SET_RULE`~(s = t) ==> INTERS f = INTERS(f DELETE s) INTER INTERS(f DELETE t)`) th]) THEN REWRITE_TAC[IN_INTER] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MP_TAC(ISPEC `IMAGE (X:(real^N->bool)->real^N) f` RADON_PARTITION) THEN ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_IMAGE] THEN MATCH_MP_TAC AFFINE_DEPENDENT_BIGGERSET THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN MATCH_MP_TAC(ARITH_RULE `!f n. n >= d + 1 /\ f = SUC n /\ c = f ==> c >= d + 2`) THEN MAP_EVERY EXISTS_TAC [`CARD(f:(real^N->bool)->bool)`; `n:num`] THEN REPEAT(CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_MESON_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[SET_RULE `P /\ m UNION p = s /\ Q <=> m SUBSET s /\ p SUBSET s /\ m UNION p = s /\ P /\ Q`] THEN REWRITE_TAC[SUBSET_IMAGE; DISJOINT] THEN REWRITE_TAC[MESON[] `(?m p. (?u. P u /\ m = t u) /\ (?u. P u /\ p = t u) /\ Q m p) ==> r <=> (!u v. P u /\ P v /\ Q (t u) (t v) ==> r)`] THEN MAP_EVERY X_GEN_TAC [`g:(real^N->bool)->bool`; `h:(real^N->bool)->bool`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN SUBGOAL_THEN `(f:(real^N->bool)->bool) = h UNION g` SUBST1_TAC THENL [MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_REWRITE_TAC[UNION_SUBSET] THEN REWRITE_TAC[SUBSET; IN_UNION] THEN X_GEN_TAC `s:real^N->bool` THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN DISCH_THEN(MP_TAC o ISPEC `X:(real^N->bool)->real^N` o MATCH_MP FUN_IN_IMAGE) THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM th]) THEN ONCE_REWRITE_TAC[DISJ_SYM] THEN REWRITE_TAC[IN_UNION; IN_IMAGE] THEN MATCH_MP_TAC MONO_OR THEN ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN MATCH_MP_TAC(SET_RULE `g SUBSET INTERS g' /\ h SUBSET INTERS h' ==> ~(g INTER h = {}) ==> ~(INTERS(g' UNION h') = {})`) THEN FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP (SET_RULE `IMAGE X s INTER IMAGE X t = {} ==> s INTER t = {}`)) THEN CONJ_TAC THEN MATCH_MP_TAC HULL_MINIMAL THEN (CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[SUBSET; CONVEX_INTERS]]) THEN REWRITE_TAC[SUBSET; IN_INTERS; FORALL_IN_IMAGE] THEN ASM SET_TAC[]);;
let HELLY = 
prove (`!f:(real^N->bool)->bool. FINITE f /\ CARD(f) >= dimindex(:N) + 1 /\ (!s. s IN f ==> convex s) /\ (!t. t SUBSET f /\ CARD(t) = dimindex(:N) + 1 ==> ~(INTERS t = {})) ==> ~(INTERS f = {})`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC HELLY_INDUCT THEN ASM_REWRITE_TAC[HAS_SIZE] THEN ASM_MESON_TAC[]);;
let HELLY_ALT = 
prove (`!f:(real^N->bool)->bool. FINITE f /\ (!s. s IN f ==> convex s) /\ (!t. t SUBSET f /\ CARD(t) <= dimindex(:N) + 1 ==> ~(INTERS t = {})) ==> ~(INTERS f = {})`,
GEN_TAC THEN STRIP_TAC THEN ASM_CASES_TAC `CARD(f:(real^N->bool)->bool) < dimindex(:N) + 1` THEN ASM_SIMP_TAC[SUBSET_REFL; LT_IMP_LE] THEN MATCH_MP_TAC HELLY THEN ASM_SIMP_TAC[GE; GSYM NOT_LT] THEN ASM_MESON_TAC[LE_REFL]);;
let HELLY_CLOSED_ALT = 
prove (`!f:(real^N->bool)->bool. (!s. s IN f ==> convex s /\ closed s) /\ (?s. s IN f /\ bounded s) /\ (!t. t SUBSET f /\ FINITE t /\ CARD(t) <= dimindex(:N) + 1 ==> ~(INTERS t = {})) ==> ~(INTERS f = {})`,
GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MATCH_MP_TAC CLOSED_FIP THEN ASM_SIMP_TAC[] THEN X_GEN_TAC `g:(real^N->bool)->bool` THEN STRIP_TAC THEN MATCH_MP_TAC HELLY_ALT THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM SET_TAC[]; ASM_MESON_TAC[SUBSET_TRANS; FINITE_SUBSET]]);;
let HELLY_COMPACT_ALT = 
prove (`!f:(real^N->bool)->bool. (!s. s IN f ==> convex s /\ compact s) /\ (!t. t SUBSET f /\ FINITE t /\ CARD(t) <= dimindex(:N) + 1 ==> ~(INTERS t = {})) ==> ~(INTERS f = {})`,
GEN_TAC THEN STRIP_TAC THEN ASM_CASES_TAC `f:(real^N->bool)->bool = {}` THEN ASM_REWRITE_TAC[INTERS_0; UNIV_NOT_EMPTY] THEN MATCH_MP_TAC HELLY_CLOSED_ALT THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED] THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY; COMPACT_IMP_BOUNDED]);;
let HELLY_CLOSED = 
prove (`!f:(real^N->bool)->bool. (FINITE f ==> CARD f >= dimindex (:N) + 1) /\ (!s. s IN f ==> convex s /\ closed s) /\ (?s. s IN f /\ bounded s) /\ (!t. t SUBSET f /\ FINITE t /\ CARD(t) = dimindex(:N) + 1 ==> ~(INTERS t = {})) ==> ~(INTERS f = {})`,
GEN_TAC THEN REWRITE_TAC[GE] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MATCH_MP_TAC HELLY_CLOSED_ALT THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `g:(real^N->bool)->bool` THEN STRIP_TAC THEN MP_TAC(ISPECL [`dimindex(:N) + 1`; `g:(real^N->bool)->bool`; `f:(real^N->bool)->bool`] CHOOSE_SUBSET_BETWEEN) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `h:(real^N->bool)->bool` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC(SET_RULE `!s. s SUBSET t /\ ~(s = {}) ==> ~(t = {})`) THEN EXISTS_TAC `INTERS h: real^N->bool` THEN CONJ_TAC THENL [ASM SET_TAC[]; FIRST_X_ASSUM MATCH_MP_TAC] THEN ASM_MESON_TAC[HAS_SIZE]);;
let HELLY_COMPACT = 
prove (`!f:(real^N->bool)->bool. (FINITE f ==> CARD f >= dimindex (:N) + 1) /\ (!s. s IN f ==> convex s /\ compact s) /\ (!t. t SUBSET f /\ FINITE t /\ CARD(t) = dimindex(:N) + 1 ==> ~(INTERS t = {})) ==> ~(INTERS f = {})`,
GEN_TAC THEN STRIP_TAC THEN ASM_CASES_TAC `f:(real^N->bool)->bool = {}` THEN ASM_REWRITE_TAC[INTERS_0; UNIV_NOT_EMPTY] THEN MATCH_MP_TAC HELLY_CLOSED THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED] THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY; COMPACT_IMP_BOUNDED]);;
(* ------------------------------------------------------------------------- *) (* Kirchberger's theorem *) (* ------------------------------------------------------------------------- *)
let KIRCHBERGER = 
prove (`!s t:real^N->bool. compact s /\ compact t /\ (!s' t'. s' SUBSET s /\ t' SUBSET t /\ FINITE s' /\ FINITE t' /\ CARD(s') + CARD(t') <= dimindex(:N) + 2 ==> ?a b. (!x. x IN s' ==> a dot x < b) /\ (!x. x IN t' ==> a dot x > b)) ==> ?a b. ~(a = vec 0) /\ (!x. x IN s ==> a dot x < b) /\ (!x. x IN t ==> a dot x > b)`,
let lemma = prove
   (`(!x. x IN convex hull s ==> a dot x < b) /\
     (!x. x IN convex hull t ==> a dot x > b) <=>
     (!x. x IN s ==> a dot x < b) /\ (!x. x IN t ==> a dot x > b)`,
    REWRITE_TAC[SET_RULE `(!x. x IN s ==> P x) <=> s SUBSET {x | P x}`] THEN
    SIMP_TAC[SUBSET_HULL; CONVEX_HALFSPACE_LT; CONVEX_HALFSPACE_GT])
  and KIRCH_LEMMA = prove
   (`!s t:real^N->bool.
          FINITE s /\ FINITE t /\
          (!s' t'. s' SUBSET s /\ t' SUBSET t /\
                   CARD(s') + CARD(t') <= dimindex(:N) + 2
                   ==> ?a b. (!x. x IN s' ==> a dot x < b) /\
                             (!x. x IN t' ==> a dot x > b))
          ==> ?a b. (!x. x IN s ==> a dot x < b) /\
                    (!x. x IN t ==> a dot x > b)`,
    REPEAT STRIP_TAC THEN MP_TAC(ISPECL
     [`IMAGE (\r. {z:real^(N,1)finite_sum |
                          fstcart z dot r < drop(sndcart z)}) s UNION
       IMAGE (\r. {z:real^(N,1)finite_sum |
                          fstcart z dot r > drop(sndcart z)}) t`]
     HELLY_ALT) THEN
    REWRITE_TAC[FORALL_SUBSET_UNION; IN_UNION; IMP_CONJ] THEN
    REWRITE_TAC[RIGHT_FORALL_IMP_THM; FORALL_SUBSET_IMAGE] THEN
    ASM_SIMP_TAC[FINITE_UNION; FINITE_IMAGE; INTERS_UNION] THEN
    REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; INTERS_IMAGE; IN_INTER;
                EXISTS_PASTECART; IN_ELIM_PASTECART_THM;
                FSTCART_PASTECART; SNDCART_PASTECART] THEN
    REWRITE_TAC[TAUT `p \/ q ==> r <=> (p ==> r) /\ (q ==> r)`] THEN
    REWRITE_TAC[FORALL_AND_THM; FORALL_IN_IMAGE; RIGHT_IMP_FORALL_THM] THEN
    REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; GSYM EXISTS_DROP] THEN
    DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL
     [REWRITE_TAC[REAL_ARITH `a > b <=> --a < --b`; GSYM DOT_RNEG] THEN
      REWRITE_TAC[convex; IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN
      SIMP_TAC[PASTECART_ADD; GSYM PASTECART_CMUL; IN_ELIM_PASTECART_THM] THEN
      SIMP_TAC[DOT_LADD; DOT_LMUL; DROP_ADD; DROP_CMUL; GSYM FORALL_DROP] THEN
      REWRITE_TAC[REAL_ARITH `--(a * x + b * y):real = a * --x + b * --y`] THEN
      REPEAT STRIP_TAC THEN
      FIRST_ASSUM(MP_TAC o MATCH_MP (REAL_ARITH
       `u + v = &1
        ==> &0 <= u /\ &0 <= v
           ==> u = &0 /\ v = &1 \/ u = &1 /\ v = &0 \/ &0 < u /\ &0 < v`)) THEN
      ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
      ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID;
                      REAL_ADD_LID; REAL_ADD_RID] THEN
      MATCH_MP_TAC REAL_LT_ADD2 THEN ASM_SIMP_TAC[REAL_LT_LMUL_EQ];
      REWRITE_TAC[DIMINDEX_FINITE_SUM; DIMINDEX_1;
                  ARITH_RULE `(n + 1) + 1 = n + 2`] THEN
      MAP_EVERY X_GEN_TAC [`u:real^N->bool`; `v:real^N->bool`] THEN
      DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
      SUBGOAL_THEN `FINITE(u:real^N->bool) /\ FINITE(v:real^N->bool)`
      STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[FINITE_SUBSET]; ALL_TAC] THEN
      W(MP_TAC o PART_MATCH (lhs o rand) CARD_UNION o lhand o lhand o snd) THEN
      ASM_SIMP_TAC[FINITE_IMAGE] THEN ANTS_TAC THENL
       [REWRITE_TAC[SET_RULE `IMAGE f s INTER IMAGE g t = {} <=>
                              !x y. x IN s /\ y IN t ==> ~(f x = g y)`] THEN
        MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN
        REWRITE_TAC[EXTENSION; FORALL_PASTECART; IN_ELIM_PASTECART_THM] THEN
        DISCH_THEN(MP_TAC o SPEC `vec 0:real^N`) THEN
        REWRITE_TAC[GSYM FORALL_DROP; DOT_LZERO] THEN
        DISCH_THEN(MP_TAC o SPEC `&1`) THEN REAL_ARITH_TAC;
        DISCH_THEN SUBST1_TAC] THEN
      DISCH_THEN(fun th -> FIRST_X_ASSUM MATCH_MP_TAC THEN MP_TAC th) THEN
      ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(ARITH_RULE
       `a = a' /\ b = b' ==> a + b <= n + 2 ==> a' + b' <= n + 2`) THEN
      CONJ_TAC THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN
      ASM_REWRITE_TAC[EXTENSION; FORALL_PASTECART; IN_ELIM_PASTECART_THM] THEN
      SIMP_TAC[GSYM FORALL_DROP; real_gt; VECTOR_EQ_LDOT;
        MESON[REAL_LT_TOTAL; REAL_LT_REFL]
         `((!y:real. a < y <=> b < y) <=> a = b) /\
          ((!y:real. y < a <=> y < b) <=> a = b)`]]) in
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM lemma] THEN
  MATCH_MP_TAC SEPARATING_HYPERPLANE_COMPACT_COMPACT THEN
  ASM_SIMP_TAC[CONVEX_CONVEX_HULL; COMPACT_CONVEX_HULL;
               CONVEX_HULL_EQ_EMPTY] THEN
  SUBGOAL_THEN
   `!s' t'. (s':real^N->bool) SUBSET s /\ t' SUBSET t /\
            FINITE s' /\ CARD(s') <= dimindex(:N) + 1 /\
            FINITE t' /\ CARD(t') <= dimindex(:N) + 1
            ==> DISJOINT (convex hull s') (convex hull t')`
  MP_TAC THENL
   [REPEAT STRIP_TAC THEN
    MP_TAC(ISPECL [`s':real^N->bool`; `t':real^N->bool`] KIRCH_LEMMA) THEN
    ANTS_TAC THENL
     [ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
      FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[SUBSET; FINITE_SUBSET];
      ONCE_REWRITE_TAC[GSYM lemma] THEN SET_TAC[REAL_LT_ANTISYM; real_gt]];
    POP_ASSUM_LIST(K ALL_TAC) THEN STRIP_TAC THEN
    REWRITE_TAC[SET_RULE `DISJOINT s t <=> !x. x IN s /\ x IN t ==> F`] THEN
    X_GEN_TAC `x:real^N` THEN ONCE_REWRITE_TAC[CARATHEODORY] THEN
    REWRITE_TAC[IN_ELIM_THM] THEN
    DISCH_THEN(CONJUNCTS_THEN2
      (X_CHOOSE_THEN `s':real^N->bool` STRIP_ASSUME_TAC)
      (X_CHOOSE_THEN `t':real^N->bool` STRIP_ASSUME_TAC)) THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`s':real^N->bool`; `t':real^N->bool`]) THEN
    ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Convex hull is "preserved" by a linear function. *) (* ------------------------------------------------------------------------- *)
let CONVEX_HULL_LINEAR_IMAGE = 
prove (`!f s. linear f ==> convex hull (IMAGE f s) = IMAGE f (convex hull s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN CONJ_TAC THEN MATCH_MP_TAC HULL_INDUCT THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN SIMP_TAC[FUN_IN_IMAGE; HULL_INC] THEN REWRITE_TAC[convex; IN_ELIM_THM] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THENL [FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP LINEAR_CMUL th)]) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP LINEAR_ADD th)]) THEN REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[REWRITE_RULE[convex] CONVEX_CONVEX_HULL]; ASM_SIMP_TAC[LINEAR_ADD; LINEAR_CMUL] THEN MESON_TAC[REWRITE_RULE[convex] CONVEX_CONVEX_HULL]]);;
add_linear_invariants [CONVEX_HULL_LINEAR_IMAGE];;
let IN_CONVEX_HULL_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s x. linear f /\ x IN convex hull s ==> (f x) IN convex hull (IMAGE f s)`,
SIMP_TAC[CONVEX_HULL_LINEAR_IMAGE] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Convexity of general and special intervals. *) (* ------------------------------------------------------------------------- *)
let IS_INTERVAL_CONVEX = 
prove (`!s:real^N->bool. is_interval s ==> convex s`,
REWRITE_TAC[is_interval; convex] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC [`x:real^N`; `y:real^N`] THEN ASM_SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN GEN_TAC THEN STRIP_TAC THEN DISJ_CASES_TAC(SPECL [`(x:real^N)$i`; `(y:real^N)$i`] REAL_LE_TOTAL) THENL [DISJ1_TAC; DISJ2_TAC] THEN MATCH_MP_TAC(REAL_ARITH `&1 * a <= b /\ b <= &1 * c ==> a <= b /\ b <= c`) THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[GSYM VECTOR_MUL_COMPONENT; VECTOR_ADD_RDISTRIB; VECTOR_ADD_COMPONENT] THEN ASM_SIMP_TAC[VECTOR_MUL_COMPONENT; REAL_LE_LMUL; REAL_LE_LADD; REAL_LE_RADD]);;
let IS_INTERVAL_CONNECTED = 
prove (`!s:real^N->bool. is_interval s ==> connected s`,
let IS_INTERVAL_CONNECTED_1 = 
prove (`!s:real^1->bool. is_interval s <=> connected s`,
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[IS_INTERVAL_CONNECTED] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[IS_INTERVAL_1; connected; NOT_FORALL_THM; LEFT_IMP_EXISTS_THM; NOT_IMP; FORALL_LIFT; LIFT_DROP] THEN MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `x:real`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`{z:real^1 | basis 1 dot z < x}`; `{z:real^1 | basis 1 dot z > x}`] THEN REWRITE_TAC[OPEN_HALFSPACE_LT; OPEN_HALFSPACE_GT] THEN SIMP_TAC[SUBSET; EXTENSION; IN_UNION; IN_INTER; GSYM drop; NOT_FORALL_THM; real_gt; NOT_IN_EMPTY; IN_ELIM_THM; DOT_BASIS; DIMINDEX_1; ARITH] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[REAL_LT_TOTAL; LIFT_DROP]; REAL_ARITH_TAC; EXISTS_TAC `lift a`; EXISTS_TAC `lift b`] THEN ASM_REWRITE_TAC[REAL_LT_LE; LIFT_DROP] THEN ASM_MESON_TAC[]);;
let CONVEX_INTERVAL = 
prove (`!a b:real^N. convex(interval [a,b]) /\ convex(interval (a,b))`,
let CONNECTED_INTERVAL = 
prove (`(!a b:real^N. connected(interval[a,b])) /\ (!a b:real^N. connected(interval(a,b)))`,
(* ------------------------------------------------------------------------- *) (* On real^1, is_interval, convex and connected are all equivalent. *) (* ------------------------------------------------------------------------- *)
let IS_INTERVAL_CONVEX_1 = 
prove (`!s:real^1->bool. is_interval s <=> convex s`,
let CONVEX_CONNECTED_1 = 
prove (`!s:real^1->bool. convex s <=> connected s`,
REWRITE_TAC[GSYM IS_INTERVAL_CONVEX_1; GSYM IS_INTERVAL_CONNECTED_1]);;
let CONNECTED_CONVEX_1 = 
prove (`!s:real^1->bool. connected s <=> convex s`,
REWRITE_TAC[GSYM IS_INTERVAL_CONVEX_1; GSYM IS_INTERVAL_CONNECTED_1]);;
let CONNECTED_COMPACT_INTERVAL_1 = 
prove (`!s:real^1->bool. connected s /\ compact s <=> ?a b. s = interval[a,b]`,
let CONVEX_CONNECTED_1_GEN = 
prove (`!s:real^N->bool. dimindex(:N) = 1 ==> (convex s <=> connected s)`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[GSYM DIMINDEX_1] THEN DISCH_THEN(ACCEPT_TAC o C GEOM_EQUAL_DIMENSION_RULE CONVEX_CONNECTED_1));;
let CONNECTED_CONVEX_1_GEN = 
prove (`!s:real^N->bool. dimindex(:N) = 1 ==> (convex s <=> connected s)`,
(* ------------------------------------------------------------------------- *) (* Jung's theorem. *) (* Proof taken from http://cstheory.wordpress.com/2010/08/07/jungs-theorem/ *) (* ------------------------------------------------------------------------- *)
let JUNG = 
prove (`!s:real^N->bool r. bounded s /\ sqrt(&(dimindex(:N)) / &(2 * dimindex(:N) + 2)) * diameter s <= r ==> ?a. s SUBSET cball(a,r)`,
let lemma = prove
   (`&0 < x /\ x <= y ==> (x - &1) / x <= (y - &1) / y`,
    SIMP_TAC[REAL_LE_LDIV_EQ] THEN REPEAT STRIP_TAC THEN
    ONCE_REWRITE_TAC[REAL_ARITH `x / y * z:real = (x * z) / y`] THEN
    SUBGOAL_THEN `&0 < y` ASSUME_TAC THENL
     [ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[REAL_LE_RDIV_EQ]] THEN
    ASM_REAL_ARITH_TAC) in
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `&0 <= r` ASSUME_TAC THENL
   [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
        REAL_LE_TRANS)) THEN
    MATCH_MP_TAC REAL_LE_MUL THEN ASM_SIMP_TAC[DIAMETER_POS_LE] THEN
    SIMP_TAC[SQRT_POS_LE; REAL_LE_DIV; REAL_POS];
    ALL_TAC] THEN
  MP_TAC(ISPEC `IMAGE (\x:real^N. cball(x,r)) s` HELLY_COMPACT_ALT) THEN
  REWRITE_TAC[FORALL_IN_IMAGE; COMPACT_CBALL; CONVEX_CBALL] THEN
  REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> q /\ p ==> r ==> s`] THEN
  REWRITE_TAC[FORALL_FINITE_SUBSET_IMAGE] THEN
  REWRITE_TAC[INTERS_IMAGE; GSYM MEMBER_NOT_EMPTY] THEN
  REWRITE_TAC[SUBSET; IN_CBALL; IN_ELIM_THM] THEN
  ANTS_TAC THENL [ALL_TAC; MESON_TAC[DIST_SYM]] THEN
  X_GEN_TAC `t:real^N->bool` THEN REWRITE_TAC[GSYM SUBSET] THEN
  STRIP_TAC THEN
  ASM_SIMP_TAC[CARD_IMAGE_INJ; EQ_BALLS; GSYM REAL_NOT_LE] THEN
  UNDISCH_TAC `FINITE(t:real^N->bool)` THEN
  SUBGOAL_THEN `bounded(t:real^N->bool)` MP_TAC THENL
   [ASM_MESON_TAC[BOUNDED_SUBSET]; ALL_TAC] THEN
  UNDISCH_TAC `&0 <= r` THEN
  SUBGOAL_THEN
   `sqrt(&(dimindex(:N)) / &(2 * dimindex(:N) + 2)) *
    diameter(t:real^N->bool) <= r`
  MP_TAC THENL
   [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
        REAL_LE_TRANS)) THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN
    ASM_SIMP_TAC[DIAMETER_SUBSET; SQRT_POS_LE; REAL_POS; REAL_LE_DIV];
    POP_ASSUM_LIST(K ALL_TAC) THEN
    SPEC_TAC(`t:real^N->bool`,`s:real^N->bool`) THEN
    REPEAT STRIP_TAC] THEN
  ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
  MP_TAC(ISPEC `{d | &0 <= d /\ ?a:real^N. s SUBSET cball(a,d)}` INF) THEN
  ABBREV_TAC `d = inf {d | &0 <= d /\ ?a:real^N. s SUBSET cball(a,d)}` THEN
  REWRITE_TAC[IN_ELIM_THM] THEN ANTS_TAC THENL
   [REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN
    ASM_MESON_TAC[BOUNDED_SUBSET_CBALL; REAL_LT_IMP_LE];
    DISCH_THEN(CONJUNCTS_THEN2 (LABEL_TAC "P") (LABEL_TAC "M"))] THEN
  SUBGOAL_THEN `&0 <= d` ASSUME_TAC THENL
   [ASM_MESON_TAC[REAL_LE_REFL]; ALL_TAC] THEN
  SUBGOAL_THEN `?a:real^N. s SUBSET cball(a,d)` MP_TAC THENL
   [SUBGOAL_THEN
     `!n. ?a:real^N. s SUBSET cball(a,d + inv(&n + &1))`
    MP_TAC THENL
     [X_GEN_TAC `n:num` THEN
      REMOVE_THEN "M" (MP_TAC o SPEC `d + inv(&n + &1)`) THEN
      REWRITE_TAC[REAL_ARITH `d + i <= d <=> ~(&0 < i)`] THEN
      REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN
      REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; REAL_NOT_LE] THEN
      MESON_TAC[SUBSET_CBALL; REAL_LT_IMP_LE; SUBSET_TRANS];
      ALL_TAC] THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM; SKOLEM_THM] THEN
    X_GEN_TAC `aa:num->real^N` THEN DISCH_TAC THEN
    SUBGOAL_THEN `?t. compact t /\ !n. (aa:num->real^N) n IN t` MP_TAC THENL
     [FIRST_X_ASSUM(MP_TAC o SPEC `vec 0:real^N` o
        MATCH_MP BOUNDED_SUBSET_CBALL) THEN
      REWRITE_TAC[LEFT_IMP_EXISTS_THM; SUBSET; IN_CBALL_0] THEN
      X_GEN_TAC `B:real` THEN STRIP_TAC THEN
      EXISTS_TAC `cball(vec 0:real^N,B + d + &1)` THEN
      REWRITE_TAC[COMPACT_CBALL; IN_CBALL_0] THEN X_GEN_TAC `n:num` THEN
      RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN_CBALL]) THEN
      MATCH_MP_TAC(NORM_ARITH
       `(?x:real^N. norm(x) <= B /\ dist(a,x) <= d) ==> norm(a) <= B + d`) THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
      MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN
      MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `d + inv(&n + &1)` THEN
      ASM_SIMP_TAC[REAL_LE_LADD] THEN
      MATCH_MP_TAC REAL_INV_LE_1 THEN REAL_ARITH_TAC;
      ALL_TAC] THEN
    REWRITE_TAC[compact; LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `t:real^N->bool` THEN
    DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
    DISCH_THEN(MP_TAC o SPEC `aa:num->real^N`) THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN
    DISCH_THEN(X_CHOOSE_THEN `r:num->num` STRIP_ASSUME_TAC) THEN
    REWRITE_TAC[SUBSET; IN_CBALL] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
    REWRITE_TAC[GSYM REAL_NOT_LT] THEN DISCH_TAC THEN
    MP_TAC(SPEC `(dist(a:real^N,x) - d) / &2` REAL_ARCH_INV) THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIM_SEQUENTIALLY]) THEN
    DISCH_THEN(MP_TAC o SPEC `(dist(a:real^N,x) - d) / &2`) THEN
    ASM_SIMP_TAC[REAL_SUB_LT; REAL_HALF; o_THM] THEN
    DISCH_THEN(X_CHOOSE_THEN `N1:num` STRIP_ASSUME_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `N2:num` STRIP_ASSUME_TAC) THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE BINDER_CONV [SUBSET]) THEN
    DISCH_THEN(MP_TAC o SPECL [`(r:num->num)(N1 + N2)`; `x:real^N`]) THEN
    ASM_REWRITE_TAC[IN_CBALL; REAL_NOT_LE] THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `N1 + N2:num`) THEN
    ASM_REWRITE_TAC[LE_ADD] THEN
    SUBGOAL_THEN `inv(&(r (N1 + N2:num)) + &1) < (dist(a:real^N,x) - d) / &2`
    MP_TAC THENL [ALL_TAC; NORM_ARITH_TAC] THEN
    MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `inv(&N2)` THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV2 THEN
    CONJ_TAC THENL [ASM_MESON_TAC[REAL_LT_INV_EQ]; ALL_TAC] THEN
    REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_ADD] THEN
    MATCH_MP_TAC(ARITH_RULE
      `N1 + N2 <= r(N1 + N2) ==> N2 <= r(N1 + N2) + 1`) THEN
    ASM_MESON_TAC[MONOTONE_BIGGER];
    ALL_TAC] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN
  ONCE_REWRITE_TAC[DIST_SYM] THEN
  REWRITE_TAC[GSYM IN_CBALL; GSYM SUBSET] THEN
  DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS) THEN
  MATCH_MP_TAC SUBSET_CBALL THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
   `a * s <= r ==> d <= a * s ==> d <= r`)) THEN
  UNDISCH_THEN `&0 <= r` (K ALL_TAC) THEN REMOVE_THEN "M" (K ALL_TAC) THEN
  FIRST_X_ASSUM(K ALL_TAC o SYM) THEN REMOVE_THEN "P" MP_TAC THEN
  REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
  ABBREV_TAC `n = CARD(s:real^N->bool)` THEN
  SUBGOAL_THEN `(s:real^N->bool) HAS_SIZE n` MP_TAC THENL
   [ASM_REWRITE_TAC[HAS_SIZE]; ALL_TAC] THEN
  UNDISCH_THEN `CARD(s:real^N->bool) = n` (K ALL_TAC) THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN
  SPEC_TAC(`d:real`,`r:real`) THEN GEN_TAC THEN
  GEOM_ORIGIN_TAC `a:real^N` THEN SIMP_TAC[HAS_SIZE] THEN
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
  ABBREV_TAC `t = {x:real^N | x IN s /\ norm(x) = r}` THEN
  SUBGOAL_THEN `FINITE(t:real^N->bool)` ASSUME_TAC THENL
   [EXPAND_TAC "t" THEN ASM_SIMP_TAC[FINITE_RESTRICT]; ALL_TAC] THEN
  SUBGOAL_THEN `(vec 0:real^N) IN convex hull t` MP_TAC THENL
   [MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN
    MP_TAC(ISPEC `convex hull t:real^N->bool`
      SEPARATING_HYPERPLANE_CLOSED_0) THEN
    ASM_SIMP_TAC[CONVEX_CONVEX_HULL; NOT_IMP; COMPACT_CONVEX_HULL;
                 FINITE_IMP_COMPACT; COMPACT_IMP_CLOSED] THEN
    REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(p /\ q) <=> p ==> ~q`] THEN
    X_GEN_TAC `v:real^N` THEN
    ABBREV_TAC `k = CARD(s:real^N->bool)` THEN
    SUBGOAL_THEN `(s:real^N->bool) HAS_SIZE k` MP_TAC THENL
     [ASM_REWRITE_TAC[HAS_SIZE]; ALL_TAC] THEN
    UNDISCH_THEN `CARD(s:real^N->bool) = k` (K ALL_TAC) THEN
    POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN
    GEOM_BASIS_MULTIPLE_TAC 1 `v:real^N` THEN X_GEN_TAC `m:real` THEN
    GEN_REWRITE_TAC LAND_CONV [REAL_ARITH `&0 <= x <=> x = &0 \/ &0 < x`] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_MUL_EQ_0] THEN
    ASM_SIMP_TAC[BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL; REAL_LT_IMP_NZ] THEN
    REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[HAS_SIZE] THEN
    DISCH_THEN(SUBST_ALL_TAC o SYM) THEN X_GEN_TAC `b:real` THEN DISCH_TAC THEN
    ASM_SIMP_TAC[DOT_LMUL; DOT_BASIS; DIMINDEX_GE_1; LE_REFL] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
    ASM_SIMP_TAC[real_gt; GSYM REAL_LT_LDIV_EQ] THEN
    SUBGOAL_THEN `&0 < b / m` MP_TAC THENL
     [ASM_SIMP_TAC[REAL_LT_DIV];
      UNDISCH_THEN `&0 < b` (K ALL_TAC) THEN
