(* Dependencies *)
needs "../formal_lp/arith/misc.hl";;
needs "../formal_lp/arith/arith_options.hl";;
(* Natural numbers *)
module type Informal_nat_sig =
sig
type nat
val mk_nat : num -> nat
val mk_small_nat : int -> nat
val dest_nat : nat -> num
val eq_nat : nat -> nat -> bool
val suc_nat : nat -> nat
val pre_nat : nat -> nat
val eq0_nat : nat -> bool
val gt0_nat : nat -> bool
val lt_nat : nat -> nat -> bool
val le_nat : nat -> nat -> bool
val add_nat : nat -> nat -> nat
val sub_nat : nat -> nat -> nat
(* If sub_and_le_nat m n = (m - n, true) if n <= m; (n - m, false) if m < n *)
val sub_and_le_nat : nat -> nat -> nat * bool
val mul_nat : nat -> nat -> nat
val div_nat : nat -> nat -> nat
val even_nat : nat -> bool
val odd_nat : nat -> bool
(* normalize_nat m = (n, e) s.t. m = n * base^e, e >= 0 *)
val normalize_nat : nat -> nat * int
val denormalize_nat : nat * int -> nat
(* hi_nat p m = (n, e) s.t. m <= n * base^e and n contains at most p "digits" *)
val hi_nat : int -> nat -> nat * int
val hi_lt_nat : int -> nat -> nat * int
(* lo_nat p m = (n, e) s.t. n * base^e <= m and n contains at most p "digits" *)
val lo_nat : int -> nat -> nat * int
end;;
module Informal_nat : Informal_nat_sig = struct
open Arith_misc;;
open Arith_options;;
open Big_int;;
type nat = big_int;;
let mk_nat n =
let result = big_int_of_num n in
if sign_big_int result < 0 then zero_big_int else result;;
let mk_small_nat n =
if n < 0 then zero_big_int else big_int_of_int n;;
let dest_nat = num_of_big_int;;
let eq_nat = eq_big_int;;
let suc_nat = succ_big_int;;
let pre_nat n =
let result = pred_big_int n in
if sign_big_int result < 0 then zero_big_int else result;;
let eq0_nat n = sign_big_int n = 0;;
let gt0_nat n = sign_big_int n > 0;;
let lt_nat = lt_big_int;;
let le_nat = le_big_int;;
let add_nat = add_big_int;;
let sub_nat m n =
let result = sub_big_int m n in
if sign_big_int result < 0 then zero_big_int else result;;
let sub_and_le_nat m n =
let result = sub_big_int m n in
if sign_big_int result >= 0 then (result, true) else (abs_big_int result, false);;
let mul_nat = mult_big_int;;
let div_nat = div_big_int;;
let two_big_int = big_int_of_int 2;;
let even_nat n = sign_big_int (mod_big_int n two_big_int) = 0;;
let odd_nat n = sign_big_int (mod_big_int n two_big_int) > 0;;
(*******************************)
(* num_exp *)
let base_nat = mk_small_nat base;;
(* normalize_nat m = (n, e) s.t. m = n * base^e, e >= 0 *)
let normalize_nat =
let rec normalize n e =
let q, r = quomod_big_int n base_nat in
if sign_big_int r > 0 then
(n, e)
else
normalize q (succ e) in
fun n ->
if sign_big_int n = 0 then (n, 0) else normalize n 0;;
let denormalize_nat (n, e) =
mult_big_int n (power_int_positive_int base e);;
let lo_nat pp =
let max = power_int_positive_int base pp in
let rec lo m e =
if lt_big_int m max then
(m, e)
else
let q = div_big_int m base_nat in
lo q (succ e) in
fun m ->
