(* ========================================================================= *)
(* Relatively efficient HOL conversions for canonical polynomial form.       *)
(*                                                                           *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(* ========================================================================= *)

needs "calc_num.ml";;

let SEMIRING_NORMALIZERS_CONV =
  
let SEMIRING_PTHS = 
prove (`(!x:A y z. add x (add y z) = add (add x y) z) /\ (!x y. add x y = add y x) /\ (!x. add r0 x = x) /\ (!x y z. mul x (mul y z) = mul (mul x y) z) /\ (!x y. mul x y = mul y x) /\ (!x. mul r1 x = x) /\ (!x. mul r0 x = r0) /\ (!x y z. mul x (add y z) = add (mul x y) (mul x z)) /\ (!x. pwr x 0 = r1) /\ (!x n. pwr x (SUC n) = mul x (pwr x n)) ==> (mul r1 x = x) /\ (add (mul a m) (mul b m) = mul (add a b) m) /\ (add (mul a m) m = mul (add a r1) m) /\ (add m (mul a m) = mul (add a r1) m) /\ (add m m = mul (add r1 r1) m) /\ (mul r0 m = r0) /\ (add r0 a = a) /\ (add a r0 = a) /\ (mul a b = mul b a) /\ (mul (add a b) c = add (mul a c) (mul b c)) /\ (mul r0 a = r0) /\ (mul a r0 = r0) /\ (mul r1 a = a) /\ (mul a r1 = a) /\ (mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)) /\ (mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))) /\ (mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)) /\ (mul (mul lx ly) rx = mul (mul lx rx) ly) /\ (mul (mul lx ly) rx = mul lx (mul ly rx)) /\ (mul lx rx = mul rx lx) /\ (mul lx (mul rx ry) = mul (mul lx rx) ry) /\ (mul lx (mul rx ry) = mul rx (mul lx ry)) /\ (add (add a b) (add c d) = add (add a c) (add b d)) /\ (add (add a b) c = add a (add b c)) /\ (add a (add c d) = add c (add a d)) /\ (add (add a b) c = add (add a c) b) /\ (add a c = add c a) /\ (add a (add c d) = add (add a c) d) /\ (mul (pwr x p) (pwr x q) = pwr x (p + q)) /\ (mul x (pwr x q) = pwr x (SUC q)) /\ (mul (pwr x q) x = pwr x (SUC q)) /\ (mul x x = pwr x 2) /\ (pwr (mul x y) q = mul (pwr x q) (pwr y q)) /\ (pwr (pwr x p) q = pwr x (p * q)) /\ (pwr x 0 = r1) /\ (pwr x 1 = x) /\ (mul x (add y z) = add (mul x y) (mul x z)) /\ (pwr x (SUC q) = mul x (pwr x q))`,
STRIP_TAC THEN SUBGOAL_THEN `(!m:A n. add m n = add n m) /\ (!m n p. add (add m n) p = add m (add n p)) /\ (!m n p. add m (add n p) = add n (add m p)) /\ (!x. add x r0 = x) /\ (!m n. mul m n = mul n m) /\ (!m n p. mul (mul m n) p = mul m (mul n p)) /\ (!m n p. mul m (mul n p) = mul n (mul m p)) /\ (!m n p. mul (add m n) p = add (mul m p) (mul n p)) /\ (!x. mul x r1 = x) /\ (!x. mul x r0 = r0)` MP_TAC THENL [ASM_MESON_TAC[]; MAP_EVERY (fun t -> UNDISCH_THEN t (K ALL_TAC)) [`!x:A y z. add x (add y z) = add (add x y) z`; `!x:A y. add x y :A = add y x`; `!x:A y z. mul x (mul y z) = mul (mul x y) z`; `!x:A y. mul x y :A = mul y x`] THEN STRIP_TAC] THEN ASM_REWRITE_TAC[num_CONV `2`; num_CONV `1`] THEN