HOL html
Files Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ |
Theorems Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ |
P (theorems)
PAIR_BETA_THMPOLY_0
POLY_ADD
POLY_ADD_CLAUSES
POLY_ADD_RZERO
POLY_BOUND_EXISTS
POLY_CMUL
POLY_CMUL_CLAUSES
POLY_CMUL_MAP
POLY_CONS_EQ
POLY_CONT
POLY_DECOMPOSE
POLY_DECOMPOSE_LEMMA
POLY_DIVIDES_ADD
POLY_DIVIDES_EXP
POLY_DIVIDES_REFL
POLY_DIVIDES_SUB
POLY_DIVIDES_SUB2
POLY_DIVIDES_TRANS
POLY_DIVIDES_ZERO
POLY_ENTIRE
POLY_ENTIRE_LEMMA
POLY_EXP
POLY_EXP_ADD
POLY_EXP_DIVIDES
POLY_EXP_EQ_0
POLY_EXP_PRIME_EQ_0
POLY_INFINITY
POLY_LENGTH_MUL
POLY_LINEAR_DIVIDES
POLY_LINEAR_REM
POLY_MINIMUM_MODULUS
POLY_MINIMUM_MODULUS_DISC
POLY_MUL
POLY_MUL_ASSOC
POLY_MUL_CLAUSES
POLY_MUL_LCANCEL
POLY_NEG
POLY_NEG_CLAUSES
POLY_NORMALIZE
POLY_NORMALIZE_EQ
POLY_NORMALIZE_EQ_LEMMA
POLY_NORMALIZE_ZERO
POLY_OFFSET
POLY_OFFSET_LEMMA
POLY_ORDER
POLY_ORDER_EXISTS
POLY_PRIMES
POLY_PRIME_EQ_0
POLY_REPLICATE_APPEND
POLY_ROOTS_FINITE
POLY_ROOTS_FINITE_LEMMA
POLY_ROOTS_FINITE_SET
POLY_ROOTS_INDEX_LEMMA
POLY_ROOTS_INDEX_LENGTH
POLY_ZERO
POLY_ZERO_LEMMA
parallel
perpendicular
poly
poly_add
poly_cmul
poly_exp
poly_mul
poly_neg
pth
pth_0
pth_1
pth_2
pth_2b
pth_3
pth_4