      SPEC_TAC(`b / m:real`,`b:real`)] THEN
    X_GEN_TAC `b:real` THEN DISCH_TAC THEN DISCH_TAC THEN
    SUBGOAL_THEN
     `!x:real^N e. &0 < e /\ e < b /\ x IN t ==> norm(x - e % basis 1) < r`
    ASSUME_TAC THENL
     [MAP_EVERY X_GEN_TAC [`x:real^N`; `e:real`] THEN STRIP_TAC THEN
      SUBGOAL_THEN `r = norm(x:real^N)` SUBST1_TAC THENL
       [ASM SET_TAC[]; REWRITE_TAC[NORM_LT; dot]] THEN
      SIMP_TAC[SUM_CLAUSES_LEFT; DIMINDEX_GE_1] THEN
      SIMP_TAC[VECTOR_SUB_COMPONENT; VECTOR_MUL_COMPONENT;
               BASIS_COMPONENT; DIMINDEX_GE_1; LE_REFL;
               ARITH_RULE `2 <= n ==> 1 <= n /\ ~(n = 1)`; ARITH] THEN
      REWRITE_TAC[REAL_MUL_RZERO; REAL_SUB_RZERO; REAL_LT_RADD] THEN
      REWRITE_TAC[GSYM REAL_POW_2; GSYM REAL_LT_SQUARE_ABS] THEN
      MATCH_MP_TAC(REAL_ARITH
       `!b. &0 < e /\ e < b /\ b < x ==> abs(x - e * &1) < abs x`) THEN
      EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[] THEN
      ASM_MESON_TAC[HULL_INC];
      ALL_TAC] THEN
    SUBGOAL_THEN
     `?d. &0 < d /\
          !x:real^N a. x IN (s DIFF t) /\ norm(a) < d ==> norm(x - a) < r`
    STRIP_ASSUME_TAC THENL
     [ASM_CASES_TAC `s DIFF t:real^N->bool = {}` THENL
       [ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN MESON_TAC[REAL_LT_01]; ALL_TAC] THEN
      EXISTS_TAC `inf (IMAGE (\x:real^N. r - norm x) (s DIFF t))` THEN
      SUBGOAL_THEN `FINITE(s DIFF t:real^N->bool)` ASSUME_TAC THENL
       [ASM_MESON_TAC[FINITE_DIFF]; ALL_TAC] THEN
      ASM_SIMP_TAC[REAL_LT_INF_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
      REWRITE_TAC[FORALL_IN_IMAGE] THEN SIMP_TAC
       [NORM_ARITH `norm a < r - norm x ==> norm(x - a:real^N) < r`] THEN
      EXPAND_TAC "t" THEN REWRITE_TAC[IN_DIFF; IN_ELIM_THM; REAL_SUB_LT] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN_CBALL_0]) THEN
      ASM_MESON_TAC[REAL_LT_LE];
      ALL_TAC] THEN
    SUBGOAL_THEN
     `?a. !x. x IN s ==> norm(x - a:real^N) < r`
    STRIP_ASSUME_TAC THENL
     [EXISTS_TAC `min (b / &2) (d / &2) % basis 1:real^N` THEN
      X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
      ASM_CASES_TAC `(x:real^N) IN t` THENL
       [MATCH_MP_TAC(ASSUME
         `!x:real^N e. &0 < e /\ e < b /\ x IN t
                       ==> norm (x - e % basis 1) < r`) THEN
        ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC;
        MATCH_MP_TAC(ASSUME
         `!x:real^N a. x IN s DIFF t /\ norm a < d ==> norm (x - a) < r`) THEN
        ASM_SIMP_TAC[IN_DIFF; NORM_MUL; LE_REFL; NORM_BASIS;
                     DIMINDEX_GE_1] THEN
        ASM_REAL_ARITH_TAC];
      SUBGOAL_THEN `&0 < r` ASSUME_TAC THENL
       [ASM_MESON_TAC[MEMBER_NOT_EMPTY; NORM_ARITH
         `norm(x:real^N) < r ==> &0 < r`];
        ALL_TAC] THEN
      UNDISCH_THEN
        `!x a:real^N. &0 <= x /\ s SUBSET cball (a,x) ==> r <= x` (MP_TAC o
        SPECL [`max (&0) (r - inf (IMAGE (\x:real^N. r - norm(x - a)) s))`;
               `a:real^N`]) THEN
      ASM_SIMP_TAC[REAL_ARITH `&0 < r ==> (r <= max (&0) a <=> r <= a)`] THEN
      REWRITE_TAC[SUBSET; IN_CBALL; REAL_ARITH `a <= max a b`] THEN
      REWRITE_TAC[NOT_IMP; REAL_ARITH `~(r <= r - x) <=> &0 < x`] THEN
      ASM_SIMP_TAC[REAL_LT_INF_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
      ASM_REWRITE_TAC[FORALL_IN_IMAGE; REAL_SUB_LT] THEN
      X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
      MATCH_MP_TAC(REAL_ARITH `d <= b ==> d <= max a b`) THEN
      ONCE_REWRITE_TAC[REAL_ARITH `a <= b - c <=> c <= b - a`] THEN
      ASM_SIMP_TAC[REAL_INF_LE_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
      REWRITE_TAC[EXISTS_IN_IMAGE; ONCE_REWRITE_RULE[NORM_SUB] dist] THEN
      ASM_MESON_TAC[REAL_LE_REFL]];
    ALL_TAC] THEN
  ASM_CASES_TAC `t:real^N->bool = {}` THEN
  ASM_REWRITE_TAC[CONVEX_HULL_EMPTY; NOT_IN_EMPTY] THEN
  REWRITE_TAC[CONVEX_HULL_FINITE; IN_ELIM_THM] THEN
  DISCH_THEN(X_CHOOSE_THEN `l:real^N->real` STRIP_ASSUME_TAC) THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sqrt((&(dimindex (:N)) / &(2 * dimindex (:N) + 2)) *
                   diameter(s:real^N->bool) pow 2)` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LE_RSQRT;
    ASM_SIMP_TAC[SQRT_MUL; DIAMETER_POS_LE; REAL_POW_LE; REAL_LE_DIV;
                 REAL_POS; POW_2_SQRT; REAL_LE_REFL]] THEN

  SUBGOAL_THEN
   `sum t (\y:real^N. &2 * r pow 2) <=
    sum t (\y. (&1 - l y) * diameter(s:real^N->bool) pow 2)`
  MP_TAC THENL
   [MATCH_MP_TAC SUM_LE THEN ASM_REWRITE_TAC[] THEN
    X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `sum (t DELETE x) (\x:real^N. l(x)) *
                diameter(s:real^N->bool) pow 2` THEN CONJ_TAC THENL
     [ALL_TAC; ASM_SIMP_TAC[SUM_DELETE; ETA_AX; REAL_LE_REFL]] THEN
    REWRITE_TAC[GSYM SUM_RMUL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `sum (t DELETE x) (\y:real^N. l y * norm(y - x) pow 2)` THEN
    CONJ_TAC THENL
     [ALL_TAC;
      MATCH_MP_TAC SUM_LE THEN ASM_REWRITE_TAC[FINITE_DELETE; IN_DELETE] THEN
      X_GEN_TAC `y:real^N` THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_LMUL THEN
      ASM_SIMP_TAC[] THEN MATCH_MP_TAC REAL_POW_LE2 THEN
      REWRITE_TAC[NORM_POS_LE] THEN
      MATCH_MP_TAC DIAMETER_BOUNDED_BOUND THEN ASM SET_TAC[]] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `sum t (\y:real^N. l y * norm (y - x) pow 2)` THEN
    CONJ_TAC THENL
     [ALL_TAC;
      MATCH_MP_TAC REAL_EQ_IMP_LE THEN MATCH_MP_TAC SUM_EQ_SUPERSET THEN
      ASM_REWRITE_TAC[FINITE_DELETE] THEN
      CONJ_TAC THENL [SET_TAC[]; REWRITE_TAC[IN_DELETE]] THEN
      SIMP_TAC[TAUT `p /\ ~(p /\ ~q) <=> p /\ q`] THEN
      REWRITE_TAC[VECTOR_SUB_REFL; NORM_0] THEN REAL_ARITH_TAC] THEN
    REWRITE_TAC[NORM_POW_2; VECTOR_ARITH
     `(y - x:real^N) dot (y - x) = (x dot x + y dot y) - &2 * x dot y`] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `sum t (\y:real^N. l y * (&2 * r pow 2 - &2 * (x dot y)))` THEN
    CONJ_TAC THENL
     [ALL_TAC;
      MATCH_MP_TAC REAL_EQ_IMP_LE THEN MATCH_MP_TAC SUM_EQ THEN
      UNDISCH_TAC `(x:real^N) IN t` THEN EXPAND_TAC "t" THEN
      REWRITE_TAC[IN_DELETE; IN_ELIM_THM] THEN
      SIMP_TAC[NORM_EQ_SQUARE; NORM_POW_2] THEN REAL_ARITH_TAC] THEN
    REWRITE_TAC[REAL_ARITH `x * (&2 * y - &2 * z) = &2 * (x * y - x * z)`] THEN
    REWRITE_TAC[SUM_LMUL] THEN MATCH_MP_TAC REAL_LE_LMUL THEN
    REWRITE_TAC[REAL_POS] THEN
    ASM_SIMP_TAC[SUM_SUB; FINITE_DELETE; SUM_RMUL] THEN
    REWRITE_TAC[GSYM DOT_RMUL] THEN
    ASM_SIMP_TAC[GSYM DOT_RSUM; DOT_RZERO] THEN REAL_ARITH_TAC;
    ASM_SIMP_TAC[SUM_CONST; SUM_RMUL; SUM_SUB] THEN
    REWRITE_TAC[REAL_OF_NUM_MUL; MULT_CLAUSES] THEN
    GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [REAL_MUL_SYM] THEN
    SUBGOAL_THEN `&0 < &(CARD(t:real^N->bool) * 2)` ASSUME_TAC THENL
     [REWRITE_TAC[REAL_OF_NUM_LT; ARITH_RULE `0 < n * 2 <=> ~(n = 0)`] THEN
      ASM_SIMP_TAC[CARD_EQ_0];
      ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ] THEN
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
      REWRITE_TAC[REAL_ARITH `(a * b) / c:real = a / c * b`] THEN
      MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_LE_POW_2] THEN
      REWRITE_TAC[ARITH_RULE `2 * n + 2 = (n + 1) * 2`; GSYM REAL_OF_NUM_MUL;
                  real_div; REAL_INV_MUL; REAL_MUL_ASSOC] THEN
      MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[GSYM real_div] THEN
      CONV_TAC REAL_RAT_REDUCE_CONV THEN
      SUBGOAL_THEN `&(dimindex(:N)) = &(dimindex(:N) + 1) - &1`
      SUBST1_TAC THENL
       [REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC;
        MATCH_MP_TAC lemma THEN
        ASM_SIMP_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LT; CARD_EQ_0;
                     ARITH_RULE `0 < n <=> ~(n = 0)`] THEN
        MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD(s:real^N->bool)` THEN
        ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CARD_SUBSET THEN
        ASM SET_TAC[]]]]);;
(* ------------------------------------------------------------------------- *) (* Convex cones and corresponding hulls. *) (* ------------------------------------------------------------------------- *)
let convex_cone = new_definition
 `convex_cone s <=> ~(s = {}) /\ convex s /\ conic s`;;
let CONVEX_CONE = 
prove (`!s:real^N->bool. convex_cone s <=> vec 0 IN s /\ (!x y. x IN s /\ y IN s ==> (x + y) IN s) /\ (!x c. x IN s /\ &0 <= c ==> (c % x) IN s)`,
GEN_TAC THEN REWRITE_TAC[convex_cone; GSYM conic] THEN ASM_CASES_TAC `conic(s:real^N->bool)` THEN ASM_SIMP_TAC[CONIC_CONTAINS_0] THEN AP_TERM_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[conic]) THEN REWRITE_TAC[convex] THEN EQ_TAC THEN ASM_SIMP_TAC[REAL_SUB_LE] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`&2 % (x:real^N)`; `&2 % (y:real^N)`; `&1 / &2`; `&1 / &2`]) THEN REWRITE_TAC[VECTOR_MUL_ASSOC] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_SIMP_TAC[VECTOR_MUL_LID; REAL_POS]);;
let CONVEX_CONE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. convex_cone s /\ linear f ==> convex_cone(IMAGE f s)`,
let CONVEX_CONE_LINEAR_IMAGE_EQ = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> (convex_cone(IMAGE f s) <=> convex_cone s)`,
add_linear_invariants [CONVEX_CONE_LINEAR_IMAGE_EQ];;
let CONVEX_CONE_HALFSPACE_GE = 
prove (`!a. convex_cone {x | a dot x >= &0}`,
let CONVEX_CONE_HALFSPACE_LE = 
prove (`!a. convex_cone {x | a dot x <= &0}`,
REWRITE_TAC[REAL_ARITH `x <= &0 <=> &0 <= --x`; GSYM DOT_LNEG] THEN REWRITE_TAC[GSYM real_ge; CONVEX_CONE_HALFSPACE_GE]);;
let CONVEX_CONE_CONTAINS_0 = 
prove (`!s:real^N->bool. convex_cone s ==> vec 0 IN s`,
SIMP_TAC[CONVEX_CONE]);;
let CONVEX_CONE_INTERS = 
prove (`!f. (!s:real^N->bool. s IN f ==> convex_cone s) ==> convex_cone(INTERS f)`,
SIMP_TAC[convex_cone; CONIC_INTERS; CONVEX_INTERS] THEN REWRITE_TAC[GSYM convex_cone] THEN GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `vec 0:real^N` THEN ASM_SIMP_TAC[IN_INTERS; CONVEX_CONE_CONTAINS_0]);;
let CONVEX_CONE_CONVEX_CONE_HULL = 
prove (`!s. convex_cone(convex_cone hull s)`,
SIMP_TAC[P_HULL; CONVEX_CONE_INTERS]);;
let CONVEX_CONVEX_CONE_HULL = 
prove (`!s. convex(convex_cone hull s)`,
let CONIC_CONVEX_CONE_HULL = 
prove (`!s. conic(convex_cone hull s)`,
let CONVEX_CONE_HULL_NONEMPTY = 
prove (`!s. ~(convex_cone hull s = {})`,
let CONVEX_CONE_HULL_CONTAINS_0 = 
prove (`!s. vec 0 IN convex_cone hull s`,
let CONVEX_CONE_HULL_ADD = 
prove (`!s x y:real^N. x IN convex_cone hull s /\ y IN convex_cone hull s ==> x + y IN convex_cone hull s`,
let CONVEX_CONE_HULL_MUL = 
prove (`!s c x:real^N. &0 <= c /\ x IN convex_cone hull s ==> (c % x) IN convex_cone hull s`,
let CONVEX_CONE_SUMS = 
prove (`!s t. convex_cone s /\ convex_cone t ==> convex_cone {x + y:real^N | x IN s /\ y IN t}`,
SIMP_TAC[convex_cone; CONIC_SUMS; CONVEX_SUMS] THEN SET_TAC[]);;
let CONVEX_CONE_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. convex_cone s /\ convex_cone t ==> convex_cone(s PCROSS t)`,
let CONVEX_CONE_PCROSS_EQ = 
prove (`!s:real^M->bool t:real^N->bool. convex_cone(s PCROSS t) <=> convex_cone s /\ convex_cone t`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THENL [ASM_REWRITE_TAC[PCROSS_EMPTY; convex_cone]; ALL_TAC] THEN ASM_CASES_TAC `t:real^N->bool = {}` THENL [ASM_REWRITE_TAC[PCROSS_EMPTY; convex_cone]; ALL_TAC] THEN EQ_TAC THEN REWRITE_TAC[CONVEX_CONE_PCROSS] THEN REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`fstcart:real^(M,N)finite_sum->real^M`; `(s:real^M->bool) PCROSS (t:real^N->bool)`] CONVEX_CONE_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_FSTCART]; MP_TAC(ISPECL [`sndcart:real^(M,N)finite_sum->real^N`; `(s:real^M->bool) PCROSS (t:real^N->bool)`] CONVEX_CONE_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_SNDCART]] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; EXISTS_PASTECART; PASTECART_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART] THEN ASM SET_TAC[]);;
let CONVEX_CONE_HULL_UNION = 
prove (`!s t. convex_cone hull(s UNION t) = {x + y:real^N | x IN convex_cone hull s /\ y IN convex_cone hull t}`,
REPEAT GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC HULL_MINIMAL THEN SIMP_TAC[CONVEX_CONE_SUMS; CONVEX_CONE_CONVEX_CONE_HULL] THEN REWRITE_TAC[SUBSET; IN_UNION; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN STRIP_TAC THENL [MAP_EVERY EXISTS_TAC [`x:real^N`; `vec 0:real^N`] THEN ASM_SIMP_TAC[HULL_INC; CONVEX_CONE_HULL_CONTAINS_0; VECTOR_ADD_RID]; MAP_EVERY EXISTS_TAC [`vec 0:real^N`; `x:real^N`] THEN ASM_SIMP_TAC[HULL_INC; CONVEX_CONE_HULL_CONTAINS_0; VECTOR_ADD_LID]]; REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONVEX_CONE_HULL_ADD THEN ASM_MESON_TAC[HULL_MONO; SUBSET_UNION; SUBSET]]);;
let CONVEX_CONE_SING = 
prove (`convex_cone {vec 0}`,
let CONVEX_HULL_SUBSET_CONVEX_CONE_HULL = 
prove (`!s. convex hull s SUBSET convex_cone hull s`,
GEN_TAC THEN MATCH_MP_TAC HULL_ANTIMONO THEN SIMP_TAC[convex_cone; SUBSET; IN]);;
let CONIC_HULL_SUBSET_CONVEX_CONE_HULL = 
prove (`!s. conic hull s SUBSET convex_cone hull s`,
GEN_TAC THEN MATCH_MP_TAC HULL_ANTIMONO THEN SIMP_TAC[convex_cone; SUBSET; IN]);;
let CONVEX_CONE_HULL_SEPARATE_NONEMPTY = 
prove (`!s:real^N->bool. ~(s = {}) ==> convex_cone hull s = conic hull (convex hull s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THEN MATCH_MP_TAC HULL_MINIMAL THEN REWRITE_TAC[CONIC_CONVEX_CONE_HULL; CONVEX_HULL_SUBSET_CONVEX_CONE_HULL] THEN ASM_SIMP_TAC[CONVEX_CONIC_HULL; CONVEX_CONVEX_HULL; CONIC_CONIC_HULL; convex_cone; CONIC_HULL_EQ_EMPTY; CONVEX_HULL_EQ_EMPTY] THEN ASM_MESON_TAC[HULL_SUBSET; SUBSET_REFL; SUBSET_TRANS]);;
let CONVEX_CONE_HULL_EMPTY = 
prove (`convex_cone hull {} = {vec 0}`,
MATCH_MP_TAC HULL_UNIQUE THEN REWRITE_TAC[CONVEX_CONE_CONTAINS_0; EMPTY_SUBSET; CONVEX_CONE_SING; SET_RULE `{a} SUBSET s <=> a IN s`; CONVEX_CONE_CONTAINS_0]);;
let CONVEX_CONE_HULL_SEPARATE = 
prove (`!s:real^N->bool. convex_cone hull s = vec 0 INSERT conic hull (convex hull s)`,
GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_SIMP_TAC[CONVEX_CONE_HULL_EMPTY; CONVEX_HULL_EMPTY; CONIC_HULL_EMPTY] THEN ASM_SIMP_TAC[CONVEX_CONE_HULL_SEPARATE_NONEMPTY] THEN MATCH_MP_TAC(SET_RULE `a IN s ==> s = a INSERT s`) THEN ASM_SIMP_TAC[CONIC_CONTAINS_0; CONIC_CONIC_HULL] THEN ASM_REWRITE_TAC[CONIC_HULL_EQ_EMPTY; CONVEX_HULL_EQ_EMPTY]);;
let CONVEX_CONE_HULL_CONVEX_HULL_NONEMPTY = 
prove (`!s:real^N->bool. ~(s = {}) ==> convex_cone hull s = {c % x | &0 <= c /\ x IN convex hull s}`,
let CONVEX_CONE_HULL_CONVEX_HULL = 
prove (`!s:real^N->bool. convex_cone hull s = vec 0 INSERT {c % x | &0 <= c /\ x IN convex hull s}`,
let CONVEX_CONE_HULL_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. linear f ==> convex_cone hull (IMAGE f s) = IMAGE f (convex_cone hull s)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^M-> bool = {}` THEN ASM_SIMP_TAC[CONVEX_CONE_HULL_SEPARATE_NONEMPTY; IMAGE_EQ_EMPTY; CONVEX_HULL_LINEAR_IMAGE; CONIC_HULL_LINEAR_IMAGE] THEN REWRITE_TAC[IMAGE_CLAUSES; CONVEX_CONE_HULL_EMPTY] THEN MATCH_MP_TAC(SET_RULE `f x = y ==> {y} = {f x}`) THEN ASM_MESON_TAC[LINEAR_0]);;
add_linear_invariants [CONVEX_CONE_HULL_LINEAR_IMAGE];;
let SUBSPACE_IMP_CONVEX_CONE = 
prove (`!s. subspace s ==> convex_cone s`,
SIMP_TAC[subspace; CONVEX_CONE]);;
let CONVEX_CONE_SPAN = 
prove (`!s. convex_cone(span s)`,
SIMP_TAC[convex_cone; CONVEX_SPAN; CONIC_SPAN; GSYM MEMBER_NOT_EMPTY] THEN MESON_TAC[SPAN_0]);;
let CONVEX_CONE_NEGATIONS = 
prove (`!s. convex_cone s ==> convex_cone (IMAGE (--) s)`,
let SUBSPACE_CONVEX_CONE_SYMMETRIC = 
prove (`!s:real^N->bool. subspace s <=> convex_cone s /\ (!x. x IN s ==> --x IN s)`,
GEN_TAC THEN REWRITE_TAC[subspace; CONVEX_CONE] THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[] THENL [ASM_MESON_TAC[VECTOR_ARITH `--x:real^N = -- &1 % x`]; MAP_EVERY X_GEN_TAC [`c:real`; `x:real^N`] THEN DISCH_TAC THEN DISJ_CASES_TAC(SPEC `c:real` REAL_LE_NEGTOTAL) THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[VECTOR_ARITH `c % x:real^N = --(--c % x)`]]);;
let SPAN_CONVEX_CONE_ALLSIGNS = 
prove (`!s:real^N->bool. span s = convex_cone hull (s UNION IMAGE (--) s)`,
GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC SPAN_SUBSET_SUBSPACE THEN CONJ_TAC THENL [MESON_TAC[HULL_SUBSET; SUBSET_UNION; SUBSET_TRANS]; ALL_TAC] THEN REWRITE_TAC[SUBSPACE_CONVEX_CONE_SYMMETRIC; CONVEX_CONE_CONVEX_CONE_HULL] THEN MATCH_MP_TAC HULL_INDUCT THEN CONJ_TAC THENL [X_GEN_TAC `x:real^N` THEN REWRITE_TAC[IN_UNION; IN_IMAGE] THEN DISCH_TAC THEN MATCH_MP_TAC HULL_INC THEN REWRITE_TAC[IN_UNION; IN_IMAGE] THEN ASM_MESON_TAC[VECTOR_NEG_NEG]; SUBGOAL_THEN `!s. {x:real^N | (--x) IN s} = IMAGE (--) s` (fun th -> SIMP_TAC[th; CONVEX_CONE_NEGATIONS; CONVEX_CONE_CONVEX_CONE_HULL]) THEN GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[VECTOR_NEG_NEG]]; MATCH_MP_TAC HULL_MINIMAL THEN REWRITE_TAC[CONVEX_CONE_SPAN] THEN REWRITE_TAC[UNION_SUBSET; SPAN_INC] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN MESON_TAC[SPAN_SUPERSET; SPAN_NEG]]);;
(* ------------------------------------------------------------------------- *) (* Epigraphs of convex functions. *) (* ------------------------------------------------------------------------- *)
let epigraph = new_definition
  `epigraph s (f:real^N->real) =
       {xy:real^((N,1)finite_sum) |
             fstcart xy IN s /\ f(fstcart xy) <= drop(sndcart xy)}`;;
let IN_EPIGRAPH = 
prove (`!x y. (pastecart x (lift y)) IN epigraph s f <=> x IN s /\ f(x) <= y`,
let CONVEX_EPIGRAPH = 
prove (`!f s. f convex_on s /\ convex s <=> convex(epigraph s f)`,
let CONVEX_EPIGRAPH_CONVEX = 
prove (`!f s. convex s ==> (f convex_on s <=> convex(epigraph s f))`,
REWRITE_TAC[GSYM CONVEX_EPIGRAPH] THEN CONV_TAC TAUT);;
let CONVEX_ON_EPIGRAPH_SLICE_LE = 
prove (`!f:real^N->real s a. f convex_on s /\ convex s ==> convex {x | x IN s /\ f(x) <= a}`,
SIMP_TAC[convex_on; convex; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) th o lhand o snd)) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN MATCH_MP_TAC REAL_CONVEX_BOUND_LE THEN ASM_REWRITE_TAC[]);;
let CONVEX_ON_EPIGRAPH_SLICE_LT = 
prove (`!f:real^N->real s a. f convex_on s /\ convex s ==> convex {x | x IN s /\ f(x) < a}`,
SIMP_TAC[convex_on; convex; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) th o lhand o snd)) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LET_TRANS) THEN MATCH_MP_TAC REAL_CONVEX_BOUND_LT THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Use this to derive general bound property of convex function. *) (* ------------------------------------------------------------------------- *)
let FORALL_OF_PASTECART = 
prove (`(!p. P (fstcart o p) (sndcart o p)) <=> (!x:A->B^M y:A->B^N. P x y)`,
EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `\a:A. pastecart (x a :B^M) (y a :B^N)`) THEN REWRITE_TAC[o_DEF; FSTCART_PASTECART; SNDCART_PASTECART; ETA_AX]);;
let FORALL_OF_DROP = 
prove (`(!v. P (drop o v)) <=> (!x:A->real. P x)`,
EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `\a:A. lift(x a)`) THEN REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]);;
let CONVEX_ON_JENSEN = 
prove (`!f:real^N->real s. convex s ==> (f convex_on s <=> !k u x. (!i:num. 1 <= i /\ i <= k ==> &0 <= u(i) /\ x(i) IN s) /\ (sum (1..k) u = &1) ==> f(vsum (1..k) (\i. u(i) % x(i))) <= sum (1..k) (\i. u(i) * f(x(i))))`,
let lemma = prove
   (`(!x. P x ==> (Q x = R x)) ==> (!x. P x) ==> ((!x. Q x) <=> (!x. R x))`,
    MESON_TAC[]) in
  REPEAT STRIP_TAC THEN FIRST_ASSUM
   (fun th -> REWRITE_TAC[MATCH_MP CONVEX_EPIGRAPH_CONVEX th]) THEN
  REWRITE_TAC[CONVEX_INDEXED; epigraph] THEN
  SIMP_TAC[IN_ELIM_THM; SNDCART_ADD; SNDCART_CMUL; FINITE_NUMSEG;
           FSTCART_ADD; FSTCART_CMUL; FORALL_PASTECART; DROP_CMUL;
           FSTCART_PASTECART; SNDCART_PASTECART;
           FSTCART_VSUM; SNDCART_VSUM; DROP_VSUM; o_DEF] THEN
  REWRITE_TAC[GSYM(ISPEC `fstcart` o_THM); GSYM(ISPEC `sndcart` o_THM)] THEN
  REWRITE_TAC[GSYM(ISPEC `drop` o_THM)] THEN
  REWRITE_TAC[FORALL_OF_PASTECART; FORALL_OF_DROP] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONVEX_INDEXED]) THEN
  REPEAT(MATCH_MP_TAC lemma THEN GEN_TAC) THEN SIMP_TAC[] THEN
  REWRITE_TAC[TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN
  REWRITE_TAC[FORALL_AND_THM] THEN DISCH_THEN(K ALL_TAC) THEN
  EQ_TAC THEN SIMP_TAC[REAL_LE_REFL] THEN
  DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN
  ASM_SIMP_TAC[SUM_LE_NUMSEG; REAL_LE_LMUL]);;
(* ------------------------------------------------------------------------- *) (* Another intermediate value theorem formulation. *) (* ------------------------------------------------------------------------- *)
let IVT_INCREASING_COMPONENT_ON_1 = 
prove (`!f:real^1->real^N a b y k. drop a <= drop b /\ 1 <= k /\ k <= dimindex(:N) /\ f continuous_on interval[a,b] /\ f(a)$k <= y /\ y <= f(b)$k ==> ?x. x IN interval[a,b] /\ f(x)$k = y`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`IMAGE (f:real^1->real^N) (interval[a,b])`] CONNECTED_IVT_COMPONENT) THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_IN_IMAGE] THEN ASM_SIMP_TAC[CONNECTED_CONTINUOUS_IMAGE; CONVEX_CONNECTED; CONVEX_INTERVAL] THEN EXISTS_TAC `a:real^1` THEN ASM_REWRITE_TAC[IN_INTERVAL_1; REAL_LE_REFL] THEN EXISTS_TAC `b:real^1` THEN ASM_REWRITE_TAC[IN_INTERVAL_1; REAL_LE_REFL]);;
let IVT_INCREASING_COMPONENT_1 = 
prove (`!f:real^1->real^N a b y k. drop a <= drop b /\ 1 <= k /\ k <= dimindex(:N) /\ (!x. x IN interval[a,b] ==> f continuous at x) /\ f(a)$k <= y /\ y <= f(b)$k ==> ?x. x IN interval[a,b] /\ f(x)$k = y`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC IVT_INCREASING_COMPONENT_ON_1 THEN ASM_SIMP_TAC[CONTINUOUS_AT_IMP_CONTINUOUS_ON]);;
let IVT_DECREASING_COMPONENT_ON_1 = 
prove (`!f:real^1->real^N a b y k. drop a <= drop b /\ 1 <= k /\ k <= dimindex(:N) /\ f continuous_on interval[a,b] /\ f(b)$k <= y /\ y <= f(a)$k ==> ?x. x IN interval[a,b] /\ f(x)$k = y`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_EQ_NEG2] THEN ASM_SIMP_TAC[GSYM VECTOR_NEG_COMPONENT] THEN MATCH_MP_TAC IVT_INCREASING_COMPONENT_ON_1 THEN ASM_SIMP_TAC[VECTOR_NEG_COMPONENT; CONTINUOUS_ON_NEG; REAL_LE_NEG2]);;
let IVT_DECREASING_COMPONENT_1 = 
prove (`!f:real^1->real^N a b y k. drop a <= drop b /\ 1 <= k /\ k <= dimindex(:N) /\ (!x. x IN interval[a,b] ==> f continuous at x) /\ f(b)$k <= y /\ y <= f(a)$k ==> ?x. x IN interval[a,b] /\ f(x)$k = y`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC IVT_DECREASING_COMPONENT_ON_1 THEN ASM_SIMP_TAC[CONTINUOUS_AT_IMP_CONTINUOUS_ON]);;
(* ------------------------------------------------------------------------- *) (* A bound within a convex hull, and so an interval. *) (* ------------------------------------------------------------------------- *)
let CONVEX_ON_CONVEX_HULL_BOUND = 
prove (`!f s b. f convex_on (convex hull s) /\ (!x:real^N. x IN s ==> f(x) <= b) ==> !x. x IN convex hull s ==> f(x) <= b`,
REPEAT GEN_TAC THEN SIMP_TAC[CONVEX_ON_JENSEN; CONVEX_CONVEX_HULL] THEN STRIP_TAC THEN GEN_TAC THEN REWRITE_TAC[CONVEX_HULL_INDEXED] THEN REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`k:num`; `u:num->real`; `v:num->real^N`] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(1..k) (\i. u i * f(v i :real^N))` THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[SUBSET; HULL_SUBSET]; ALL_TAC] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(1..k) (\i. u i * b)` THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_LE_NUMSEG THEN ASM_SIMP_TAC[REAL_LE_LMUL]; ALL_TAC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[SUM_LMUL] THEN ASM_MESON_TAC[REAL_LE_REFL; REAL_MUL_RID]);;
let UNIT_INTERVAL_CONVEX_HULL = 
prove (`interval [vec 0,vec 1:real^N] = convex hull {x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> ((x$i = &0) \/ (x$i = &1))}`,
let lemma = prove
   (`FINITE {i | 1 <= i /\ i <= n /\ P(i)} /\
     CARD {i | 1 <= i /\ i <= n /\ P(i)} <= n`,
    CONJ_TAC THENL
     [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `1..n`;
      GEN_REWRITE_TAC RAND_CONV [ARITH_RULE `x = (x + 1) - 1`] THEN
      REWRITE_TAC[GSYM CARD_NUMSEG] THEN MATCH_MP_TAC CARD_SUBSET] THEN
    SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; SUBSET; IN_ELIM_THM]) in
  MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL
   [ALL_TAC;
    MATCH_MP_TAC HULL_MINIMAL THEN
    REWRITE_TAC[CONVEX_INTERVAL; SUBSET; IN_INTERVAL; IN_ELIM_THM] THEN
    SIMP_TAC[VEC_COMPONENT] THEN MESON_TAC[REAL_LE_REFL; REAL_POS]] THEN
  SUBGOAL_THEN
   `!n x:real^N.