if sign_big_int m = 0 then
(m, 0)
else
let n1, e1 = lo m 0 in
let n, e2 = normalize_nat n1 in
n, e1 + e2;;
let hi_nat pp =
if pp <= 0 then failwith "hi_nat: pp <= 0" else
let max = power_int_positive_int base pp in
let rec hi m e =
if lt_big_int m max then
(m, e)
else
let q, r = quomod_big_int m base_nat in
if sign_big_int r = 0 then
hi q (succ e)
else
hi (succ_big_int q) (succ e) in
fun m ->
if sign_big_int m = 0 then
(m, 0)
else
let n1, e1 = hi m 0 in
let n, e2 = normalize_nat n1 in
n, e1 + e2;;
let hi_lt_nat pp m =
hi_nat pp (succ_big_int m);;
end;;
(* Floating point numbers *)
module type Informal_float_sig =
sig
type ifloat
val mk_float : num -> int -> ifloat
val mk_num_float : num -> ifloat
val mk_small_num_float : int -> ifloat
val dest_float : ifloat -> bool * num * int
val sign_float : ifloat -> bool
(* Compares representations, not numbers themselves *)
val eq_float : ifloat -> ifloat -> bool
val lo_float : int -> ifloat -> ifloat
val hi_float : int -> ifloat -> ifloat
val neg_float : ifloat -> ifloat
val abs_float : ifloat -> ifloat
val lt0_float : ifloat -> bool
val gt0_float : ifloat -> bool
val le0_float : ifloat -> bool
val ge0_float : ifloat -> bool
val lt_float : ifloat -> ifloat -> bool
val le_float : ifloat -> ifloat -> bool
val min_float : ifloat -> ifloat -> ifloat
val max_float : ifloat -> ifloat -> ifloat
val mul_float_eq : ifloat -> ifloat -> ifloat
val mul_float_lo : int -> ifloat -> ifloat -> ifloat
val mul_float_hi : int -> ifloat -> ifloat -> ifloat
val div_float_lo : int -> ifloat -> ifloat -> ifloat
val div_float_hi : int -> ifloat -> ifloat -> ifloat
val add_float_lo : int -> ifloat -> ifloat -> ifloat
val add_float_hi : int -> ifloat -> ifloat -> ifloat
val sub_float_lo : int -> ifloat -> ifloat -> ifloat
val sub_float_hi : int -> ifloat -> ifloat -> ifloat
val sqrt_float_lo : int -> ifloat -> ifloat
val sqrt_float_hi : int -> ifloat -> ifloat
end;;
module Informal_float : Informal_float_sig = struct
open Arith_options;;
open Informal_nat;;
type ifloat = bool * nat * int;;
(* Creates a non-negative float *)
let mk_float n e : ifloat = false, mk_nat n, e;;
let mk_num_float n = false, mk_nat n, min_exp;;
let mk_small_num_float n = false, mk_small_nat n, min_exp;;
let dest_float ((s, n, e) : ifloat) = s, dest_nat n, e;;
let sign_float ((s,_,_) : ifloat) = s;;
let eq_float (s1,n1,e1) (s2,n2,e2) = s1 = s2 && eq_nat n1 n2 && e1 = e2;;
let lo_float pp (s,n,e) =
let n1, e1 = if s then hi_nat pp n else lo_nat pp n in
(s, n1, e + e1);;
let hi_float pp (s,n,e) =
let n1, e1 = if s then lo_nat pp n else hi_nat pp n in
(s, n1, e + e1);;
(* Auxiliary num_exp functions *)
let num_exp_add =
let (+) = add_nat in
fun (n1,e1) (n2,e2) ->
if e1 <= e2 then
n1 + denormalize_nat (n2, e2 - e1), e1
else
n2 + denormalize_nat (n1, e1 - e2), e2;;
(* Returns (n,e),true if (n1,e1) >= (n2,e2) and (n,e) = (n1,e1) - (n2,e2)
Returns (n,e),false if (n1,e1) <= (n2,e2) and (n,e) = (n2,e2) - (n1,e1) *)
