(* ========================================================================= *)
(* Trivial odds and ends.                                                    *)
(*                                                                           *)
(*       John Harrison, University of Cambridge Computer Laboratory          *)
(*                                                                           *)
(*            (c) Copyright, University of Cambridge 1998                    *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(* ========================================================================= *)

needs "class.ml";;

(* ------------------------------------------------------------------------- *)
(* Combinators. We don't bother with S and K, which seem of little use.      *)
(* ------------------------------------------------------------------------- *)

parse_as_infix ("o",(26,"right"));;

let o_DEF = new_definition
 `(o) (f:B->C) g = \x:A. f(g(x))`;;
let I_DEF = new_definition
 `I = \x:A. x`;;
let o_THM = 
prove (`!f:B->C. !g:A->B. !x:A. (f o g) x = f(g(x))`,
PURE_REWRITE_TAC [o_DEF] THEN CONV_TAC (DEPTH_CONV BETA_CONV) THEN REPEAT GEN_TAC THEN REFL_TAC);;
let o_ASSOC = 
prove (`!f:C->D. !g:B->C. !h:A->B. f o (g o h) = (f o g) o h`,
REPEAT GEN_TAC THEN REWRITE_TAC [o_DEF] THEN CONV_TAC (REDEPTH_CONV BETA_CONV) THEN REFL_TAC);;
let I_THM = 
prove (`!x:A. I x = x`,
REWRITE_TAC [I_DEF]);;
let I_O_ID = 
prove (`!f:A->B. (I o f = f) /\ (f o I = f)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_DEF; I_THM]);;
(* ------------------------------------------------------------------------- *) (* The theory "1" (a 1-element type). *) (* ------------------------------------------------------------------------- *)
let EXISTS_ONE_REP = 
prove (`?b:bool. b`,
EXISTS_TAC `T` THEN BETA_TAC THEN ACCEPT_TAC TRUTH);;
let one_tydef = new_type_definition "1" ("one_ABS","one_REP") EXISTS_ONE_REP;;
let one_DEF = new_definition
 `one = @x:1. T`;;
let one = 
prove (`!v:1. v = one`,
MP_TAC(GEN_ALL (SPEC `one_REP a` (CONJUNCT2 one_tydef))) THEN REWRITE_TAC[CONJUNCT1 one_tydef] THEN DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM (CONJUNCT1 one_tydef)] THEN ASM_REWRITE_TAC[]);;
let one_axiom = 
prove (`!f g. f = (g:A->1)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN ONCE_REWRITE_TAC[one] THEN REFL_TAC);;
let one_INDUCT = 
prove (`!P. P one ==> !x. P x`,
ONCE_REWRITE_TAC[one] THEN REWRITE_TAC[]);;
let one_RECURSION = 
prove (`!e:A. ?fn. fn one = e`,
GEN_TAC THEN EXISTS_TAC `\x:1. e:A` THEN BETA_TAC THEN REFL_TAC);;
let one_Axiom = 
prove (`!e:A. ?!fn. fn one = e`,
GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM; one_RECURSION] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[FUN_EQ_THM] THEN ONCE_REWRITE_TAC [one] THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Add the type "1" to the inductive type store. *) (* ------------------------------------------------------------------------- *) inductive_type_store := ("1",(1,one_INDUCT,one_RECURSION))::(!inductive_type_store);;