        x IN interval[vec 0,vec 1] /\
        n <= dimindex(:N) /\
        CARD {i | 1 <= i /\ i <= dimindex(:N) /\ ~(x$i = &0)} <= n
        ==> x IN convex hull
                  {x:real^N | !i. 1 <= i /\ i <= dimindex(:N)
                                  ==> ((x$i = &0) \/ (x$i = &1))}`
  MP_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[SUBSET] THEN REPEAT STRIP_TAC THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `dimindex(:N)` THEN
    ASM_REWRITE_TAC[LE_REFL; lemma]] THEN
  INDUCT_TAC THEN X_GEN_TAC `x:real^N` THENL
   [SIMP_TAC[LE; lemma; CARD_EQ_0] THEN
    GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
     [EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; BETA_THM] THEN
    REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN STRIP_TAC THEN
    SUBGOAL_THEN `x = vec 0:real^N` SUBST1_TAC THENL
     [ASM_SIMP_TAC[CART_EQ; VEC_COMPONENT]; ALL_TAC] THEN
    MATCH_MP_TAC(REWRITE_RULE[SUBSET] HULL_SUBSET) THEN
    SIMP_TAC[IN_ELIM_THM; VEC_COMPONENT];
    ALL_TAC] THEN
  ASM_CASES_TAC
   `{i | 1 <= i /\ i <= dimindex(:N) /\ ~((x:real^N)$i = &0)} = {}`
  THENL
   [DISCH_THEN(K ALL_TAC) THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN
    GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
     [EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; BETA_THM] THEN
    REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN STRIP_TAC THEN
    SUBGOAL_THEN `x = vec 0:real^N` SUBST1_TAC THENL
     [ASM_SIMP_TAC[CART_EQ; VEC_COMPONENT]; ALL_TAC] THEN
    MATCH_MP_TAC(REWRITE_RULE[SUBSET] HULL_SUBSET) THEN
    SIMP_TAC[IN_ELIM_THM; VEC_COMPONENT];
    ALL_TAC] THEN
  MP_TAC(ISPEC
   `IMAGE (\i. x$i)
      {i | 1 <= i /\ i <= dimindex(:N) /\ ~((x:real^N)$i = &0)}`
   INF_FINITE) THEN
  ABBREV_TAC `xi = inf
   (IMAGE (\i. x$i)
     {i | 1 <= i /\ i <= dimindex(:N) /\ ~((x:real^N)$i = &0)})` THEN
  ASM_SIMP_TAC[FINITE_IMAGE; IMAGE_EQ_EMPTY; lemma] THEN
  REWRITE_TAC[FORALL_IN_IMAGE] THEN
  GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [IN_IMAGE; IN_ELIM_THM] THEN
  REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  FIRST_X_ASSUM(X_CHOOSE_THEN `i:num` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM SUBST_ALL_TAC THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `&0 <= (x:real^N)$i /\ x$i <= &1` STRIP_ASSUME_TAC THENL
   [UNDISCH_TAC `x:real^N IN interval [vec 0,vec 1]` THEN
    ASM_SIMP_TAC[IN_INTERVAL; VEC_COMPONENT];
    ALL_TAC] THEN
  FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH
   `x <= &1 ==> (x = &1) \/ x < &1`))
  THENL
   [SUBGOAL_THEN
     `x = lambda i. if (x:real^N)$i = &0 then &0 else &1`
    SUBST1_TAC THENL
     [UNDISCH_TAC `x:real^N IN interval [vec 0,vec 1]` THEN
      ASM_SIMP_TAC[CART_EQ; IN_INTERVAL; VEC_COMPONENT; LAMBDA_BETA] THEN
      ASM_MESON_TAC[REAL_LE_ANTISYM];
      ALL_TAC] THEN
    MATCH_MP_TAC(REWRITE_RULE[SUBSET] HULL_SUBSET) THEN
    SIMP_TAC[IN_ELIM_THM; LAMBDA_BETA] THEN MESON_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `x:real^N =
        x$i % (lambda j. if x$j = &0 then &0 else &1) +
        (&1 - x$i) %
        (lambda j. if x$j = &0 then &0 else (x$j - x$i) / (&1 - x$i))`
  SUBST1_TAC THENL
   [SIMP_TAC[CART_EQ; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT;
             LAMBDA_BETA; VEC_COMPONENT] THEN
    REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
    ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_LID] THEN
    ASM_SIMP_TAC[REAL_DIV_LMUL; ARITH_RULE `x < &1 ==> ~(&1 - x = &0)`] THEN
    REPEAT STRIP_TAC THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC(REWRITE_RULE[convex] CONVEX_CONVEX_HULL) THEN
  ASM_SIMP_TAC[REAL_ARITH `x < &1 ==> &0 <= &1 - x`;
               REAL_ARITH `x + &1 - x = &1`] THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC(REWRITE_RULE[SUBSET] HULL_SUBSET) THEN
    SIMP_TAC[LAMBDA_BETA; IN_ELIM_THM] THEN MESON_TAC[];
    ALL_TAC] THEN
  FIRST_X_ASSUM MATCH_MP_TAC THEN
  ASM_SIMP_TAC[ARITH_RULE `SUC k <= n ==> k <= n`] THEN CONJ_TAC THENL
   [SIMP_TAC[IN_INTERVAL; LAMBDA_BETA; VEC_COMPONENT] THEN
    GEN_TAC THEN STRIP_TAC THEN
    COND_CASES_TAC THEN REWRITE_TAC[REAL_LE_REFL; REAL_POS] THEN
    ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ;
                 REAL_ARITH `x < &1 ==> &0 < &1 - x`] THEN
    ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_SUB_LE; REAL_MUL_LID] THEN
    ASM_SIMP_TAC[REAL_ARITH `a - b <= &1 - b <=> a <= &1`] THEN
    UNDISCH_TAC `x:real^N IN interval [vec 0,vec 1]` THEN
    ASM_SIMP_TAC[CART_EQ; IN_INTERVAL; VEC_COMPONENT; LAMBDA_BETA];
    ALL_TAC] THEN
  MATCH_MP_TAC LE_TRANS THEN
  EXISTS_TAC
   `CARD({i | 1 <= i /\ i <= dimindex(:N) /\ ~((x:real^N)$i = &0)}
         DELETE i)` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC CARD_SUBSET THEN REWRITE_TAC[lemma; FINITE_DELETE] THEN
    REWRITE_TAC[SUBSET; IN_DELETE; IN_ELIM_THM] THEN
    GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    ASM_SIMP_TAC[LAMBDA_BETA] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[CONTRAPOS_THM] THEN
    SIMP_TAC[real_div; REAL_SUB_REFL; REAL_MUL_LZERO];
    SIMP_TAC[lemma; CARD_DELETE] THEN COND_CASES_TAC THEN
    ASM_SIMP_TAC[ARITH_RULE `x <= SUC n ==> x - 1 <= n`] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM]) THEN
    ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Representation of any interval as a finite convex hull. *) (* ------------------------------------------------------------------------- *)
let CLOSED_INTERVAL_AS_CONVEX_HULL = 
prove (`!a b:real^N. ?s. FINITE s /\ interval[a,b] = convex hull s`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `interval[a:real^N,b] = {}` THENL [ASM_MESON_TAC[CONVEX_HULL_EMPTY; FINITE_EMPTY]; ALL_TAC] THEN ASM_SIMP_TAC[CLOSED_INTERVAL_IMAGE_UNIT_INTERVAL] THEN SUBGOAL_THEN `?s:real^N->bool. FINITE s /\ interval[vec 0,vec 1] = convex hull s` STRIP_ASSUME_TAC THENL [EXISTS_TAC `{x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> ((x$i = &0) \/ (x$i = &1))}` THEN REWRITE_TAC[UNIT_INTERVAL_CONVEX_HULL] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `IMAGE (\s. (lambda i. if i IN s then &1 else &0):real^N) {t | t SUBSET (1..dimindex(:N))}` THEN ASM_SIMP_TAC[FINITE_POWERSET; FINITE_IMAGE; FINITE_NUMSEG] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_IMAGE] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN EXISTS_TAC `{i | 1 <= i /\ i <= dimindex(:N) /\ ((x:real^N)$i = &1)}` THEN SIMP_TAC[CART_EQ; IN_ELIM_THM; IN_NUMSEG; LAMBDA_BETA] THEN ASM_MESON_TAC[]; EXISTS_TAC `IMAGE (\x:real^N. a + x) (IMAGE (\x. (lambda i. ((b:real^N)$i - a$i) * x$i)) (s:real^N->bool))` THEN ASM_SIMP_TAC[FINITE_IMAGE; CONVEX_HULL_TRANSLATION] THEN AP_TERM_TAC THEN MATCH_MP_TAC(GSYM CONVEX_HULL_LINEAR_IMAGE) THEN SIMP_TAC[linear; CART_EQ; LAMBDA_BETA; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN REPEAT STRIP_TAC THEN REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *) (* Bounded convex function on open set is continuous. *) (* ------------------------------------------------------------------------- *)
let CONVEX_ON_BOUNDED_CONTINUOUS = 
prove (`!f:real^N->real s b. open s /\ f convex_on s /\ (!x. x IN s ==> abs(f x) <= b) ==> (lift o f) continuous_on s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN REWRITE_TAC[CONTINUOUS_AT_LIFT_RANGE] THEN ABBREV_TAC `B = abs(b) + &1` THEN SUBGOAL_THEN `&0 < B /\ !x:real^N. x IN s ==> abs(f x) <= B` STRIP_ASSUME_TAC THENL [EXPAND_TAC "B" THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN ASM_MESON_TAC[REAL_ARITH `x <= b ==> x <= abs b + &1`]; ALL_TAC] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN REWRITE_TAC[REAL_ARITH `abs(x - y) < e <=> x - y < e /\ y - x < e`] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_CBALL]) THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN REWRITE_TAC[SUBSET; IN_CBALL] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min (k / &2) (e / (&2 * B) * k)` THEN ASM_SIMP_TAC[REAL_LT_MIN; REAL_LT_DIV; REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN X_GEN_TAC `y:real^N` THEN ASM_CASES_TAC `y:real^N = x` THEN ASM_REWRITE_TAC[REAL_SUB_REFL] THEN STRIP_TAC THEN ABBREV_TAC `t = k / norm(y - x:real^N)` THEN SUBGOAL_THEN `&2 < t` ASSUME_TAC THENL [EXPAND_TAC "t" THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH]; ALL_TAC] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP (REAL_ARITH `&2 < t ==> &0 < t /\ ~(t = &0) /\ &0 < t - &1 /\ &0 < &1 + t /\ ~(&1 + t = &0)`)) THEN SUBGOAL_THEN `y:real^N IN s` ASSUME_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[dist] THEN ONCE_REWRITE_TAC[NORM_SUB] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `x < k / &2 ==> k / &2 <= k ==> x <= k`)) THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN UNDISCH_TAC `&0 < k` THEN REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [ABBREV_TAC `w:real^N = x + t % (y - x)` THEN SUBGOAL_THEN `w:real^N IN s` STRIP_ASSUME_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN EXPAND_TAC "w" THEN REWRITE_TAC[dist; VECTOR_ARITH `x - (x + t) = --t:real^N`] THEN EXPAND_TAC "t" THEN REWRITE_TAC[NORM_NEG; NORM_MUL; REAL_ABS_DIV] THEN REWRITE_TAC[REAL_ABS_NORM; real_div; GSYM REAL_MUL_ASSOC] THEN ASM_SIMP_TAC[REAL_MUL_LINV; REAL_LT_IMP_NZ; NORM_POS_LT; VECTOR_SUB_EQ; REAL_MUL_RID; REAL_ARITH `&0 < x ==> abs(x) <= x`]; ALL_TAC] THEN SUBGOAL_THEN `(&1 / t) % w + (t - &1) / t % x = y:real^N` ASSUME_TAC THENL [EXPAND_TAC "w" THEN REWRITE_TAC[VECTOR_ARITH `b % (x + c % (y - x)) + a % x = (a + b - b * c) % x + (b * c) % y`] THEN ASM_SIMP_TAC[REAL_DIV_RMUL; VECTOR_MUL_LID] THEN ASM_SIMP_TAC[real_div; REAL_MUL_RINV; REAL_SUB_REFL; VECTOR_MUL_LZERO; VECTOR_ADD_LID; REAL_ARITH `(a - &1) * b + &1 * b - &1 = a * b - &1`]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [convex_on]) THEN DISCH_THEN(MP_TAC o SPECL [`w:real^N`; `x:real^N`; `&1 / t`; `(t - &1) / t`]) THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LT_DIV; REAL_LT_01] THEN REWRITE_TAC[real_div; GSYM REAL_ADD_RDISTRIB] THEN ASM_SIMP_TAC[REAL_SUB_ADD2; REAL_MUL_RINV] THEN MATCH_MP_TAC(REAL_ARITH `a * fw + (b - &1) * fx < e ==> fy <= a * fw + b * fx ==> fy - fx < e`) THEN ASM_SIMP_TAC[real_div; REAL_SUB_RDISTRIB; REAL_MUL_RINV; REAL_MUL_LID; REAL_ARITH `a * x + y - a * y - y = a * (x - y)`] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM real_div; REAL_LT_LDIV_EQ] THEN MATCH_MP_TAC(REAL_ARITH `!b. abs(x) <= b /\ abs(y) <= b /\ &2 * b < z ==> x - y < z`) THEN EXISTS_TAC `B:real` THEN ASM_SIMP_TAC[] THEN EXPAND_TAC "t" THEN REWRITE_TAC[real_div; REAL_MUL_ASSOC] THEN REWRITE_TAC[GSYM real_div] THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN REWRITE_TAC[real_div; REAL_ARITH `(a * b) * inv c = (b * inv c) * a`] THEN ASM_REWRITE_TAC[GSYM real_div]; ABBREV_TAC `w:real^N = x - t % (y - x)` THEN SUBGOAL_THEN `w:real^N IN s` STRIP_ASSUME_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN EXPAND_TAC "w" THEN REWRITE_TAC[dist; VECTOR_ARITH `x - (x - t) = t:real^N`] THEN EXPAND_TAC "t" THEN REWRITE_TAC[NORM_MUL; REAL_ABS_DIV] THEN REWRITE_TAC[REAL_ABS_NORM; real_div; GSYM REAL_MUL_ASSOC] THEN ASM_SIMP_TAC[REAL_MUL_LINV; REAL_LT_IMP_NZ; NORM_POS_LT; VECTOR_SUB_EQ; REAL_MUL_RID; REAL_ARITH `&0 < x ==> abs(x) <= x`]; ALL_TAC] THEN SUBGOAL_THEN `(&1 / (&1 + t)) % w + t / (&1 + t) % y = x:real^N` ASSUME_TAC THENL [EXPAND_TAC "w" THEN REWRITE_TAC[VECTOR_ARITH `b % (x - c % (y - x)) + a % y = (b * (&1 + c)) % x + (a - b * c) % y`] THEN ASM_SIMP_TAC[REAL_DIV_RMUL; VECTOR_MUL_LID] THEN REWRITE_TAC[real_div; REAL_MUL_AC; REAL_MUL_LID; REAL_MUL_RID] THEN REWRITE_TAC[REAL_SUB_REFL; VECTOR_MUL_LZERO; VECTOR_ADD_RID]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [convex_on]) THEN DISCH_THEN(MP_TAC o SPECL [`w:real^N`; `y:real^N`; `&1 / (&1 + t)`; `t / (&1 + t)`]) THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LT_DIV; REAL_LT_01] THEN REWRITE_TAC[real_div; GSYM REAL_ADD_RDISTRIB] THEN ASM_SIMP_TAC[REAL_SUB_ADD2; REAL_MUL_RINV] THEN MATCH_MP_TAC(REAL_ARITH `a * fw + (b - &1) * fx < e ==> fy <= a * fw + b * fx ==> fy - fx < e`) THEN SUBGOAL_THEN `t * inv(&1 + t) - &1 = --(inv(&1 + t))` SUBST1_TAC THENL [REWRITE_TAC[REAL_ARITH `(a * b - &1 = --b) <=> ((&1 + a) * b = &1)`] THEN ASM_SIMP_TAC[REAL_MUL_RINV]; ALL_TAC] THEN REWRITE_TAC[REAL_ARITH `(&1 * a) * x + --a * y = a * (x - y)`] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM real_div; REAL_LT_LDIV_EQ] THEN MATCH_MP_TAC(REAL_ARITH `!b. abs(x) <= b /\ abs(y) <= b /\ &2 * b < z ==> x - y < z`) THEN EXISTS_TAC `B:real` THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `&0 < e /\ x < e * k ==> x < e * (&1 + k)`) THEN EXPAND_TAC "t" THEN REWRITE_TAC[real_div; REAL_MUL_ASSOC] THEN REWRITE_TAC[GSYM real_div] THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN REWRITE_TAC[real_div; REAL_ARITH `(a * b) * inv c = (b * inv c) * a`] THEN ASM_REWRITE_TAC[GSYM real_div]]);;
(* ------------------------------------------------------------------------- *) (* Upper bound on a ball implies upper and lower bounds. *) (* ------------------------------------------------------------------------- *)
let CONVEX_BOUNDS_LEMMA = 
prove (`!f x:real^N e. f convex_on cball(x,e) /\ (!y. y IN cball(x,e) ==> f(y) <= b) ==> !y. y IN cball(x,e) ==> abs(f(y)) <= b + &2 * abs(f(x))`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `&0 <= e` THENL [ALL_TAC; REWRITE_TAC[IN_CBALL] THEN ASM_MESON_TAC[DIST_POS_LE; REAL_LE_TRANS]] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [convex_on]) THEN DISCH_THEN(MP_TAC o SPECL [`y:real^N`; `&2 % x - y:real^N`; `&1 / &2`; `&1 / &2`]) THEN REWRITE_TAC[GSYM VECTOR_ADD_LDISTRIB; GSYM REAL_ADD_LDISTRIB] THEN REWRITE_TAC[VECTOR_ARITH `y + x - y = x:real^N`] THEN REWRITE_TAC[VECTOR_MUL_ASSOC] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ABBREV_TAC `z = &2 % x - y:real^N` THEN SUBGOAL_THEN `z:real^N IN cball(x,e)` ASSUME_TAC THENL [UNDISCH_TAC `y:real^N IN cball(x,e)` THEN EXPAND_TAC "z" THEN REWRITE_TAC[dist; IN_CBALL] THEN REWRITE_TAC[VECTOR_ARITH `x - (&2 % x - y) = y - x`] THEN REWRITE_TAC[NORM_SUB]; ALL_TAC] THEN ASM_REWRITE_TAC[VECTOR_MUL_LID] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[real_div; REAL_MUL_LID] THEN REWRITE_TAC[GSYM real_div] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN FIRST_X_ASSUM(fun th -> MAP_EVERY (MP_TAC o C SPEC th) [`y:real^N`; `z:real^N`]) THEN ASM_REWRITE_TAC[CENTRE_IN_CBALL] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Hence a convex function on an open set is continuous. *) (* ------------------------------------------------------------------------- *)
let CONVEX_ON_CONTINUOUS = 
prove (`!f s:real^N->bool. open s /\ f convex_on s ==> lift o f continuous_on s`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_CBALL]) THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN ABBREV_TAC `d = e / &(dimindex(:N))` THEN SUBGOAL_THEN `&0 < d` ASSUME_TAC THENL [EXPAND_TAC "d" THEN MATCH_MP_TAC REAL_LT_DIV THEN ASM_REWRITE_TAC[REAL_OF_NUM_LT; DIMINDEX_GE_1; ARITH_RULE `0 < d <=> 1 <= d`]; ALL_TAC] THEN SUBGOAL_THEN `?b. !y:real^N. y IN interval[(x - lambda i. d),(x + lambda i. d)] ==> f(y) <= b` STRIP_ASSUME_TAC THENL [MP_TAC(ISPECL [`x - (lambda i. d):real^N`; `x + (lambda i. d):real^N`] CLOSED_INTERVAL_AS_CONVEX_HULL) THEN DISCH_THEN(X_CHOOSE_THEN `c:real^N->bool` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `c = {}:real^N->bool` THEN ASM_REWRITE_TAC[CONVEX_HULL_EMPTY; NOT_IN_EMPTY] THEN MP_TAC(ISPEC `IMAGE (f:real^N->real) c` SUP_FINITE) THEN ASM_SIMP_TAC[FINITE_IMAGE; IMAGE_EQ_EMPTY; FORALL_IN_IMAGE] THEN ABBREV_TAC `k = sup(IMAGE (f:real^N->real) c)` THEN STRIP_TAC THEN EXISTS_TAC `k:real` THEN MATCH_MP_TAC CONVEX_ON_CONVEX_HULL_BOUND THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONVEX_ON_SUBSET THEN EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `cball (x:real^N,e)` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [SYM th]) THEN REWRITE_TAC[SUBSET; IN_INTERVAL; IN_CBALL] THEN SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_SUB_COMPONENT; LAMBDA_BETA] THEN X_GEN_TAC `z:real^N` THEN REWRITE_TAC[REAL_ARITH `x - d <= z /\ z <= x + d <=> abs(x - z) <= d`] THEN DISCH_TAC THEN REWRITE_TAC[dist] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(1..dimindex(:N)) (\i. abs((x - z:real^N)$i))` THEN REWRITE_TAC[NORM_LE_L1] THEN MATCH_MP_TAC SUM_BOUND_GEN THEN REWRITE_TAC[FINITE_NUMSEG; NUMSEG_EMPTY; CARD_NUMSEG] THEN ASM_SIMP_TAC[IN_NUMSEG; NOT_LT; DIMINDEX_GE_1; ADD_SUB; VECTOR_SUB_COMPONENT]; ALL_TAC] THEN SUBGOAL_THEN `cball(x:real^N,d) SUBSET cball(x,e)` ASSUME_TAC THENL [REWRITE_TAC[SUBSET; IN_CBALL] THEN GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH `d <= e ==> x <= d ==> x <= e`) THEN EXPAND_TAC "d" THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; DIMINDEX_GE_1; ARITH_RULE `0 < x <=> 1 <= x`] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_OF_NUM_LE; DIMINDEX_GE_1]; ALL_TAC] THEN SUBGOAL_THEN `!y:real^N. y IN cball(x,d) ==> abs(f(y)) <= b + &2 * abs(f(x))` ASSUME_TAC THENL [MATCH_MP_TAC CONVEX_BOUNDS_LEMMA THEN CONJ_TAC THENL [ASM_MESON_TAC[CONVEX_ON_SUBSET; SUBSET_TRANS]; ALL_TAC] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `y:real^N IN cball(x,d)` THEN REWRITE_TAC[IN_CBALL] THEN REWRITE_TAC[IN_INTERVAL; IN_CBALL; dist] THEN DISCH_TAC THEN SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_SUB_COMPONENT; LAMBDA_BETA] THEN REWRITE_TAC[REAL_ARITH `x - d <= z /\ z <= x + d <=> abs(x - z) <= d`] THEN SIMP_TAC[GSYM VECTOR_SUB_COMPONENT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `norm(x - y:real^N)` THEN ASM_SIMP_TAC[COMPONENT_LE_NORM]; ALL_TAC] THEN SUBGOAL_THEN `(lift o f) continuous_on (ball(x:real^N,d))` MP_TAC THENL [MATCH_MP_TAC CONVEX_ON_BOUNDED_CONTINUOUS THEN REWRITE_TAC[OPEN_BALL] THEN EXISTS_TAC `b + &2 * abs(f(x:real^N))` THEN ASM_MESON_TAC[SUBSET; CONVEX_ON_SUBSET; SUBSET_TRANS; BALL_SUBSET_CBALL]; ALL_TAC] THEN ASM_SIMP_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT; OPEN_BALL; CENTRE_IN_BALL]);;
(* ------------------------------------------------------------------------- *) (* Characterizations of convex functions in terms of sequents. *) (* ------------------------------------------------------------------------- *) let CONVEX_ON_LEFT_SECANT_MUL,CONVEX_ON_RIGHT_SECANT_MUL = (CONJ_PAIR o prove) (`(!f s:real^N->bool. f convex_on s <=> !a b x. a IN s /\ b IN s /\ x IN segment[a,b] ==> (f x - f a) * norm(b - a) <= (f b - f a) * norm(x - a)) /\ (!f s:real^N->bool. f convex_on s <=> !a b x. a IN s /\ b IN s /\ x IN segment[a,b] ==> (f b - f a) * norm(b - x) <= (f b - f x) * norm(b - a))`, CONJ_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[convex_on] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `a:real^N` THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `b:real^N` THEN REWRITE_TAC[] THEN ASM_CASES_TAC `(a:real^N) IN s` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(b:real^N) IN s` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_SEGMENT; LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `u:real` THEN REWRITE_TAC[] THEN REWRITE_TAC[TAUT `a /\ x = y <=> x = y /\ a`; TAUT `a /\ x = y /\ b <=> x = y /\ a /\ b`] THEN REWRITE_TAC[REAL_ARITH `v + u = &1 <=> v = &1 - u`] THEN REWRITE_TAC[FORALL_UNWIND_THM2; IMP_CONJ] THEN REWRITE_TAC[REAL_SUB_LE] THEN ASM_CASES_TAC `&0 <= u` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `u <= &1` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[VECTOR_ARITH `((&1 - u) % a + u % b) - a:real^N = u % (b - a)`; VECTOR_ARITH `b - ((&1 - u) % a + u % b):real^N = (&1 - u) % (b - a)`] THEN REWRITE_TAC[NORM_MUL; REAL_MUL_ASSOC] THEN (ASM_CASES_TAC `b:real^N = a` THENL [ASM_REWRITE_TAC[VECTOR_SUB_REFL; REAL_SUB_REFL; VECTOR_ARITH `(&1 - u) % a + u % a:real^N = a`] THEN REAL_ARITH_TAC; ASM_SIMP_TAC[REAL_LE_RMUL_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN ASM_SIMP_TAC[REAL_ARITH `&0 <= u /\ u <= &1 ==> abs u = u /\ abs(&1 - u) = &1 - u`] THEN REAL_ARITH_TAC]));; let CONVEX_ON_LEFT_SECANT,CONVEX_ON_RIGHT_SECANT = (CONJ_PAIR o prove) (`(!f s:real^N->bool. f convex_on s <=> !a b x. a IN s /\ b IN s /\ x IN segment(a,b) ==> (f x - f a) / norm(x - a) <= (f b - f a) / norm(b - a)) /\ (!f s:real^N->bool. f convex_on s <=> !a b x. a IN s /\ b IN s /\ x IN segment(a,b) ==> (f b - f a) / norm(b - a) <= (f b - f x) / norm(b - x))`, CONJ_TAC THEN REPEAT GEN_TAC THENL [REWRITE_TAC[CONVEX_ON_LEFT_SECANT_MUL]; REWRITE_TAC[CONVEX_ON_RIGHT_SECANT_MUL]] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `a:real^N` THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `b:real^N` THEN REWRITE_TAC[] THEN ASM_CASES_TAC `(a:real^N) IN s` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(b:real^N) IN s` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `a:real^N = b` THEN ASM_REWRITE_TAC[SEGMENT_REFL; NOT_IN_EMPTY; REAL_SUB_REFL; VECTOR_SUB_REFL; NORM_0; REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_LE_REFL] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `x:real^N` THEN REWRITE_TAC[] THEN REWRITE_TAC[open_segment; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN MAP_EVERY ASM_CASES_TAC [`x:real^N = a`; `x:real^N = b`] THEN ASM_REWRITE_TAC[REAL_LE_REFL; REAL_SUB_REFL; VECTOR_SUB_REFL; NORM_0; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; GSYM REAL_LE_LDIV_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN AP_TERM_TAC THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Starlike sets and more stuff about line segments. *) (* ------------------------------------------------------------------------- *)
let starlike = new_definition
 `starlike s <=> ?a. a IN s /\ !x. x IN s ==> segment[a,x] SUBSET s`;;
let CONVEX_CONTAINS_SEGMENT = 
prove (`!s. convex s <=> !a b. a IN s /\ b IN s ==> segment[a,b] SUBSET s`,
REWRITE_TAC[CONVEX_ALT; segment; SUBSET; IN_ELIM_THM] THEN MESON_TAC[]);;
let CONVEX_CONTAINS_SEGMENT_EQ = 
prove (`!s:real^N->bool. convex s <=> !a b. segment[a,b] SUBSET s <=> a IN s /\ b IN s`,
REWRITE_TAC[CONVEX_CONTAINS_SEGMENT; SUBSET] THEN MESON_TAC[ENDS_IN_SEGMENT]);;
let CONVEX_CONTAINS_SEGMENT_IMP = 
prove (`!s a b. convex s ==> (segment[a,b] SUBSET s <=> a IN s /\ b IN s)`,
let CONVEX_IMP_STARLIKE = 
prove (`!s. convex s /\ ~(s = {}) ==> starlike s`,
REWRITE_TAC[CONVEX_CONTAINS_SEGMENT; starlike; GSYM MEMBER_NOT_EMPTY] THEN MESON_TAC[]);;
let SEGMENT_CONVEX_HULL = 
prove (`!a b. segment[a,b] = convex hull {a,b}`,
REPEAT GEN_TAC THEN SIMP_TAC[CONVEX_HULL_INSERT; CONVEX_HULL_SING; NOT_INSERT_EMPTY] THEN REWRITE_TAC[IN_SING; RIGHT_EXISTS_AND_THM; UNWIND_THM2] THEN REWRITE_TAC[segment; EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[REAL_ARITH `u + v = &1 <=> u = &1 - v`] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> c /\ a /\ b /\ d`] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN REWRITE_TAC[REAL_LE_SUB_LADD; REAL_ADD_LID] THEN MESON_TAC[]);;
let SEGMENT_FURTHEST_LE = 
prove (`!a b x y:real^N. x IN segment[a,b] ==> norm(y - x) <= norm(y - a) \/ norm(y - x) <= norm(y - b)`,
REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`y:real^N`; `{a:real^N,b}`] SIMPLEX_FURTHEST_LE) THEN ASM_REWRITE_TAC[FINITE_INSERT; FINITE_RULES; NOT_INSERT_EMPTY] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`) THEN ASM_MESON_TAC[NORM_SUB]);;
let SEGMENT_BOUND = 
prove (`!a b x:real^N. x IN segment[a,b] ==> norm(x - a) <= norm(b - a) /\ norm(x - b) <= norm(b - a)`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL [`a:real^N`; `b:real^N`; `x:real^N`] SEGMENT_FURTHEST_LE) THENL [DISCH_THEN(MP_TAC o SPEC `a:real^N`); DISCH_THEN(MP_TAC o SPEC `b:real^N`)] THEN REWRITE_TAC[VECTOR_SUB_REFL; NORM_0] THEN ASM_MESON_TAC[NORM_POS_LE; REAL_LE_TRANS; NORM_SUB]);;
let BETWEEN_IN_CONVEX_HULL = 
prove (`!x a b:real^N. between x (a,b) <=> x IN convex hull {a,b}`,
let STARLIKE_LINEAR_IMAGE = 
prove (`!f s. starlike s /\ linear f ==> starlike(IMAGE f s)`,
REWRITE_TAC[starlike; FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN SIMP_TAC[CLOSED_SEGMENT_LINEAR_IMAGE] THEN SET_TAC[]);;
let STARLIKE_LINEAR_IMAGE_EQ = 
prove (`!f s. linear f /\ (!x y. f x = f y ==> x = y) ==> (starlike (IMAGE f s) <=> starlike s)`,
MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE STARLIKE_LINEAR_IMAGE));;
add_linear_invariants [STARLIKE_LINEAR_IMAGE_EQ];;
let STARLIKE_TRANSLATION_EQ = 
prove (`!a s. starlike (IMAGE (\x. a + x) s) <=> starlike s`,
REWRITE_TAC[starlike] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [STARLIKE_TRANSLATION_EQ];;
let BETWEEN_LINEAR_IMAGE_EQ = 
prove (`!f x y z. linear f /\ (!x y. f x = f y ==> x = y) ==> (between (f x) (f y,f z) <=> between x (y,z))`,
SIMP_TAC[BETWEEN_IN_SEGMENT; CLOSED_SEGMENT_LINEAR_IMAGE] THEN SET_TAC[]);;
add_linear_invariants [BETWEEN_LINEAR_IMAGE_EQ];;
let BETWEEN_TRANSLATION = 
prove (`!a x y. between (a + x) (a + y,a + z) <=> between x (y,z)`,
REWRITE_TAC[between] THEN NORM_ARITH_TAC);;
add_translation_invariants [STARLIKE_TRANSLATION_EQ];;
let STARLIKE_CLOSURE = 
prove (`!s:real^N->bool. starlike s ==> starlike(closure s)`,
GEN_TAC THEN REWRITE_TAC[starlike; SUBSET; segment; FORALL_IN_GSPEC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN STRIP_TAC THEN ASM_SIMP_TAC[REWRITE_RULE[SUBSET] CLOSURE_SUBSET] THEN X_GEN_TAC `x:real^N` THEN REWRITE_TAC[SUBSET; CLOSURE_APPROACHABLE] THEN DISCH_TAC THEN X_GEN_TAC `u:real` THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `y:real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(&1 - u) % a + u % y:real^N` THEN ASM_SIMP_TAC[dist; NORM_MUL; VECTOR_ARITH `(v % a + u % y) - (v % a + u % z):real^N = u % (y - z)`] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] REAL_LET_TRANS)) THEN REWRITE_TAC[dist; REAL_ARITH `u * n <= n <=> &0 <= n * (&1 - u)`] THEN MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[NORM_POS_LE] THEN ASM_REAL_ARITH_TAC);;
let STARLIKE_UNIV = 
prove (`starlike(:real^N)`,
let STARLIKE_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. starlike s /\ starlike t ==> starlike(s PCROSS t)`,
SIMP_TAC[starlike; EXISTS_IN_PCROSS; SUBSET; IN_SEGMENT] THEN REPEAT GEN_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[FORALL_IN_PCROSS; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_UNWIND_THM2; IMP_IMP] THEN REWRITE_TAC[GSYM PASTECART_CMUL; PASTECART_ADD] THEN REWRITE_TAC[PASTECART_IN_PCROSS] THEN MESON_TAC[]);;
let STARLIKE_PCROSS_EQ = 