let num_exp_sub =
let (--) = sub_and_le_nat in
fun (n1,e1) (n2,e2) ->
if e2 <= e1 then
let a = denormalize_nat (n1, e1 - e2) and
b = n2 in
let sub, flag = a -- b in
(sub, e2), flag
else
let a = n1 and
b = denormalize_nat (n2, e2 - e1) in
let sub, flag = a -- b in
(sub, e1), flag;;
let num_exp_le =
let (<=/) = le_nat in
fun (n1,e1) (n2,e2) ->
if e1 <= e2 then
n1 <=/ denormalize_nat (n2, e2 - e1)
else
denormalize_nat (n1, e1 - e2) <=/ n2;;
let num_exp_lt =
let (</) = lt_nat in
fun (n1,e1) (n2,e2) ->
if e1 <= e2 then
n1 </ denormalize_nat (n2, e2 - e1)
else
denormalize_nat (n1, e1 - e2) </ n2;;
(* neg *)
let neg_float (s,n,e) = (not s, n, e);;
(* abs *)
let abs_float (_,n,e) = (false, n, e);;
(* lt0, gt0 *)
let lt0_float (s,n,e) =
if not s then false else gt0_nat n;;
let gt0_float (s,n,e) =
if s then false else gt0_nat n;;
(* le0, ge0 *)
let le0_float (s,n,e) =
if s then true else eq0_nat n;;
let ge0_float (s,n,e) =
if s then eq0_nat n else true;;
(* lt *)
let lt_float (s1,n1,e1) (s2,n2,e2) =
if not s1 then
if s2 then false else num_exp_lt (n1,e1) (n2,e2)
else
if s2 then num_exp_lt (n2,e2) (n1,e1)
else
(* TF *)
if eq0_nat n1 then gt0_nat n2 else true;;
let le_float (s1,n1,e1) (s2,n2,e2) =
if s1 then
if s2 then num_exp_le (n2,e2) (n1,e1) else true
else
if not s2 then num_exp_le (n1,e1) (n2,e2)
else
(* FT *)
if eq0_nat n2 then eq0_nat n1 else false;;
(* min, max *)
let min_float f1 f2 =
if le_float f1 f2 then f1 else f2;;
let max_float f1 f2 =
if le_float f1 f2 then f2 else f1;;
(* mul *)
let badd b1 b2 =
if b1 then not b2 else b2;;
let mul_float_eq (s1,n1,e1) (s2,n2,e2) =
let s = badd s1 s2 in
let n = mul_nat n1 n2 in
let e = e1 + e2 - min_exp in
if e < 0 then
failwith "mul_float_eq: underflow"
else
(s, n, e);;
let mul_float_lo pp (s1,n1,e1) (s2,n2,e2) =
let s = badd s1 s2 in
let n' = mul_nat n1 n2 in
let n, e' = if s1 = s2 then lo_nat pp n' else hi_nat pp n' in
let e = e1 + e2 + e' - min_exp in
if e < 0 then
failwith "mul_float_lo: underflow"
else
(s, n, e);;
let mul_float_hi pp (s1,n1,e1) (s2,n2,e2) =
let s = badd s1 s2 in
let n' = mul_nat n1 n2 in
let n, e' = if s1 = s2 then hi_nat pp n' else lo_nat pp n' in
let e = e1 + e2 + e' - min_exp in
if e < 0 then
failwith "mul_float_hi: underflow"
else
(s, n, e);;
(* div *)
let div_float_lo pp (s1,n1,e1) (s2,n2,e2) =
let s = badd s1 s2 in
let k = 2 * pp in
let nn1 = denormalize_nat (n1, k) in
let n' = div_nat nn1 n2 in
let n, e' = if s1 = s2 then lo_nat pp n' else hi_lt_nat pp n' in
let e = min_exp + e' + e1 - e2 - k in
if e < 0 then
failwith "div_float_lo: underflow"
else
(s, n, e);;
let div_float_hi pp (s1,n1,e1) (s2,n2,e2) =
let s = badd s1 s2 in
let k = 2 * pp in
let nn1 = denormalize_nat (n1, k) in
let n' = div_nat nn1 n2 in
let n, e' = if s1 = s2 then hi_lt_nat pp n' else lo_nat pp n' in
let e = min_exp + e' + e1 - e2 - k in
if e < 0 then
failwith "div_float_hi: underflow"