SUBGOAL_THEN `!m n:num x:A. pwr x (m + n) :A = mul (pwr x m) (pwr x n)` ASSUME_TAC THENL [GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES]; ALL_TAC] THEN SUBGOAL_THEN `!x:A y:A n:num. pwr (mul x y) n = mul (pwr x n) (pwr y n)` ASSUME_TAC THENL [GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x:A m:num n. pwr (pwr x m) n = pwr x (m * n)` (fun th -> ASM_MESON_TAC[th]) THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES]) and true_tm = concl TRUTH in fun sth rth (is_semiring_constant, SEMIRING_ADD_CONV, SEMIRING_MUL_CONV, SEMIRING_POW_CONV) -> let [pthm_01; pthm_02; pthm_03; pthm_04; pthm_05; pthm_06; pthm_07; pthm_08; pthm_09; pthm_10; pthm_11; pthm_12; pthm_13; pthm_14; pthm_15; pthm_16; pthm_17; pthm_18; pthm_19; pthm_20; pthm_21; pthm_22; pthm_23; pthm_24; pthm_25; pthm_26; pthm_27; pthm_28; pthm_29; pthm_30; pthm_31; pthm_32; pthm_33; pthm_34; pthm_35; pthm_36; pthm_37; pthm_38] = CONJUNCTS(MATCH_MP SEMIRING_PTHS sth) in let add_tm = rator(rator(lhand(concl pthm_07))) and mul_tm = rator(rator(lhand(concl pthm_13))) and pow_tm = rator(rator(rand(concl pthm_32))) and zero_tm = rand(concl pthm_06) and one_tm = rand(lhand(concl pthm_14)) and ty = type_of(rand(concl pthm_01)) in let p_tm = `p:num` and q_tm = `q:num` and zeron_tm = `0` and onen_tm = `1` and a_tm = mk_var("a",ty) and b_tm = mk_var("b",ty) and c_tm = mk_var("c",ty) and d_tm = mk_var("d",ty) and lx_tm = mk_var("lx",ty) and ly_tm = mk_var("ly",ty) and m_tm = mk_var("m",ty) and rx_tm = mk_var("rx",ty) and ry_tm = mk_var("ry",ty) and x_tm = mk_var("x",ty) and y_tm = mk_var("y",ty) and z_tm = mk_var("z",ty) in let dest_add = dest_binop add_tm and dest_mul = dest_binop mul_tm and dest_pow tm = let l,r = dest_binop pow_tm tm in if is_numeral r then l,r else failwith "dest_pow" and is_add = is_binop add_tm and is_mul = is_binop mul_tm in let nthm_1,nthm_2,sub_tm,neg_tm,dest_sub,is_sub = if concl rth = true_tm then rth,rth,true_tm,true_tm, (fun t -> t,t),K false else let nthm_1 = SPEC x_tm (CONJUNCT1 rth) and nthm_2 = SPECL [x_tm; y_tm] (CONJUNCT2 rth) in let sub_tm = rator(rator(lhand(concl nthm_2))) and neg_tm = rator(lhand(concl nthm_1)) in let dest_sub = dest_binop sub_tm and is_sub = is_binop sub_tm in (nthm_1,nthm_2,sub_tm,neg_tm,dest_sub,is_sub) in fun variable_order -> (* ------------------------------------------------------------------------- *) (* Conversion for "x^n * x^m", with either x^n = x and/or x^m = x possible. *) (* Also deals with "const * const", but both terms must involve powers of *) (* the same variable, or both be constants, or behaviour may be incorrect. *) (* ------------------------------------------------------------------------- *) let POWVAR_MUL_CONV tm = let l,r = dest_mul tm in if is_semiring_constant l & is_semiring_constant r then SEMIRING_MUL_CONV tm else try let lx,ln = dest_pow l in try