prove (`!s:real^M->bool t:real^N->bool. starlike(s PCROSS t) <=> starlike s /\ starlike t`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THENL [ASM_REWRITE_TAC[PCROSS_EMPTY] THEN MESON_TAC[starlike; NOT_IN_EMPTY]; ALL_TAC] THEN ASM_CASES_TAC `t:real^N->bool = {}` THENL [ASM_REWRITE_TAC[PCROSS_EMPTY] THEN MESON_TAC[starlike; NOT_IN_EMPTY]; ALL_TAC] THEN EQ_TAC THEN REWRITE_TAC[STARLIKE_PCROSS] THEN REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`fstcart:real^(M,N)finite_sum->real^M`; `(s:real^M->bool) PCROSS (t:real^N->bool)`] STARLIKE_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_FSTCART]; MP_TAC(ISPECL [`sndcart:real^(M,N)finite_sum->real^N`; `(s:real^M->bool) PCROSS (t:real^N->bool)`] STARLIKE_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_SNDCART]] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; EXISTS_PASTECART; PASTECART_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART] THEN ASM SET_TAC[]);;
let BETWEEN_DIST_LT = 
prove (`!r a b c:real^N. dist(c,a) < r /\ dist(c,b) < r /\ between x (a,b) ==> dist(c,x) < r`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `convex hull {a,b} SUBSET ball(c:real^N,r)` MP_TAC THENL [MATCH_MP_TAC HULL_MINIMAL THEN ASM_REWRITE_TAC[CONVEX_BALL; INSERT_SUBSET; EMPTY_SUBSET; IN_BALL]; ASM_SIMP_TAC[SUBSET; GSYM BETWEEN_IN_CONVEX_HULL; IN_BALL]]);;
let BETWEEN_DIST_LE = 
prove (`!r a b c:real^N. dist(c,a) <= r /\ dist(c,b) <= r /\ between x (a,b) ==> dist(c,x) <= r`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `convex hull {a,b} SUBSET cball(c:real^N,r)` MP_TAC THENL [MATCH_MP_TAC HULL_MINIMAL THEN ASM_REWRITE_TAC[CONVEX_CBALL; INSERT_SUBSET; EMPTY_SUBSET; IN_CBALL]; ASM_SIMP_TAC[SUBSET; GSYM BETWEEN_IN_CONVEX_HULL; IN_CBALL]]);;
let BETWEEN_NORM_LT = 
prove (`!r a b x:real^N. norm a < r /\ norm b < r /\ between x (a,b) ==> norm x < r`,
REWRITE_TAC[GSYM(CONJUNCT2(SPEC_ALL DIST_0)); BETWEEN_DIST_LT]);;
let BETWEEN_NORM_LE = 
prove (`!r a b x:real^N. norm a <= r /\ norm b <= r /\ between x (a,b) ==> norm x <= r`,
REWRITE_TAC[GSYM(CONJUNCT2(SPEC_ALL DIST_0)); BETWEEN_DIST_LE]);;
(* ------------------------------------------------------------------------- *) (* Shrinking towards the interior of a convex set. *) (* ------------------------------------------------------------------------- *)
let IN_INTERIOR_CONVEX_SHRINK = 
prove (`!s e x c:real^N. convex s /\ c IN interior s /\ x IN s /\ &0 < e /\ e <= &1 ==> x - e % (x - c) IN interior s`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERIOR]) THEN REWRITE_TAC[IN_INTERIOR; SUBSET; IN_BALL; dist] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `e * d:real` THEN ASM_SIMP_TAC[REAL_LT_MUL] THEN X_GEN_TAC `y':real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(&1 / e) % y' - ((&1 - e) / e) % x:real^N`) THEN ANTS_TAC THENL [UNDISCH_TAC `norm (x - e % (x - c) - y':real^N) < e * d` THEN SUBGOAL_THEN `x - e % (x - c) - y':real^N = e % (c - (&1 / e % y' - (&1 - e) / e % x))` SUBST1_TAC THENL [ASM_SIMP_TAC[VECTOR_SUB_LDISTRIB; VECTOR_MUL_ASSOC; REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN VECTOR_ARITH_TAC; ASM_SIMP_TAC[NORM_MUL; REAL_LT_LMUL_EQ; real_abs; REAL_LT_IMP_LE]]; DISCH_TAC THEN SUBGOAL_THEN `y' = (&1 - (&1 - e)) % (&1 / e % y' - (&1 - e) / e % x) + (&1 - e) % x:real^N` SUBST1_TAC THENL [ASM_SIMP_TAC[REAL_ARITH `&1 - (&1 - e) = e`; VECTOR_SUB_LDISTRIB; VECTOR_MUL_ASSOC; REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN VECTOR_ARITH_TAC; FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [CONVEX_ALT]) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]]);;
let IN_INTERIOR_CLOSURE_CONVEX_SHRINK = 
prove (`!s e x c:real^N. convex s /\ c IN interior s /\ x IN closure s /\ &0 < e /\ e <= &1 ==> x - e % (x - c) IN interior s`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERIOR]) THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?y:real^N. y IN s /\ norm(y - x) * (&1 - e) < e * d` STRIP_ASSUME_TAC THENL [ASM_CASES_TAC `(x:real^N) IN s` THENL [EXISTS_TAC `x:real^N` THEN ASM_SIMP_TAC[REAL_LT_MUL; VECTOR_SUB_REFL; NORM_0; REAL_MUL_LZERO]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [closure]) THEN ASM_REWRITE_TAC[IN_UNION; IN_ELIM_THM; LIMPT_APPROACHABLE; dist] THEN FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH `e <= &1 ==> e = &1 \/ e < &1`)) THEN ASM_SIMP_TAC[REAL_SUB_REFL; GSYM REAL_LT_RDIV_EQ; REAL_SUB_LT] THENL [DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[REAL_MUL_RZERO; REAL_LT_01]; DISCH_THEN(MP_TAC o SPEC `(e * d) / (&1 - e)`)] THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_SUB_LT; REAL_MUL_LZERO; REAL_LT_MUL; REAL_MUL_LID] THEN MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[]; ALL_TAC] THEN ABBREV_TAC `z:real^N = c + ((&1 - e) / e) % (x - y)` THEN SUBGOAL_THEN `x - e % (x - c):real^N = y - e % (y - z)` SUBST1_TAC THENL [EXPAND_TAC "z" THEN REWRITE_TAC[VECTOR_SUB_LDISTRIB; VECTOR_ADD_LDISTRIB] THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN VECTOR_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC IN_INTERIOR_CONVEX_SHRINK THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET] o MATCH_MP SUBSET_INTERIOR) THEN SIMP_TAC[INTERIOR_OPEN; OPEN_BALL] THEN REWRITE_TAC[IN_BALL; dist] THEN EXPAND_TAC "z" THEN REWRITE_TAC[NORM_ARITH `norm(c - (c + x)) = norm(x)`] THEN REWRITE_TAC[NORM_MUL; REAL_ABS_DIV] THEN ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE; REAL_SUB_LE] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[real_div; REAL_MUL_ASSOC] THEN ASM_SIMP_TAC[GSYM real_div; REAL_LT_LDIV_EQ] THEN ASM_MESON_TAC[REAL_MUL_SYM; NORM_SUB]);;
let IN_INTERIOR_CLOSURE_CONVEX_SEGMENT = 
prove (`!s a b:real^N. convex s /\ a IN interior s /\ b IN closure s ==> segment(a,b) SUBSET interior s`,
REWRITE_TAC[SUBSET; IN_SEGMENT] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `(&1 - u) % a + u % b:real^N = b - (&1 - u) % (b - a)`] THEN MATCH_MP_TAC IN_INTERIOR_CLOSURE_CONVEX_SHRINK THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Relative interior of a set. *) (* ------------------------------------------------------------------------- *)
let relative_interior = new_definition
 `relative_interior s =
   {x | ?t. open_in (subtopology euclidean (affine hull s)) t /\
            x IN t /\ t SUBSET s}`;;
let relative_frontier = new_definition
 `relative_frontier s = closure s DIFF relative_interior s`;;
let RELATIVE_INTERIOR = 
prove (`!s. relative_interior s = {x | x IN s /\ ?t. open t /\ x IN t /\ t INTER (affine hull s) SUBSET s}`,
REWRITE_TAC[EXTENSION; relative_interior; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_OPEN; LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> b /\ a /\ c /\ d`] THEN REWRITE_TAC[UNWIND_THM2; SUBSET; IN_INTER; RIGHT_AND_EXISTS_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN MESON_TAC[HULL_INC]);;
let RELATIVE_INTERIOR_EQ = 
prove (`!s. relative_interior s = s <=> open_in(subtopology euclidean (affine hull s)) s`,
GEN_TAC THEN REWRITE_TAC[EXTENSION; relative_interior; IN_ELIM_THM] THEN GEN_REWRITE_TAC RAND_CONV [OPEN_IN_SUBOPEN] THEN MESON_TAC[SUBSET]);;
let RELATIVE_INTERIOR_OPEN_IN = 
prove (`!s. open_in(subtopology euclidean (affine hull s)) s ==> relative_interior s = s`,
REWRITE_TAC[RELATIVE_INTERIOR_EQ]);;
let RELATIVE_INTERIOR_EMPTY = 
prove (`relative_interior {} = {}`,
let RELATIVE_FRONTIER_EMPTY = 
prove (`relative_frontier {} = {}`,
let RELATIVE_INTERIOR_AFFINE = 
prove (`!s:real^N->bool. affine s ==> relative_interior s = s`,
let RELATIVE_INTERIOR_UNIV = 
prove (`!s. relative_interior(affine hull s) = affine hull s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC RELATIVE_INTERIOR_OPEN_IN THEN REWRITE_TAC[HULL_HULL; OPEN_IN_SUBTOPOLOGY_REFL] THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN; SUBSET_UNIV]);;
let OPEN_IN_RELATIVE_INTERIOR = 
prove (`!s. open_in (subtopology euclidean (affine hull s)) (relative_interior s)`,
GEN_TAC THEN REWRITE_TAC[relative_interior] THEN GEN_REWRITE_TAC I [OPEN_IN_SUBOPEN] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MESON_TAC[]);;
let RELATIVE_INTERIOR_SUBSET = 
prove (`!s. (relative_interior s) SUBSET s`,
REWRITE_TAC[SUBSET; relative_interior; IN_ELIM_THM] THEN MESON_TAC[]);;
let SUBSET_RELATIVE_INTERIOR = 
prove (`!s t. s SUBSET t /\ affine hull s = affine hull t ==> (relative_interior s) SUBSET (relative_interior t)`,
REWRITE_TAC[relative_interior; SUBSET; IN_ELIM_THM] THEN MESON_TAC[]);;
let RELATIVE_INTERIOR_MAXIMAL = 
prove (`!s t. t SUBSET s /\ open_in(subtopology euclidean (affine hull s)) t ==> t SUBSET (relative_interior s)`,
REWRITE_TAC[relative_interior; SUBSET; IN_ELIM_THM] THEN MESON_TAC[]);;
let RELATIVE_INTERIOR_UNIQUE = 
prove (`!s t. t SUBSET s /\ open_in(subtopology euclidean (affine hull s)) t /\ (!t'. t' SUBSET s /\ open_in(subtopology euclidean (affine hull s)) t' ==> t' SUBSET t) ==> (relative_interior s = t)`,
let IN_RELATIVE_INTERIOR = 
prove (`!x:real^N s. x IN relative_interior s <=> x IN s /\ ?e. &0 < e /\ (ball(x,e) INTER (affine hull s)) SUBSET s`,
REPEAT GEN_TAC THEN REWRITE_TAC[relative_interior; IN_ELIM_THM] THEN REWRITE_TAC[OPEN_IN_OPEN; LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> b /\ a /\ c /\ d`] THEN REWRITE_TAC[UNWIND_THM2; SUBSET; IN_INTER] THEN EQ_TAC THENL [ASM_MESON_TAC[SUBSET; OPEN_CONTAINS_BALL]; STRIP_TAC THEN EXISTS_TAC `ball(x:real^N,e)` THEN ASM_SIMP_TAC[OPEN_BALL; CENTRE_IN_BALL; HULL_INC]]);;
let IN_RELATIVE_INTERIOR_CBALL = 
prove (`!x:real^N s. x IN relative_interior s <=> x IN s /\ ?e. &0 < e /\ (cball(x,e) INTER affine hull s) SUBSET s`,
REPEAT GEN_TAC THEN REWRITE_TAC[IN_RELATIVE_INTERIOR] THEN AP_TERM_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THENL [EXISTS_TAC `e / &2` THEN ASM_REWRITE_TAC[REAL_HALF] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `ball(x:real^N,e) INTER affine hull s` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; IN_INTER; IN_BALL; IN_CBALL] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < e /\ x <= e / &2 ==> x < e`]; EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `cball(x:real^N,e) INTER affine hull s` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[SUBSET; IN_INTER; IN_BALL; IN_CBALL; REAL_LT_IMP_LE]]);;
let OPEN_IN_SUBSET_RELATIVE_INTERIOR = 
prove (`!s t. open_in(subtopology euclidean (affine hull t)) s ==> (s SUBSET relative_interior t <=> s SUBSET t)`,
let RELATIVE_INTERIOR_TRANSLATION = 
prove (`!a:real^N s. relative_interior (IMAGE (\x. a + x) s) = IMAGE (\x. a + x) (relative_interior s)`,
REWRITE_TAC[relative_interior; OPEN_IN_OPEN] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [RELATIVE_INTERIOR_TRANSLATION];;
let RELATIVE_FRONTIER_TRANSLATION = 
prove (`!a:real^N s. relative_frontier (IMAGE (\x. a + x) s) = IMAGE (\x. a + x) (relative_frontier s)`,
REWRITE_TAC[relative_frontier] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [RELATIVE_FRONTIER_TRANSLATION];;
let RELATIVE_INTERIOR_INJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> relative_interior(IMAGE f s) = IMAGE f (relative_interior s)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN ASM_SIMP_TAC[relative_interior; AFFINE_HULL_LINEAR_IMAGE] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> c /\ a /\ b`] THEN REWRITE_TAC[EXISTS_SUBSET_IMAGE] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_INJECTIVE_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);;
add_linear_invariants [RELATIVE_INTERIOR_INJECTIVE_LINEAR_IMAGE];;
let RELATIVE_FRONTIER_INJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> relative_frontier(IMAGE f s) = IMAGE f (relative_frontier s)`,
REWRITE_TAC[relative_frontier] THEN GEOM_TRANSFORM_TAC[]);;
add_linear_invariants [RELATIVE_FRONTIER_INJECTIVE_LINEAR_IMAGE];;
let RELATIVE_INTERIOR_EQ_EMPTY = 
prove (`!s:real^N->bool. convex s ==> (relative_interior s = {} <=> s = {})`,
SUBGOAL_THEN `!s:real^N->bool. vec 0 IN s /\ convex s ==> ~(relative_interior s = {})` ASSUME_TAC THENL [ALL_TAC; GEN_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[RELATIVE_INTERIOR_EMPTY] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (\x:real^N. --a + x) s`) THEN REWRITE_TAC[CONVEX_TRANSLATION_EQ; RELATIVE_INTERIOR_TRANSLATION] THEN ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; IN_IMAGE] THEN DISCH_THEN MATCH_MP_TAC THEN EXISTS_TAC `a:real^N` THEN ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC] THEN GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_RELATIVE_INTERIOR] THEN ASM_SIMP_TAC[AFFINE_HULL_EQ_SPAN; HULL_INC] THEN X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC (ISPEC `s:real^N->bool` BASIS_EXISTS) THEN SUBGOAL_THEN `span(s:real^N->bool) = span b` SUBST_ALL_TAC THENL [ASM_SIMP_TAC[SPAN_EQ] THEN ASM_MESON_TAC[SPAN_INC; SUBSET_TRANS]; ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ABBREV_TAC `n = dim(s:real^N->bool)` THEN SUBGOAL_THEN `!c. (!v. v IN b ==> &0 <= c(v)) /\ sum b c <= &1 ==> vsum b (\v:real^N. c(v) % v) IN s` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN SUBGOAL_THEN `vsum (vec 0 INSERT b :real^N->bool) (\v. (if v = vec 0 then &1 - sum b c else c v) % v) IN s` MP_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [CONVEX_EXPLICIT]) THEN ASM_SIMP_TAC[INSERT_SUBSET; FINITE_INSERT; SUM_CLAUSES; INDEPENDENT_NONZERO; IN_INSERT] THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_SUB_LE]; ALL_TAC] THEN REWRITE_TAC[REAL_ARITH `&1 - x + y = &1 <=> x = y`] THEN MATCH_MP_TAC SUM_EQ THEN ASM_MESON_TAC[INDEPENDENT_NONZERO]; MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM_SIMP_TAC[VSUM_CLAUSES; INDEPENDENT_NONZERO] THEN REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN MATCH_MP_TAC VSUM_EQ THEN ASM_MESON_TAC[INDEPENDENT_NONZERO]]; ALL_TAC] THEN ABBREV_TAC `a:real^N = vsum b (\v. inv(&2 * &n + &1) % v)` THEN EXISTS_TAC `a:real^N` THEN CONJ_TAC THENL [EXPAND_TAC "a" THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[SUM_CONST; REAL_LE_INV_EQ; REAL_ARITH `&0 < &2 * &n + &1`; GSYM real_div; REAL_LT_IMP_LE; REAL_LE_LDIV_EQ] THEN REAL_ARITH_TAC; ALL_TAC] THEN MP_TAC(ISPECL [`b:real^N->bool`; `inv(&2 * &n + &1)`] BASIS_COORDINATES_CONTINUOUS) THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ] THEN ANTS_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN ASM_SIMP_TAC[SUBSET; IN_INTER; IMP_CONJ_ALT] THEN ASM_SIMP_TAC[SPAN_FINITE; LEFT_IMP_EXISTS_THM; IN_ELIM_THM] THEN GEN_TAC THEN X_GEN_TAC `u:real^N->real` THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[IN_BALL; dist] THEN EXPAND_TAC "a" THEN ASM_SIMP_TAC[GSYM VSUM_SUB] THEN DISCH_THEN(fun th -> FIRST_X_ASSUM MATCH_MP_TAC THEN MP_TAC th) THEN REWRITE_TAC[GSYM VECTOR_SUB_RDISTRIB] THEN DISCH_THEN(fun th -> FIRST_X_ASSUM(MP_TAC o C MATCH_MP th)) THEN REWRITE_TAC[REAL_ARITH `abs(x - y) < x <=> &0 < y /\ abs(y) < &2 * x`] THEN SIMP_TAC[REAL_LT_IMP_LE] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&(CARD(b:real^N->bool)) * &2 * inv(&2 * &n + &1)` THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_BOUND THEN ASM_SIMP_TAC[REAL_ARITH `abs x < a ==> x <= a`]; ASM_REWRITE_TAC[REAL_MUL_ASSOC] THEN REWRITE_TAC[GSYM real_div] THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_ARITH `&0 < &2 * &n + &1`] THEN REAL_ARITH_TAC]);;
let RELATIVE_INTERIOR_INTERIOR = 
prove (`!s. affine hull s = (:real^N) ==> relative_interior s = interior s`,
SIMP_TAC[relative_interior; interior; SUBTOPOLOGY_UNIV; OPEN_IN]);;
let RELATIVE_INTERIOR_OPEN = 
prove (`!s:real^N->bool. open s ==> relative_interior s = s`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[RELATIVE_INTERIOR_EMPTY] THEN ASM_SIMP_TAC[RELATIVE_INTERIOR_INTERIOR; AFFINE_HULL_OPEN; INTERIOR_EQ]);;
let RELATIVE_INTERIOR_NONEMPTY_INTERIOR = 
prove (`!s. ~(interior s = {}) ==> relative_interior s = interior s`,
let RELATIVE_FRONTIER_NONEMPTY_INTERIOR = 
prove (`!s. ~(interior s = {}) ==> relative_frontier s = frontier s`,
let RELATIVE_FRONTIER_FRONTIER = 
prove (`!s. affine hull s = (:real^N) ==> relative_frontier s = frontier s`,
let AFFINE_HULL_CONVEX_HULL = 
prove (`!s. affine hull (convex hull s) = affine hull s`,
GEN_TAC THEN MATCH_MP_TAC HULL_UNIQUE THEN REWRITE_TAC[AFFINE_AFFINE_HULL; CONVEX_HULL_SUBSET_AFFINE_HULL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HULL_MINIMAL THEN ASM_MESON_TAC[SUBSET_TRANS; HULL_SUBSET]);;
let INTERIOR_SIMPLEX_NONEMPTY = 
prove (`!s:real^N->bool. independent s /\ s HAS_SIZE (dimindex(:N)) ==> ?a. a IN interior(convex hull (vec 0 INSERT s))`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `convex hull (vec 0 INSERT s):real^N->bool` RELATIVE_INTERIOR_EQ_EMPTY) THEN ASM_SIMP_TAC[AFFINE_HULL_CONVEX_HULL] THEN REWRITE_TAC[CONVEX_HULL_EQ_EMPTY; CONVEX_CONVEX_HULL; NOT_INSERT_EMPTY] THEN REWRITE_TAC[MEMBER_NOT_EMPTY] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC RELATIVE_INTERIOR_INTERIOR THEN SIMP_TAC[AFFINE_HULL_EQ_SPAN; IN_INSERT; HULL_INC] THEN MATCH_MP_TAC(SET_RULE `!s. s SUBSET t /\ s = UNIV ==> t = UNIV`) THEN EXISTS_TAC `span s:real^N->bool` THEN CONJ_TAC THENL [MATCH_MP_TAC SPAN_MONO THEN MATCH_MP_TAC(SET_RULE `(a INSERT s) SUBSET P hull (a INSERT s) ==> s SUBSET P hull (a INSERT s)`) THEN REWRITE_TAC[HULL_SUBSET]; MATCH_MP_TAC(SET_RULE `UNIV SUBSET s ==> s = UNIV`) THEN MATCH_MP_TAC CARD_GE_DIM_INDEPENDENT THEN ASM_REWRITE_TAC[DIM_UNIV; SUBSET_UNIV] THEN ASM_MESON_TAC[LE_REFL;HAS_SIZE]]);;
let INTERIOR_SUBSET_RELATIVE_INTERIOR = 
prove (`!s. interior s SUBSET relative_interior s`,
REWRITE_TAC[SUBSET; IN_INTERIOR; IN_RELATIVE_INTERIOR; IN_INTER] THEN MESON_TAC[CENTRE_IN_BALL]);;
let CONVEX_RELATIVE_INTERIOR = 
prove (`!s:real^N->bool. convex s ==> convex(relative_interior s)`,
REWRITE_TAC[CONVEX_ALT; IN_RELATIVE_INTERIOR; IN_INTER; SUBSET; IN_BALL; dist] THEN GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[TAUT `(a /\ b) /\ (c /\ d) /\ e ==> f <=> a /\ c /\ e ==> b /\ d ==> f`] THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC(MESON[] `(!d e. P d /\ Q e ==> R(min d e)) ==> (?e. P e) /\ (?e. Q e) ==> (?e. R e)`) THEN REPEAT GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN X_GEN_TAC `z:real^N` THEN STRIP_TAC THEN SUBST1_TAC(VECTOR_ARITH `z:real^N = (&1 - u) % (z - u % (y - x)) + u % (z + (&1 - u) % (y - x))`) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(CONJUNCTS_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[GSYM IMP_CONJ_ALT] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN DISCH_THEN MATCH_MP_TAC THEN (CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `norm x < e ==> norm x = y ==> y < e`)) THEN AP_TERM_TAC THEN VECTOR_ARITH_TAC; REWRITE_TAC[VECTOR_ARITH `a - b % c:real^N = a + --b % c`] THEN MATCH_MP_TAC IN_AFFINE_ADD_MUL_DIFF THEN ASM_SIMP_TAC[AFFINE_AFFINE_HULL; HULL_INC]]));;
let IN_RELATIVE_INTERIOR_CONVEX_SHRINK = 
prove (`!s e x c:real^N. convex s /\ c IN relative_interior s /\ x IN s /\ &0 < e /\ e <= &1 ==> x - e % (x - c) IN relative_interior s`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_RELATIVE_INTERIOR]) THEN REWRITE_TAC[IN_RELATIVE_INTERIOR; SUBSET; IN_INTER; IN_BALL; dist] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN CONJ_TAC THENL [REWRITE_TAC[VECTOR_ARITH `x - e % (x - c):real^N = (&1 - e) % x + e % c`] THEN FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [convex]) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN EXISTS_TAC `e * d:real` THEN ASM_SIMP_TAC[REAL_LT_MUL] THEN X_GEN_TAC `y':real^N` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(&1 / e) % y' - ((&1 - e) / e) % x:real^N`) THEN ANTS_TAC THENL [CONJ_TAC THENL [UNDISCH_TAC `norm (x - e % (x - c) - y':real^N) < e * d` THEN SUBGOAL_THEN `x - e % (x - c) - y':real^N = e % (c - (&1 / e % y' - (&1 - e) / e % x))` SUBST1_TAC THENL [ASM_SIMP_TAC[VECTOR_SUB_LDISTRIB; VECTOR_MUL_ASSOC; REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN VECTOR_ARITH_TAC; ASM_SIMP_TAC[NORM_MUL; REAL_LT_LMUL_EQ; real_abs; REAL_LT_IMP_LE]]; REWRITE_TAC[real_div; REAL_SUB_RDISTRIB] THEN ASM_SIMP_TAC[REAL_MUL_RINV; REAL_LT_IMP_NZ] THEN REWRITE_TAC[VECTOR_ARITH `a % y - (b - c) % x:real^N = (c - b) % x + a % y`] THEN MATCH_MP_TAC(REWRITE_RULE[AFFINE_ALT] AFFINE_AFFINE_HULL) THEN ASM_SIMP_TAC[HULL_INC]]; DISCH_TAC THEN SUBGOAL_THEN `y' = (&1 - (&1 - e)) % (&1 / e % y' - (&1 - e) / e % x) + (&1 - e) % x:real^N` SUBST1_TAC THENL [ASM_SIMP_TAC[REAL_ARITH `&1 - (&1 - e) = e`; VECTOR_SUB_LDISTRIB; VECTOR_MUL_ASSOC; REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN VECTOR_ARITH_TAC; FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [CONVEX_ALT]) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]]);;
let IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SHRINK = 
prove (`!s e x c:real^N. convex s /\ c IN relative_interior s /\ x IN closure s /\ &0 < e /\ e <= &1 ==> x - e % (x - c) IN relative_interior s`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_RELATIVE_INTERIOR]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?y:real^N. y IN s /\ norm(y - x) * (&1 - e) < e * d` STRIP_ASSUME_TAC THENL [ASM_CASES_TAC `(x:real^N) IN s` THENL [EXISTS_TAC `x:real^N` THEN ASM_SIMP_TAC[REAL_LT_MUL; VECTOR_SUB_REFL; NORM_0; REAL_MUL_LZERO]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [closure]) THEN ASM_REWRITE_TAC[IN_UNION; IN_ELIM_THM; LIMPT_APPROACHABLE; dist] THEN FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH `e <= &1 ==> e = &1 \/ e < &1`)) THEN ASM_SIMP_TAC[REAL_SUB_REFL; GSYM REAL_LT_RDIV_EQ; REAL_SUB_LT] THENL [DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[REAL_MUL_RZERO; REAL_LT_01]; DISCH_THEN(MP_TAC o SPEC `(e * d) / (&1 - e)`)] THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_SUB_LT; REAL_MUL_LZERO; REAL_LT_MUL; REAL_MUL_LID] THEN MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[]; ALL_TAC] THEN ABBREV_TAC `z:real^N = c + ((&1 - e) / e) % (x - y)` THEN SUBGOAL_THEN `x - e % (x - c):real^N = y - e % (y - z)` SUBST1_TAC THENL [EXPAND_TAC "z" THEN REWRITE_TAC[VECTOR_SUB_LDISTRIB; VECTOR_ADD_LDISTRIB] THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN VECTOR_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC IN_RELATIVE_INTERIOR_CONVEX_SHRINK THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `dist(c:real^N,z) < d` ASSUME_TAC THENL [EXPAND_TAC "z" THEN REWRITE_TAC[NORM_ARITH `dist(c:real^N,c + x) = norm x`] THEN REWRITE_TAC[NORM_MUL; REAL_ABS_DIV] THEN ONCE_REWRITE_TAC[NORM_SUB] THEN REWRITE_TAC[REAL_ARITH `a / b * c:real = (c * a) / b`] THEN ASM_SIMP_TAC[real_abs; REAL_SUB_LE; REAL_LT_IMP_LE; REAL_LT_LDIV_EQ] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `(z:real^N) IN affine hull s` ASSUME_TAC THENL [EXPAND_TAC "z" THEN MATCH_MP_TAC IN_AFFINE_ADD_MUL_DIFF THEN ASM_SIMP_TAC[AFFINE_AFFINE_HULL; HULL_INC] THEN MATCH_MP_TAC(SET_RULE `!t. x IN t /\ t = s ==> x IN s`) THEN EXISTS_TAC `closure(affine hull s):real^N->bool` THEN SIMP_TAC[CLOSURE_EQ; CLOSED_AFFINE_HULL] THEN ASM_MESON_TAC[SUBSET_CLOSURE; HULL_INC; SUBSET]; ALL_TAC] THEN ASM_REWRITE_TAC[IN_RELATIVE_INTERIOR] THEN CONJ_TAC THENL [ASM_MESON_TAC[IN_BALL; IN_INTER; SUBSET]; ALL_TAC] THEN EXISTS_TAC `d - dist(c:real^N,z)` THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS)) THEN REWRITE_TAC[SUBSET; IN_INTER] THEN GEN_TAC THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN UNDISCH_TAC `dist(c:real^N,z) < d` THEN REWRITE_TAC[IN_BALL] THEN NORM_ARITH_TAC);;
let IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SEGMENT = 
prove (`!s a b:real^N. convex s /\ a IN relative_interior s /\ b IN closure s ==> segment(a,b) SUBSET relative_interior s`,
REWRITE_TAC[SUBSET; IN_SEGMENT] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `(&1 - u) % a + u % b:real^N = b - (&1 - u) % (b - a)`] THEN MATCH_MP_TAC IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SHRINK THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
let RELATIVE_INTERIOR_SING = 
prove (`!a. relative_interior {a} = {a}`,
GEN_TAC THEN MATCH_MP_TAC(SET_RULE `s SUBSET {a} /\ ~(s = {}) ==> s = {a}`) THEN SIMP_TAC[RELATIVE_INTERIOR_SUBSET; RELATIVE_INTERIOR_EQ_EMPTY; CONVEX_SING] THEN SET_TAC[]);;
let RELATIVE_FRONTIER_SING = 
prove (`!a:real^N. relative_frontier {a} = {}`,
REWRITE_TAC[relative_frontier; RELATIVE_INTERIOR_SING; CLOSURE_SING] THEN SET_TAC[]);;
let RELATIVE_FRONTIER_CBALL = 
prove (`!a:real^N r. relative_frontier(cball(a,r)) = if r = &0 then {} else sphere(a,r)`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[CBALL_SING; RELATIVE_FRONTIER_SING] THEN ASM_CASES_TAC `r < &0` THEN ASM_SIMP_TAC[CBALL_EMPTY; SPHERE_EMPTY; RELATIVE_FRONTIER_EMPTY] THEN SUBGOAL_THEN `&0 < r` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[RELATIVE_FRONTIER_NONEMPTY_INTERIOR; INTERIOR_CBALL; BALL_EQ_EMPTY; GSYM REAL_NOT_LT; FRONTIER_CBALL]);;
let RELATIVE_FRONTIER_BALL = 
prove (`!a:real^N r. relative_frontier(ball(a,r)) = if r = &0 then {} else sphere(a,r)`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[BALL_EMPTY; REAL_LE_REFL; RELATIVE_FRONTIER_EMPTY] THEN ASM_CASES_TAC `r < &0` THEN ASM_SIMP_TAC[BALL_EMPTY; REAL_LT_IMP_LE; SPHERE_EMPTY; RELATIVE_FRONTIER_EMPTY] THEN SUBGOAL_THEN `&0 < r` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[RELATIVE_FRONTIER_NONEMPTY_INTERIOR; INTERIOR_OPEN; OPEN_BALL; BALL_EQ_EMPTY; GSYM REAL_NOT_LT; FRONTIER_BALL]);;
let STARLIKE_CONVEX_TWEAK_BOUNDARY_POINTS = 
prove (`!s t:real^N->bool. convex s /\ ~(s = {}) /\ relative_interior s SUBSET t /\ t SUBSET closure s ==> starlike t`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `~(relative_interior s:real^N->bool = {})` MP_TAC THENL [ASM_SIMP_TAC[RELATIVE_INTERIOR_EQ_EMPTY]; REWRITE_TAC[starlike]] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN REPEAT STRIP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(SET_RULE `a IN s /\ b IN s /\ segment[a,b] DIFF {a,b} SUBSET s ==> segment[a:real^N,b] SUBSET s`) THEN ASM_REWRITE_TAC[GSYM open_segment] THEN ASM_MESON_TAC[IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SEGMENT; SUBSET]);;
let RELATIVE_INTERIOR_PROLONG = 
prove (`!s x y:real^N. x IN relative_interior s /\ y IN s ==> ?t. &1 < t /\ (y + t % (x - y)) IN s`,
REPEAT GEN_TAC THEN REWRITE_TAC[IN_RELATIVE_INTERIOR_CBALL; IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC)) THEN ASM_CASES_TAC `y:real^N = x` THENL [ASM_REWRITE_TAC[VECTOR_ARITH `y + t % (x - x):real^N = y`] THEN EXISTS_TAC `&2` THEN CONV_TAC REAL_RAT_REDUCE_CONV; EXISTS_TAC `&1 + e / norm(x - y:real^N)` THEN ASM_SIMP_TAC[REAL_LT_ADDR; REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ] THEN REWRITE_TAC[VECTOR_ARITH `y + (&1 + e) % (x - y):real^N = x + e % (x - y)`] THEN FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[AFFINE_AFFINE_HULL; IN_INTER; IN_AFFINE_ADD_MUL_DIFF; HULL_INC; IN_CBALL] THEN REWRITE_TAC[NORM_ARITH `dist(x:real^N,x + y) = norm y`] THEN REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN ASM_REAL_ARITH_TAC]);;