else
(s, n, e);;
(* add *)
let add_float_lo pp (s1,n1,e1) (s2,n2,e2) =
if s1 = s2 then
let n', e' = num_exp_add (n1,e1) (n2,e2) in
let n, e'' = if s1 then hi_nat pp n' else lo_nat pp n' in
(s1, n, e' + e'')
else
if s1 then
let (n', e'), flag = num_exp_sub (n2,e2) (n1,e1) in
if flag then
let n, e'' = lo_nat pp n' in
(false, n, e' + e'')
else
let n, e'' = hi_nat pp n' in
(true, n, e' + e'')
else
let (n', e'), flag = num_exp_sub (n1,e1) (n2,e2) in
if flag then
let n, e'' = lo_nat pp n' in
(false, n, e' + e'')
else
let n, e'' = hi_nat pp n' in
(true, n, e' + e'');;
let add_float_hi pp (s1,n1,e1) (s2,n2,e2) =
if s1 = s2 then
let n', e' = num_exp_add (n1,e1) (n2,e2) in
let n, e'' = if s1 then lo_nat pp n' else hi_nat pp n' in
(s1, n, e' + e'')
else
if s1 then
let (n', e'), flag = num_exp_sub (n2,e2) (n1,e1) in
if flag then
let n, e'' = hi_nat pp n' in
(false, n, e' + e'')
else
let n, e'' = lo_nat pp n' in
(true, n, e' + e'')
else
let (n', e'), flag = num_exp_sub (n1,e1) (n2,e2) in
if flag then
let n, e'' = hi_nat pp n' in
(false, n, e' + e'')
else
let n, e'' = lo_nat pp n' in
(true, n, e' + e'');;
(* sub *)
let sub_float_lo pp f1 f2 = add_float_lo pp f1 (neg_float f2);;
let sub_float_hi pp f1 f2 = add_float_hi pp f1 (neg_float f2);;
(* sqrt *)
let rec sqrt_float_lo pp (s,n1,e1) =
if s then
failwith "sqrt_float_lo: negative argument"
else
if e1 land 1 = 1 then
sqrt_float_lo pp (s, denormalize_nat (n1, 1), e1 - 1)
else
let p2 = pp * 2 in
let f1' = denormalize_nat (n1, p2) in
let f1 = Big_int.sqrt_big_int (big_int_of_num (dest_nat f1')) in
let n, e' = lo_nat pp (mk_nat (num_of_big_int f1)) in
let e = ((e1 + min_exp) lsr 1) + e' - pp in
if e < 0 then
failwith "sqrt_float_lo: underflow"
else
(s, n, e);;
let rec sqrt_float_hi pp (s,n1,e1) =
if s then
failwith "sqrt_float_hi: negative argument"
else
if e1 land 1 = 1 then
sqrt_float_hi pp (s, denormalize_nat (n1, 1), e1 - 1)
else
let p2 = pp * 2 in
let x = (big_int_of_num o dest_nat o denormalize_nat) (n1, p2) in
let f1' = Big_int.sqrt_big_int x in
let f1 = (mk_nat o num_of_big_int) f1' in
let n, e' =
let ( * ) = Big_int.mult_big_int and
(==) = Big_int.eq_big_int in
hi_nat pp (if f1' * f1' == x then f1 else suc_nat f1) in
let e = ((e1 + min_exp) lsr 1) + e' - pp in
if e < 0 then
failwith "sqrt_float_hi: underflow"
else
(s, n, e);;
end;;
(* Interval arithmetic *)
module type Informal_interval_sig =
sig
type interval
val one_interval : interval
val two_interval : interval
val mk_interval : Informal_float.ifloat * Informal_float.ifloat -> interval
val mk_num_interval : num -> interval
val mk_small_num_interval : int -> interval
val dest_interval : interval -> Informal_float.ifloat * Informal_float.ifloat
val round_interval : int -> interval -> interval
val neg_interval : interval -> interval
val mul_interval : int -> interval -> interval -> interval
val div_interval : int -> interval -> interval -> interval