let rx,rn = dest_pow r in let th1 = INST [lx,x_tm; ln,p_tm; rn,q_tm] pthm_29 in let tm1,tm2 = dest_comb(rand(concl th1)) in TRANS th1 (AP_TERM tm1 (NUM_ADD_CONV tm2)) with Failure _ -> let th1 = INST [lx,x_tm; ln,q_tm] pthm_31 in let tm1,tm2 = dest_comb(rand(concl th1)) in TRANS th1 (AP_TERM tm1 (NUM_SUC_CONV tm2)) with Failure _ -> try let rx,rn = dest_pow r in let th1 = INST [rx,x_tm; rn,q_tm] pthm_30 in let tm1,tm2 = dest_comb(rand(concl th1)) in TRANS th1 (AP_TERM tm1 (NUM_SUC_CONV tm2)) with Failure _ -> INST [l,x_tm] pthm_32 in (* ------------------------------------------------------------------------- *) (* Remove "1 * m" from a monomial, and just leave m. *) (* ------------------------------------------------------------------------- *) let MONOMIAL_DEONE th = try let l,r = dest_mul(rand(concl th)) in if l = one_tm then TRANS th (INST [r,x_tm] pthm_01) else th with Failure _ -> th in (* ------------------------------------------------------------------------- *) (* Conversion for "(monomial)^n", where n is a numeral. *) (* ------------------------------------------------------------------------- *) let MONOMIAL_POW_CONV = let rec MONOMIAL_POW tm bod ntm = if not(is_comb bod) then REFL tm else if is_semiring_constant bod then SEMIRING_POW_CONV tm else let lop,r = dest_comb bod in if not(is_comb lop) then REFL tm else let op,l = dest_comb lop in if op = pow_tm & is_numeral r then let th1 = INST [l,x_tm; r,p_tm; ntm,q_tm] pthm_34 in let l,r = dest_comb(rand(concl th1)) in TRANS th1 (AP_TERM l (NUM_MULT_CONV r)) else if op = mul_tm then let th1 = INST [l,x_tm; r,y_tm; ntm,q_tm] pthm_33 in let xy,z = dest_comb(rand(concl th1)) in let x,y = dest_comb xy in let thl = MONOMIAL_POW y l ntm and thr = MONOMIAL_POW z r ntm in TRANS th1 (MK_COMB(AP_TERM x thl,thr)) else REFL tm in fun tm -> let lop,r = dest_comb tm in let op,l = dest_comb lop in if op <> pow_tm or not(is_numeral r) then failwith "MONOMIAL_POW_CONV" else if r = zeron_tm then INST [l,x_tm] pthm_35 else if r = onen_tm then INST [l,x_tm] pthm_36 else MONOMIAL_DEONE(MONOMIAL_POW tm l r) in (* ------------------------------------------------------------------------- *) (* Multiplication of canonical monomials. *) (* ------------------------------------------------------------------------- *) let MONOMIAL_MUL_CONV = let powvar tm = if is_semiring_constant tm then one_tm else try let lop,r = dest_comb tm in let op,l = dest_comb lop in if op = pow_tm & is_numeral r then l else failwith "" with Failure _ -> tm in let vorder x y = if x = y then 0 else if x = one_tm then -1 else if y = one_tm then 1 else if variable_order x y then -1 else 1 in let rec MONOMIAL_MUL tm l r = try let lx,ly = dest_mul l in let vl = powvar lx in try let rx,ry = dest_mul r in let vr = powvar rx in let ord = vorder vl vr in if ord = 0 then let th1 = INST [lx,lx_tm; ly,ly_tm; rx,rx_tm; ry,ry_tm] pthm_15 in let tm1,tm2 = dest_comb(rand(concl th1)) in let tm3,tm4 = dest_comb tm1 in let th2 = AP_THM (AP_TERM tm3 (POWVAR_MUL_CONV tm4)) tm2 in let th3 = TRANS th1 th2 in let tm5,tm6 = dest_comb(rand(concl th3)) in let tm7,tm8 = dest_comb tm6 in let th4 = MONOMIAL_MUL tm6 (rand tm7) tm8 in TRANS th3 (AP_TERM tm5 th4) else let th0 = if ord < 0 then pthm_16 else pthm_17 in let th1 = INST [lx,lx_tm; ly,ly_tm; rx,rx_tm; ry,ry_tm] th0 in let tm1,tm2 = dest_comb(rand(concl th1)) in let tm3,tm4 = dest_comb tm2 in TRANS th1 (AP_TERM tm1 (MONOMIAL_MUL tm2 (rand tm3) tm4)) with Failure _ -> let vr = powvar r in let ord = vorder vl vr in if ord = 0 then let th1 = INST [lx,lx_tm; ly,ly_tm; r,rx_tm] pthm_18 in let tm1,tm2 = dest_comb(rand(concl th1)) in let tm3,tm4 = dest_comb tm1 in let th2 = AP_THM (AP_TERM tm3 (POWVAR_MUL_CONV tm4)) tm2 in TRANS th1 th2 else if ord < 0 then let th1 = INST [lx,lx_tm; ly,ly_tm; r,rx_tm] pthm_19 in let tm1,tm2 = dest_comb(rand(concl th1)) in let tm3,tm4 = dest_comb tm2 in TRANS th1 (AP_TERM tm1 (MONOMIAL_MUL tm2 (rand tm3) tm4)) else INST [l,lx_tm; r,rx_tm] pthm_20 with Failure _ -> let vl = powvar l in try let rx,ry = dest_mul r in let vr = powvar rx in let ord = vorder vl vr in if ord = 0 then let th1 = INST [l,lx_tm; rx,rx_tm; ry,ry_tm] pthm_21 in let tm1,tm2 = dest_comb(rand(concl th1)) in let tm3,tm4 = dest_comb tm1 in TRANS th1 (AP_THM (AP_TERM tm3 (POWVAR_MUL_CONV tm4)) tm2) else if ord > 0 then let th1 = INST [l,lx_tm; rx,rx_tm; ry,ry_tm] pthm_22 in let tm1,tm2 = dest_comb(rand(concl th1)) in let tm3,tm4 = dest_comb tm2 in TRANS th1 (AP_TERM tm1 (MONOMIAL_MUL tm2 (rand tm3) tm4)) else REFL tm with Failure _ -> let vr = powvar r in let ord = vorder vl vr in if ord = 0 then POWVAR_MUL_CONV tm else if ord > 0 then INST [l,lx_tm; r,rx_tm] pthm_20 else REFL tm in fun tm -> let l,r = dest_mul tm in MONOMIAL_DEONE(MONOMIAL_MUL tm l r) in (* ------------------------------------------------------------------------- *) (* Multiplication by monomial of a polynomial. *) (* ------------------------------------------------------------------------- *) let POLYNOMIAL_MONOMIAL_MUL_CONV = let rec PMM_CONV tm = let l,r = dest_mul tm in try let y,z = dest_add r in let th1 = INST [l,x_tm; y,y_tm; z,z_tm] pthm_37 in let tm1,tm2 = dest_comb(rand(concl th1)) in let tm3,tm4 = dest_comb tm1 in let th2 = MK_COMB(AP_TERM tm3 (MONOMIAL_MUL_CONV tm4), PMM_CONV tm2) in TRANS th1 th2 with Failure _ -> MONOMIAL_MUL_CONV tm in PMM_CONV in (* ------------------------------------------------------------------------- *) (* Addition of two monomials identical except for constant multiples. *) (* ------------------------------------------------------------------------- *) let MONOMIAL_ADD_CONV tm = let l,r = dest_add tm in if is_semiring_constant l & is_semiring_constant r then