let RELATIVE_INTERIOR_CONVEX_PROLONG = 
prove (`!s. convex s ==> relative_interior s = {x:real^N | x IN s /\ !y. y IN s ==> ?t. &1 < t /\ (y + t % (x - y)) IN s}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN EQ_TAC THENL [SIMP_TAC[RELATIVE_INTERIOR_PROLONG] THEN MESON_TAC[SUBSET; RELATIVE_INTERIOR_SUBSET]; STRIP_TAC THEN SUBGOAL_THEN `?y:real^N. y IN relative_interior s` STRIP_ASSUME_TAC THENL [ASM_SIMP_TAC[MEMBER_NOT_EMPTY; RELATIVE_INTERIOR_EQ_EMPTY] THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:real^N`) THEN ANTS_TAC THENL [ASM_MESON_TAC[RELATIVE_INTERIOR_SUBSET; SUBSET]; ALL_TAC] THEN ASM_CASES_TAC `y:real^N = x` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`s:real^N->bool`; `y:real^N`; `y + t % (x - y):real^N`] IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SEGMENT) THEN ANTS_TAC THENL [ASM_MESON_TAC[SUBSET; CLOSURE_SUBSET]; ALL_TAC] THEN REWRITE_TAC[SUBSET] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[IN_SEGMENT; IN_ELIM_THM] THEN ASM_REWRITE_TAC[VECTOR_ARITH `y:real^N = y + x <=> x = vec 0`; VECTOR_ARITH `(&1 - u) % y + u % (y + t % (x - y)):real^N = y + t % u % (x - y)`] THEN ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN EXISTS_TAC `inv t:real` THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RINV; REAL_LT_INV_EQ; REAL_INV_LT_1; REAL_LT_IMP_NZ; REAL_ARITH `&1 < x ==> &0 < x`] THEN VECTOR_ARITH_TAC]);;
let RELATIVE_INTERIOR_EQ_CLOSURE = 
prove (`!s:real^N->bool. relative_interior s = closure s <=> affine s`,
GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[RELATIVE_INTERIOR_EMPTY; CLOSURE_EMPTY; AFFINE_EMPTY] THEN EQ_TAC THEN SIMP_TAC[RELATIVE_INTERIOR_AFFINE; CLOSURE_CLOSED; CLOSED_AFFINE] THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `relative_interior s = closure s ==> relative_interior s SUBSET s /\ s SUBSET closure s ==> relative_interior s = s /\ closure s = s`)) THEN REWRITE_TAC[RELATIVE_INTERIOR_SUBSET; CLOSURE_SUBSET] THEN REWRITE_TAC[RELATIVE_INTERIOR_EQ; CLOSURE_EQ; GSYM AFFINE_HULL_EQ] THEN STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `~(s = {}) ==> s = {} \/ s = a ==> a = s`)) THEN MP_TAC(ISPEC `affine hull s:real^N->bool` CONNECTED_CLOPEN) THEN SIMP_TAC[AFFINE_IMP_CONVEX; CONVEX_CONNECTED; AFFINE_AFFINE_HULL] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_SUBSET THEN ASM_REWRITE_TAC[HULL_SUBSET]);;
let RAY_TO_RELATIVE_FRONTIER = 
prove (`!s a l:real^N. bounded s /\ a IN relative_interior s /\ (a + l) IN affine hull s /\ ~(l = vec 0) ==> ?d. &0 < d /\ (a + d % l) IN relative_frontier s /\ !e. &0 <= e /\ e < d ==> (a + e % l) IN relative_interior s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[relative_frontier] THEN MP_TAC(ISPEC `{d | &0 < d /\ ~((a + d % l:real^N) IN relative_interior(s))}` INF) THEN ABBREV_TAC `d = inf {d | &0 < d /\ ~((a + d % l:real^N) IN relative_interior(s))}` THEN SUBGOAL_THEN `?e. &0 < e /\ !d. &0 <= d /\ d < e ==> (a + d % l:real^N) IN relative_interior s` (X_CHOOSE_THEN `k:real` (LABEL_TAC "0")) THENL [MP_TAC(ISPEC `s:real^N->bool` OPEN_IN_RELATIVE_INTERIOR) THEN REWRITE_TAC[open_in; GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `a:real^N` o CONJUNCT2) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `e / norm(l:real^N)` THEN ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT] THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [MATCH_MP_TAC IN_AFFINE_ADD_MUL THEN ASM_REWRITE_TAC[AFFINE_AFFINE_HULL] THEN ASM_MESON_TAC[SUBSET; HULL_SUBSET; RELATIVE_INTERIOR_SUBSET]; REWRITE_TAC[NORM_ARITH `dist(a + x:real^N,a) = norm x`] THEN ASM_SIMP_TAC[NORM_MUL; GSYM REAL_LT_RDIV_EQ; NORM_POS_LT] THEN ASM_REAL_ARITH_TAC]; ALL_TAC] THEN ANTS_TAC THENL [REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_NOT_LT; REAL_LT_IMP_LE]] THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN REWRITE_TAC[SUBSET; IN_BALL] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `B / norm(l:real^N)` THEN ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[SUBSET] RELATIVE_INTERIOR_SUBSET)) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE BINDER_CONV [GSYM CONTRAPOS_THM]) THEN REWRITE_TAC[REAL_NOT_LT] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[NORM_ARITH `dist(a:real^N,a + x) = norm x`] THEN ASM_SIMP_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM; REAL_DIV_RMUL; NORM_EQ_0] THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 (LABEL_TAC "1") (LABEL_TAC "2")) THEN EXISTS_TAC `d:real` THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `k:real` THEN ASM_MESON_TAC[REAL_NOT_LT; REAL_LT_IMP_LE]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL [REWRITE_TAC[REAL_LE_LT] THEN ASM_MESON_TAC[VECTOR_ARITH `a + &0 % l:real^N = a`; REAL_NOT_LT; REAL_LT_IMP_LE]; DISCH_TAC] THEN REWRITE_TAC[IN_DIFF] THEN CONJ_TAC THENL [REWRITE_TAC[CLOSURE_APPROACHABLE] THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN EXISTS_TAC `a + (d - min d (x / &2 / norm(l:real^N))) % l` THEN CONJ_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[SUBSET] RELATIVE_INTERIOR_SUBSET) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `&0 < x /\ &0 < d ==> d - min d x < d`) THEN ASM_SIMP_TAC[REAL_HALF; REAL_LT_DIV; NORM_POS_LT]; REWRITE_TAC[NORM_ARITH `dist(a + x:real^N,a + y) = norm(x - y)`] THEN REWRITE_TAC[GSYM VECTOR_SUB_RDISTRIB; NORM_MUL] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; NORM_POS_LT] THEN MATCH_MP_TAC(REAL_ARITH `&0 < x /\ x < y /\ &0 < d ==> abs((d - min d x) - d) < y`) THEN REWRITE_TAC[REAL_ARITH `x / &2 / y < x / y <=> &0 < x / y`] THEN ASM_SIMP_TAC[REAL_HALF; REAL_LT_DIV; NORM_POS_LT]]; DISCH_TAC THEN MP_TAC(ISPEC `s:real^N->bool` OPEN_IN_RELATIVE_INTERIOR) THEN REWRITE_TAC[open_in; GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `a + d % l:real^N` o CONJUNCT2) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` (CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "3"))) THEN REMOVE_THEN "2" (MP_TAC o SPEC `d + e / norm(l:real^N)`) THEN ASM_SIMP_TAC[NOT_IMP; REAL_ARITH `~(d + l <= d) <=> &0 < l`; REAL_LT_DIV; NORM_POS_LT] THEN X_GEN_TAC `x:real` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[REAL_NOT_LE] THEN DISCH_TAC THEN ASM_CASES_TAC `x < d` THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN REMOVE_THEN "3" MATCH_MP_TAC THEN CONJ_TAC THENL [MATCH_MP_TAC IN_AFFINE_ADD_MUL THEN ASM_REWRITE_TAC[AFFINE_AFFINE_HULL] THEN ASM_MESON_TAC[SUBSET; HULL_SUBSET; RELATIVE_INTERIOR_SUBSET]; REWRITE_TAC[NORM_ARITH `dist(a + x:real^N,a + y) = norm(x - y)`] THEN REWRITE_TAC[GSYM VECTOR_SUB_RDISTRIB; NORM_MUL] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; NORM_POS_LT] THEN ASM_REAL_ARITH_TAC]]]);;
let RAY_TO_FRONTIER = 
prove (`!s a l:real^N. bounded s /\ a IN interior s /\ ~(l = vec 0) ==> ?d. &0 < d /\ (a + d % l) IN frontier s /\ !e. &0 <= e /\ e < d ==> (a + e % l) IN interior s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[frontier] THEN SUBGOAL_THEN `interior s:real^N->bool = relative_interior s` SUBST1_TAC THENL [ALL_TAC; REWRITE_TAC[GSYM relative_frontier] THEN MATCH_MP_TAC RAY_TO_RELATIVE_FRONTIER THEN ASM_REWRITE_TAC[]] THEN ASM_MESON_TAC[NOT_IN_EMPTY; RELATIVE_INTERIOR_NONEMPTY_INTERIOR; IN_UNIV; AFFINE_HULL_NONEMPTY_INTERIOR]);;
let RELATIVE_FRONTIER_NOT_SING = 
prove (`!s a:real^N. bounded s ==> ~(relative_frontier s = {a})`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[RELATIVE_FRONTIER_EMPTY; NOT_INSERT_EMPTY] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `z:real^N`) THEN ASM_CASES_TAC `s = {z:real^N}` THEN ASM_REWRITE_TAC[RELATIVE_FRONTIER_SING; NOT_INSERT_EMPTY] THEN SUBGOAL_THEN `?w:real^N. w IN s /\ ~(w = z)` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; REPEAT STRIP_TAC] THEN SUBGOAL_THEN `~((w:real^N) IN relative_frontier s /\ z IN relative_frontier s)` MP_TAC THENL [ASM SET_TAC[]; DISCH_TAC] THEN MAP_EVERY UNDISCH_TAC [`relative_frontier s = {a:real^N}`; `bounded(s:real^N->bool)`; `~(w:real^N = z)`; `(z:real^N) IN s`; `(w:real^N) IN s`; `~((w:real^N) IN relative_frontier s /\ z IN relative_frontier s)`] THEN POP_ASSUM_LIST(K ALL_TAC) THEN REWRITE_TAC[DE_MORGAN_THM] THEN MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`z:real^N`; `w:real^N`] THEN MATCH_MP_TAC(MESON[] `(!w z. Q w z <=> Q z w) /\ (!w z. P z ==> Q w z) ==> !w z. P w \/ P z ==> Q w z`) THEN CONJ_TAC THENL [MESON_TAC[]; REPEAT GEN_TAC] THEN DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN REWRITE_TAC[relative_frontier; IN_DIFF] THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET; CLOSURE_SUBSET]; DISCH_TAC] THEN MP_TAC(GEN `d:real` (ISPECL [`s:real^N->bool`; `z:real^N`; `d % (w - z):real^N`] RAY_TO_RELATIVE_FRONTIER)) THEN ASM_SIMP_TAC[VECTOR_SUB_EQ; IN_AFFINE_ADD_MUL_DIFF; AFFINE_AFFINE_HULL; HULL_INC; VECTOR_MUL_EQ_0] THEN DISCH_THEN(fun th -> MP_TAC(SPEC `&1` th) THEN MP_TAC(SPEC `--(&1)` th)) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[IN_SING] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` (STRIP_ASSUME_TAC o GSYM)) THEN ASM_REWRITE_TAC[VECTOR_MUL_RCANCEL; VECTOR_MUL_ASSOC; VECTOR_SUB_EQ; VECTOR_ARITH `a + x:real^N = a + y <=> x = y`] THEN ASM_REAL_ARITH_TAC);;
let RELATIVE_INTERIOR_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. relative_interior(s PCROSS t) = relative_interior s PCROSS relative_interior t`,
REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`s:real^M->bool = {}`; `t:real^N->bool = {}`] THEN ASM_REWRITE_TAC[PCROSS_EMPTY; RELATIVE_INTERIOR_EMPTY] THEN REWRITE_TAC[relative_interior; AFFINE_HULL_PCROSS] THEN REWRITE_TAC[EXTENSION; FORALL_PASTECART; IN_ELIM_THM; PASTECART_IN_PCROSS] THEN MAP_EVERY X_GEN_TAC [`x:real^M`; `y:real^N`] THEN EQ_TAC THENL [ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> r /\ q /\ p`] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^(M,N)finite_sum->bool` (CONJUNCTS_THEN ASSUME_TAC)) THEN FIRST_ASSUM(MP_TAC o MATCH_MP PASTECART_IN_INTERIOR_SUBTOPOLOGY) THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN W(MP_TAC o PART_MATCH (funpow 3 rand) SUBSET_PCROSS o snd) THEN ASM SET_TAC[]; DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `v:real^M->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `w:real^N->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `(v:real^M->bool) PCROSS (w:real^N->bool)` THEN ASM_SIMP_TAC[PASTECART_IN_PCROSS; SUBSET_PCROSS; OPEN_IN_PCROSS]]);;
let RELATIVE_FRONTIER_EQ_EMPTY = 
prove (`!s:real^N->bool. relative_frontier s = {} <=> affine s`,
GEN_TAC THEN REWRITE_TAC[relative_frontier] THEN REWRITE_TAC[GSYM RELATIVE_INTERIOR_EQ_CLOSURE] THEN MP_TAC(ISPEC `s:real^N->bool` RELATIVE_INTERIOR_SUBSET) THEN MP_TAC(ISPEC `s:real^N->bool` CLOSURE_SUBSET) THEN SET_TAC[]);;
let DIAMETER_BOUNDED_BOUND_LT = 
prove (`!s x y:real^N. bounded s /\ x IN relative_interior s /\ y IN closure s /\ ~(diameter s = &0) ==> norm(x - y) < diameter s`,
let lemma = prove
   (`!s x y:real^N.
          bounded s /\ x IN relative_interior s /\ y IN s /\
          ~(diameter s = &0)
          ==> norm(x - y) < diameter s`,
    REPEAT STRIP_TAC THEN FIRST_X_ASSUM
     (MP_TAC o GEN_REWRITE_RULE I [IN_RELATIVE_INTERIOR_CBALL]) THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `e:real`
     STRIP_ASSUME_TAC)) THEN
    ASM_SIMP_TAC[REAL_LT_LE; DIAMETER_BOUNDED_BOUND] THEN
    ASM_CASES_TAC `y:real^N = x` THEN
    ASM_SIMP_TAC[VECTOR_SUB_REFL; NORM_0] THEN
    DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN
    DISCH_THEN(MP_TAC o SPEC `x + e / norm(x - y) % (x - y):real^N`) THEN
    REWRITE_TAC[NOT_IMP; IN_INTER] THEN REPEAT CONJ_TAC THENL
     [REWRITE_TAC[IN_CBALL; NORM_ARITH `dist(x:real^M,x + y) = norm y`] THEN
      ASM_SIMP_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM; REAL_DIV_RMUL;
                   NORM_EQ_0; VECTOR_SUB_EQ] THEN ASM_REAL_ARITH_TAC;
      MATCH_MP_TAC IN_AFFINE_ADD_MUL_DIFF THEN
      ASM_SIMP_TAC[HULL_INC; AFFINE_AFFINE_HULL];
      DISCH_TAC THEN MP_TAC(ISPECL
       [`s:real^N->bool`; `x + e / norm(x - y) % (x - y):real^N`; `y:real^N`]
          DIAMETER_BOUNDED_BOUND) THEN
      ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
      REWRITE_TAC[VECTOR_ARITH
       `(x + e % (x - y)) - y:real^N = (&1 + e) % (x - y)`] THEN
      SIMP_TAC[NORM_MUL; REAL_ARITH `~(a * n <= n) <=> &0 < n * (a - &1)`] THEN
      MATCH_MP_TAC REAL_LT_MUL THEN
      ASM_REWRITE_TAC[NORM_POS_LT; VECTOR_SUB_EQ] THEN
      MATCH_MP_TAC(REAL_ARITH `&0 < e ==> &0 < abs(&1 + e) - &1`) THEN
      MATCH_MP_TAC REAL_LT_DIV THEN
      ASM_REWRITE_TAC[NORM_POS_LT; VECTOR_SUB_EQ]]) in
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`closure s:real^N->bool`; `x:real^N`; `y:real^N`]
        lemma) THEN
  ASM_SIMP_TAC[DIAMETER_CLOSURE; BOUNDED_CLOSURE] THEN
  DISCH_THEN MATCH_MP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
   (SET_RULE `x IN s ==> s SUBSET t ==> x IN t`)) THEN
  MATCH_MP_TAC SUBSET_RELATIVE_INTERIOR THEN
  REWRITE_TAC[CLOSURE_SUBSET; AFFINE_HULL_CLOSURE]);;
let DIAMETER_ATTAINED_RELATIVE_FRONTIER = 
prove (`!s:real^N->bool. bounded s /\ ~(diameter s = &0) ==> ?x y. x IN relative_frontier s /\ y IN relative_frontier s /\ norm(x - y) = diameter s`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[DIAMETER_EMPTY; relative_frontier] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPEC `closure s:real^N->bool` DIAMETER_COMPACT_ATTAINED) THEN ASM_SIMP_TAC[COMPACT_CLOSURE; CLOSURE_EQ_EMPTY; DIAMETER_CLOSURE] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[IN_DIFF] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPEC `s:real^N->bool` DIAMETER_BOUNDED_BOUND_LT) THENL [DISCH_THEN(MP_TAC o SPECL [`x:real^N`; `y:real^N`]); DISCH_THEN(MP_TAC o SPECL [`y:real^N`; `x:real^N`])] THEN ASM_MESON_TAC[REAL_LT_REFL; NORM_SUB]);;
let DIAMETER_RELATIVE_FRONTIER = 
prove (`!s:real^N->bool. bounded s /\ ~(?a. s = {a}) ==> diameter(relative_frontier s) = diameter s`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[RELATIVE_FRONTIER_EMPTY] THEN REWRITE_TAC[relative_frontier] THEN ASM_SIMP_TAC[GSYM DIAMETER_CLOSURE; GSYM REAL_LE_ANTISYM] THEN ASM_SIMP_TAC[SUBSET_DIFF; DIAMETER_SUBSET; BOUNDED_CLOSURE] THEN ASM_SIMP_TAC[DIAMETER_CLOSURE] THEN MP_TAC(ISPEC `s:real^N->bool` DIAMETER_ATTAINED_RELATIVE_FRONTIER) THEN ASM_SIMP_TAC[DIAMETER_EQ_0; relative_frontier] THEN STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC DIAMETER_BOUNDED_BOUND THEN ASM_SIMP_TAC[BOUNDED_CLOSURE; BOUNDED_DIFF]);;
let DIAMETER_ATTAINED_FRONTIER = 
prove (`!s:real^N->bool. bounded s /\ ~(diameter s = &0) ==> ?x y. x IN frontier s /\ y IN frontier s /\ norm(x - y) = diameter s`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIAMETER_ATTAINED_RELATIVE_FRONTIER) THEN REWRITE_TAC[frontier; relative_frontier; IN_DIFF] THEN MESON_TAC[REWRITE_RULE[SUBSET] INTERIOR_SUBSET_RELATIVE_INTERIOR]);;
let DIAMETER_FRONTIER = 
prove (`!s:real^N->bool. bounded s ==> diameter(frontier s) = diameter s`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `?a:real^N. s = {a}` THENL [ASM_MESON_TAC[FRONTIER_SING]; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `!r. r <= f /\ f <= s /\ r = s ==> f = s`) THEN EXISTS_TAC `diameter(closure s DIFF relative_interior s:real^N->bool)` THEN REPEAT CONJ_TAC THENL [ASM_SIMP_TAC[GSYM DIAMETER_CLOSURE] THEN MATCH_MP_TAC DIAMETER_SUBSET THEN ASM_SIMP_TAC[BOUNDED_FRONTIER] THEN REWRITE_TAC[frontier] THEN MP_TAC(ISPEC `s:real^N->bool` INTERIOR_SUBSET_RELATIVE_INTERIOR) THEN SET_TAC[]; ASM_SIMP_TAC[GSYM DIAMETER_CLOSURE] THEN MATCH_MP_TAC DIAMETER_SUBSET THEN ASM_SIMP_TAC[BOUNDED_CLOSURE; frontier; SUBSET_DIFF]; ASM_SIMP_TAC[DIAMETER_RELATIVE_FRONTIER; GSYM relative_frontier]]);;
let DIAMETER_SPHERE = 
prove (`!a:real^N r. diameter(sphere(a,r)) = if r < &0 then &0 else &2 * r`,
REWRITE_TAC[GSYM FRONTIER_CBALL] THEN ASM_SIMP_TAC[DIAMETER_FRONTIER; BOUNDED_CBALL; DIAMETER_CBALL]);;
let CLOSEST_POINT_IN_RELATIVE_INTERIOR = 
prove (`!s x:real^N. closed s /\ ~(s = {}) /\ x IN affine hull s ==> ((closest_point s x) IN relative_interior s <=> x IN relative_interior s)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `(x:real^N) IN s` THEN ASM_SIMP_TAC[CLOSEST_POINT_SELF] THEN MATCH_MP_TAC(TAUT `~q /\ ~p ==> (p <=> q)`) THEN CONJ_TAC THENL [ASM_MESON_TAC[RELATIVE_INTERIOR_SUBSET; SUBSET]; STRIP_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_RELATIVE_INTERIOR_CBALL]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `~(closest_point s (x:real^N) = x)` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`s:real^N->bool`; `x:real^N`; `closest_point s x - (min (&1) (e / norm(closest_point s x - x))) % (closest_point s x - x):real^N`] CLOSEST_POINT_LE) THEN ASM_REWRITE_TAC[dist; NOT_IMP; VECTOR_ARITH `x - (y - e % (y - x)):real^N = (&1 - e) % (x - y)`] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[IN_CBALL; IN_INTER] THEN CONJ_TAC THENL [REWRITE_TAC[NORM_ARITH `dist(a:real^N,a - x) = norm x`] THEN REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= a ==> abs(min (&1) a) <= a`) THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LE_DIV; NORM_POS_LE]; MATCH_MP_TAC IN_AFFINE_SUB_MUL_DIFF THEN ASM_SIMP_TAC[AFFINE_AFFINE_HULL; HULL_INC]]; REWRITE_TAC[NORM_MUL; REAL_ARITH `~(n <= a * n) <=> &0 < (&1 - a) * n`] THEN MATCH_MP_TAC REAL_LT_MUL THEN ASM_SIMP_TAC[NORM_POS_LT; VECTOR_SUB_EQ] THEN MATCH_MP_TAC(REAL_ARITH `&0 < e /\ e <= &1 ==> &0 < &1 - abs(&1 - e)`) THEN REWRITE_TAC[REAL_MIN_LE; REAL_LT_MIN; REAL_LT_01; REAL_LE_REFL] THEN ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]]);;
let CLOSEST_POINT_IN_RELATIVE_FRONTIER = 
prove (`!s x:real^N. closed s /\ ~(s = {}) /\ x IN affine hull s DIFF relative_interior s ==> closest_point s x IN relative_frontier s`,
(* ------------------------------------------------------------------------- *) (* Interior, relative interior and closure interrelations. *) (* ------------------------------------------------------------------------- *)
let CONVEX_CLOSURE_INTERIOR = 
prove (`!s:real^N->bool. convex s /\ ~(interior s = {}) ==> closure(interior s) = closure s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[SUBSET_CLOSURE; INTERIOR_SUBSET] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `b:real^N` THEN DISCH_TAC THEN ASM_CASES_TAC `b:real^N = a` THENL [ASM_MESON_TAC[CLOSURE_SUBSET; SUBSET]; ALL_TAC] THEN REWRITE_TAC[closure; IN_UNION; IN_ELIM_THM] THEN DISJ2_TAC THEN REWRITE_TAC[LIMPT_APPROACHABLE] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `b - min (e / &2 / norm(b - a)) (&1) % (b - a):real^N` THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC IN_INTERIOR_CLOSURE_CONVEX_SHRINK THEN ASM_REWRITE_TAC[REAL_MIN_LE; REAL_LT_MIN; REAL_LE_REFL; REAL_LT_01]; REWRITE_TAC[VECTOR_ARITH `b - x:real^N = b <=> x = vec 0`] THEN ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ] THEN MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(min x (&1) = &0)`); REWRITE_TAC[NORM_ARITH `dist(b - x:real^N,b) = norm x`] THEN REWRITE_TAC[NORM_MUL] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `e / &2 / norm(b - a:real^N) * norm(b - a)` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[NORM_POS_LE] THEN MATCH_MP_TAC(REAL_ARITH `&0 < x ==> abs(min x (&1)) <= x`); ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_POS_LT; REAL_LT_IMP_NZ; VECTOR_SUB_EQ] THEN ASM_REAL_ARITH_TAC]] THEN ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; REAL_OF_NUM_LT; VECTOR_SUB_EQ; ARITH]);;
let EMPTY_INTERIOR_SUBSET_HYPERPLANE = 
prove (`!s. convex s /\ interior s = {} ==> ?a:real^N b. ~(a = vec 0) /\ s SUBSET {x | a dot x = b}`,
let lemma = prove
   (`!s. convex s /\ (vec 0) IN s /\ interior s = {}
         ==> ?a:real^N b. ~(a = vec 0) /\ s SUBSET {x | a dot x = b}`,
    GEN_TAC THEN
    REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN
    SUBGOAL_THEN `~(relative_interior(s:real^N->bool) = {})` MP_TAC THENL
     [ASM_MESON_TAC[RELATIVE_INTERIOR_EQ_EMPTY; MEMBER_NOT_EMPTY]; ALL_TAC] THEN
    ASM_REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC EQ_IMP THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC RELATIVE_INTERIOR_INTERIOR THEN
    ASM_SIMP_TAC[AFFINE_HULL_EQ_SPAN; HULL_INC] THEN
    ONCE_REWRITE_TAC[GSYM SPAN_UNIV] THEN MATCH_MP_TAC DIM_EQ_SPAN THEN
    REWRITE_TAC[SUBSET_UNIV; DIM_UNIV; GSYM NOT_LT] THEN
    DISCH_THEN(MP_TAC o MATCH_MP LOWDIM_SUBSET_HYPERPLANE) THEN
    DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
    DISCH_THEN(MP_TAC o SPEC `a:real^N`) THEN
    ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN EXISTS_TAC `&0` THEN
    ASM_MESON_TAC[SUBSET_TRANS; SPAN_INC]) in
  GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL
   [ASM_MESON_TAC[EMPTY_SUBSET; BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1];
    ALL_TAC] THEN
  STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
  DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN
  MP_TAC(ISPEC `IMAGE (\x:real^N. --a + x) s` lemma) THEN
  ASM_REWRITE_TAC[CONVEX_TRANSLATION_EQ; INTERIOR_TRANSLATION;
                  IMAGE_EQ_EMPTY; IN_IMAGE; UNWIND_THM2;
                  VECTOR_ARITH `vec 0:real^N = --a + x <=> x = a`] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real^N` THEN
  REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; DOT_RADD] THEN
  MESON_TAC[REAL_ARITH `a + x:real = b <=> x = b - a`]);;
let CONVEX_INTERIOR_CLOSURE = 
prove (`!s:real^N->bool. convex s ==> interior(closure s) = interior s`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `interior(s:real^N->bool) = {}` THENL [MP_TAC(ISPEC `s:real^N->bool` EMPTY_INTERIOR_SUBSET_HYPERPLANE) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real`] THEN STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `!t. s SUBSET t /\ t = {} ==> s = {}`) THEN EXISTS_TAC `interior {x:real^N | a dot x = b}` THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[INTERIOR_HYPERPLANE]] THEN MATCH_MP_TAC SUBSET_INTERIOR THEN MATCH_MP_TAC CLOSURE_MINIMAL THEN ASM_REWRITE_TAC[CLOSED_HYPERPLANE]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[SUBSET_INTERIOR; CLOSURE_SUBSET] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `b:real^N` THEN DISCH_TAC THEN MP_TAC(ASSUME `(b:real^N) IN interior(closure s)`) THEN GEN_REWRITE_TAC LAND_CONV [IN_INTERIOR_CBALL] THEN REWRITE_TAC[SUBSET; IN_CBALL; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:real` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_CASES_TAC `b:real^N = a` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `b + e / norm(b - a) % (b - a):real^N`) THEN ASM_SIMP_TAC[NORM_ARITH `dist(b:real^N,b + e) = norm e`; NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM; REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ; REAL_ARITH `&0 < e ==> abs e <= e`] THEN DISCH_TAC THEN SUBGOAL_THEN `b = (b + e / norm(b - a) % (b - a)) - e / norm(b - a) / (&1 + e / norm(b - a)) % ((b + e / norm(b - a) % (b - a)) - a):real^N` SUBST1_TAC THENL [REWRITE_TAC[VECTOR_ARITH `b = (b + e % (b - a)) - d % ((b + e % (b - a)) - a) <=> (e - d * (&1 + e)) % (b - a) = vec 0`] THEN ASM_REWRITE_TAC[VECTOR_SUB_EQ; VECTOR_MUL_EQ_0]; MATCH_MP_TAC IN_INTERIOR_CLOSURE_CONVEX_SHRINK] THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ; REAL_ARITH `&0 < x ==> &0 < &1 + x`; REAL_ARITH `&0 < x ==> ~(&1 + x = &0)`; REAL_MUL_LID; REAL_ADD_RDISTRIB; REAL_DIV_RMUL; REAL_LT_IMP_NZ; REAL_LE_ADDL; NORM_POS_LE; REAL_SUB_REFL]);;
let FRONTIER_CLOSURE_CONVEX = 
prove (`!s:real^N->bool. convex s ==> frontier(closure s) = frontier s`,
SIMP_TAC[frontier; CLOSURE_CLOSURE; CONVEX_INTERIOR_CLOSURE]);;
let CONVEX_CLOSURE_RELATIVE_INTERIOR = 
prove (`!s:real^N->bool. convex s ==> closure(relative_interior s) = closure s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[SUBSET_CLOSURE; RELATIVE_INTERIOR_SUBSET] THEN ASM_CASES_TAC `relative_interior(s:real^N->bool) = {}` THENL [ASM_MESON_TAC[RELATIVE_INTERIOR_EQ_EMPTY; SUBSET_REFL]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `b:real^N` THEN DISCH_TAC THEN ASM_CASES_TAC `b:real^N = a` THENL [ASM_MESON_TAC[CLOSURE_SUBSET; SUBSET]; ALL_TAC] THEN REWRITE_TAC[closure; IN_UNION; IN_ELIM_THM] THEN DISJ2_TAC THEN REWRITE_TAC[LIMPT_APPROACHABLE] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `b - min (e / &2 / norm(b - a)) (&1) % (b - a):real^N` THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SHRINK THEN ASM_REWRITE_TAC[REAL_MIN_LE; REAL_LT_MIN; REAL_LE_REFL; REAL_LT_01]; REWRITE_TAC[VECTOR_ARITH `b - x:real^N = b <=> x = vec 0`] THEN ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ] THEN MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(min x (&1) = &0)`); REWRITE_TAC[NORM_ARITH `dist(b - x:real^N,b) = norm x`] THEN REWRITE_TAC[NORM_MUL] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `e / &2 / norm(b - a:real^N) * norm(b - a)` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[NORM_POS_LE] THEN MATCH_MP_TAC(REAL_ARITH `&0 < x ==> abs(min x (&1)) <= x`); ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_POS_LT; REAL_LT_IMP_NZ; VECTOR_SUB_EQ] THEN ASM_REAL_ARITH_TAC]] THEN ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; REAL_OF_NUM_LT; VECTOR_SUB_EQ; ARITH]);;
let AFFINE_HULL_RELATIVE_INTERIOR = 
prove (`!s. convex s ==> affine hull (relative_interior s) = affine hull s`,
let CONVEX_RELATIVE_INTERIOR_CLOSURE = 
prove (`!s:real^N->bool. convex s ==> relative_interior(closure s) = relative_interior s`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[CLOSURE_EMPTY; RELATIVE_INTERIOR_EMPTY] THEN SUBGOAL_THEN `?a:real^N. a IN relative_interior s` STRIP_ASSUME_TAC THENL [ASM_SIMP_TAC[MEMBER_NOT_EMPTY; RELATIVE_INTERIOR_EQ_EMPTY]; ALL_TAC] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET] THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[IN_RELATIVE_INTERIOR; AFFINE_HULL_CLOSURE; SUBSET] THEN MESON_TAC[CLOSURE_SUBSET; SUBSET]] THEN X_GEN_TAC `b:real^N` THEN DISCH_TAC THEN MP_TAC(ASSUME `(b:real^N) IN relative_interior(closure s)`) THEN GEN_REWRITE_TAC LAND_CONV [IN_RELATIVE_INTERIOR_CBALL] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[SUBSET; IN_CBALL; IN_INTER; LEFT_IMP_EXISTS_THM; AFFINE_HULL_CLOSURE] THEN X_GEN_TAC `e:real` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_CASES_TAC `b:real^N = a` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `b + e / norm(b - a) % (b - a):real^N`) THEN ASM_SIMP_TAC[NORM_ARITH `dist(b:real^N,b + e) = norm e`; NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM; REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ; REAL_ARITH `&0 < e ==> abs e <= e`] THEN ANTS_TAC THENL [MATCH_MP_TAC IN_AFFINE_ADD_MUL_DIFF THEN ASM_MESON_TAC[SUBSET; AFFINE_AFFINE_HULL; RELATIVE_INTERIOR_SUBSET; CLOSURE_SUBSET_AFFINE_HULL; HULL_INC]; ALL_TAC] THEN DISCH_TAC THEN SUBGOAL_THEN `b = (b + e / norm(b - a) % (b - a)) - e / norm(b - a) / (&1 + e / norm(b - a)) % ((b + e / norm(b - a) % (b - a)) - a):real^N` SUBST1_TAC THENL [REWRITE_TAC[VECTOR_ARITH `b = (b + e % (b - a)) - d % ((b + e % (b - a)) - a) <=> (e - d * (&1 + e)) % (b - a) = vec 0`] THEN ASM_REWRITE_TAC[VECTOR_SUB_EQ; VECTOR_MUL_EQ_0]; MATCH_MP_TAC IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SHRINK] THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ; REAL_ARITH `&0 < x ==> &0 < &1 + x`; REAL_ARITH `&0 < x ==> ~(&1 + x = &0)`; REAL_MUL_LID; REAL_ADD_RDISTRIB; REAL_DIV_RMUL; REAL_LT_IMP_NZ; REAL_LE_ADDL; NORM_POS_LE; REAL_SUB_REFL]);;