val add_interval : int -> interval -> interval -> interval
val sub_interval : int -> interval -> interval -> interval
val sqrt_interval : int -> interval -> interval
val inv_interval : int -> interval -> interval
val pow_interval : int -> int -> interval -> interval
(* Computes max(-lo, hi) *)
val abs_interval : interval -> Informal_float.ifloat
end;;
module Informal_interval : Informal_interval_sig = struct
open Informal_float;;
type interval = ifloat * ifloat;;
let mk_interval (lo,hi) =
if lt_float hi lo then failwith "mk_interval: hi < lo" else (lo,hi);;
let mk_num_interval n =
let f = mk_num_float n in (f, f);;
let mk_small_num_interval n =
let f = mk_small_num_float n in (f, f);;
let one_interval = mk_small_num_interval 1;;
let two_interval = mk_small_num_interval 2;;
let dest_interval ((lo,hi) : interval) = (lo,hi);;
let round_interval pp (lo,hi) = (lo_float pp lo, hi_float pp hi);;
let neg_interval (lo,hi) = (neg_float hi, neg_float lo);;
let abs_interval (lo,hi) = max_float hi (neg_float lo);;
let add_interval pp (lo1,hi1) (lo2,hi2) =
(add_float_lo pp lo1 lo2, add_float_hi pp hi1 hi2);;
let sub_interval pp (lo1,hi1) (lo2,hi2) =
(sub_float_lo pp lo1 hi2, sub_float_hi pp hi1 lo2);;
let sqrt_interval pp (lo,hi) =
if sign_float lo then
failwith "sqrt_interval: negative lower bound"
else
(sqrt_float_lo pp lo, sqrt_float_hi pp hi);;
(* mul *)
let mul_interval pp (l_lo,l_hi) (r_lo,r_hi) =
let s1 = sign_float l_lo and
s2 = sign_float l_hi and
s3 = sign_float r_lo and
s4 = sign_float r_hi in
if s1 <> s2 && s3 <> s4 then
if not s1 or not s3 then
failwith "mul_interval: FT interval"
else
let lo1, lo2 = mul_float_lo pp l_lo r_hi, mul_float_lo pp l_hi r_lo and
hi1, hi2 = mul_float_hi pp l_lo r_lo, mul_float_hi pp l_hi r_hi in
(min_float lo1 lo2, max_float hi1 hi2)
else
let lo1, lo2, hi1, hi2 =
if s1 <> s2 then
if not s1 then
failwith "mul_interval: FT interval"
else
if not s3 then
l_lo, r_hi, l_hi, r_hi
else
l_hi, r_lo, l_lo, r_lo
else
if s3 <> s4 then
if not s3 then
failwith "mul_interval: FT interval"
else
if not s1 then
l_hi, r_lo, l_hi, r_hi
else
l_lo, r_hi, l_lo, r_lo
else
if not s1 then
if not s3 then
l_lo, r_lo, l_hi, r_hi
else
l_hi, r_lo, l_lo, r_hi
else
if not s3 then
l_lo, r_hi, l_hi, r_lo
else
l_hi, r_hi, l_lo, r_lo in
(mul_float_lo pp lo1 lo2, mul_float_hi pp hi1 hi2);;
(* div *)
let div_interval pp (l_lo,l_hi) (r_lo,r_hi) =
let s1 = sign_float l_lo and
s2 = sign_float l_hi and
s3 = sign_float r_lo and
s4 = sign_float r_hi in
if s3 <> s4 then
failwith "div_interval: division by an interval containing 0"
else
let lo1, lo2, hi1, hi2 =
if s1 = s2 then
if not s1 then
if not s3 then
l_lo, r_hi, l_hi, r_lo
else
l_hi, r_hi, l_lo, r_lo
else
if not s3 then
l_lo, r_lo, l_hi, r_hi
else
l_hi, r_lo, l_lo, r_hi
else
if not s1 then
failwith "div_interval: FT interval"
else
if not s3 then
l_lo, r_lo, l_hi, r_lo
else
l_hi, r_hi, l_lo, r_hi in
(div_float_lo pp lo1 lo2, div_float_hi pp hi1 hi2);;
