let [pth_0g;pth_0l;pth_gg;pth_gl;pth_lg;pth_ll] = 
   (CONJUNCTS o prove)
   (`((p = &0) ==> c > &0 ==> (c * p = &0)) /\
     ((p = &0) ==> c < &0 ==> (c * p = &0)) /\
     (p > &0 ==> c > &0 ==> c * p > &0) /\
     (p > &0 ==> c < &0 ==> c * p < &0) /\
     (p < &0 ==> c > &0 ==> c * p < &0) /\
     (p < &0 ==> c < &0 ==> c * p > &0)`,
    SIMP_TAC[REAL_MUL_RZERO] THEN                          
    REWRITE_TAC[REAL_ARITH `(x > &0 <=> &0 < x) /\ (x < &0 <=> &0 < --x)`;
                REAL_ARITH `~(p = &0) <=> p < &0 \/ p > &0`] THEN
    REWRITE_TAC[IMP_IMP] THEN
    REPEAT CONJ_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_MUL) THEN
    REAL_ARITH_TAC);;

let pth_nzg = 
prove_by_refinement( `p <> &0 ==> c > &0 ==> c * p <> &0`,
(* {{{ Proof *) [ REWRITE_TAC[NEQ;REAL_ENTIRE] THEN REAL_ARITH_TAC; ]);;
(* }}} *)
let pth_nzl = 
prove_by_refinement( `p <> &0 ==> c < &0 ==> c * p <> &0`,
(* {{{ Proof *) [ REWRITE_TAC[NEQ;REAL_ENTIRE] THEN REAL_ARITH_TAC; ]);;
(* }}} *)
let signs_lem01 = 
prove_by_refinement( `c < &0 ==> p < &0 ==> (c * p = p') ==> p' > &0`,
(* {{{ Proof *) [ ASM_MESON_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; ]);;
(* }}} *)
let signs_lem02 = 
prove_by_refinement( `c > &0 ==> p < &0 ==> (c * p = p') ==> p' < &0`,
(* {{{ Proof *) [ ASM_MESON_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; ]);;
(* }}} *)
let signs_lem03 = 
prove_by_refinement( `c < &0 ==> p > &0 ==> (c * p = p') ==> p' < &0`,
(* {{{ Proof *) [ ASM_MESON_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; ]);;
(* }}} *)
let signs_lem04 = 
prove_by_refinement( `c > &0 ==> p > &0 ==> (c * p = p') ==> p' > &0`,
(* {{{ Proof *) [ ASM_MESON_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; ]);;
(* }}} *)
let signs_lem05 = 
prove_by_refinement( `c < &0 ==> (p = &0) ==> (c * p = p') ==> (p' = &0)`,
(* {{{ Proof *) [ ASM_MESON_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt;REAL_MUL_RZERO]; ]);;
(* }}} *)
let signs_lem06 = 
prove_by_refinement( `c > &0 ==> (p = &0) ==> (c * p = p') ==> (p' = &0)`,
(* {{{ Proof *) [ ASM_MESON_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt;REAL_MUL_RZERO]; ]);;
(* }}} *)
let signs_lem07 = 
prove_by_refinement( `c < &0 ==> p <> &0 ==> (c * p = p') ==> p' <> &0`,
(* }}} *)
let signs_lem08 = 
prove_by_refinement( `c > &0 ==> p <> &0 ==> (c * p = p') ==> p' <> &0`,
(* }}} *)
let signs_lem002 = 
prove_by_refinement( `!p. (p = &0) \/ (p <> &0)`,
(* {{{ Proof *) [ MESON_TAC[NEQ]; ]);;
(* }}} *) let signs_lem003 = TAUT `a \/ b ==> (a ==> x) ==> (b ==> y) ==> (a /\ x \/ b /\ y)`;; let sz_z_thm = ref TRUTH;; let sz_nz_thm = ref TRUTH;;
let PULL_CASES_THM = 
prove (`!a p p0 p1. ((a = &0) /\ (p <=> p0) \/ (a <> &0) /\ (p <=> p1)) <=> ((p <=> (a = &0) /\ p0 \/ a <> &0 /\ p1 ))`,
(* {{{ Proof *) REPEAT STRIP_TAC THEN REWRITE_TAC[NEQ] THEN MAP_EVERY BOOL_CASES_TAC [`p:bool`; `p0:bool`; `p1:bool`; `p2:bool`] THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
(* }}} *)
let signs_lem0002 = 
prove( `!p. p <> &0 ==> (p > &0) \/ (p < &0)`,
REWRITE_TAC [NEQ] THEN REAL_ARITH_TAC);;
let signs_lem0003 = TAUT `a \/ b ==> (a ==> x) ==> (b ==> y) ==> (a /\ x \/ b /\ y)`;;
let PULL_CASES_THM_NZ = 
prove (`!a p p1 p2. (a <> &0) ==> ((a > &0 /\ (p <=> p1) \/ a < &0 /\ (p <=> p2)) <=> ((p <=> a > &0 /\ p1 \/ a < &0 /\ p2)))`,
(* {{{ Proof *) REWRITE_TAC[NEQ] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[NEQ] THEN MAP_EVERY BOOL_CASES_TAC [`p:bool`; `p0:bool`; `p1:bool`; `p2:bool`] THEN ASM_REWRITE_TAC[] THEN TRY (POP_ASSUM MP_TAC THEN REAL_ARITH_TAC) );;
(* }}} *)