let RELATIVE_FRONTIER_CLOSURE = 
prove (`!s. convex s ==> relative_frontier(closure s) = relative_frontier s`,
let CONNECTED_INTER_RELATIVE_FRONTIER = 
prove (`!s t:real^N->bool. connected s /\ s SUBSET affine hull t /\ ~(s INTER t = {}) /\ ~(s DIFF t = {}) ==> ~(s INTER relative_frontier t = {})`,
REWRITE_TAC[relative_frontier] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONNECTED_OPEN_IN]) THEN REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`s INTER relative_interior t:real^N->bool`; `s DIFF closure t:real^N->bool`] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_SUBTOPOLOGY_INTER_SUBSET THEN EXISTS_TAC `affine hull t:real^N->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC OPEN_IN_INTER THEN REWRITE_TAC[OPEN_IN_RELATIVE_INTERIOR; OPEN_IN_SUBTOPOLOGY_REFL] THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN; SUBSET_UNIV]; ONCE_REWRITE_TAC[SET_RULE `s DIFF t = s INTER (UNIV DIFF t)`] THEN MATCH_MP_TAC OPEN_IN_OPEN_INTER THEN REWRITE_TAC[GSYM closed; CLOSED_CLOSURE]; ASM SET_TAC[]; MATCH_MP_TAC(SET_RULE `i SUBSET t /\ t SUBSET c ==> (s INTER i) INTER (s DIFF c) = {}`) THEN REWRITE_TAC[RELATIVE_INTERIOR_SUBSET; CLOSURE_SUBSET]; MP_TAC(ISPEC `t:real^N->bool` CLOSURE_SUBSET) THEN ASM SET_TAC[]; MP_TAC(ISPEC `t:real^N->bool` RELATIVE_INTERIOR_SUBSET) THEN ASM SET_TAC[]]);;
let CLOSED_RELATIVE_FRONTIER = 
prove (`!s:real^N->bool. closed(relative_frontier s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[relative_frontier] THEN MATCH_MP_TAC CLOSED_IN_CLOSED_TRANS THEN EXISTS_TAC `affine hull s:real^N->bool` THEN REWRITE_TAC[CLOSED_AFFINE_HULL] THEN MATCH_MP_TAC CLOSED_IN_DIFF THEN REWRITE_TAC[OPEN_IN_RELATIVE_INTERIOR] THEN MATCH_MP_TAC CLOSED_SUBSET THEN REWRITE_TAC[CLOSED_CLOSURE] THEN MATCH_MP_TAC(SET_RULE `s SUBSET closure t /\ closure t = t ==> s SUBSET t`) THEN SIMP_TAC[SUBSET_CLOSURE; HULL_SUBSET; CLOSURE_EQ; CLOSED_AFFINE_HULL]);;
let CLOSED_RELATIVE_BOUNDARY = 
prove (`!s. closed s ==> closed(s DIFF relative_interior s)`,
let COMPACT_RELATIVE_BOUNDARY = 
prove (`!s. compact s ==> compact(s DIFF relative_interior s)`,
let BOUNDED_RELATIVE_FRONTIER = 
prove (`!s:real^N->bool. bounded s ==> bounded(relative_frontier s)`,
REWRITE_TAC[relative_frontier] THEN MESON_TAC[BOUNDED_CLOSURE; BOUNDED_SUBSET; SUBSET_DIFF]);;
let COMPACT_RELATIVE_FRONTIER_BOUNDED = 
prove (`!s:real^N->bool. bounded s ==> compact(relative_frontier s)`,
let COMPACT_RELATIVE_FRONTIER = 
prove (`!s:real^N->bool. compact s ==> compact(relative_frontier s)`,
let CONVEX_SAME_RELATIVE_INTERIOR_CLOSURE = 
prove (`!s t. convex s /\ convex t ==> (relative_interior s = relative_interior t <=> closure s = closure t)`,
let CONVEX_SAME_RELATIVE_INTERIOR_CLOSURE_STRADDLE = 
prove (`!s t. convex s /\ convex t ==> (relative_interior s = relative_interior t <=> relative_interior s SUBSET t /\ t SUBSET closure s)`,
let RELATIVE_INTERIOR_LINEAR_IMAGE_CONVEX = 
prove (`!f:real^M->real^N s. linear f /\ convex s ==> relative_interior(IMAGE f s) = IMAGE f (relative_interior s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [SUBGOAL_THEN `relative_interior (IMAGE f (relative_interior s)) = relative_interior (IMAGE (f:real^M->real^N) s)` (fun th -> REWRITE_TAC[SYM th; RELATIVE_INTERIOR_SUBSET]) THEN ASM_SIMP_TAC[CONVEX_SAME_RELATIVE_INTERIOR_CLOSURE_STRADDLE; CONVEX_RELATIVE_INTERIOR; CONVEX_LINEAR_IMAGE] THEN CONJ_TAC THENL [MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `IMAGE (f:real^M->real^N) (relative_interior s)` THEN SIMP_TAC[RELATIVE_INTERIOR_SUBSET; IMAGE_SUBSET]; MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `IMAGE (f:real^M->real^N) (closure(relative_interior s))` THEN ASM_SIMP_TAC[CLOSURE_LINEAR_IMAGE_SUBSET] THEN ASM_SIMP_TAC[CONVEX_CLOSURE_RELATIVE_INTERIOR] THEN MATCH_MP_TAC IMAGE_SUBSET THEN REWRITE_TAC[CLOSURE_SUBSET]]; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `z:real^M` THEN DISCH_TAC THEN ASM_SIMP_TAC[RELATIVE_INTERIOR_CONVEX_PROLONG; CONVEX_LINEAR_IMAGE] THEN REWRITE_TAC[IN_ELIM_THM; FORALL_IN_IMAGE] THEN CONJ_TAC THENL [MATCH_MP_TAC FUN_IN_IMAGE THEN ASM_MESON_TAC[SUBSET; RELATIVE_INTERIOR_SUBSET]; ALL_TAC] THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN MP_TAC(ISPECL [`s:real^M->bool`; `z:real^M`; `x:real^M`] RELATIVE_INTERIOR_PROLONG) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:real` THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o ISPEC `f:real^M->real^N` o MATCH_MP FUN_IN_IMAGE) THEN ASM_MESON_TAC[LINEAR_ADD; LINEAR_SUB; LINEAR_CMUL]]);;
let CLOSURE_INTERS_CONVEX = 
prove (`!f:(real^N->bool)->bool. (!s. s IN f ==> convex s) /\ ~(INTERS(IMAGE relative_interior f) = {}) ==> closure(INTERS f) = INTERS(IMAGE closure f)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[CLOSURE_INTERS_SUBSET] THEN REWRITE_TAC[SUBSET; IN_INTERS; FORALL_IN_IMAGE] THEN X_GEN_TAC `b:real^N` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[INTERS_IMAGE; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN REWRITE_TAC[CLOSURE_APPROACHABLE] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN ASM_CASES_TAC `b:real^N = a` THENL [EXISTS_TAC `a:real^N` THEN ASM_REWRITE_TAC[DIST_REFL; IN_INTERS] THEN ASM_MESON_TAC[SUBSET; RELATIVE_INTERIOR_SUBSET]; ALL_TAC] THEN EXISTS_TAC `b - min (&1 / &2) (e / &2 / norm(b - a)) % (b - a):real^N` THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[NORM_ARITH `dist(b - a:real^N,b) = norm a`; NORM_MUL] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN MATCH_MP_TAC(REAL_ARITH `&0 < a /\ &0 < x /\ x < y ==> abs(min a x) < y`) THEN ASM_SIMP_TAC[REAL_LT_DIV2_EQ; REAL_HALF; REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ] THEN ASM_REAL_ARITH_TAC] THEN REWRITE_TAC[IN_INTERS] THEN X_GEN_TAC `s:real^N->bool` THEN DISCH_TAC THEN MATCH_MP_TAC (MESON[RELATIVE_INTERIOR_SUBSET; SUBSET] `!x. x IN relative_interior s ==> x IN s`) THEN MATCH_MP_TAC IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SHRINK THEN ASM_SIMP_TAC[REAL_LT_MIN; REAL_HALF; REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ] THEN REAL_ARITH_TAC);;
let CLOSURE_INTERS_CONVEX_OPEN = 
prove (`!f:(real^N->bool)->bool. (!s. s IN f ==> convex s /\ open s) ==> closure(INTERS f) = if INTERS f = {} then {} else INTERS(IMAGE closure f)`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[CLOSURE_EMPTY] THEN MATCH_MP_TAC CLOSURE_INTERS_CONVEX THEN ASM_SIMP_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `~(s = {}) ==> s = t ==> ~(t = {})`)) THEN AP_TERM_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = x) ==> s = IMAGE f s`) THEN ASM_SIMP_TAC[RELATIVE_INTERIOR_OPEN; INTERIOR_EQ]);;
let CLOSURE_INTER_CONVEX = 
prove (`!s t:real^N->bool. convex s /\ convex t /\ ~(relative_interior s INTER relative_interior t = {}) ==> closure(s INTER t) = closure(s) INTER closure(t)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `{s:real^N->bool,t}` CLOSURE_INTERS_CONVEX) THEN ASM_SIMP_TAC[IMAGE_CLAUSES; INTERS_2] THEN ASM_REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY]);;
let CLOSURE_INTER_CONVEX_OPEN = 
prove (`!s t. convex s /\ open s /\ convex t /\ open t ==> closure(s INTER t) = if s INTER t = {} then {} else closure(s) INTER closure(t)`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[CLOSURE_EMPTY] THEN MATCH_MP_TAC CLOSURE_INTER_CONVEX THEN ASM_SIMP_TAC[RELATIVE_INTERIOR_OPEN]);;
let CLOSURE_CONVEX_INTER_SUPERSET = 
prove (`!s t:real^N->bool. convex s /\ ~(interior s = {}) /\ interior s SUBSET closure t ==> closure(s INTER t) = closure s`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[SUBSET_CLOSURE; INTER_SUBSET; SUBSET_INTER] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `closure(interior s):real^N->bool` THEN CONJ_TAC THENL [ASM_SIMP_TAC[CONVEX_CLOSURE_INTERIOR; SUBSET_REFL]; ASM_SIMP_TAC[GSYM CLOSURE_OPEN_INTER_SUPERSET; OPEN_INTERIOR] THEN MATCH_MP_TAC SUBSET_CLOSURE THEN MP_TAC(ISPEC `s:real^N->bool` INTERIOR_SUBSET) THEN SET_TAC[]]);;
let CLOSURE_DYADIC_RATIONALS_IN_CONVEX_SET = 
prove (`!s:real^N->bool. convex s /\ ~(interior s = {}) ==> closure(s INTER { inv(&2 pow n) % x | n,x | !i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i) }) = closure s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSURE_CONVEX_INTER_SUPERSET THEN ASM_REWRITE_TAC[CLOSURE_DYADIC_RATIONALS; SUBSET_UNIV]);;
let CLOSURE_RATIONALS_IN_CONVEX_SET = 
prove (`!s:real^N->bool. convex s /\ ~(interior s = {}) ==> closure(s INTER { x | !i. 1 <= i /\ i <= dimindex(:N) ==> rational(x$i) }) = closure s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSURE_CONVEX_INTER_SUPERSET THEN ASM_REWRITE_TAC[CLOSURE_RATIONAL_COORDINATES; SUBSET_UNIV]);;
let RELATIVE_INTERIOR_CONVEX_INTER_AFFINE = 
prove (`!s t:real^N->bool. convex s /\ affine t /\ ~(interior s INTER t = {}) ==> relative_interior(s INTER t) = interior s INTER t`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; RIGHT_AND_EXISTS_THM] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` MP_TAC) THEN GEOM_ORIGIN_TAC `a:real^N` THEN REWRITE_TAC[IN_INTER] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `(vec 0:real^N) IN t` THEN ASM_SIMP_TAC[AFFINE_EQ_SUBSPACE] THEN STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `x:real^N` THEN MP_TAC(ISPECL [`t:real^N->bool`; `s:real^N->bool`] (ONCE_REWRITE_RULE[INTER_COMM] AFFINE_HULL_AFFINE_INTER_NONEMPTY_INTERIOR)) THEN ASM_SIMP_TAC[SUBSPACE_IMP_AFFINE; IN_RELATIVE_INTERIOR_CBALL] THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[IN_INTER; IN_INTERIOR_CBALL]] THEN DISCH_THEN SUBST1_TAC THEN ASM_CASES_TAC `(x:real^N) IN t` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[SUBSET; IN_INTER] THEN ASM_CASES_TAC `(x:real^N) IN s` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[CENTRE_IN_CBALL; REAL_LT_IMP_LE]] THEN EQ_TAC THENL [REWRITE_TAC[IN_CBALL]; MESON_TAC[]] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `x:real^N = vec 0` THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERIOR_CBALL]) THEN ASM_REWRITE_TAC[SUBSET; IN_CBALL]; ALL_TAC] THEN MP_TAC(ISPECL [`s:real^N->bool`; `vec 0:real^N`; `(&1 + e / norm x) % x:real^N`] IN_INTERIOR_CLOSURE_CONVEX_SEGMENT) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[SUBSET] CLOSURE_SUBSET) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[SUBSPACE_MUL] THEN REWRITE_TAC[VECTOR_ADD_RDISTRIB; VECTOR_MUL_LID; NORM_ARITH `dist(a:real^N,a + x) = norm x`] THEN ASM_SIMP_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM; REAL_DIV_RMUL; NORM_EQ_0] THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[SUBSET; IN_INTERIOR_CBALL; IN_CBALL] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[IN_SEGMENT] THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN EXISTS_TAC `inv(&1 + e / norm(x:real^N))` THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_LT_DIV; NORM_POS_LT; VECTOR_MUL_LID; REAL_LT_INV_EQ; REAL_MUL_LINV; REAL_INV_LT_1; REAL_ARITH `&0 < x ==> &1 < &1 + x /\ &0 < &1 + x /\ ~(&1 + x = &0)`]]);;
(* ------------------------------------------------------------------------- *) (* Homeomorphism of all convex compact sets with same affine dimension, and *) (* in particular all those with nonempty interior. *) (* ------------------------------------------------------------------------- *)
let COMPACT_FRONTIER_LINE_LEMMA = 
prove (`!s x. compact s /\ (vec 0 IN s) /\ ~(x = vec 0 :real^N) ==> ?u. &0 <= u /\ (u % x) IN frontier s /\ !v. u < v ==> ~((v % x) IN s)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN REWRITE_TAC[BOUNDED_POS] THEN DISCH_THEN(X_CHOOSE_THEN `b:real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`{y:real^N | ?u. &0 <= u /\ u <= b / norm(x) /\ (y = u % x)} INTER s`; `vec 0:real^N`] DISTANCE_ATTAINS_SUP) THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `vec 0:real^N` THEN ASM_REWRITE_TAC[IN_INTER; IN_ELIM_THM] THEN EXISTS_TAC `&0` THEN ASM_SIMP_TAC[VECTOR_MUL_LZERO; REAL_LE_REFL; REAL_LT_IMP_LE; REAL_LT_DIV; NORM_POS_LT]] THEN MATCH_MP_TAC COMPACT_INTER THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `{y:real^N | ?u. &0 <= u /\ u <= b / norm(x) /\ (y = u % x)} = IMAGE (\u. drop u % x) (interval [vec 0,lambda i. b / norm(x:real^N)])` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE; IN_INTERVAL] THEN SIMP_TAC[LAMBDA_BETA] THEN SIMP_TAC[DIMINDEX_1; ARITH_RULE `1 <= i /\ i <= 1 <=> (i = 1)`] THEN REWRITE_TAC[GSYM drop; LEFT_FORALL_IMP_THM; EXISTS_REFL; DROP_VEC] THEN REWRITE_TAC[EXISTS_LIFT; LIFT_DROP] THEN MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN REWRITE_TAC[COMPACT_INTERVAL] THEN MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_VMUL THEN REWRITE_TAC[o_DEF; LIFT_DROP; CONTINUOUS_AT_ID]; ALL_TAC] THEN REWRITE_TAC[IN_INTER; IN_ELIM_THM; LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[TAUT `(a /\ b /\ c) /\ d <=> c /\ a /\ b /\ d`] THEN SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_REWRITE_TAC (BINDER_CONV o ONCE_DEPTH_CONV) [SWAP_FORALL_THM] THEN SIMP_TAC[IMP_CONJ] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN REWRITE_TAC[IMP_IMP] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:real` THEN REWRITE_TAC[dist; VECTOR_SUB_LZERO; NORM_NEG; NORM_MUL] THEN ASM_SIMP_TAC[REAL_LE_RMUL_EQ; NORM_POS_LT] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[real_abs] THEN REPEAT STRIP_TAC THENL [REWRITE_TAC[FRONTIER_STRADDLE] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN CONJ_TAC THENL [EXISTS_TAC `u % x :real^N` THEN ASM_REWRITE_TAC[DIST_REFL]; ALL_TAC] THEN EXISTS_TAC `(u + (e / &2) / norm(x)) % x :real^N` THEN REWRITE_TAC[dist; VECTOR_ARITH `u % x - (u + a) % x = --(a % x)`] THEN ASM_SIMP_TAC[NORM_NEG; NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM; NORM_EQ_0; REAL_DIV_RMUL; REAL_ABS_NUM; REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; ARITH; REAL_ARITH `abs e < e * &2 <=> &0 < e`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u + (e / &2) / norm(x:real^N)`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `&0 < e /\ &0 <= u /\ u + e <= b ==> ~(&0 <= u + e /\ u + e <= b ==> u + e <= u)`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; NORM_POS_LT] THEN FIRST_X_ASSUM(MP_TAC o SPEC `(u + (e / &2) / norm(x:real^N)) % x`) THEN ASM_SIMP_TAC[NORM_MUL; GSYM REAL_LE_RDIV_EQ; NORM_POS_LT] THEN REAL_ARITH_TAC; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `v:real`) THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LT] THEN ASM_REWRITE_TAC[REAL_NOT_LT] THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_LET_TRANS; REAL_LT_IMP_LE]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `v % x:real^N`) THEN ASM_SIMP_TAC[NORM_MUL; GSYM REAL_LE_RDIV_EQ; NORM_POS_LT] THEN REAL_ARITH_TAC);;
let STARLIKE_COMPACT_PROJECTIVE = 
prove (`!s:real^N->bool a. compact s /\ a IN relative_interior s /\ (!x. x IN s ==> segment(a,x) SUBSET relative_interior s) ==> s DIFF relative_interior s homeomorphic sphere(a,&1) INTER affine hull s /\ s homeomorphic cball(a,&1) INTER affine hull s`,
REPEAT GEN_TAC THEN GEOM_ORIGIN_TAC `a:real^N` THEN REWRITE_TAC[SUBSET; IMP_IMP; RIGHT_IMP_FORALL_THM] THEN GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!x:real^N u. x IN s /\ &0 <= u /\ u < &1 ==> (u % x) IN relative_interior s` ASSUME_TAC THENL [REWRITE_TAC[REAL_ARITH `&0 <= u <=> u = &0 \/ &0 < u`] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_MUL_LZERO] THEN ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_REWRITE_TAC[VECTOR_MUL_RZERO] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_SEGMENT] THEN REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN ASM_MESON_TAC[]; FIRST_X_ASSUM(K ALL_TAC o SPECL [`x:real^N`; `x:real^N`])] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REWRITE_RULE[SUBSET] RELATIVE_INTERIOR_SUBSET)) THEN ABBREV_TAC `proj = \x:real^N. inv(norm(x)) % x` THEN SUBGOAL_THEN `!x:real^N y. (proj(x) = proj(y):real^N) /\ (norm x = norm y) <=> (x = y)` ASSUME_TAC THENL [REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN ASM_CASES_TAC `y:real^N = vec 0` THEN ASM_SIMP_TAC[NORM_EQ_0; NORM_0] THEN ASM_CASES_TAC `x:real^N = vec 0` THENL [ASM_MESON_TAC[NORM_EQ_0]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN EXPAND_TAC "proj" THEN REWRITE_TAC[] THEN ASM_REWRITE_TAC[VECTOR_ARITH `a % x = a % y <=> a % (x - y):real^N = vec 0`] THEN ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; REAL_INV_EQ_0; NORM_EQ_0; VECTOR_SUB_EQ]; ALL_TAC] THEN SUBGOAL_THEN `(!x. x IN affine hull s ==> proj x IN affine hull s) /\ (!x. ~(x = vec 0) ==> norm(proj x) = &1) /\ (!x:real^N. proj x = vec 0 <=> x = vec 0)` STRIP_ASSUME_TAC THENL [EXPAND_TAC "proj" THEN REWRITE_TAC[NORM_MUL; VECTOR_MUL_EQ_0] THEN REWRITE_TAC[REAL_INV_EQ_0; NORM_EQ_0; REAL_ABS_INV; REAL_ABS_NORM] THEN SIMP_TAC[REAL_MUL_LINV; NORM_EQ_0] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM VECTOR_ADD_LID] THEN MATCH_MP_TAC IN_AFFINE_ADD_MUL THEN ASM_SIMP_TAC[AFFINE_AFFINE_HULL; VECTOR_ADD_LID; HULL_INC]; ALL_TAC] THEN SUBGOAL_THEN `(proj:real^N->real^N) continuous_on (UNIV DELETE vec 0)` ASSUME_TAC THENL [MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN REWRITE_TAC[IN_DELETE; IN_UNIV] THEN EXPAND_TAC "proj" THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_MUL THEN ASM_SIMP_TAC[CONTINUOUS_AT_ID] THEN REWRITE_TAC[GSYM(ISPEC `lift` o_DEF); GSYM(ISPEC `inv:real->real` o_DEF)] THEN MATCH_MP_TAC CONTINUOUS_AT_INV THEN ASM_REWRITE_TAC[NORM_EQ_0; VECTOR_SUB_EQ; CONTINUOUS_AT_LIFT_NORM]; ALL_TAC] THEN ABBREV_TAC `usph = {x:real^N | x IN affine hull s /\ norm x = &1}` THEN SUBGOAL_THEN ` sphere(vec 0:real^N,&1) INTER affine hull s = usph` SUBST1_TAC THENL [EXPAND_TAC "usph" THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_SPHERE_0] THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x. x IN affine hull s /\ ~(x = vec 0) ==> (proj:real^N->real^N) x IN usph` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?surf. homeomorphism (s DIFF relative_interior s,usph) (proj:real^N->real^N,surf)` MP_TAC THENL [MATCH_MP_TAC HOMEOMORPHISM_COMPACT THEN ASM_SIMP_TAC[COMPACT_RELATIVE_BOUNDARY] THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]; MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_DIFF] THEN EXPAND_TAC "usph" THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[HULL_INC]; MAP_EVERY EXPAND_TAC ["proj";
"usph"] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_REWRITE_TAC[NORM_0; REAL_OF_NUM_EQ; ARITH_EQ] THEN STRIP_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `vec 0:real^N`; `x:real^N`] RAY_TO_RELATIVE_FRONTIER) THEN REWRITE_TAC[relative_frontier] THEN ASM_SIMP_TAC[COMPACT_IMP_BOUNDED; CLOSURE_CLOSED; COMPACT_IMP_CLOSED; VECTOR_ADD_LID] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXPAND_TAC "proj" THEN REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `d % x:real^N` THEN ASM_REWRITE_TAC[NORM_MUL] THEN ASM_SIMP_TAC[REAL_MUL_RID; real_abs; REAL_LT_IMP_LE] THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; REAL_LT_IMP_NZ; VECTOR_MUL_LID]]; MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN ASM_CASES_TAC `x:real^N = vec 0` THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `y:real^N = vec 0` THENL [ASM SET_TAC[]; ALL_TAC] THEN UNDISCH_TAC `(proj:real^N->real^N) x = proj y` THEN EXPAND_TAC "proj" THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (REAL_ARITH `norm(x:real^N) = norm(y:real^N) \/ norm x < norm y \/ norm y < norm x`) THENL [ASM_REWRITE_TAC[VECTOR_MUL_LCANCEL; REAL_INV_EQ_0; NORM_EQ_0]; DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`y:real^N`; `norm(x:real^N) / norm(y:real^N)`]); DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `norm(y:real^N) / norm(x:real^N)`])] THEN ASM_SIMP_TAC[REAL_LE_DIV; NORM_POS_LE; REAL_LT_LDIV_EQ; NORM_POS_LT; REAL_MUL_LID] THEN ASM_REWRITE_TAC[real_div; GSYM VECTOR_MUL_ASSOC] THENL [FIRST_X_ASSUM(SUBST1_TAC o SYM); ALL_TAC] THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RINV; NORM_EQ_0] THEN ASM_REWRITE_TAC[VECTOR_MUL_LID]]; DISCH_THEN(fun th -> CONJ_TAC THENL [MESON_TAC[homeomorphic; th]; ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN SIMP_TAC[COMPACT_INTER_CLOSED; CLOSED_AFFINE_HULL; COMPACT_CBALL] THEN MP_TAC th]) THEN REWRITE_TAC[HOMEOMORPHISM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `surf:real^N->real^N` THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. norm(x) % (surf:real^N->real^N)(proj(x))` THEN REWRITE_TAC[]] THEN UNDISCH_THEN `(proj:real^N->real^N) continuous_on s DIFF relative_interior s` (K ALL_TAC) THEN REWRITE_TAC[] THEN CONJ_TAC THENL [REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; IN_INTER] THEN X_GEN_TAC `x:real^N` THEN STRIP_TAC THEN ASM_CASES_TAC `x = vec 0:real^N` THENL [ASM_REWRITE_TAC[CONTINUOUS_WITHIN; VECTOR_MUL_LZERO; NORM_0] THEN MATCH_MP_TAC LIM_NULL_VMUL_BOUNDED THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN REWRITE_TAC[BOUNDED_POS] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THENL [REWRITE_TAC[LIM_WITHIN; o_THM; DIST_0; NORM_LIFT; REAL_ABS_NORM] THEN MESON_TAC[]; REWRITE_TAC[EVENTUALLY_WITHIN] THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01; IN_INTER; DIST_0; NORM_POS_LT] THEN ASM SET_TAC[]]; MATCH_MP_TAC CONTINUOUS_WITHIN_SUBSET THEN EXISTS_TAC `affine hull s:real^N->bool` THEN REWRITE_TAC[INTER_SUBSET] THEN MATCH_MP_TAC CONTINUOUS_MUL THEN SIMP_TAC[CONTINUOUS_LIFT_NORM_COMPOSE; CONTINUOUS_WITHIN_ID; o_DEF] THEN SUBGOAL_THEN `((surf:real^N->real^N) o (proj:real^N->real^N)) continuous_on (affine hull s DELETE vec 0)` MP_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN SIMP_TAC[SUBSET; IN_DELETE; IN_UNIV; FORALL_IN_IMAGE] THEN EXPAND_TAC "usph" THEN ASM_SIMP_TAC[IN_ELIM_THM]; SIMP_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_SIMP_TAC[IN_DELETE] THEN REWRITE_TAC[CONTINUOUS_WITHIN; o_DEF] THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC LIM_TRANSFORM_WITHIN_SET THEN REWRITE_TAC[EVENTUALLY_AT] THEN EXISTS_TAC `norm(x:real^N)` THEN ASM_REWRITE_TAC[IN_DELETE; IN_INTER; IN_CBALL; NORM_POS_LT] THEN X_GEN_TAC `y:real^N` THEN ASM_CASES_TAC `(y:real^N) IN affine hull s` THEN ASM_REWRITE_TAC[] THEN CONV_TAC NORM_ARITH]]; ALL_TAC] THEN SUBGOAL_THEN `!a x. &0 < a ==> (proj:real^N->real^N)(a % x) = proj x` ASSUME_TAC THENL [REPEAT GEN_TAC THEN EXPAND_TAC "proj" THEN REWRITE_TAC[NORM_MUL; REAL_INV_MUL; VECTOR_MUL_ASSOC] THEN SIMP_TAC[REAL_FIELD `&0 < a ==> (inv(a) * x) * a = x`; real_abs; REAL_LT_IMP_LE]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN ASM_CASES_TAC `y:real^N = vec 0` THENL [ASM_SIMP_TAC[VECTOR_MUL_LZERO; VECTOR_MUL_EQ_0; NORM_0; NORM_EQ_0] THEN ASM SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `x:real^N = vec 0` THENL [CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN ASM_SIMP_TAC[VECTOR_MUL_LZERO; VECTOR_MUL_EQ_0; NORM_0; NORM_EQ_0] THEN ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_INTER; IN_CBALL_0] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC(AP_TERM `proj:real^N->real^N` th)) THEN ASM_SIMP_TAC[NORM_POS_LT; VECTOR_MUL_RCANCEL] THEN ASM SET_TAC[]] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_INTER; IN_CBALL_0] THEN X_GEN_TAC `x:real^N` THEN ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_REWRITE_TAC[NORM_0; VECTOR_MUL_LZERO; IN_INTER] THEN REWRITE_TAC[IN_CBALL_0; REAL_LE_LT] THEN STRIP_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[SUBSET] RELATIVE_INTERIOR_SUBSET) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[NORM_POS_LE] THEN ASM SET_TAC[]; ASM_REWRITE_TAC[VECTOR_MUL_LID] THEN ASM SET_TAC[]]; ALL_TAC] THEN REWRITE_TAC[SUBSET; IN_IMAGE; IN_CBALL_0; IN_INTER] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN ASM_CASES_TAC `x:real^N = vec 0` THENL [EXISTS_TAC `vec 0:real^N` THEN ASM_SIMP_TAC[NORM_0; VECTOR_MUL_LZERO; HULL_INC; REAL_POS]; ALL_TAC] THEN SUBGOAL_THEN `!x. x IN usph ==> ~((surf:real^N->real^N) x = vec 0)` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN EXISTS_TAC `inv(norm(surf(proj x:real^N):real^N)) % x:real^N` THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [GSYM th]) THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [NORM_POS_LT; REAL_LT_INV_EQ; HULL_INC; REAL_LT_MUL; NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC(REAL_FIELD `~(y = &0) ==> x = (inv y * x) * y`) THEN ASM_SIMP_TAC[NORM_EQ_0; HULL_INC]; ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [GSYM real_div; REAL_LE_LDIV_EQ; NORM_POS_LT; HULL_INC; REAL_MUL_LID] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `norm(surf(proj x:real^N):real^N) / norm(x:real^N)`]) THEN ASM_SIMP_TAC[REAL_LE_DIV; NORM_POS_LE; REAL_LT_LDIV_EQ; NORM_POS_LT] THEN GEN_REWRITE_TAC LAND_CONV [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[REAL_NOT_LT; REAL_MUL_LID] THEN DISCH_THEN MATCH_MP_TAC THEN SUBGOAL_THEN `norm(surf(proj x)) / norm x % x:real^N = surf(proj x:real^N)` SUBST1_TAC THENL [FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [NORM_POS_LT; REAL_LT_INV_EQ; HULL_INC; REAL_LT_MUL; NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM; REAL_ABS_DIV; REAL_LT_DIV; REAL_DIV_RMUL; NORM_EQ_0]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `IMAGE f s SUBSET t DIFF u ==> x IN s ==> ~(f x IN u)`)) THEN ASM_SIMP_TAC[HULL_INC]]; GEN_REWRITE_TAC LAND_CONV [GSYM VECTOR_ADD_LID] THEN MATCH_MP_TAC IN_AFFINE_ADD_MUL THEN ASM_SIMP_TAC[AFFINE_AFFINE_HULL; VECTOR_ADD_LID; HULL_INC]]);; let HOMEOMORPHIC_CONVEX_COMPACT_SETS, HOMEOMORPHIC_RELATIVE_FRONTIERS_CONVEX_BOUNDED_SETS = (CONJ_PAIR o prove) (`(!s:real^M->bool t:real^N->bool. convex s /\ compact s /\ convex t /\ compact t /\ aff_dim s = aff_dim t ==> s homeomorphic t) /\ (!s:real^M->bool t:real^N->bool. convex s /\ bounded s /\ convex t /\ bounded t /\ aff_dim s = aff_dim t ==> relative_frontier s homeomorphic relative_frontier t)`,