(* inv *)
let inv_interval pp int =
div_interval pp one_interval int;;
(* pow *)
let pow_interval pp n int =
let rec pow n =
if n <= 0 then
one_interval
else if n = 1 then
int
else
let i2 = pow (n - 1) in
mul_interval pp int i2 in
pow n;;
(* Arith_misc.gen_pow (mul_interval pp) one_interval n;; *)
end;;
(* atn *)
module type Informal_atn_sig =
sig
val atn_interval : int -> Informal_interval.interval -> Informal_interval.interval
val acs_interval : int -> Informal_interval.interval -> Informal_interval.interval
val pi_approx_array : Informal_interval.interval array
val pi2_approx_array : Informal_interval.interval array
end;;
module Informal_atn : Informal_atn_sig = struct
open Informal_float;;
open Informal_interval;;
let rec poly_f_interval pp l x =
if length l = 0 then
failwith "poly_f_interval: an empty coefficient list"
else
let first = hd l in
if length l = 1 then
first
else
let r = poly_f_interval pp (tl l) x in
add_interval pp first (mul_interval pp x r);;
let poly_f_even_interval pp l x =
let xx = mul_interval pp x x in
poly_f_interval pp l xx;;
let poly_f_odd_interval pp l x =
let even = poly_f_even_interval pp l x in
mul_interval pp x even;;
let halfatn_interval pp x =
let xx = mul_interval pp x x in
let one_xx = add_interval pp one_interval xx in
let sqrt = sqrt_interval pp one_xx in
let one_sqrt = add_interval pp sqrt one_interval in
div_interval pp x one_sqrt;;
let halfatn4_interval pp x =
(halfatn_interval pp o halfatn_interval pp o halfatn_interval pp o halfatn_interval pp) x;;
(* Computes an interval for 16 * sum(0..n) (halfatn4_co x) *)
let atn_sum_interval =
let interval_16 = mk_small_num_interval 16 in
fun pp l x ->
let halfatn4 = halfatn4_interval pp x in
let poly = poly_f_odd_interval pp l halfatn4 in
mul_interval pp interval_16 poly;;
let atn0_interval pp l eps x =
let sum = atn_sum_interval pp l x in
let a, b = dest_interval sum in
let _, d = dest_interval eps in
let hi = add_float_hi pp b d in
let lo = sub_float_lo pp a d in
mk_interval (lo, hi);;
(* Computes an interval for 2 ^ -(6n + 5) *)
let compute_eps1 pp n =
let pow = pow_interval pp (6 * n + 5) two_interval in
inv_interval pp pow;;
let mk_atn_co_table pp n =
let get_val k =
let l = if (k land 1) = 0 then one_interval else neg_interval (one_interval) in
let r = mk_small_num_interval (2 * k + 1) in
div_interval pp l r in
map get_val (0--n);;
(* Lookup tables *)
let n_of_p pp =
let x = (float_of_int (pp + 1) *. log (float_of_int Arith_options.base) /. log (2.0) -. 5.0) /. 6.0 in
let n = (int_of_float o ceil) x in
if n < 1 then 1 else n;;
let atn_co_array = Array.init 21 (fun i -> mk_atn_co_table (i + 1) (n_of_p i));;
let eps1_array = Array.init 21 (fun i -> compute_eps1 (i + 1) (n_of_p i));;
let atn_interval pp x =
atn0_interval pp atn_co_array.(pp) eps1_array.(pp) x;;
(* pi approximation *)
let pi_approx_array, pi2_approx_array =
let pp = 20 in