SEMIRING_ADD_CONV tm else let th1 = if is_mul l & is_semiring_constant(lhand l) then if is_mul r & is_semiring_constant(lhand r) then INST [lhand l,a_tm; lhand r,b_tm; rand r,m_tm] pthm_02 else INST [lhand l,a_tm; r,m_tm] pthm_03 else if is_mul r & is_semiring_constant(lhand r) then INST [lhand r,a_tm; l,m_tm] pthm_04 else INST [r,m_tm] pthm_05 in let tm1,tm2 = dest_comb(rand(concl th1)) in let tm3,tm4 = dest_comb tm1 in let th2 = AP_TERM tm3 (SEMIRING_ADD_CONV tm4) in let th3 = TRANS th1 (AP_THM th2 tm2) in let tm5 = rand(concl th3) in if lhand tm5 = zero_tm then TRANS th3 (INST [rand tm5,m_tm] pthm_06) else MONOMIAL_DEONE th3 in (* ------------------------------------------------------------------------- *) (* Ordering on monomials. *) (* ------------------------------------------------------------------------- *) let powervars tm = let ptms = striplist dest_mul tm in if is_semiring_constant (hd ptms) then tl ptms else ptms in let dest_varpow tm = try let x,n = dest_pow tm in (x,dest_numeral n) with Failure _ -> (tm,(if is_semiring_constant tm then num_0 else num_1)) in let morder = let rec lexorder l1 l2 = match (l1,l2) with [],[] -> 0 | vps,[] -> -1 | [],vps -> 1 | ((x1,n1)::vs1),((x2,n2)::vs2) -> if variable_order x1 x2 then 1 else if variable_order x2 x1 then -1 else if n1 </ n2 then -1 else if n2 </ n1 then 1 else lexorder vs1 vs2 in fun tm1 tm2 -> let vdegs1 = map dest_varpow (powervars tm1) and vdegs2 = map dest_varpow (powervars tm2) in let deg1 = itlist ((+/) o snd) vdegs1 num_0 and deg2 = itlist ((+/) o snd) vdegs2 num_0 in if deg1 </ deg2 then -1 else if deg1 >/ deg2 then 1 else lexorder vdegs1 vdegs2 in (* ------------------------------------------------------------------------- *) (* Addition of two polynomials. *) (* ------------------------------------------------------------------------- *) let POLYNOMIAL_ADD_CONV = let DEZERO_RULE th = let tm = rand(concl th) in if not(is_add tm) then th else let lop,r = dest_comb tm in let l = rand lop in if l = zero_tm then TRANS th (INST [r,a_tm] pthm_07) else if r = zero_tm then TRANS th (INST [l,a_tm] pthm_08) else th in let rec PADD tm = let l,r = dest_add tm in if l = zero_tm then INST [r,a_tm] pthm_07 else if r = zero_tm then INST [l,a_tm] pthm_08 else if is_add l then let a,b = dest_add l in if is_add r then let c,d = dest_add r in let ord = morder a c in if ord = 0 then let th1 = INST [a,a_tm; b,b_tm; c,c_tm; d,d_tm] pthm_23 in let tm1,tm2 = dest_comb(rand(concl th1)) in let tm3,tm4 = dest_comb tm1 in let th2 = AP_TERM tm3 (MONOMIAL_ADD_CONV tm4) in DEZERO_RULE (TRANS th1 (MK_COMB(th2,PADD tm2))) else let th1 = if ord > 0 then INST [a,a_tm; b,b_tm; r,c_tm] pthm_24 else INST [l,a_tm; c,c_tm; d,d_tm] pthm_25 in let tm1,tm2 = dest_comb(rand(concl th1)) in DEZERO_RULE (TRANS th1 (AP_TERM tm1 (PADD tm2))) else let ord = morder a r in if ord = 0 