let lemma = 
prove (`!s:real^M->bool t:real^N->bool. convex s /\ compact s /\ convex t /\ compact t /\ aff_dim s = aff_dim t ==> (s DIFF relative_interior s) homeomorphic (t DIFF relative_interior t) /\ s homeomorphic t`,
REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_CASES_TAC `relative_interior t:real^N->bool = {}` THENL [UNDISCH_TAC `relative_interior t:real^N->bool = {}` THEN ASM_SIMP_TAC[AFF_DIM_EMPTY; AFF_DIM_EQ_MINUS1; EMPTY_DIFF; HOMEOMORPHIC_EMPTY; RELATIVE_INTERIOR_EQ_EMPTY]; FIRST_X_ASSUM(X_CHOOSE_THEN `b:real^N` MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY])] THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN ASM_CASES_TAC `relative_interior s:real^M->bool = {}` THENL [UNDISCH_TAC `relative_interior s:real^M->bool = {}` THEN ASM_SIMP_TAC[AFF_DIM_EMPTY; AFF_DIM_EQ_MINUS1; EMPTY_DIFF; HOMEOMORPHIC_EMPTY; RELATIVE_INTERIOR_EQ_EMPTY]; FIRST_X_ASSUM(X_CHOOSE_THEN `a:real^M` MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY])] THEN REPEAT(POP_ASSUM MP_TAC) THEN GEOM_ORIGIN_TAC `b:real^N` THEN REPEAT GEN_TAC THEN GEOM_ORIGIN_TAC `a:real^M` THEN REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN MP_TAC(ISPECL [`s:real^M->bool`; `vec 0:real^M`] STARLIKE_COMPACT_PROJECTIVE) THEN MP_TAC(ISPECL [`t:real^N->bool`; `vec 0:real^N`] STARLIKE_COMPACT_PROJECTIVE) THEN ASM_SIMP_TAC[IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SEGMENT; REWRITE_RULE[SUBSET] CLOSURE_SUBSET] THEN DISCH_THEN(fun th -> MATCH_MP_TAC MONO_AND THEN MP_TAC th) THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN DISCH_THEN(fun th -> MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ_ALT] HOMEOMORPHIC_TRANS) THEN MP_TAC(ONCE_REWRITE_RULE[HOMEOMORPHIC_SYM] th)) THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] HOMEOMORPHIC_TRANS) THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP (REWRITE_RULE[SUBSET] RELATIVE_INTERIOR_SUBSET))) THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN ASM_SIMP_TAC[AFFINE_HULL_EQ_SPAN; HULL_INC; AFF_DIM_DIM_0] THEN REWRITE_TAC[INT_OF_NUM_EQ] THEN DISCH_TAC THEN MP_TAC(ISPECL [`span s:real^M->bool`; `span t:real^N->bool`] ISOMETRIES_SUBSPACES) THEN ASM_REWRITE_TAC[SUBSPACE_SPAN; DIM_SPAN; homeomorphic; HOMEOMORPHISM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:real^M->real^N` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^N->real^M` THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_INTER; IN_CBALL_0; IN_SPHERE_0] THEN SIMP_TAC[LINEAR_CONTINUOUS_ON] THEN ASM SET_TAC[]) in SIMP_TAC[lemma; relative_frontier] THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`closure s:real^M->bool`; `closure t:real^N->bool`] lemma) THEN ASM_SIMP_TAC[CONVEX_CLOSURE; COMPACT_CLOSURE; AFF_DIM_CLOSURE] THEN ASM_SIMP_TAC[CONVEX_RELATIVE_INTERIOR_CLOSURE]);;
let HOMEOMORPHIC_CONVEX_COMPACT = 
prove (`!s:real^N->bool t:real^N->bool. convex s /\ compact s /\ ~(interior s = {}) /\ convex t /\ compact t /\ ~(interior t = {}) ==> s homeomorphic t`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_CONVEX_COMPACT_SETS THEN ASM_SIMP_TAC[AFF_DIM_NONEMPTY_INTERIOR]);;
let HOMEOMORPHIC_CONVEX_COMPACT_CBALL = 
prove (`!s:real^N->bool b:real^N e. convex s /\ compact s /\ ~(interior s = {}) /\ &0 < e ==> s homeomorphic cball(b,e)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_CONVEX_COMPACT THEN ASM_REWRITE_TAC[COMPACT_CBALL; INTERIOR_CBALL; CONVEX_CBALL] THEN ASM_REWRITE_TAC[BALL_EQ_EMPTY; REAL_NOT_LE]);;
let HOMEOMORPHIC_CLOSED_INTERVALS = 
prove (`!a b:real^N c d:real^N. ~(interval(a,b) = {}) /\ ~(interval(c,d) = {}) ==> interval[a,b] homeomorphic interval[c,d]`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_CONVEX_COMPACT THEN REWRITE_TAC[CONVEX_INTERVAL; COMPACT_INTERVAL] THEN ASM_REWRITE_TAC[INTERIOR_CLOSED_INTERVAL]);;
(* ------------------------------------------------------------------------- *) (* More about affine dimension of special sets. *) (* ------------------------------------------------------------------------- *)
let AFF_DIM_NONEMPTY_INTERIOR_EQ = 
prove (`!s:real^N->bool. convex s ==> (aff_dim s = &(dimindex (:N)) <=> ~(interior s = {}))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[AFF_DIM_NONEMPTY_INTERIOR] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPEC `s:real^N->bool` EMPTY_INTERIOR_SUBSET_HYPERPLANE) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP AFF_DIM_SUBSET) THEN ASM_SIMP_TAC[AFF_DIM_HYPERPLANE] THEN INT_ARITH_TAC);;
let AFF_DIM_BALL = 
prove (`!a:real^N r. aff_dim(ball(a,r)) = if &0 < r then &(dimindex(:N)) else --(&1)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THENL [MATCH_MP_TAC AFF_DIM_OPEN THEN ASM_REWRITE_TAC[OPEN_BALL; BALL_EQ_EMPTY; REAL_NOT_LE]; RULE_ASSUM_TAC(REWRITE_RULE[REAL_NOT_LT; GSYM BALL_EQ_EMPTY]) THEN ASM_REWRITE_TAC[AFF_DIM_EMPTY]]);;
let AFF_DIM_CBALL = 
prove (`!a:real^N r. aff_dim(cball(a,r)) = if &0 < r then &(dimindex(:N)) else if r = &0 then &0 else --(&1)`,
REPEAT GEN_TAC THEN REPEAT COND_CASES_TAC THENL [MATCH_MP_TAC AFF_DIM_NONEMPTY_INTERIOR THEN ASM_REWRITE_TAC[INTERIOR_CBALL; BALL_EQ_EMPTY] THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[CBALL_SING; AFF_DIM_SING]; MATCH_MP_TAC(MESON[AFF_DIM_EMPTY] `s = {} ==> aff_dim s = --(&1)`) THEN REWRITE_TAC[CBALL_EQ_EMPTY] THEN ASM_REAL_ARITH_TAC]);;
let AFF_DIM_INTERVAL = 
prove (`(!a b:real^N. aff_dim(interval[a,b]) = if interval[a,b] = {} then --(&1) else &(CARD {i | 1 <= i /\ i <= dimindex(:N) /\ a$i < b$i})) /\ (!a b:real^N. aff_dim(interval(a,b)) = if interval(a,b) = {} then --(&1) else &(dimindex(:N)))`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[AFF_DIM_EMPTY; AFF_DIM_OPEN; OPEN_INTERVAL] THEN POP_ASSUM MP_TAC THEN GEOM_ORIGIN_TAC `a:real^N` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[VECTOR_ADD_COMPONENT; VEC_COMPONENT; REAL_LT_LADD] THEN ASM_SIMP_TAC[AFF_DIM_DIM_0; HULL_INC; ENDS_IN_INTERVAL] THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM DIM_SPAN] THEN MATCH_MP_TAC DIM_UNIQUE THEN EXISTS_TAC `{basis i:real^N | 1 <= i /\ i <= dimindex(:N) /\ &0 < (b:real^N)$i}` THEN RULE_ASSUM_TAC(REWRITE_RULE[INTERVAL_NE_EMPTY; VEC_COMPONENT]) THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN SUBGOAL_THEN `basis i:real^N = inv(b$i) % (b:real^N)$i % basis i` SUBST1_TAC THENL [ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; REAL_LT_IMP_NZ] THEN REWRITE_TAC[VECTOR_MUL_LID]; MATCH_MP_TAC SPAN_MUL THEN MATCH_MP_TAC SPAN_SUPERSET THEN SIMP_TAC[IN_INTERVAL; VECTOR_MUL_COMPONENT; BASIS_COMPONENT] THEN X_GEN_TAC `j:num` THEN REWRITE_TAC[VEC_COMPONENT] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_MUL_RZERO; REAL_MUL_RID; REAL_LE_REFL]]; MATCH_MP_TAC SPAN_SUBSET_SUBSPACE THEN REWRITE_TAC[SUBSPACE_SPAN; SUBSET; IN_INTERVAL; VEC_COMPONENT] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM BASIS_EXPANSION] THEN MATCH_MP_TAC SPAN_VSUM THEN REWRITE_TAC[FINITE_NUMSEG] THEN X_GEN_TAC `i:num` THEN REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN ASM_CASES_TAC `&0 < (b:real^N)$i` THENL [MATCH_MP_TAC SPAN_MUL THEN MATCH_MP_TAC SPAN_SUPERSET THEN ASM SET_TAC[]; SUBGOAL_THEN `(x:real^N)$i = &0` (fun th -> REWRITE_TAC[th; VECTOR_MUL_LZERO; SPAN_0]) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:num`)) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]; MATCH_MP_TAC PAIRWISE_ORTHOGONAL_INDEPENDENT THEN REWRITE_TAC[SET_RULE `~(a IN {f x | P x}) <=> !x. P x ==> ~(f x = a)`] THEN SIMP_TAC[BASIS_NONZERO; pairwise; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN SIMP_TAC[FORALL_IN_GSPEC; BASIS_INJ_EQ; ORTHOGONAL_BASIS_BASIS]; GEN_REWRITE_TAC LAND_CONV [SIMPLE_IMAGE_GEN] THEN MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC; BASIS_INJ_EQ; HAS_SIZE] THEN SIMP_TAC[CONJ_ASSOC; GSYM IN_NUMSEG; FINITE_RESTRICT; FINITE_NUMSEG]]);;
(* ------------------------------------------------------------------------- *) (* Deducing convexity from midpoint convexity in common cases. *) (* ------------------------------------------------------------------------- *)
let MIDPOINT_CONVEX_DYADIC_RATIONALS = 
prove (`!f:real^N->real s. (!x y. x IN s /\ y IN s ==> midpoint(x,y) IN s /\ f(midpoint(x,y)) <= (f(x) + f(y)) / &2) ==> !n m p x y. x IN s /\ y IN s /\ m + p = 2 EXP n ==> (&m / &2 pow n % x + &p / &2 pow n % y) IN s /\ f(&m / &2 pow n % x + &p / &2 pow n % y) <= &m / &2 pow n * f x + &p / &2 pow n * f y`,
REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THENL [REWRITE_TAC[ARITH_RULE `m + p = 2 EXP 0 <=> m = 0 /\ p = 1 \/ m = 1 /\ p = 0`] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[VECTOR_MUL_LID; VECTOR_MUL_LZERO; VECTOR_ADD_LID; VECTOR_ADD_RID] THEN REAL_ARITH_TAC; MATCH_MP_TAC WLOG_LE THEN CONJ_TAC THENL [REWRITE_TAC[VECTOR_ADD_SYM; REAL_ADD_SYM; ADD_SYM] THEN MESON_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`m:num`; `p:num`] THEN DISCH_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[EXP; real_pow] THEN STRIP_TAC THEN REWRITE_TAC[real_div; REAL_INV_MUL] THEN ONCE_REWRITE_TAC[REAL_ARITH `x * inv(&2) * y = inv(&2) * x * y`] THEN ONCE_REWRITE_TAC[GSYM REAL_MUL_ASSOC; GSYM VECTOR_MUL_ASSOC] THEN REWRITE_TAC[GSYM REAL_ADD_LDISTRIB; GSYM VECTOR_ADD_LDISTRIB] THEN SUBGOAL_THEN `2 EXP n <= p` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `&p * inv(&2 pow n) = &(p - 2 EXP n) * inv(&2 pow n) + &1` SUBST1_TAC THENL [ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB; GSYM REAL_OF_NUM_POW] THEN ASM_SIMP_TAC[REAL_SUB_RDISTRIB; REAL_MUL_RINV; REAL_LT_IMP_NZ; REAL_LT_POW2] THEN REAL_ARITH_TAC; REWRITE_TAC[VECTOR_ADD_RDISTRIB; REAL_ADD_RDISTRIB] THEN REWRITE_TAC[VECTOR_MUL_LID; REAL_MUL_LID] THEN REWRITE_TAC[VECTOR_ADD_ASSOC; REAL_ADD_ASSOC] THEN REWRITE_TAC[GSYM midpoint; GSYM real_div] THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) th o lhand o snd)) THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) th o funpow 3 lhand o snd)) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_ARITH_TAC; SIMP_TAC[] THEN REAL_ARITH_TAC]]]);;
let CONTINUOUS_MIDPOINT_CONVEX = 
prove (`!f:real^N->real s. (lift o f) continuous_on s /\ convex s /\ (!x y. x IN s /\ y IN s ==> f(midpoint(x,y)) <= (f(x) + f(y)) / &2) ==> f convex_on s`,
REWRITE_TAC[midpoint] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[convex_on] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN REWRITE_TAC[GSYM IMP_CONJ_ALT] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN REWRITE_TAC[REAL_ARITH `u + v = &1 <=> v = &1 - u`; IMP_CONJ] THEN REWRITE_TAC[FORALL_UNWIND_THM2; REAL_SUB_LE] THEN REWRITE_TAC[FORALL_DROP; GSYM DROP_VEC; IMP_IMP; GSYM IN_INTERVAL_1] THEN MP_TAC(ISPEC `interval[vec 0:real^1,vec 1]` CLOSURE_DYADIC_RATIONALS_IN_CONVEX_SET) THEN SIMP_TAC[CONVEX_INTERVAL; INTERIOR_CLOSED_INTERVAL; CLOSURE_CLOSED; CLOSED_INTERVAL; UNIT_INTERVAL_NONEMPTY] THEN REWRITE_TAC[DIMINDEX_1; FORALL_1; GSYM drop] THEN DISCH_THEN(fun th -> SUBST1_TAC(SYM th) THEN ASSUME_TAC th) THEN ONCE_REWRITE_TAC[REAL_ARITH `a <= b <=> a - b <= &0`] THEN MATCH_MP_TAC CONTINUOUS_LE_ON_CLOSURE THEN REWRITE_TAC[IN_INTER; IMP_CONJ_ALT; FORALL_IN_GSPEC] THEN FIRST_X_ASSUM SUBST1_TAC THEN REWRITE_TAC[IN_INTERVAL_1; DROP_CMUL; GSYM FORALL_DROP; DROP_VEC] THEN CONJ_TAC THENL [REWRITE_TAC[o_DEF; LIFT_SUB; LIFT_ADD; LIFT_CMUL] THEN MATCH_MP_TAC CONTINUOUS_ON_SUB THEN CONJ_TAC THENL [REPLICATE_TAC 2 (ONCE_REWRITE_TAC[GSYM o_DEF]) THEN REWRITE_TAC[o_ASSOC] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL [ALL_TAC; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_INTERVAL_1; GSYM FORALL_DROP; DROP_VEC] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [convex]) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_ON_ADD THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_MUL THEN SIMP_TAC[o_DEF; LIFT_DROP; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST; LIFT_SUB; CONTINUOUS_ON_SUB]; MAP_EVERY X_GEN_TAC [`n:num`; `i:real`] THEN ASM_SIMP_TAC[REAL_LE_MUL_EQ; REAL_LT_INV_EQ; REAL_LT_POW2] THEN ASM_CASES_TAC `&0 <= i` THEN ASM_SIMP_TAC[INTEGER_POS] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN REWRITE_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] (GSYM real_div)] THEN SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LT_POW2; REAL_MUL_LID] THEN GEN_REWRITE_TAC (LAND_CONV o DEPTH_CONV) [REAL_OF_NUM_POW; REAL_OF_NUM_LE] THEN DISCH_TAC THEN MP_TAC(ISPECL [`f:real^N->real`; `s:real^N->bool`] MIDPOINT_CONVEX_DYADIC_RATIONALS) THEN ANTS_TAC THENL [ASM_SIMP_TAC[midpoint] THEN REWRITE_TAC[VECTOR_ADD_LDISTRIB] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [convex]) THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; DISCH_THEN(MP_TAC o SPECL [`n:num`; `m:num`; `2 EXP n - m`; `x:real^N`; `y:real^N`]) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN(MP_TAC o CONJUNCT2)] THEN ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB; GSYM REAL_OF_NUM_POW] THEN ASM_SIMP_TAC[REAL_LT_POW2; REAL_FIELD `&0 < y ==> (y - x) / y = &1 - x / y`] THEN REAL_ARITH_TAC]]);;
(* ------------------------------------------------------------------------- *) (* Slightly shaper separating/supporting hyperplane results. *) (* ------------------------------------------------------------------------- *)
let SEPARATING_HYPERPLANE_RELATIVE_INTERIORS = 
prove (`!s t. convex s /\ convex t /\ ~(s = {} /\ t = (:real^N) \/ s = (:real^N) /\ t = {}) /\ DISJOINT (relative_interior s) (relative_interior t) ==> ?a b. ~(a = vec 0) /\ (!x. x IN s ==> a dot x <= b) /\ (!x. x IN t ==> a dot x >= b)`,
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`s:real^N->bool = {}`; `t:real^N->bool = {}`] THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; UNIV_NOT_EMPTY; CONVEX_EMPTY; RELATIVE_INTERIOR_EMPTY] THEN STRIP_TAC THENL [EXISTS_TAC `basis 1:real^N` THEN SIMP_TAC[BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL]; FIRST_X_ASSUM(X_CHOOSE_TAC `x:real^N` o MATCH_MP (SET_RULE `~(s = UNIV) ==> ?a. ~(a IN s)`)) THEN MP_TAC(ISPECL [`t:real^N->bool`; `x:real^N`] SEPARATING_HYPERPLANE_SET_POINT_INAFF) THEN ASM_MESON_TAC[]; FIRST_X_ASSUM(X_CHOOSE_TAC `x:real^N` o MATCH_MP (SET_RULE `~(s = UNIV) ==> ?a. ~(a IN s)`)) THEN MP_TAC(ISPECL [`s:real^N->bool`; `x:real^N`] SEPARATING_HYPERPLANE_SET_POINT_INAFF) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; real_ge] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`--a:real^N`; `--b:real`] THEN ASM_REWRITE_TAC[VECTOR_NEG_EQ_0; DOT_LNEG; REAL_LE_NEG2]; MP_TAC(ISPECL [`relative_interior s:real^N->bool`; `relative_interior t:real^N->bool`] SEPARATING_HYPERPLANE_SETS) THEN ASM_SIMP_TAC[RELATIVE_INTERIOR_EQ_EMPTY; CONVEX_RELATIVE_INTERIOR] THEN SIMP_TAC[real_ge] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC (MESON[CONVEX_CLOSURE_RELATIVE_INTERIOR; CLOSURE_SUBSET; SUBSET] `convex s /\ (!x. x IN closure(relative_interior s) ==> P x) ==> !x. x IN s ==> P x`) THEN ASM_REWRITE_TAC[] THENL [MATCH_MP_TAC CONTINUOUS_LE_ON_CLOSURE; MATCH_MP_TAC CONTINUOUS_GE_ON_CLOSURE] THEN ASM_REWRITE_TAC[CONTINUOUS_ON_LIFT_DOT]]);;
let SUPPORTING_HYPERPLANE_RELATIVE_BOUNDARY = 
prove (`!s x:real^N. convex s /\ x IN s /\ ~(x IN relative_interior s) ==> ?a. ~(a = vec 0) /\ (!y. y IN s ==> a dot x <= a dot y) /\ (!y. y IN relative_interior s ==> a dot x < a dot y)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`relative_interior s:real^N->bool`; `x:real^N`] SEPARATING_HYPERPLANE_SET_POINT_INAFF) THEN ASM_SIMP_TAC[CONVEX_SING; CONVEX_RELATIVE_INTERIOR; RELATIVE_INTERIOR_EQ_EMPTY; real_ge] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY] THEN DISCH_THEN(X_CHOOSE_THEN `b:real` STRIP_ASSUME_TAC) THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN MP_TAC(ISPECL [`lift o (\x:real^N. a dot x)`; `relative_interior s:real^N->bool`; `y:real^N`; `(a:real^N) dot x`; `1`] CONTINUOUS_ON_CLOSURE_COMPONENT_GE) THEN REWRITE_TAC[CONTINUOUS_ON_LIFT_DOT; GSYM drop; o_THM; LIFT_DROP] THEN ASM_SIMP_TAC[CONVEX_CLOSURE_RELATIVE_INTERIOR] THEN ASM_MESON_TAC[CLOSURE_SUBSET; REAL_LE_TRANS; SUBSET]; DISCH_TAC] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN REWRITE_TAC[REAL_LT_LE] THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_LE_TRANS]; ALL_TAC] THEN DISCH_TAC THEN UNDISCH_TAC `(y:real^N) IN relative_interior s` THEN REWRITE_TAC[IN_RELATIVE_INTERIOR_CBALL] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; SUBSET; IN_INTER; IN_CBALL] THEN X_GEN_TAC `e:real` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o SPEC `y + --(e / norm(a)) % ((x + a) - x):real^N`) THEN REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [SIMP_TAC[NORM_ARITH `dist(y:real^N,y + e) = norm e`; VECTOR_ADD_SUB] THEN REWRITE_TAC[NORM_MUL; REAL_ABS_NEG; REAL_ABS_DIV; REAL_ABS_NORM] THEN ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0] THEN ASM_REAL_ARITH_TAC; MATCH_MP_TAC IN_AFFINE_ADD_MUL_DIFF THEN ASM_SIMP_TAC[AFFINE_AFFINE_HULL; HULL_INC] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `x IN s ==> s SUBSET t ==> x IN t`)) THEN MATCH_MP_TAC HULL_MONO THEN ASM_REWRITE_TAC[INSERT_SUBSET; RELATIVE_INTERIOR_SUBSET]; REWRITE_TAC[VECTOR_ADD_SUB] THEN DISCH_TAC THEN UNDISCH_TAC `!y:real^N. y IN s ==> a dot x <= a dot y` THEN DISCH_THEN(MP_TAC o SPEC `y + --(e / norm(a)) % a:real^N`) THEN ASM_REWRITE_TAC[DOT_RMUL; DOT_RNEG; DOT_RADD] THEN MATCH_MP_TAC(REAL_ARITH `&0 < x * y ==> ~(a <= a + --x * y)`) THEN ASM_SIMP_TAC[REAL_LT_MUL; REAL_LT_DIV; NORM_POS_LT; DOT_POS_LT]]);;
let SUPPORTING_HYPERPLANE_RELATIVE_FRONTIER = 
prove (`!s x:real^N. convex s /\ x IN closure s /\ ~(x IN relative_interior s) ==> ?a. ~(a = vec 0) /\ (!y. y IN closure s ==> a dot x <= a dot y) /\ (!y. y IN relative_interior s ==> a dot x < a dot y)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`closure s:real^N->bool`; `x:real^N`] SUPPORTING_HYPERPLANE_RELATIVE_BOUNDARY) THEN ASM_SIMP_TAC[CONVEX_CLOSURE; CONVEX_RELATIVE_INTERIOR_CLOSURE]);;
(* ------------------------------------------------------------------------- *) (* Containment of rays in unbounded convex sets. *) (* ------------------------------------------------------------------------- *)
let UNBOUNDED_CONVEX_CLOSED_CONTAINS_RAY = 
prove (`!s a:real^N. convex s /\ ~bounded s /\ closed s /\ a IN s ==> ?l. ~(l = vec 0) /\ !t. &0 <= t ==> (a + t % l) IN s`,
GEN_GEOM_ORIGIN_TAC `a:real^N` ["l"] THEN REWRITE_TAC[VECTOR_ADD_LID] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [BOUNDED_POS]) THEN REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(p /\ q) <=> p ==> ~q`] THEN DISCH_THEN(MP_TAC o GEN `n:num` o SPEC `&n + &1:real`) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; REAL_ARITH `&0 < &n + &1`] THEN REWRITE_TAC[REAL_NOT_LE; SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `x:num->real^N` THEN REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN SUBGOAL_THEN `!n. ~((x:num->real^N) n = vec 0)` ASSUME_TAC THENL [ASM_MESON_TAC[NORM_ARITH `~(&n + &1 < norm(vec 0:real^N))`]; ALL_TAC] THEN MP_TAC(ISPEC `sphere(vec 0:real^N,&1)` compact) THEN REWRITE_TAC[COMPACT_SPHERE] THEN DISCH_THEN(MP_TAC o SPEC `\n. inv(norm(x n)) % (x:num->real^N) n`) THEN ASM_SIMP_TAC[IN_SPHERE_0; NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM; REAL_MUL_LINV; NORM_EQ_0; o_DEF] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:real^N` THEN DISCH_THEN(X_CHOOSE_THEN `r:num->num` STRIP_ASSUME_TAC) THEN CONJ_TAC THENL [ASM_MESON_TAC[NORM_ARITH `~(norm(vec 0:real^N) = &1)`]; ALL_TAC] THEN X_GEN_TAC `t:real` THEN DISCH_TAC THEN MATCH_MP_TAC CLOSED_CONTAINS_SEQUENTIAL_LIMIT THEN SUBGOAL_THEN `?N:num. !n. N <= n ==> t / norm(x n:real^N) <= &1` STRIP_ASSUME_TAC THENL [ASM_SIMP_TAC[REAL_LE_LDIV_EQ; NORM_POS_LT] THEN MP_TAC(SPEC `t:real` REAL_ARCH_SIMPLE) THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[GSYM REAL_OF_NUM_LE; REAL_MUL_LID] THEN ASM_MESON_TAC[REAL_ARITH `t <= m /\ m <= n /\ n + &1 < x ==> t <= x`]; EXISTS_TAC `\n:num. t / norm((x:num->real^N)(r(N + n))) % x(r(N + n))` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [X_GEN_TAC `n:num` THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONVEX_ALT]) THEN DISCH_THEN(MP_TAC o SPEC `vec 0:real^N`) THEN ASM_REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[REAL_LE_DIV; NORM_POS_LE] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `N + n:num` o MATCH_MP MONOTONE_BIGGER) THEN ARITH_TAC; REWRITE_TAC[real_div; GSYM VECTOR_MUL_ASSOC] THEN MATCH_MP_TAC LIM_CMUL THEN ONCE_REWRITE_TAC[ADD_SYM] THEN FIRST_ASSUM(MP_TAC o SPEC `N:num` o MATCH_MP SEQ_OFFSET) THEN ASM_REWRITE_TAC[]]]);;
let CONVEX_CLOSED_CONTAINS_SAME_RAY = 
prove (`!s a b l:real^N. convex s /\ closed s /\ b IN s /\ (!t. &0 <= t ==> (a + t % l) IN s) ==> !t. &0 <= t ==> (b + t % l) IN s`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `&0`) THEN REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_RID] THEN DISCH_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_IN_CLOSED_SET) THEN EXISTS_TAC `\n. (&1 - t / (&n + &1)) % b + t / (&n + &1) % (a + (&n + &1) % l):real^N` THEN ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN CONJ_TAC THENL [REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN MP_TAC(SPEC `t:real` REAL_ARCH_SIMPLE) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [CONVEX_ALT]) THEN ASM_SIMP_TAC[REAL_LE_DIV; REAL_ARITH `&0 <= &n + &1`] THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_ARITH `&0 < &n + &1`] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[VECTOR_ARITH `(&1 - u) % b + u % c:real^N = b + u % (c - b)`] THEN MATCH_MP_TAC LIM_ADD THEN REWRITE_TAC[LIM_CONST] THEN REWRITE_TAC[VECTOR_ADD_LDISTRIB; VECTOR_SUB_LDISTRIB] THEN SIMP_TAC[VECTOR_MUL_ASSOC; REAL_FIELD `t / (&n + &1) * (&n + &1) = t`] THEN SIMP_TAC[VECTOR_ARITH `(v % a + b) - v % c:real^N = b + v % (a - c)`] THEN GEN_REWRITE_TAC LAND_CONV [GSYM VECTOR_ADD_RID] THEN MATCH_MP_TAC LIM_ADD THEN REWRITE_TAC[LIM_CONST] THEN REWRITE_TAC[real_div; VECTOR_ARITH `(x * y) % a:real^N = y % x % a`] THEN MATCH_MP_TAC LIM_NULL_VMUL_BOUNDED THEN EXISTS_TAC `norm(t % (a - b):real^N)` THEN REWRITE_TAC[REAL_LE_REFL; EVENTUALLY_TRUE; o_DEF] THEN MP_TAC(MATCH_MP SEQ_OFFSET SEQ_HARMONIC) THEN SIMP_TAC[REAL_OF_NUM_ADD]]);;
let UNBOUNDED_CONVEX_CLOSED_CONTAINS_RAYS = 
prove (`!s:real^N->bool. convex s /\ ~bounded s /\ closed s ==> ?l. ~(l = vec 0) /\ !a t. a IN s /\ &0 <= t ==> (a + t % l) IN s`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[BOUNDED_EMPTY] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN ASM_MESON_TAC[UNBOUNDED_CONVEX_CLOSED_CONTAINS_RAY; CONVEX_CLOSED_CONTAINS_SAME_RAY]);;
let RELATIVE_INTERIOR_UNBOUNDED_CONVEX_CONTAINS_RAY = 
prove (`!s a:real^N. convex s /\ ~bounded s /\ a IN relative_interior s ==> ?l. ~(l = vec 0) /\ !t. &0 <= t ==> (a + t % l) IN relative_interior s`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`closure s:real^N->bool`; `a:real^N`] UNBOUNDED_CONVEX_CLOSED_CONTAINS_RAY) THEN ASM_SIMP_TAC[CONVEX_CLOSURE; CLOSED_CLOSURE] THEN ANTS_TAC THENL [ASM_MESON_TAC[BOUNDED_SUBSET; SUBSET; CLOSURE_SUBSET; RELATIVE_INTERIOR_SUBSET]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[VECTOR_ARITH `a + t % l:real^N = (a + (&2 * t) % l) - inv(&2) % ((a + (&2 * t) % l) - a)`] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SHRINK THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC]);;
let RELATIVE_INTERIOR_CONVEX_CONTAINS_SAME_RAY = 
prove (`!s a b l:real^N. convex s /\ b IN relative_interior s /\ (!t. &0 <= t ==> (a + t % l) IN relative_interior s) ==> !t. &0 <= t ==> (b + t % l) IN relative_interior s`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`closure s:real^N->bool`; `a:real^N`; `b:real^N`; `l:real^N`] CONVEX_CLOSED_CONTAINS_SAME_RAY) THEN ASM_SIMP_TAC[CONVEX_CLOSURE; CLOSED_CLOSURE] THEN ANTS_TAC THENL [ASM_MESON_TAC[BOUNDED_SUBSET; SUBSET; CLOSURE_SUBSET; RELATIVE_INTERIOR_SUBSET]; DISCH_TAC THEN ONCE_REWRITE_TAC[VECTOR_ARITH `a + t % l:real^N = (a + (&2 * t) % l) - inv(&2) % ((a + (&2 * t) % l) - a)`] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC IN_RELATIVE_INTERIOR_CLOSURE_CONVEX_SHRINK THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC]);;
let RELATIVE_INTERIOR_UNBOUNDED_CONVEX_CONTAINS_RAYS = 
prove (`!s:real^N->bool. convex s /\ ~bounded s ==> ?l. ~(l = vec 0) /\ !a t. a IN relative_interior s /\ &0 <= t ==> (a + t % l) IN relative_interior s`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `relative_interior s:real^N->bool = {}` THENL [ASM_MESON_TAC[RELATIVE_INTERIOR_EQ_EMPTY; BOUNDED_EMPTY]; ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN ASM_MESON_TAC[RELATIVE_INTERIOR_UNBOUNDED_CONVEX_CONTAINS_RAY; RELATIVE_INTERIOR_CONVEX_CONTAINS_SAME_RAY]);;
(* ------------------------------------------------------------------------- *) (* Explicit formulas for interior and relative interior of convex hull. *) (* ------------------------------------------------------------------------- *)
let EXPLICIT_SUBSET_RELATIVE_INTERIOR_CONVEX_HULL = 