let x = one_interval in
let r1 = atn_interval pp x in
let r2 = mul_interval pp (mk_small_num_interval 4) r1 in
let float_pi = r2 in
let float_pi2 = div_interval pp float_pi two_interval in
let pi_int0 = mk_small_num_interval 0 in
let pi2_int0 = pi_int0 in
Array.init 19 (fun i -> if i = 0 then pi_int0 else round_interval i float_pi),
Array.init 19 (fun i -> if i = 0 then pi2_int0 else round_interval i float_pi2);;
(* acs *)
let acs0_interval pp l eps1 x =
let int1 = sub_interval pp one_interval (mul_interval pp x x) in
let int2 = div_interval pp x (sqrt_interval pp int1) in
let atn_int = atn0_interval pp l eps1 int2 in
sub_interval pp pi2_approx_array.(pp + 1) atn_int;;
let acs_interval pp x =
acs0_interval pp atn_co_array.(pp) eps1_array.(pp) x;;
end;;
(*
needs "../formal_lp/arith/float_atn.hl";;
open Float_atn;;
open Informal_atn;;
open Arith_float;;
open Informal_interval;;
let n1 = 111 and
n2 = 33;;
let a_th = mk_float_interval_small_num n1 and
b_th = mk_float_interval_small_num n2;;
let a = mk_small_num_interval n1 and
b = mk_small_num_interval n2;;
let dest_int i =
let lo, hi = dest_interval i in
Informal_float.dest_float lo, Informal_float.dest_float hi;;
let pp = 10;;
float_interval_mul pp a_th b_th;;
dest_int (mul_interval pp a b);;
float_interval_div pp a_th b_th;;
dest_int (div_interval pp a b);;
let mk_f = (fst o dest_pair o rand o concl o mk_float_interval_small_num);;
let mk_neg_f = (fst o dest_pair o rand o concl o float_interval_neg o mk_float_interval_small_num);;
let mk_if n = mk_float (Num.num_of_int n) Arith_options.min_exp;;
let n1 = 3 and
n2 = 121;;
let f1_tm = mk_f n1 and
f2_tm = mk_f n2;;
let f1 = (mk_if n1) and
f2 = (mk_if n2);;
let pp = 20;;
float_sqrt_lo pp f1_tm;;
dest_float (sqrt_float_lo pp f1);;
float_sqrt_lo pp f2_tm;;
dest_float (sqrt_float_lo pp f2);;
float_sqrt_hi pp f1_tm;;
dest_float (sqrt_float_hi pp f1);;
float_sqrt_hi pp f2_tm;;
dest_float (sqrt_float_hi pp f2);;
open Arith_misc;;
test 100 (float_sqrt_lo pp) f1_tm;;
test 100 (sqrt_float_lo pp) f1;;
dest_float (sqrt_float_lo pp f1);;
float_le0 f1_tm;;
le0_float f1;;
float_le0 f2_tm;;
le0_float f2;;
float_lt f2_tm f1_tm;;
lt_float f2 f1;;
float_le f2_tm f1_tm;;
le_float f2 f1;;
float_mul_eq f1_tm f2_tm;;
dest_float (mul_float_eq f1 f2);;
let pp = 2;;
float_add_lo pp f1_tm f2_tm;;
dest_float (add_float_lo pp f1 f2);;
float_add_hi pp f1_tm f2_tm;;
dest_float (add_float_hi pp f1 f2);;
float_sub_lo pp f1_tm f2_tm;;
dest_float (sub_float_lo pp f1 f2);;
float_sub_hi pp f1_tm f2_tm;;
dest_float (sub_float_hi pp f1 f2);;
float_mul_lo pp f1_tm f2_tm;;
dest_float (mul_float_lo pp f1 f2);;
float_mul_hi pp f1_tm f2_tm;;
dest_float (mul_float_hi pp f1 f2);;
float_div_lo pp f1_tm f2_tm;;
dest_float (div_float_lo pp f1 f2);;
float_div_hi pp f1_tm f2_tm;;
dest_float (div_float_hi pp f1 f2);;
open Arith_misc;;
test 1000 (float_div_lo pp f1_tm) f2_tm;;
test 1000 (div_float_lo pp f1) f2;;
*)