then let th1 = INST [a,a_tm; b,b_tm; r,c_tm] pthm_26 in let tm1,tm2 = dest_comb(rand(concl th1)) in let tm3,tm4 = dest_comb tm1 in let th2 = AP_THM (AP_TERM tm3 (MONOMIAL_ADD_CONV tm4)) tm2 in DEZERO_RULE (TRANS th1 th2) else if ord > 0 then let th1 = INST [a,a_tm; b,b_tm; r,c_tm] pthm_24 in let tm1,tm2 = dest_comb(rand(concl th1)) in DEZERO_RULE (TRANS th1 (AP_TERM tm1 (PADD tm2))) else DEZERO_RULE (INST [l,a_tm; r,c_tm] pthm_27) else if is_add r then let c,d = dest_add r in let ord = morder l c in if ord = 0 then let th1 = INST [l,a_tm; c,c_tm; d,d_tm] pthm_28 in let tm1,tm2 = dest_comb(rand(concl th1)) in let tm3,tm4 = dest_comb tm1 in let th2 = AP_THM (AP_TERM tm3 (MONOMIAL_ADD_CONV tm4)) tm2 in DEZERO_RULE (TRANS th1 th2) else if ord > 0 then REFL tm else let th1 = INST [l,a_tm; c,c_tm; d,d_tm] pthm_25 in let tm1,tm2 = dest_comb(rand(concl th1)) in DEZERO_RULE (TRANS th1 (AP_TERM tm1 (PADD tm2))) else let ord = morder l r in if ord = 0 then MONOMIAL_ADD_CONV tm else if ord > 0 then DEZERO_RULE(REFL tm) else DEZERO_RULE(INST [l,a_tm; r,c_tm] pthm_27) in PADD in (* ------------------------------------------------------------------------- *) (* Multiplication of two polynomials. *) (* ------------------------------------------------------------------------- *) let POLYNOMIAL_MUL_CONV = let rec PMUL tm = let l,r = dest_mul tm in if not(is_add l) then POLYNOMIAL_MONOMIAL_MUL_CONV tm else if not(is_add r) then let th1 = INST [l,a_tm; r,b_tm] pthm_09 in TRANS th1 (POLYNOMIAL_MONOMIAL_MUL_CONV(rand(concl th1))) else let a,b = dest_add l in let th1 = INST [a,a_tm; b,b_tm; r,c_tm] pthm_10 in let tm1,tm2 = dest_comb(rand(concl th1)) in let tm3,tm4 = dest_comb tm1 in let th2 = AP_TERM tm3 (POLYNOMIAL_MONOMIAL_MUL_CONV tm4) in let th3 = TRANS th1 (MK_COMB(th2,PMUL tm2)) in TRANS th3 (POLYNOMIAL_ADD_CONV (rand(concl th3))) in fun tm -> let l,r = dest_mul tm in if l = zero_tm then INST [r,a_tm] pthm_11 else if r = zero_tm then INST [l,a_tm] pthm_12 else if l = one_tm then INST [r,a_tm] pthm_13 else if r = one_tm then INST [l,a_tm] pthm_14 else PMUL tm in (* ------------------------------------------------------------------------- *) (* Power of polynomial (optimized for the monomial and trivial cases). *) (* ------------------------------------------------------------------------- *) let POLYNOMIAL_POW_CONV = let rec PPOW tm = let l,n = dest_pow tm in if n = zeron_tm then INST [l,x_tm] pthm_35 else if n = onen_tm then INST [l,x_tm] pthm_36 else let th1 = num_CONV n in let th2 = INST [l,x_tm; rand(rand(concl th1)),q_tm] pthm_38 in let tm1,tm2 = dest_comb(rand(concl th2)) in let th3 = TRANS th2 (AP_TERM tm1 (PPOW tm2)) in let th4 = TRANS (AP_TERM (rator tm) th1) th3 in TRANS th4 (POLYNOMIAL_MUL_CONV (rand(concl th4))) in fun tm -> if is_add(lhand tm) then PPOW tm else MONOMIAL_POW_CONV tm in (* ------------------------------------------------------------------------- *) (* Negation. *) (* ------------------------------------------------------------------------- *) let POLYNOMIAL_NEG_CONV = fun tm -> let l,r = dest_comb tm in if l <> neg_tm then failwith "POLYNOMIAL_NEG_CONV" else let th1 = INST [r,x_tm] nthm_1 in TRANS th1 (POLYNOMIAL_MONOMIAL_MUL_CONV (rand(concl th1))) in (* ------------------------------------------------------------------------- *) (* Subtraction. *) (* ------------------------------------------------------------------------- *) let POLYNOMIAL_SUB_CONV = fun tm -> let l,r = dest_sub tm in let th1 = INST [l,x_tm; r,y_tm] nthm_2 in let tm1,tm2 = dest_comb(rand(concl th1)) in let th2 = AP_TERM tm1 (POLYNOMIAL_MONOMIAL_MUL_CONV tm2) in TRANS th1 (TRANS th2 (POLYNOMIAL_ADD_CONV (rand(concl th2)))) in (* ------------------------------------------------------------------------- *) (* Conversion from HOL term. *) (* ------------------------------------------------------------------------- *) let rec POLYNOMIAL_CONV tm = if not(is_comb tm) or is_semiring_constant tm then REFL tm else let lop,r = dest_comb tm in if lop = neg_tm then let th1 = AP_TERM lop (POLYNOMIAL_CONV r) in TRANS th1 (POLYNOMIAL_NEG_CONV (rand(concl th1))) else if not(is_comb lop) then REFL tm else let op,l = dest_comb lop in if op = pow_tm & is_numeral r then let th1 = AP_THM (AP_TERM op (POLYNOMIAL_CONV l)) r in TRANS th1 (POLYNOMIAL_POW_CONV (rand(concl th1))) else if op = add_tm or op = mul_tm or op = sub_tm then let th1 = MK_COMB(AP_TERM op (POLYNOMIAL_CONV l), POLYNOMIAL_CONV r) in let fn = if op = add_tm then POLYNOMIAL_ADD_CONV else if op = mul_tm then POLYNOMIAL_MUL_CONV else POLYNOMIAL_SUB_CONV in TRANS th1 (fn (rand(concl th1))) else REFL tm in POLYNOMIAL_NEG_CONV,POLYNOMIAL_ADD_CONV,POLYNOMIAL_SUB_CONV, POLYNOMIAL_MUL_CONV,POLYNOMIAL_POW_CONV,POLYNOMIAL_CONV;;
(* ------------------------------------------------------------------------- *) (* Instantiate it to the natural numbers. *) (* ------------------------------------------------------------------------- *) let NUM_NORMALIZE_CONV =
let sth = 
prove (`(!x y z. x + (y + z) = (x + y) + z) /\ (!x y. x + y = y + x) /\ (!x. 0 + x = x) /\ (!x y z. x * (y * z) = (x * y) * z) /\ (!x y. x * y = y * x) /\ (!x. 1 * x = x) /\ (!x. 0 * x = 0) /\ (!x y z. x * (y + z) = x * y + x * z) /\ (!x. x EXP 0 = 1) /\ (!x n. x EXP (SUC n) = x * x EXP n)`,
REWRITE_TAC[EXP; MULT_CLAUSES; ADD_CLAUSES; LEFT_ADD_DISTRIB] THEN REWRITE_TAC[ADD_AC; MULT_AC]) and rth = TRUTH and is_semiring_constant = is_numeral and SEMIRING_ADD_CONV = NUM_ADD_CONV and SEMIRING_MUL_CONV = NUM_MULT_CONV and SEMIRING_POW_CONV = NUM_EXP_CONV in let _,_,_,_,_,NUM_NORMALIZE_CONV = SEMIRING_NORMALIZERS_CONV sth rth (is_semiring_constant, SEMIRING_ADD_CONV,SEMIRING_MUL_CONV,SEMIRING_POW_CONV) (<) in NUM_NORMALIZE_CONV;;