prove (`!s. FINITE s ==> {y:real^N | ?u. (!x. x IN s ==> &0 < u x /\ u x < &1) /\ sum s u = &1 /\ vsum s (\x. u x % x) = y} SUBSET relative_interior(convex hull s)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[SUM_CLAUSES; REAL_OF_NUM_EQ; ARITH_EQ] THEN REWRITE_TAC[EMPTY_GSPEC; EMPTY_SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RELATIVE_INTERIOR_MAXIMAL THEN REWRITE_TAC[AFFINE_HULL_CONVEX_HULL] THEN CONJ_TAC THENL [REWRITE_TAC[CONVEX_HULL_FINITE; SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[REAL_LT_IMP_LE]; ALL_TAC] THEN REWRITE_TAC[open_in; IN_ELIM_THM] THEN CONJ_TAC THENL [REWRITE_TAC[AFFINE_HULL_FINITE; SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[REAL_LT_IMP_LE]; ALL_TAC] THEN X_GEN_TAC `y:real^N` THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->real` STRIP_ASSUME_TAC) THEN ABBREV_TAC `e = inf (IMAGE (\x:real^N. min (&1 - u x) (u x)) s)` THEN SUBGOAL_THEN `&0 < e` ASSUME_TAC THENL [EXPAND_TAC "e" THEN ASM_SIMP_TAC[REAL_LT_INF_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN ASM_SIMP_TAC[REAL_LT_MIN; REAL_SUB_LT; FORALL_IN_IMAGE]; ALL_TAC] THEN MP_TAC(ISPEC `IMAGE (\z:real^N. z - y) (affine hull s)` BASIS_EXISTS) THEN REWRITE_TAC[SUBSET_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` (CONJUNCTS_THEN2 (X_CHOOSE_THEN `c:real^N->bool` (STRIP_ASSUME_TAC o GSYM)) MP_TAC)) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; HAS_SIZE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN ASM_SIMP_TAC[SPAN_FINITE; IN_ELIM_THM] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM] THEN DISCH_THEN(X_CHOOSE_TAC `compo:real^N->real^N->real`) THEN FIRST_ASSUM(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC o MATCH_MP BASIS_COORDINATES_LIPSCHITZ) THEN SUBGOAL_THEN `!i. i IN b ==> ?u. sum s u = &0 /\ vsum s (\x:real^N. u x % x) = i` MP_TAC THENL [EXPAND_TAC "b" THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `(x:real^N) IN affine hull s` MP_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[AFFINE_HULL_FINITE; IN_ELIM_THM]] THEN DISCH_THEN(X_CHOOSE_THEN `v:real^N->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(\x. v x - u x):real^N->real` THEN ASM_SIMP_TAC[SUM_SUB; VSUM_SUB; VECTOR_SUB_RDISTRIB] THEN REWRITE_TAC[REAL_SUB_REFL; VECTOR_SUB_RZERO]; GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM; SKOLEM_THM; FORALL_AND_THM; TAUT `(a ==> b /\ c) <=> (a ==> b) /\ (a ==> c)`] THEN DISCH_THEN(X_CHOOSE_THEN `w:real^N->real^N->real` STRIP_ASSUME_TAC)] THEN EXISTS_TAC `e / B / (&1 + sum (b:real^N->bool) (\i. abs(sup(IMAGE (abs o w i) (s:real^N->bool)))))` THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_ARITH `&0 <= x ==> &0 < &1 + x`; SUM_POS_LE; REAL_ABS_POS] THEN X_GEN_TAC `z:real^N` THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. u x + sum (b:real^N->bool) (\i. compo (z:real^N) i * w i x)` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[SUM_ADD; REAL_ARITH `&1 + x = &1 <=> x = &0`] THEN W(MP_TAC o PART_MATCH (lhs o rand) SUM_SWAP o lhand o snd) THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC SUM_EQ_0 THEN ASM_SIMP_TAC[SUM_LMUL; ETA_AX; REAL_MUL_RZERO; SUM_0]; ASM_SIMP_TAC[VSUM_ADD; VECTOR_ADD_RDISTRIB] THEN ONCE_REWRITE_TAC[VECTOR_ARITH `y + w:real^N = z <=> w = z - y`] THEN ASM_SIMP_TAC[GSYM VSUM_LMUL; GSYM VSUM_RMUL; GSYM VECTOR_MUL_ASSOC] THEN W(MP_TAC o PART_MATCH (lhs o rand) VSUM_SWAP o lhand o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN ASM_SIMP_TAC[VSUM_LMUL] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `vsum b (\v:real^N. compo (z:real^N) v % v)` THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[]] THEN MATCH_MP_TAC VSUM_EQ THEN ASM_SIMP_TAC[]] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `abs(x) < min u (&1 - u) ==> &0 < u + x /\ u + x < &1`) THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `B * norm(z - y:real^N) * sum (b:real^N->bool) (\i. abs(sup(IMAGE (abs o w i) (s:real^N->bool))))` THEN CONJ_TAC THENL [REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC SUM_ABS_LE THEN ASM_REWRITE_TAC[REAL_ABS_MUL; REAL_MUL_ASSOC] THEN X_GEN_TAC `i:real^N` THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`(compo:real^N->real^N->real) z`; `i:real^N`]) THEN ASM_SIMP_TAC[]; MATCH_MP_TAC(REAL_ARITH `x <= a ==> x <= abs a`) THEN ASM_SIMP_TAC[REAL_LE_SUP_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[EXISTS_IN_IMAGE; o_THM] THEN ASM_MESON_TAC[REAL_LE_REFL]]; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x * (&1 + e) < d ==> x * e < d`) THEN REWRITE_TAC[NORM_POS_LE] THEN ASM_SIMP_TAC[NORM_POS_LE; GSYM REAL_LT_RDIV_EQ; REAL_ARITH `&0 <= x ==> &0 < &1 + x`; SUM_POS_LE; REAL_ABS_POS] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NORM_ARITH `dist(z:real^N,y) < k ==> k <= d ==> norm(z - y) < d`)) THEN ASM_SIMP_TAC[REAL_LE_DIV2_EQ; REAL_ARITH `&0 <= x ==> &0 < &1 + x`; SUM_POS_LE; REAL_ABS_POS] THEN EXPAND_TAC "e" THEN ASM_SIMP_TAC[REAL_INF_LE_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN EXISTS_TAC `x:real^N` THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let EXPLICIT_SUBSET_RELATIVE_INTERIOR_CONVEX_HULL_MINIMAL = 
prove (`!s. FINITE s ==> {y:real^N | ?u. (!x. x IN s ==> &0 < u x) /\ sum s u = &1 /\ vsum s (\x. u x % x) = y} SUBSET relative_interior(convex hull s)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[SUM_CLAUSES; REAL_OF_NUM_EQ; ARITH_EQ] THEN REWRITE_TAC[EMPTY_GSPEC; EMPTY_SUBSET] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `s = {a:real^N}` THENL [ASM_REWRITE_TAC[SUM_SING; VSUM_SING; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[RELATIVE_INTERIOR_SING; CONVEX_HULL_SING] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_SING] THEN MESON_TAC[VECTOR_MUL_LID]; FIRST_ASSUM(MP_TAC o MATCH_MP EXPLICIT_SUBSET_RELATIVE_INTERIOR_CONVEX_HULL) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `w:real^N` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:real^N->real` THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `?y:real^N. y IN s /\ ~(y = x)` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `sum {x,y} u <= sum s (u:real^N->real)` MP_TAC THENL [MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN ASM_SIMP_TAC[AFFINE_INDEPENDENT_IMP_FINITE; REAL_LT_IMP_LE; IN_DIFF] THEN ASM SET_TAC[]; ASM_SIMP_TAC[SUM_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MATCH_MP_TAC(REAL_ARITH `&0 < y ==> x + y + &0 <= &1 ==> x < &1`) THEN ASM_SIMP_TAC[]]]);;
let RELATIVE_INTERIOR_CONVEX_HULL_EXPLICIT = 
prove (`!s. ~(affine_dependent s) ==> relative_interior(convex hull s) = {y:real^N | ?u. (!x. x IN s ==> &0 < u x) /\ sum s u = &1 /\ vsum s (\x. u x % x) = y}`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[EXPLICIT_SUBSET_RELATIVE_INTERIOR_CONVEX_HULL_MINIMAL] THEN ASM_CASES_TAC `?a:real^N. s = {a}` THENL [FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC) THEN ASM_REWRITE_TAC[SUM_SING; VSUM_SING; CONVEX_HULL_SING; RELATIVE_INTERIOR_SING] THEN REWRITE_TAC[IN_ELIM_THM; SUBSET; IN_SING] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `\x:real^N. &1` THEN ASM_REWRITE_TAC[VECTOR_MUL_LID; REAL_LT_01]; ALL_TAC] THEN MATCH_MP_TAC(SET_RULE `relative_interior s SUBSET s /\ (!x. x IN s /\ ~(x IN t) ==> ~(x IN relative_interior s)) ==> relative_interior s SUBSET t`) THEN REWRITE_TAC[RELATIVE_INTERIOR_SUBSET] THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[IN_RELATIVE_INTERIOR] THEN REWRITE_TAC[AFFINE_HULL_CONVEX_HULL; IN_ELIM_THM; NOT_EXISTS_THM] THEN REWRITE_TAC[CONVEX_HULL_FINITE; IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `u:real^N->real` STRIP_ASSUME_TAC) (MP_TAC o SPEC `u:real^N->real`)) THEN ASM_REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; IN_RELATIVE_INTERIOR; DE_MORGAN_THM; SUBSET; IN_ELIM_THM; IN_BALL; IN_INTER] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN DISJ2_TAC THEN DISCH_THEN(X_CHOOSE_THEN `e:real` (CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "*"))) THEN SUBGOAL_THEN `(u:real^N->real) a = &0` ASSUME_TAC THENL [ASM_SIMP_TAC[REAL_ARITH `&0 <= x /\ ~(&0 < x) ==> x = &0`]; ALL_TAC] THEN SUBGOAL_THEN `?b:real^N. b IN s /\ ~(b = a)` STRIP_ASSUME_TAC THENL [ASM SET_TAC[];ALL_TAC] THEN SUBGOAL_THEN `?d. &0 < d /\ norm(d % (a - b):real^N) < e` STRIP_ASSUME_TAC THENL [EXISTS_TAC `e / &2 / norm(a - b:real^N)` THEN ASM_SIMP_TAC[NORM_MUL; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; NORM_POS_LT; REAL_ABS_DIV; REAL_ABS_NORM; REAL_ABS_NUM; REAL_DIV_RMUL; REAL_LT_IMP_NZ; VECTOR_SUB_EQ] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN REMOVE_THEN "*" (MP_TAC o SPEC `y - d % (a - b):real^N`) THEN ASM_REWRITE_TAC[NORM_ARITH `dist(a:real^N,a - b) = norm b`] THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [MATCH_MP_TAC IN_AFFINE_SUB_MUL_DIFF THEN ASM_SIMP_TAC[HULL_INC; AFFINE_AFFINE_HULL] THEN REWRITE_TAC[AFFINE_HULL_FINITE; IN_ELIM_THM] THEN EXISTS_TAC `u:real^N->real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `v:real^N->real` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `~(affine_dependent(s:real^N->bool))` THEN ASM_SIMP_TAC[AFFINE_DEPENDENT_EXPLICIT_FINITE] THEN EXISTS_TAC `\x:real^N. (v x - u x) - (if x = a then --d else if x = b then d else &0)` THEN REWRITE_TAC[VECTOR_SUB_RDISTRIB; MESON[] `(if p then a else b) % x = (if p then a % x else b % x)`] THEN ASM_SIMP_TAC[SUM_SUB; VSUM_SUB] THEN ASM_SIMP_TAC[VSUM_CASES; SUM_CASES; FINITE_RESTRICT; IN_ELIM_THM] THEN ASM_SIMP_TAC[SET_RULE `a IN s ==> {x | x IN s /\ x = a} = {a}`; SET_RULE `b IN s /\ ~(b = a) ==> {x | (x IN s /\ ~(x = a)) /\ x = b} = {b}`] THEN ASM_SIMP_TAC[VECTOR_MUL_LZERO; SUM_0; VSUM_0; SUM_SING; VSUM_SING] THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; VECTOR_ARITH_TAC] THEN EXISTS_TAC `a:real^N` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:real^N`) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
let EXPLICIT_SUBSET_INTERIOR_CONVEX_HULL = 
prove (`!s. FINITE s /\ affine hull s = (:real^N) ==> {y | ?u. (!x. x IN s ==> &0 < u x /\ u x < &1) /\ sum s u = &1 /\ vsum s (\x. u x % x) = y} SUBSET interior(convex hull s)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP EXPLICIT_SUBSET_RELATIVE_INTERIOR_CONVEX_HULL) THEN ASM_SIMP_TAC[RELATIVE_INTERIOR_INTERIOR; AFFINE_HULL_CONVEX_HULL]);;
let EXPLICIT_SUBSET_INTERIOR_CONVEX_HULL_MINIMAL = 
prove (`!s. FINITE s /\ affine hull s = (:real^N) ==> {y | ?u. (!x. x IN s ==> &0 < u x) /\ sum s u = &1 /\ vsum s (\x. u x % x) = y} SUBSET interior(convex hull s)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP EXPLICIT_SUBSET_RELATIVE_INTERIOR_CONVEX_HULL_MINIMAL) THEN ASM_SIMP_TAC[RELATIVE_INTERIOR_INTERIOR; AFFINE_HULL_CONVEX_HULL]);;
let INTERIOR_CONVEX_HULL_EXPLICIT_MINIMAL = 
prove (`!s:real^N->bool. ~(affine_dependent s) ==> interior(convex hull s) = if CARD(s) <= dimindex(:N) then {} else {y | ?u. (!x. x IN s ==> &0 < u x) /\ sum s u = &1 /\ vsum s (\x. u x % x) = y}`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN COND_CASES_TAC THEN ASM_SIMP_TAC[EMPTY_INTERIOR_CONVEX_HULL] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `relative_interior(convex hull s):real^N->bool` THEN CONJ_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC RELATIVE_INTERIOR_INTERIOR THEN REWRITE_TAC[AFFINE_HULL_CONVEX_HULL] THEN MATCH_MP_TAC AFFINE_INDEPENDENT_SPAN_GT THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC; ASM_SIMP_TAC[RELATIVE_INTERIOR_CONVEX_HULL_EXPLICIT]]);;
let INTERIOR_CONVEX_HULL_EXPLICIT = 
prove (`!s:real^N->bool. ~(affine_dependent s) ==> interior(convex hull s) = if CARD(s) <= dimindex(:N) then {} else {y | ?u. (!x. x IN s ==> &0 < u x /\ u x < &1) /\ sum s u = &1 /\ vsum s (\x. u x % x) = y}`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[INTERIOR_CONVEX_HULL_EXPLICIT_MINIMAL] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `v:real^N` THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `u:real^N->real` THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MP_TAC(ISPEC `s:real^N->bool` CHOOSE_SUBSET) THEN ASM_SIMP_TAC[AFFINE_INDEPENDENT_IMP_FINITE] THEN DISCH_THEN(MP_TAC o SPEC `2`) THEN ANTS_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE `~(c <= n) ==> 1 <= n ==> 2 <= c`)) THEN REWRITE_TAC[DIMINDEX_GE_1]; ALL_TAC] THEN CONV_TAC(ONCE_DEPTH_CONV HAS_SIZE_CONV) THEN REWRITE_TAC[SUBSET] THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` (X_CHOOSE_THEN `b:real^N` STRIP_ASSUME_TAC)) THEN SUBGOAL_THEN `?y:real^N. y IN s /\ ~(y = x)` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `sum {x,y} u <= sum s (u:real^N->real)` MP_TAC THENL [MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN ASM_SIMP_TAC[AFFINE_INDEPENDENT_IMP_FINITE; REAL_LT_IMP_LE; IN_DIFF] THEN ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[SUM_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MATCH_MP_TAC(REAL_ARITH `&0 < y ==> x + y + &0 <= &1 ==> x < &1`) THEN ASM_SIMP_TAC[]);;
let INTERIOR_CONVEX_HULL_3_MINIMAL = 
prove (`!a b c:real^2. ~collinear{a,b,c} ==> interior(convex hull {a,b,c}) = {v | ?x y z. &0 < x /\ &0 < y /\ &0 < z /\ x + y + z = &1 /\ x % a + y % b + z % c = v}`,
REWRITE_TAC[COLLINEAR_3_EQ_AFFINE_DEPENDENT; DE_MORGAN_THM] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[INTERIOR_CONVEX_HULL_EXPLICIT_MINIMAL] THEN ASM_SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN CONV_TAC(LAND_CONV(RATOR_CONV(LAND_CONV(ONCE_DEPTH_CONV(REWRITE_CONV [IN_INSERT; NOT_IN_EMPTY]))))) THEN ASM_REWRITE_TAC[DIMINDEX_2; ARITH] THEN SIMP_TAC[FINITE_INSERT; FINITE_UNION; FINITE_EMPTY; RIGHT_EXISTS_AND_THM; AFFINE_HULL_FINITE_STEP_GEN; REAL_LT_ADD; REAL_HALF] THEN REWRITE_TAC[REAL_ARITH `&1 - a - b - c = &0 <=> a + b + c = &1`; VECTOR_ARITH `y - a - b - c:real^N = vec 0 <=> a + b + c = y`]);;
let INTERIOR_CONVEX_HULL_3 = 
prove (`!a b c:real^2. ~collinear{a,b,c} ==> interior(convex hull {a,b,c}) = {v | ?x y z. &0 < x /\ x < &1 /\ &0 < y /\ y < &1 /\ &0 < z /\ z < &1 /\ x + y + z = &1 /\ x % a + y % b + z % c = v}`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[INTERIOR_CONVEX_HULL_3_MINIMAL] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN GEN_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Similar results for closure and (relative or absolute) frontier. *) (* ------------------------------------------------------------------------- *)
let CLOSURE_CONVEX_HULL = 
prove (`!s. compact s ==> closure(convex hull s) = convex hull s`,
let RELATIVE_FRONTIER_CONVEX_HULL_EXPLICIT = 
prove (`!s:real^N->bool. ~(affine_dependent s) ==> relative_frontier(convex hull s) = {y | ?u. (!x. x IN s ==> &0 <= u x) /\ (?x. x IN s /\ u x = &0) /\ sum s u = &1 /\ vsum s (\x. u x % x) = y}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[relative_frontier; UNIONS_GSPEC] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN ASM_SIMP_TAC[CLOSURE_CONVEX_HULL; FINITE_IMP_COMPACT] THEN ASM_SIMP_TAC[CONVEX_HULL_FINITE; RELATIVE_INTERIOR_CONVEX_HULL_EXPLICIT] THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[IN_DIFF; IN_ELIM_THM] THEN EQ_TAC THENL [DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `u:real^N->real` STRIP_ASSUME_TAC) ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN DISCH_THEN(MP_TAC o SPEC `u:real^N->real`) THEN ASM_REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[REAL_ARITH `&0 <= x ==> (~(&0 < x) <=> x = &0)`] THEN DISCH_TAC THEN EXISTS_TAC `u:real^N->real` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; DISCH_THEN(X_CHOOSE_THEN `u:real^N->real` (REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN CONJ_TAC THENL [EXISTS_TAC `u:real^N->real` THEN ASM_SIMP_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `v:real^N->real` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [AFFINE_DEPENDENT_EXPLICIT]) THEN REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`s:real^N->bool`; `(\x. u x - v x):real^N->real`] THEN ASM_SIMP_TAC[SUBSET_REFL; VECTOR_SUB_RDISTRIB; SUM_SUB; VSUM_SUB] THEN REWRITE_TAC[REAL_SUB_0; VECTOR_SUB_EQ] THEN ASM_MESON_TAC[REAL_LT_REFL]]);;
let FRONTIER_CONVEX_HULL_EXPLICIT = 
prove (`!s:real^N->bool. ~(affine_dependent s) ==> frontier(convex hull s) = {y | ?u. (!x. x IN s ==> &0 <= u x) /\ (dimindex(:N) < CARD s ==> ?x. x IN s /\ u x = &0) /\ sum s u = &1 /\ vsum s (\x. u x % x) = y}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[frontier] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN DISJ_CASES_TAC (ARITH_RULE `CARD(s:real^N->bool) <= dimindex(:N) \/ dimindex(:N) < CARD(s:real^N->bool)`) THENL [ASM_SIMP_TAC[GSYM NOT_LE; INTERIOR_CONVEX_HULL_EXPLICIT] THEN ASM_SIMP_TAC[CLOSURE_CONVEX_HULL; FINITE_IMP_COMPACT; DIFF_EMPTY] THEN REWRITE_TAC[CONVEX_HULL_FINITE]; ASM_SIMP_TAC[GSYM RELATIVE_FRONTIER_CONVEX_HULL_EXPLICIT] THEN REWRITE_TAC[relative_frontier] THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC RELATIVE_INTERIOR_INTERIOR THEN MATCH_MP_TAC(SET_RULE `!s. s SUBSET t /\ s = UNIV ==> t = UNIV`) THEN EXISTS_TAC `affine hull s:real^N->bool` THEN ASM_SIMP_TAC[AFFINE_INDEPENDENT_SPAN_GT; HULL_MONO; HULL_SUBSET]]);;
let RELATIVE_FRONTIER_CONVEX_HULL_CASES = 
prove (`!s:real^N->bool. ~(affine_dependent s) ==> relative_frontier(convex hull s) = UNIONS { convex hull (s DELETE a) |a| a IN s }`,
REPEAT STRIP_TAC THEN REWRITE_TAC[UNIONS_GSPEC] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN ASM_SIMP_TAC[RELATIVE_FRONTIER_CONVEX_HULL_EXPLICIT] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; CONVEX_HULL_FINITE] THEN X_GEN_TAC `y:real^N` THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `u:real^N->real` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `u:real^N->real` THEN ASM_SIMP_TAC[IN_DELETE; SUM_DELETE; VSUM_DELETE; REAL_SUB_RZERO] THEN VECTOR_ARITH_TAC; REWRITE_TAC[IN_DELETE] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `u:real^N->real` STRIP_ASSUME_TAC))) THEN EXISTS_TAC `(\x. if x = a then &0 else u x):real^N->real` THEN ASM_SIMP_TAC[COND_RAND; COND_RATOR; REAL_LE_REFL; COND_ID] THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[SUM_CASES; VSUM_CASES; VECTOR_MUL_LZERO] THEN ASM_SIMP_TAC[GSYM DELETE; SUM_0; VSUM_0; REAL_ADD_LID; VECTOR_ADD_LID]]);;
let FRONTIER_CONVEX_HULL_CASES = 
prove (`!s:real^N->bool. ~(affine_dependent s) ==> frontier(convex hull s) = if CARD(s) <= dimindex(:N) then convex hull s else UNIONS { convex hull (s DELETE a) |a| a IN s }`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_INDEPENDENT_IMP_FINITE) THEN ASM_SIMP_TAC[frontier; CLOSURE_CONVEX_HULL; FINITE_IMP_COMPACT] THEN COND_CASES_TAC THENL [ASM_SIMP_TAC[INTERIOR_CONVEX_HULL_EXPLICIT; DIFF_EMPTY]; ALL_TAC] THEN ASM_SIMP_TAC[GSYM RELATIVE_FRONTIER_CONVEX_HULL_CASES] THEN ASM_SIMP_TAC[relative_frontier; frontier; CLOSURE_CONVEX_HULL; FINITE_IMP_COMPACT] THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE]) THEN MATCH_MP_TAC RELATIVE_INTERIOR_INTERIOR THEN MATCH_MP_TAC(SET_RULE `!s. s SUBSET t /\ s = UNIV ==> t = UNIV`) THEN EXISTS_TAC `affine hull s:real^N->bool` THEN ASM_SIMP_TAC[AFFINE_INDEPENDENT_SPAN_GT; HULL_MONO; HULL_SUBSET]);;
let IN_FRONTIER_CONVEX_HULL = 
prove (`!s x:real^N. FINITE s /\ CARD s <= dimindex(:N) + 1 /\ x IN s ==> x IN frontier(convex hull s)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `affine_dependent(s:real^N->bool)` THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [affine_dependent]) THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN ASM_SIMP_TAC[frontier; CLOSURE_CONVEX_HULL; FINITE_IMP_COMPACT] THEN ASM_SIMP_TAC[HULL_INC; IN_DIFF] THEN MATCH_MP_TAC(SET_RULE `!t. s SUBSET t /\ t = {} ==> ~(x IN s)`) THEN EXISTS_TAC `interior(affine hull s):real^N->bool` THEN SIMP_TAC[SUBSET_INTERIOR; CONVEX_HULL_SUBSET_AFFINE_HULL] THEN SUBGOAL_THEN `s = (a:real^N) INSERT (s DELETE a)` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[HULL_REDUNDANT] THEN MATCH_MP_TAC EMPTY_INTERIOR_AFFINE_HULL THEN ASM_SIMP_TAC[FINITE_DELETE; CARD_DELETE] THEN ASM_ARITH_TAC; ASM_SIMP_TAC[FRONTIER_CONVEX_HULL_CASES] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[HULL_INC] THEN REWRITE_TAC[UNIONS_GSPEC; IN_ELIM_THM] THEN SUBGOAL_THEN `?y:real^N. y IN s /\ ~(y = x)` MP_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `x IN s ==> ~(s = {x}) ==> ?y. y IN s /\ ~(y = x)`)) THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_LE]) THEN ASM_SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN REWRITE_TAC[NOT_LT; NOT_IN_EMPTY; ARITH_SUC; DIMINDEX_GE_1]; MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HULL_INC THEN ASM SET_TAC[]]]);;
let NOT_IN_INTERIOR_CONVEX_HULL = 
prove (`!s x:real^N. FINITE s /\ CARD s <= dimindex(:N) + 1 /\ x IN s ==> ~(x IN interior(convex hull s))`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP IN_FRONTIER_CONVEX_HULL) THEN SIMP_TAC[frontier; IN_DIFF]);;
let INTERIOR_CONVEX_HULL_EQ_EMPTY = 
prove (`!s:real^N->bool. s HAS_SIZE (dimindex(:N) + 1) ==> (interior(convex hull s) = {} <=> affine_dependent s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[HAS_SIZE] THEN STRIP_TAC THEN ASM_CASES_TAC `affine_dependent(s:real^N->bool)` THENL [ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [affine_dependent]) THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN ASM_SIMP_TAC[frontier; CLOSURE_CONVEX_HULL; FINITE_IMP_COMPACT] THEN ASM_SIMP_TAC[HULL_INC; IN_DIFF] THEN MATCH_MP_TAC(SET_RULE `!t. s SUBSET t /\ t = {} ==> s = {}`) THEN EXISTS_TAC `interior(affine hull s):real^N->bool` THEN SIMP_TAC[SUBSET_INTERIOR; CONVEX_HULL_SUBSET_AFFINE_HULL] THEN SUBGOAL_THEN `s = (a:real^N) INSERT (s DELETE a)` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[HULL_REDUNDANT] THEN MATCH_MP_TAC EMPTY_INTERIOR_AFFINE_HULL THEN ASM_SIMP_TAC[FINITE_DELETE; CARD_DELETE] THEN ASM_ARITH_TAC; ASM_SIMP_TAC[INTERIOR_CONVEX_HULL_EXPLICIT_MINIMAL] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; ARITH_RULE `~(n + 1 <= n)`] THEN EXISTS_TAC `vsum s (\x:real^N. inv(&(dimindex(:N)) + &1) % x)` THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `\x:real^N. inv(&(dimindex(:N)) + &1)` THEN ASM_SIMP_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN ASM_SIMP_TAC[SUM_CONST; GSYM REAL_OF_NUM_ADD] THEN CONV_TAC REAL_FIELD]);;
(* ------------------------------------------------------------------------- *) (* Similar things in special case (could use above as lemmas here instead). *) (* ------------------------------------------------------------------------- *)
let SIMPLEX_EXPLICIT = 
prove (`!s:real^N->bool. FINITE s /\ ~(vec 0 IN s) ==> convex hull (vec 0 INSERT s) = { y | ?u. (!x. x IN s ==> &0 <= u x) /\ sum s u <= &1 /\ vsum s (\x. u x % x) = y}`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CONVEX_HULL_FINITE; FINITE_INSERT] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `y:real^N` THEN ASM_SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES; IN_INSERT] THEN REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->real` STRIP_ASSUME_TAC) THENL [EXISTS_TAC `u:real^N->real` THEN ASM_SIMP_TAC[REAL_LE_REFL] THEN FIRST_X_ASSUM(MP_TAC o SPEC `vec 0:real^N`) THEN REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; EXISTS_TAC `\x:real^N. if x = vec 0 then &1 - sum (s:real^N->bool) u else u(x)` THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `x:real^N` THEN ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_REWRITE_TAC[REAL_SUB_LE]; MATCH_MP_TAC(REAL_ARITH `s = t ==> &1 - s + t = &1`) THEN MATCH_MP_TAC SUM_EQ THEN ASM_MESON_TAC[]; FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC VSUM_EQ THEN ASM_MESON_TAC[]]]);;
let STD_SIMPLEX = 
prove (`convex hull (vec 0 INSERT { basis i | 1 <= i /\ i <= dimindex(:N)}) = {x:real^N | (!i. 1 <= i /\ i <= dimindex(:N) ==> &0 <= x$i) /\ sum (1..dimindex(:N)) (\i. x$i) <= &1 }`,
W(MP_TAC o PART_MATCH (lhs o rand) SIMPLEX_EXPLICIT o lhs o snd) THEN ANTS_TAC THENL [REWRITE_TAC[SIMPLE_IMAGE; GSYM IN_NUMSEG] THEN SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG; IN_IMAGE] THEN REWRITE_TAC[IN_NUMSEG] THEN MESON_TAC[BASIS_NONZERO]; ALL_TAC] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[EXTENSION] THEN ONCE_REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN REWRITE_TAC[SIMPLE_IMAGE; GSYM IN_NUMSEG] THEN SUBGOAL_THEN `!u. sum (IMAGE (basis:num->real^N) (1..dimindex(:N))) u = sum (1..dimindex(:N)) (u o basis)` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN MATCH_MP_TAC SUM_IMAGE THEN REWRITE_TAC[IN_NUMSEG] THEN REWRITE_TAC[GSYM CONJ_ASSOC; BASIS_INJ]; ALL_TAC] THEN SUBGOAL_THEN `!u. vsum (IMAGE (basis:num->real^N) (1..dimindex(:N))) u = vsum (1..dimindex(:N)) ((u:real^N->real^N) o basis)` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN MATCH_MP_TAC VSUM_IMAGE THEN REWRITE_TAC[IN_NUMSEG] THEN REWRITE_TAC[GSYM CONJ_ASSOC; BASIS_INJ; FINITE_NUMSEG]; ALL_TAC] THEN REWRITE_TAC[o_DEF; BASIS_EXPANSION_UNIQUE; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_NUMSEG] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `u:real^N->real` STRIP_ASSUME_TAC) THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `x <= &1 ==> x = y ==> y <= &1`)) THEN MATCH_MP_TAC SUM_EQ THEN ASM_SIMP_TAC[IN_NUMSEG]; STRIP_TAC THEN EXISTS_TAC `\y:real^N. y dot x` THEN ASM_SIMP_TAC[DOT_BASIS]]);;
let INTERIOR_STD_SIMPLEX = 
prove (`interior (convex hull (vec 0 INSERT { basis i | 1 <= i /\ i <= dimindex(:N)})) = {x:real^N | (!i. 1 <= i /\ i <= dimindex(:N) ==> &0 < x$i) /\ sum (1..dimindex(:N)) (\i. x$i) < &1 }`,
REWRITE_TAC[EXTENSION; IN_INTERIOR; IN_ELIM_THM; STD_SIMPLEX] THEN REWRITE_TAC[SUBSET; IN_BALL; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o SPEC `x:real^N`) THEN REWRITE_TAC[DIST_REFL] THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_SIMP_TAC[REAL_LT_LE] THEN CONJ_TAC THENL [X_GEN_TAC `k:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x - (e / &2) % basis k:real^N`) THEN REWRITE_TAC[NORM_ARITH `dist(x,x - e) = norm(e)`; NORM_MUL] THEN ASM_SIMP_TAC[NORM_BASIS; REAL_ARITH `&0 < e ==> abs(e / &2) * &1 < e`; VECTOR_SUB_COMPONENT; VECTOR_MUL_COMPONENT] THEN DISCH_THEN(MP_TAC o SPEC `k:num` o CONJUNCT1) THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[BASIS_COMPONENT] THEN UNDISCH_TAC `&0 < e` THEN REAL_ARITH_TAC; FIRST_X_ASSUM(MP_TAC o SPEC `x + (e / &2) % basis 1:real^N`) THEN REWRITE_TAC[NORM_ARITH `dist(x,x + e) = norm(e)`; NORM_MUL] THEN ASM_SIMP_TAC[NORM_BASIS; LE_REFL; DIMINDEX_GE_1] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < e ==> abs(e / &2) * &1 < e`] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN MATCH_MP_TAC(REAL_ARITH `x < y ==> y <= &1 ==> ~(x = &1)`) THEN MATCH_MP_TAC SUM_LT THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> ~(a /\ b ==> ~c)`] THEN SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; BASIS_COMPONENT] THEN CONJ_TAC THENL [GEN_TAC THEN COND_CASES_TAC; EXISTS_TAC `1` THEN REWRITE_TAC[LE_REFL; DIMINDEX_GE_1]] THEN ASM_REAL_ARITH_TAC]; STRIP_TAC THEN EXISTS_TAC `min (inf(IMAGE (\i. (x:real^N)$i) (1..dimindex(:N)))) ((&1 - sum (1..dimindex(:N)) (\i. x$i)) / &(dimindex(:N)))` THEN ASM_SIMP_TAC[REAL_LT_MIN] THEN SIMP_TAC[REAL_LT_INF_FINITE; FINITE_IMAGE; FINITE_NUMSEG; IMAGE_EQ_EMPTY; NUMSEG_EMPTY; GSYM NOT_LE; DIMINDEX_GE_1] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH_RULE `0 < x <=> 1 <= x`; DIMINDEX_GE_1] THEN ASM_REWRITE_TAC[IN_NUMSEG; REAL_MUL_LZERO; REAL_SUB_LT] THEN REPEAT(POP_ASSUM(K ALL_TAC)) THEN X_GEN_TAC `y:real^N` THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `k:num` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `abs(xk - yk) <= d ==> d < xk ==> &0 <= yk`); GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV o RAND_CONV) [GSYM CARD_NUMSEG_1] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN SIMP_TAC[GSYM SUM_CONST; FINITE_NUMSEG] THEN MATCH_MP_TAC(REAL_ARITH `s2 <= s0 + s1 ==> s0 < &1 - s1 ==> s2 <= &1`) THEN REWRITE_TAC[GSYM SUM_ADD_NUMSEG] THEN MATCH_MP_TAC SUM_LE_NUMSEG THEN REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH `abs(y - x) <= z ==> x <= z + y`)] THEN ASM_SIMP_TAC[GSYM VECTOR_SUB_COMPONENT; dist] THEN MATCH_MP_TAC COMPONENT_LE_NORM THEN ASM_REWRITE_TAC[]]);;